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Abstract

In this paper the Analog Equation Method (AEM) a boundary-
only method is presented for solving nonlinear static and dynamic
problems in continuum mechanics. General bodies are considered,
that is bodies whose properties may be position or direction depen-
dent and their response is nonlinear. The nonlinearity may result
from both nonlinear constitutive relations (material nonlinearity)
and large deflections (geometrical nonlinearity). The quintessence
of the method is the replacement of the coupled nonlinear par-
tial differential equations with variable coefficients governing the
response of the body by an equivalent set of linear uncoupled equa-
tions under fictitious sources. The fictitious sources are established
using a BEM-based technique and the solution of the original prob-
lem is obtained from the integral representation of the solution of
the substitute problem. A variety of static and dynamic problems
are solved using the AEM are presented to illustrate the method
and demonstrate its efficiency and accuracy.

1 Introduction

The boundary methods are known for their major advantage to re-
strict the discretization only to the boundary of the body. Among
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them the most reputed one is the boundary integral equation or oth-
erwise known as Boundary Element Method (BEM), a name resulting
from the employed technique to solve the boundary integral equations.
Although the BEM has been proven to be powerful alternative to the so
called domain methods, such as FDM and FEM, when linear problems
are encountered, this method has been criticized as not been capable
of solving nonlinear problems, especially in nonhomogeneous bodies
where the coefficients of the differential equations are variable. This is
one of the reasons that many investigators are reluctant to be involved
with BEM and use it as a computational tool.

Effort to develop BEM methods for nonlinear problems has been
given by many BEM investigators. Almost all of these methods have
not avoided domain discretization. The only method that can be con-
sidered as boundary-only is the dual reciprocity method (DRM) [1].
The term ’boundary-only’ is used in the sense that discretization and in-
tegration are limited only on the boundary, although collocation points
inside the domain may be used to improve the solution. Nevertheless,
DRMworks when for a non standard linear partial differential equation
or a nonlinear one it is possible to extract a standard linear partial dif-
ferential operator L(·) and lump the remainder to the right-hand-side
as a body-force term:

L(u) = b(x, y, u, ux, uy, uxx, uxy, uyy) (1)

where b(·) is, in general, a nonlinear function of its arguments.
Further, DRM can be employed if the fundamental solution of the

adjoint differential equation can be established, namely, a partial sin-
gular solution of the equation

L∗(u∗) = δ(P −Q) (2)

where L∗(·) is the adjoint operator to L∗(·) and δ(P −Q) is the Dirac
delta function.

On the basis of the aforementioned, it is apparent that DRM cannot
be employed when

(a) The differential operator cannot be put in the form of the eqn.
(1), e.g.

uxxuyy − u2
xy

= f(x, y) (3)
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(b) The fundamental solution of eqn. (2) is not available, e.g. when
the operator L∗(·) has variable coefficients.

Apparently, the efficiency of DRM decreases in the case of problems
described by coupled nonlinear equations. Besides, different DRM for-
mulations and consequently different computer programs are required
for different body force terms as well as for different operators L∗(·),
even the order of equations is the same.

In this paper a boundary-only method is presented for solving non-
linear static and dynamic problems. The method is alleviated from
the restrictions characterizing DRM. Simple fundamental solutions are
used which depend only on the order of differential equations, e.g.
for second order differential equations the fundamental solution of the
Laplace equation is employed for both static and dynamic problems.
The method is based on the concept of the analog equation [2], ac-
cording to which the nonlinear problem is replaced by an equivalent
simple linear one under a fictitious source with the same boundary
and initial conditions. The substitute problem is chosen so that the
integral representation of the solution is known. The fictitious source
is established by approximating it with a radial basis function series
expansion as in the DRM and the solution of the original problem is
computed from the integral representation of the substitute problem,
which is used as mathematical formula. Without restricting the gen-
erality the method is illustrated by applying it to second order partial
and ordinary differential equations.

The method has been already successfully employed to solve a vari-
ety of engineering problems described by partial differential equations,
among them potential flow problems in bodies whose material con-
stants depend on the field function (e.g. temperature dependent con-
ductivity) [3], determination of surface with prescribed mean or total
curvature [3], the soap bubble problem [4], nonlinear static and dy-
namic analysis of homogeneous isotropic and heterogeneous orthotropic
membranes [5,6,7,8], finite elasticity problems, inverse problems [9],
equationless problems in nonlinear bodies using only boundary data
[10], nonlinear analysis of shells [11]. The method has been also ap-
plied to problems described by coupled nonlinear ordinary differential
equations, e.g. finite deformation analysis of elastic cables [12,13], large
deflection analysis of beams [14] and integration of nonlinear equations
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of motion [15]. Some example problems are solved to demonstrate the
applicability, efficiency and accuracy of the AEM.

2 Illustration of the AEM for 2nd order

PDE’s of hyperbolic type

2.1 Problem statement

Consider a non-homogeneous body occupying the two-dimensional do-
main Ω in the xy-plane (Fig. 1), whose dynamic response is governed
by the following initial boundary value problem

ρutt + cut +N(u) = g(x, y, t) in Ω, 0 ≤ t (4)

β1u+ β2un = β3 on Γ (5)

u(x, y, 0) = u1(x, y), ut(x, y, 0) = u2(x, y) in Ω (6a,b)

where u = u(x, y, t) is the unknown field function and

N(u) = N(u, ux, uy, uxx, uxy, uyy, x, y) (7)

is a nonlinear second order differential operator defined in Ω; Γ =⋃i=K

i=0
Γi is the boundary where Γi(i = 1, 2, ..., K) areK non-intersecting

closed contours surrounded by the contour Γ0. Moreover, βi = βi(s), i =
1, 2, 3 are functions specified on the boundary Γ with s being the
arc length, while u1(x, y) and u2(x, y) are given functions denoting
the initial deflection and velocity distributions, respectively. Finally,
ρ = ρ(x, y) and c = c(x, y) are the mass and damping densities, respec-
tively, and g(x, y, t) the forcing function. The boundary condition (5)
has been assumed linear for the convenience of the presentation of the
method, although a nonlinear boundary condition could be considered.

2.2 The analog equation method

Let u = u(x, y, t) be the sought solution to the problem (4)-(6). This
function is two times continuously differentiable in Ω. Thus, if the
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Figure 1: Multiply Connected Domain Ω and Boundary Γ = Γ0 ∪Γ1 ∪
ΓK

Laplace operator ∇ = ∂2/∂x2+ ∂2/∂y2 is applied to it, we have

∇2u = b(x, y, t) (8)

Eqn. (8) is a quasi-static equation and indicates that the solution of
eqn. (4) at instant t could be established by solving this equation un-
der the boundary condition (5), if the fictitious time dependent source
b(x, y, t) were known. Eqn. (8) is the analog equation, which together
with the boundary condition (5) and the initial condition (6a,b) con-
stitute the substitute problem.

The fictitious source can be established following a procedure sim-
ilar to that presented by Katsikadelis and Nerantzaki [3] for the static
problem. We assume

b =
M∑
j=1

αjfj (9)

where fj = fj(x, y) is a set of approximation functions and αj = αj(t)
time dependent coefficients to be determined.

The solution of eqn. (8) at instant t can be written as a sum
of the homogeneous solution ū = ū(x, y, t) and a particular solution
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up = up(x, y, t) of the nonhomogeneous equation. Thus, we can write

u = ū+ up (10)

The particular solution is obtained from

∇2up =
M∑
j=1

αjfj (11)

which yields

up =
M∑
j=1

αjûj (12)

where ûj(j = 1, 2, ...,M) is a particular solution of the equation

∇2ûj = fj j = 1, 2, ...,M (13)

The particular solution of eqn. (13) can always be determined,
if fj is specified. The homogeneous solution ū is obtained from the
boundary value problem

∇2ū = 0 in Ω (14)

β
1
ū+ β

2
q̄ = β

3
− (β

1

M∑
j=1

αjûj + β
2

M∑
j=1

αj q̂j) on Γ (15)

where q̂j = ∂ûj/∂n.
The boundary value problem (14)-(15) is solved using the BEM.

Thus, the integral representation of the solution ū is given as

cū(P, t) = −
∫
T

(u∗q̄ − ūq∗)ds P (x, y) ∈ Ω ∪ Γ (16)

in which u∗ = ln r/2π is the fundamental solution to eqn. (14) and
q∗ = u∗,n its derivative normal to the boundary with r = |Q− P | =[
(ξ − x)2 + (y − η)2

]1/2
being the distance between any two points
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P (x, y) in Ω ∪ Γ, Q(ξ, η) on Γ; c is a constant which takes the val-
ues c = 1 if P ∈ Ω and c = α/2π if P ∈ Γ;α is the interior angle
between the tangents of boundary at point P . Note that it is c = 1/2
for points where the boundary is smooth.

On the basis of eqns. (10), (12) and (16) the solution of eqn. (8) is
written as

cu = −
∫
Γ

(u∗q̄ − ūq∗)ds +
M∑
j=1

αjûj (17)

Differentiating the above equation for P ∈ Ω (c = 1) yields

ux = − ∫
Γ
(u∗xq̄ − ūq∗x)ds +

∑M

j=1(ûj)xαj,

uy = − ∫
Γ
(u∗yq̄ − ūq∗y)ds +

∑M

j=1(ûj)yαj,

(18a,b)

uyy = − ∫
Γ
(u∗xxq̄ − ūq∗xx)ds +

∑M

j=1(ûj)xxαj,

uxx = − ∫
Γ
(u∗yyq̄ − ūq∗yy)ds +

∑M

j=1(ûj)yyαj,

(19a,b)

uxy = −
∫
Γ

(u∗xyq̄ − ūq∗xy)ds +
M∑
j=1

(ûj)xyαj (20)

The final step of AEM is to apply eqn. (4) to M discrete points
inside Ω. We, thus, obtain a set of M equations

ρiuitt + ciuit +N(ui) = gi (i = 1, 2, ...,M) (21)

Using eqns. (17) to (20) to evaluate u and its derivatives at points
i = 1, 2, ...,M and substituting them into eqn. (21) the following set
of nonlinear ordinary differential equations, which play the role of the
semidiscretized equations of motion

Fi(αj, α̇j, α̈j) = gi (i = 1, 2, ...,M) (22)

which can be solved to yield the coefficients αj. The AEM can be
implemented only numerically.



20 J.T.Katsikadelis

Boundary nodes

Total N
Interior nodes

Total M

Figure 2: Boundary discretization and domain nodal points

2.3 Numerical Implementation

The BEM with constant elements is used to approximate the boundary
integrals in eqns. (17) to (20). If N is the number of the boundary
nodal points (see Fig. 2), then eqn. (17) is written as

ciūi =
N∑
k=1

H̄ikū
k −

N∑
k=1

Gikq̄
k (23)

where

H̄ik =

∫
k

q∗(rik)ds (24)

Gik =

∫
k

u∗(rik)ds (25)
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Applying eqn. (23) to all boundary nodal points and using matrix
notation yields

[H]{ū} − [G]{q̄} = 0 (26)

where

[H] = [H̄]− [C] (27)

with [C] being a diagonal matrix including the values of the coefficient
ci. The boundary condition (15), when applied to the N boundary
nodal points, yields

(β1)
iūi + (β2)

iq̄i = (β3)i −
[
(β1)

i

M∑
j=1

αjû
i
j + (β2)

i

M∑
j=1

αj q̂
i
j

]
(28)

or using matrix notation

[β1]{ū}+ [β2]{q̄} = {β3} −
(
[β1][Û ] + [β2][Q̂]

)
{α} (29)

in which [Û ] = [ûij] , [Q] = [q̂ij] are N×M known matrices; [β
1
], [β

2
] are

N ×N known diagonal matrices and {α} the vector of the coefficients
to be determined.

Eqns. (26) and (29) may be combined to express {ū} and {q̄} in
terms of {α}. Thus, we may write[

[H] − [G]
[β

1
] [β

2
]

]{ {ū}
{q̄}

}
=

[
[0]
[T ]

]
{α}+

{ {0}
{β

3
}
}

(30)

where

[T ] = −
(
[β1][Û ] + [β2][Q̂]

)
(31)

Solving eqn. (30) yields

{ū} = [Su]{α}+ {du} (32)

{q̄} = [Sq]{α}+ {dq} (33)
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in which [Su], [Sq] are knownN×M rectangular matrices and {du}, {dq}
known vectors. Eqns. (17) to (20) when discretized and applied to the
M nodal points inside Ω give

{u} = [H]{ū} − [G]{q̄}+ [Û ]{α} (34)

{ux} = [Hx]{ū} − [Gx]{q̄}+ [Ûx]{α}

{uy} = [Hy]{ū} − [Gy]{q̄}+ [Ûy]{α}
(35a,b)

{uxx} = [Hxx]{ū} − [Gxx]{q̄}+ [Ûxx]{α}

{uyy} = [Hyy]{ū} − [Gyy]{q̄}+ [Ûyy]{α}
(36a,b)

{uxy} = [Hxy]{ū} − [Gxy]{q̄}+ [Ûxy]{α} (37)

in which [G], [H], [Gx], [Hyy], ..., [Hxy] are known M ×M matrices orig-
inating from the integration of the kernel functions u∗ and q∗ and their
respective derivatives; [Û ], [Ûx], ..., [Ûxy] are known matrices having di-
mensions , the elements of which result from the functions ûj and their
derivatives.

Substituting eqns. (32) and (33) into eqns. (34)-(37) yields

{u} = [W ]{α}+ {w} (38)

{ux} = [Wx]{α}+ {wx}, {uy} = [Wy]{α}+ {wy} (39a,b)

{uxx} = [Wxx]{α}+ {wxx}, {uyy} = [Wyy]{α}+ {wyy} (40a,b)

{uxy} = [Wxy]{α}+ {wxy} (41)

where [W ], [Wx], ..., [Wxy] are known matrices and {w}, {wx}, ..., {wxy}
known vectors.
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Differentiating eqn. (38) with respect to time and taking into ac-
count that the vector {w} is constant we obtain

{u̇} = [W ]{α̇} (42)

{ü} = [W ]{α̈} (43)

Finally, writing eqn. (21) in matrix form and substituting eqns.
(38) to (43) in it, we obtain the typical semidiscretized nonlinear equa-
tion of motion

[M ]{α̈}+ [C]{α̇}+N({α}) = {g} (44)

where [M ] and [C] are generalized mass and damping matrices, respec-
tively. The initial conditions for eqn. (44) are obtained from eqns. (38)
and (42) on the base of eqns. (6a,b). Thus, we have

{α(0)} = [W ]−1({u1} − {w}) (45)

{α̇(0)} = [W ]−1{u2} (46)

The dynamic problem

For forced (g(x, y, t) �= 0) or free vibrations (g(x, y, t) = 0), eqn.
(44) is solved using any time step integration method taking into ac-
count the initial conditions (45) and (46). Once αj are computed, the
solution of the problem and its derivatives are evaluated from eqns.
(38) to (41). For points not coinciding with the nodal points these
quantities are computed from the discretized counter part of eqns. (17)
to (20).

The static problem

In this case it is {α̇} = {α̈} = {0} and eqn. (44) becomes

N({α}) = {g} (47)

from which the coefficients {α} are established by solving a system of
nonlinear algebraic equations.
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3 Examples

On the basis of the numerical procedure presented in section 2, a FOR-
TRAN code has been written and numerical results for example prob-
lems have been obtained, which illustrate the applicability, effectiveness
and accuracy of the AEM. The employed approximation functions fj
are the multiquadrics, which are defined as

fj =
√
r2 + c2 (48)

where c is an arbitrary constant and

r =
√
(x− xj)2 + (y − yj)2 j = 1, 2, ...,M (49)

with xj, yj being the collocation nodal points inside Ω. Using these
radial basis functions, the particular solution of eqn. (13) is obtained
as

ûj = −c3

3
ln
(
c
√
r2 + c2 + c2

)
+

1

9
(r2 + 4c2)

√
r2 + c2 (50)

3.1 Heat flow in bodies with nonlinear material

properties

In this case the thermal conductivity k depends on the temperature
u(x, y) [3]. If we assume that k = k0[1+β(u−u0)/u0], where k0, β and
u0 are constants, the governing equation is written as

k∇2u+ β(u2x + u2y) = 0 (51)

Numerical results for a square plane body with k0 = 1, β = 3,
u0 = 300 and unit side length 0 ≤ x, y ≤ 1 under the mixed boundary
conditions u(0, y) = 300, u(1, y) = 400, un(x, 0) = 0, un(x, 1) = 0
are given in Table 1 as compared with those obtained using the Dual
Reciprocity Method and the Kirchhof’s transformation method
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Position u

x Y DRM Kirchhof AEM

M=25 M=69 M=225

0.1 0.5 314.15 314.00 314.44 314.17 314.19

0.3 0.5 338.34 337.82 339.23 337.76 338.83

0.5 0.5 358.49 358.11 359.51 358.11 359.00

0.7 0.5 376.27 376.08 376.62 376.68 375.97

0.9 0.5 392.43 392.36 392.24 392.40 391.93

Table 1: Temperature in a square plate with temperature dependent
conductivity.

3.2 Determination of a surface with constant Gaussian

curvature

A surface that passes through a skew closed space curve and has given
Gaussian curvature K is determined from the following boundary value
problem [3]

uxxuyy − u2xy −K(1 + u2x + u2y) = 0 in Ω (52)

u = û on Γ (53)

where Ω is the domain surrounded by the projection Γ of the curve on
the x, y plane. Numerical results for the square domain 0 ≤ x, y ≤ 5
with boundary conditions u(0, y) = (50− y2)1/2, u(5, y) = (25− y2)1/2,
u(x, 0) = (50 − x2)1/2, u(x, 5) = (25 − x2)1/2 and Gaussian curvature
K = 1/50 are given in Table 2 as compared with the exact ones
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x y=1.25 y=3.75

AEM Exact AEM Exact

0.25 6.92 6.95 5.94 5.98

0.75 6.82 6.91 5.81 5.94

1.25 6.70 6.84 5.68 5.86

1.75 6.56 6.73 5.55 5.73

2.25 6.40 6.58 5.39 5.55

2.75 6.21 6.39 5.18 5.32

3.25 6.01 6.15 4.91 5.03

3.75 5.71 5.86 4.59 4.67

4.25 5.39 5.51 4.20 4.22

4.75 5.03 5.08 3.68 3.65

Table 2: Numerical results for in Example 3.2

3.3 The problem of minimal surface

This is the problem of determining a surface passing through one or
more non-intersecting skew closed space curves and having a minimal
area. The physical analog is the surface that a soap bubble assumes
when constraint by bounding contours (Plateau’s problem). The con-
dition

minA =

∫
Ω

(1 + u2x + u2y)dxdy (54)

requires that the minimal surface u(x, y) is a solution of the following
boundary value problem [4]

(1 + u2y)uxx − 2uxuyuxy + (1 + u2x)uyy = 0 in Ω (55)

u = ũ on Γ (56)

The catenoid

The minimal surface supported on the two concentric circles lying
at different levels is known as the catenoid. The obtained solution for
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Figure 3: The catenoid

R = 5, z = 0 and R = 2, z = 3 is determined and it shown in graphical
form in Fig. 3.

Cross shaped membrane

The surface of a soap bubble that passes through the space curve,
which is the intersection of the cylindrical surface r = 5(sin4 θ+cos4 θ),
0 ≤ θ ≤ 2π, z ≥ 0, and the sphere x2 + y2 + z2 = R2, R = 5 is
determined. The obtained surface is shown in Fig. 5.

3.4 Large deflections of heterogeneous orthotropic

membranes

Consider a thin flexible initially flat elastic membrane consisting of
heterogeneous orthotropic linearly elastic material occupying the two-
dimensional, in general multiply connected, domain Ω in the xy-plane
bounded by theK+1 nonintersecting contours Γ0,Γ1...,ΓK . The mem-
brane is prestressed either by imposed displacement ū, v̄ or by external
forces T̃x, T̃y acting along the boundary Γ =

⋃i=K
i=0 Γi. Assuming non-

linear kinematic relations, which retain the square of the slopes of the
deflection surface, while the strain components remain still small com-
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Figure 4: Plan form of the cross-shaped membrane

Figure 5: Cross-shaped membrane
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pared with the unity, we obtain the following three coupled nonlinear
differential equations in terms of the displacements [7]

(C1u,x + Cv,y),x + (C12u,y + C12v,x),y =

= − (
C1

2
w2

,x +
C
2
w2

,y

)
,x
− (C12w,xw,y),y

(57a)

(C2v,y + Cu,x),y + (C12u,y + C12v,x),x =

= − (
C2

2
w2

,y +
C
2
w2

,x

)
,y
− (C12w,xw,y),x

(57b)

[
C1

(
u,x +

1

2
w2

,x

)
+ C

(
v,y +

1

2
w2

,y

)]
w,xx+

+ [2C12 (u,y + v,x + w,xw,y)]w,xy+

+
[
C2

(
v,y +

1

2
w2

,y

)
+ C

(
u,x +

1

2
w2

,x

)]
w,yy = −g

(57c)

subjected to the boundary conditions

Tx = T̃x or u = ũ (58a)

Ty = T̃y or v = ṽ (58b)

Txw,x + Tyw,y = Ṽ or w = w̃ (58c)

where u = u(x, y), v = v(x, y) are the in-plane displacement compo-
nents and w = w(x, y) the transverse deflection produced when the
membrane is subjected to the load g = g(x, y) acting in the direction
normal to its plane. The position dependent coefficients C1 = C1(x, y),
C2 = C2(x, y), C = C(x, y) and C12 = C12(x, y) characterize the stiff-
ness of the orthotropic membrane and are given as

C1 =
E1h

1−v1v2
, C2 =

E2h

1−v1v2
,

C = E1v2h
1−v1v2

= E2v1h
1−v1v2

, C12 = Gh
(59a,b,c,d)
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in which E1, E2 and v1, v2 are the elastic moduli and the Poisson coeffi-
cients in the x and y directions, respectively, constraint by the relation
E1v1 = E2v2 and G is the shear modulus.

The analog equations in this case are three uncoupled Poisson’s
equations, namely

∇2u = b1(x, y), ∇2v = b2(x, y), ∇2w = b3(x, y) (60a,b,c)

The fictitious sources are established using the same procedure with
that for on analog equations and the displacements as well as their
derivatives are computed from the integral representations of the solu-
tion of the respective Poisson’s equations.

Membrane of arbitrary shape

In this example, the heterogeneous orthotropic membrane of arbi-
trary shape was analyzed (N = 80, M = 61). Its boundary is defined
by the curve r = 5 |sin θ|3 + 6 |cos θ|3 , 0 � θ � 2π . The membrane
is prestressed by un = 0.05m in the direction normal to the bound-
ary, while ut = 0 in the tangential direction. The employed data are
h = 0.002m, g = 3kN/m2, E1 = E

√
λ, E2 = E

√
λ , ν1 = 0.3, ν2 = λν1

and G = E/2(1 + ν1
√
λ) where E = 110000 + kr2, r = (x2 + y2)1/2

and k a constant. The contours of the principle stress resultants N1

for various values of k and λ are shown in Fig. 6 and Fig. 7.

3.5 Nonlinear vibrations of membranes

The free and forced vibrations of a homogeneous isotropic membrane
have been studied. The governing equations result from eqns. (57)
for C1 = C2 = Eh/(1 − ν2), C12 = Eνh/(1 − ν2 and including the
inertia force in the third equation. Thus we have the following initial
boundary value problem [6]

1−ν
2
∇2u+ 1+ν

2
(u,x + v,y),x =

= −w,x(w,xx +
1−ν
2
w,yy)− 1+ν

2
w,y w,xy

(61a)

1−ν
2
∇2v + 1+ν

2
(u,x+v,y ),y =

= −w,y (w,yy +
1−ν
2
w,xx )− 1+ν

2
w,xw,xy

(61b)
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Figure 6: Contour of N1(λ = 2, k = 0) in an orthotropic heterogeneous
membrane of arbitrary shape

ρẅ − C[(u,x+
1

2
w,2x ) + ν(v,y +

1

2
w,2y )]w,xx −

−C(1− ν)(u,y +v,x+w,xw,y )]w,xy −

−C[(v,y +
1

2
w,2y ) + ν(u,x+

1

2
w,2x )]w,yy = g

in Ω (61c)

Tx = T̃x or u = ũ, Ty = T̃y or v = ṽ,

Txw,x+Tyw,y = Ṽ or w = w̃ on Γ

(62)

w(x, y, 0) = w̃o, ẇ(x, y, 0) =
·

w̃o in Ω (63)

3.6 Square membrane

A uniformly prestressed ( Nx = Ny = 2.514kN/m, Nxy = 0) square
membrane (0 ≤ x ≤ a ) has been studied. The employed data
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Figure 7: Contour of N1(λ = 2, k = 5000) in an orthotropic heteroge-
neous membrane of arbitrary shape

are: a = 5.0m, h = 0.002m, E = 1.1 × 105 kN/m2 , ν = 0.3 and
g0 = 1.934 kN/m2. The results obtained with N = 100 and M = 49
are compared with those from the one-term approximate series solu-
tion [16], which assumes w(x, y, t) = w0(t) sin(πx/a) sin(πy/a) . In
Fig. 8 and Fig. 9 results for the natural vibrations are shown for (i):
w(x, y, 0) = w0 sin(πx/a) sin(πy/a) and ẇ(x, y, 0) = 0 , (w0 = 0.446);
(ii): w(x, y, 0) = deflection surface produced by the static load g0 and
ẇ(x, y, 0) = 0. Moreover, in Fig. 10, the dependence of the period T
(T0 is the period of the linear vibration) on the maximum amplitude is
shown for both cases. It should be noted that the approximate solution
gives very good results in case (i). Finally, the forced vibrations have
been studied under the so-called ”static” load g = g0t/2t1 for 0 ≤ t ≤ t1
and g = g0/2 for t1 ≤ t, (t1 = 10 sec ) with zero initial conditions. The
response ratio R(t) = w(0, 0, t)/wst of the central deflection is shown
in Fig. 11 as compared with that obtained by the one term approx-
imate solution; wst is the central static deflection obtained by AEM
solution. Apparently, the ”static” load produces smaller deflections in
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Figure 8: Central deflection. Case (i)

the AEM solution than in the one-term series solution. Therefore the
increase of the period in the AEM solution was anticipated on the base
of Fig.10.

4 Conclusions

1. As the method is boundary-only, it has all the advantages of the
BEM, i.e. the discretization and integration are performed only on the
boundary.

2. Simple static known fundamental solutions are employed for
both static and dynamic problems. They depend only on the order
of the differential equation and not specific differential operator which
governs the problem under consideration.

3. The computer program is the same for both static and dynamic
problems and depends only on the order of the differential equation
and not specific differential operator which governs the problem under
consideration.
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Figure 9: Central deflection. Case (ii)

4. The deflections and the stress resultants are computed at any
point using the respective integral representation as mathematical for-
mulas.

5. Accurate numerical results for the displacements and the stress
resultants are obtained using radial basis functions of multiquadric
type.

6. The concept of the analog equation in conjunction with radial
basis functions approximation of the fictitious sources renders BEM
a versatile computational method for solving difficult nonlinear static
and dynamic engineering problems for non-homogeneous bodies.
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Metod analogne jednačine.

Metod integralne jednačine samo sa granicom za nelinearne

statičke i dinamičke probleme opštih tela

UDK 517.968

U ovom radu se prikazuje metod analogne jednačine (AEM) samo
sa granicom za rešavanje nelinearnih statičkih i dinamičkih problema
mehanike kontinuuma. Posmatraju se opšta tela sa nelinearnim odgov-
orom čije osobine mogu zavisiti od položaja i pravca. Nelinearnost
može da proishodi kako iz nelinearnih konstitutivnih relacija (tzv. ma-
terijalna nelinearnost) tako i iz velikih pomeranja (geometrijska ne-
linearnost). Najbolji primer metoda je zamena spregnutih nelinearnih
parcijalnih diferencijalnih jednačina sa promenljivim koeficijentima koje
propisuju odgovor tela ekvivalentnim skupom linearnih raspregnutih
jednačina sa fiktivnim izvorima. Ovi izvori se uspostavljaju koriš́cen-
jem tehnike zasnovane na BEM-metodu (metodu graničnih elemenata).
Rešenje originalnog problema se dobija iz integralne reprezentacije rešenja
zamenjenog problema. Raznovrsni statički i dinamički problemi rešeni
koriš́cenjem AEM-metoda su prikazani u cilju kako ilustracije metoda
tako i demonstracije njegove efikasnosti i tačnosti.


