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Abstract

The paper outlines recent developments and prospects in the ap-

plication of the continuummechanics expressed intrinsically on the

material manifold itself. This includes applications to materially

inhomogeneous materials, physical effects which, in this vision,

manifest themselves as quasi-inhomogeneities, and the notion of

thermodynamical driving force of the dissipative progress of sin-

gular point sets on the material manifold with special emphasis

on fracture, shock waves and phase-transition fronts.

1 General overview

”Material” mechanics, or ”mechanics on the material manifold” or
still, Eshelbian mechanics as we nicknamed it because of the origi-
nal and essential contribution of J.D.Eshelby [1] inspired by field the-
ory, is the mechanics of continua expressed on the material manifold
so that, in contradistinction to the traditional formulation in physical
space , it captures at once true material inhomogeneities or quasi-
inhomogeneities. As shown exactly in recent years, the latter include
field singularities of the line and surface types, thermal effects, and
all gradient effects related to diffusive internal variables of state or to
additional internal degrees of freedom. This obviously enhances the
role of this mechanics in so far as the thermomechanics of materials
- especially those endowed with a microstructure - is concerned. This
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contribution emphasizes this role and highlights the successes met dur-
ing the last ten years.

2 True material inhomogeneities

The theory of material uniformity and inhomogeneity advocated by
Epstein and Maugin in geometrical terms [2],[3] - following early works
by W.Noll [4] and C.C.Wang [5] - yields a direct characterization of
uniformity in terms of a material stress tensor b called the Eshelby
stress. This is the energy dual of first-order transplants of the reference
configuration in the same way as the first Piola-Kirchhoff stress T

is the dual of the classical deformation gradient. Indeed, in quasi-
statics, letW (F;X) be the elastic energy per unit volume of a reference
configuration K , where F is the deformation gradient with respect
to K and X denotes the material coordinates. Then according to
Epstein and the author, at each material point, we can remove the
explicit dependence onX, by effecting a local changeK(X) of reference
configuration so that, with JK = detK, we can write

W = W̄ (F;X) = J−1
K

W̃ (FK (X)) = Ŵ (F,K) (1)

and thus

T =
∂W

∂F
, b = W1R −T.F = −

∂ Ŵ

∂K
K

T . (2)

It was further shown in dynamical finite-strain elasticity [6], [7]
that the momentum associated with this stress flux is the so-called
pseudomomentum P which plays a fundamental role in crystal physics
(wave-momentum on a lattice) and in electromagnetic optics. The
corresponding volume source term f

inh, if any, is the ” material ” force
of inhomogeneity which displays at once the possible explicit (i .e.,
not through the fields) dependence of material properties (whether
mechanical or else) on the material point, i.e., material inhomogeneity
per se. More precisely, we have the local balance of pseudomomentum
at X in the form

∂ P

∂ t
− divRb = f

inh, (3)
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wherein

P ≡
∂ L

∂V
, b = − (L1R +T.F) , f inh: =

∂ L

∂X

∣∣∣∣
exp l

, (4)

with

L = K −W (F;X) , K =
1

2
ρ0 (X)V.C.V, C ≡ F

T .F , (5)

Here V is the material velocity based on the ” inverse motion ”
X = χ−1 (x,t), i.e.,

V =
∂ χ−1

∂ t

∣∣∣∣
x

.

Remark 1 It must be emphasized that the above mentioned material
force of inhomogeneity posseses no energetic contents and it does not
cause dissipation (compare below). In that sense, such forces may be
called fictitious.

3 Quasi-inhomogeneity forces

All fields such as temperature q in a heat conductor or internal variables
of state α (reflecting some irreversibility) which have not reached a spa-
tially uniform state, are shown to produce source terms in the balance
of the above-mentioned pseudomomentum [8],[9].They are manifesta-
tions of so-called quasi-inhomogeneities which play in many respects
the same role as true material inhomogeneties (this should not be over-
looked in fracture applications). For instance, in materially homoge-
neous elastic conductors of heat, eqn.(3) is replaced by

∂ P

∂ t
− divRb = f

th, f th: = S∇Rθ , (6)

where S is the entropy per unit volume in K and the W present in
the definition of L in eqn.(4)2 is necessarily the free energy per unit
volume. As clearly shown by the first of eqns.(6), a nonzero gradient
of temperature gives rise to a material force just like a true material
inhomogeneity. In the case of a dissipative internal variable α with
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dual thermodynamical force A = − (∂ W/∂α), we have in addition in
the right-hand side of eqn.(6)1 a material force given by [9]

f
α: = A∇Rα , (7)

while the corresponding dissipated power reads :

Φα = A.α̇ = A.
∂ α

∂ t

∣∣∣∣
x

− f
α.V, (8)

where a superimposed dot indicates the material time derivative and
the time derivative at x fixed is the Eulerian time derivative.

The above scheme applies to weakly nonlocal damage or elastoplas-
ticity.

Remark 2 The presence of true or quasi-inhomogeneities can be in-
terpreted in geometrical terms as rendering the material manifold a
non-Riemannan one (this is the case with continuously distributed dis-
locations and also of thermoelasticity and magnetoelasticity which are
quasi-plastic phenomena). -see, e.g., Chapter 6 in ref.[10].

Remark 3 The multiplicative decomposition FK present in eqn.(1) is
tantamount to saying that the stress tensor b is the driving force gov-
erning a local structural rearrangement. This is the case in elastoplas-
ticity or in certain phase transitions. As a matter of fact the material
mapping K may be interpreted as the inverse of the plastic deformation
”gradient” in plasticity theories based on a multiplicative decomposi-
tion of F. In that case FK is none other than the elastic deformation
”gradient”. Such theories, where the Eshelby stress tensor in the so-
called intermediate or elastically-released configuration plays the rôle
of driving force, have been developed accordingly [11], [12], [13], [14].
More precisely, the Mandel stress usually given by M = S.C, where
S is the second Piola-Kirchhoff (fully material) stress known in such
theories in fact is the non-isotropic part of the Eshelby material stress
tensor. It is then natural that this tensor plays also a fundamental role
as the relevant stress in the notion of reduced-shear stress in studying
criteria of activation of dislocations [15]. The present considerations
find another application in the theory of material growth such as de-
veloped by Epstein and Maugin [26] with applications by Imatani and
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Maugin [27]. As a matter of fact, the above-given developments allow
one to show that the three most creative lines of thoughts in the contin-
uum mechanics of materials in the second half of the 20th century - the
finite deformation line with its multiplicative decomposition, the geo-
metrical line with the works of Kondo, Bilby, Kr̋oner, Noll and Wang,
and the configurational-force line with Eshelby and others, are strongly
interrelated and find a grand unification with the two dual notions of
local material rearrangement and Eshelby material stress tensor (for
this aspect, see Maugin [28]).

4 Driving forces on singularity sets

Thermodynamic forces driving field singularities in thermoelasticity (or
more complex constitutive descriptions) have been shown to belong to
the above-highlighted class of material forces. The singularity sets
of interest (and the only ones in three-dimensional space) are points,
lines and walls [16] (transitions zones of physically non zero thickness
but viewed mathematically as singular surfaces of zero thickness). In
the case of brittle fracture (line of singularity viewed as a point, the
crack tip, in a planar problem) and the progress of discontinuity fronts
(phase-transition fronts and shock waves) which are singular surfaces of
the first order in Hadamard’s classical classification) one shows exactly
that dissipation is strictly related to the power expanded by such forces
in the irreversible progress of the singularity set.

For instance, in brittle fracture (where fracture occurs in the elastic
regime), we have the following two essential results of what we call the
analytical theory of brittle fracture. The material force F acting on the
tip of a straight through crack and the corresponding energy-release
rate G are given by the equations [17]:

F = − lim
δ→0

∫
Γ(δ)

{LN− P
(
V̄.N

)
}dA (9)

and

G = lim
δ→0

∫
Γ(δ)

H
(
V̄.N

)
dA , (10)
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respectively, with the following exact result as δ goes to zero:

G = V̄.F ≥ 0 . (11)

Here H = K + W , is the Hamiltonian density per unit reference
volume, V̄ is the material velocity of the crack tip, Γ(δ) is a sequence
of notches of end radius δ converging uniformly to the crack and the
crack tip as δ goes to zero, and the inequality sign in the second part
of eqn.(11) reflects the second law of thermodynamics since expres-
sion (11)1 is the power dissipated in the domain change due to the
irreversible progress of the crack inside the body.

Extensions of these results were made to the case of coupled fields
useful in developing smart materials and structures, including the cases
of nonlinear electroelasticity [18], magnetoelasticities of paramagnets
[19] and ferromagnets [20], and polar crystals [21]. The formulation in
fact is canonical and applies to many cases with the appropriate re-
placement of symbols by physical fields. In the case of elastoplasticity
with hardening a J-integral can be constructed using this formalism
[11]. Furthermore, the very form taken by eqn.(3) in cases more com-
plex than pure elasticity, e.g.., the source term (6)2 or (7), provides
a hint at generalization of formula (9) in the case of inhomogeneous,
dissipative, thermo-deformable conductors; viz. (3) is replaced at any
regular material point X by

∂ P

∂ t
− divRb = f

inh + f
th +

∑
α
f
α. (12)

It is readily shown that (9) then transforms to the general formula:

F =
∫
Γ

{
N.b + P

(
V̄.N

)}
dA− d

dt

∫
G
P dV+

∫
G

(
f
inh + f

th +
∑

α
f
α
)
dV ,

(13)

where Γ is a circuit (in the counter clockwise direction) enclosing the
domain G around the crack tip, starting from the lower face of the
(traction free) crack and ending on its upper face. This gives a means
to study analytically or numerically the influence of full dynamics,
material inhomogeneities (e.g., inclusions), thermal effects, and, e.g.,
elastoplasticity or damage (represented by the set of α variables) in the
vicinity of the crack tip.
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In the case of discontinuity fronts in thermoelastic solids, basing
on the inclusive notion of Massieu function, the Hugoniot and Gibbs
functionals appear to be the relevant material driving forces ; the clas-
sical theories of shock waves and nondissipative phase-transition fronts
(obeying Maxwell’s rule) appear then to be extreme singular cases of
the theory [22],[23]. This was dealt with in great detail in recent papers.
It suffices to remind the reader that in the absence of dislocations at
the front - so-called coherent front - the phase-transition front progress
is shown to be strictly normal and the driving force, called Hugoniot-
Gibbs force HPT , is none other than the jump of the double normal
component of the ” quasi-static ” part (no kinetic energy contribution)
of the Eshelby stress tensor expressed on the basis of the free energy
W (the front is homothermal) , i.e., symbolically,

HPT = N. [bS (W )] .N. (14)

The dissipation per unit surface at the front Σ is given by (compare
to (11))

ΦΣ = −HPT V̄N ≥ 0 , (15)

where V̄N is the normal velocity of the front. This corresponds to the
presence of a generally nonvanishing localized hot heat source at Σ .
Whenever we impose that HPT vanishes identically although there is
effective progress of the front, we are in the situation of the nondissi-
pative Landau’s theory of phase transitions, and the vanishing of HPT

corresponds exactly to the Maxwell rule of equal areas (or construc-
tion of the Maxwell line ; no hysteresis in the physical response). This
is a singular and somewhat irrealistic case in phase-transition theory
where dissipation and hysteresis in the physical response are generally
observed.

Another such singular case is found in the study of the propagation
of shock waves where, in the absence of a true shock structure, the
celebrated Hugoniot relation is given by the identical vanishing of the
driving forceHS where this Hugoniot functional (i.e., depending on the
state on both sides of the front) is given by

HS = N. [bS (E)] .N , (16)
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where bS (E) is the quasi-static part of the Eshelby stress based on the
internal energy. The vanishing condition HS =0 shows the artificial-
ity of the ” classical ” shock-wave theory since, to be consistent with
the condition of entropy growth at the front, there should indeed be
dissipation at the front which propagates dissipatively. This dissipa-
tion, logically, should be related to the power dissipated by the driving
force in the motion of the front. Unfortunately this driving force was
classically set equal to zero in spite of a possible progress. The general
theory [21], [22] resolves this paradox by re-establishing a proper ther-
modynamical frame in accord with Eshelbian mechanics. For instance,
it is shown for a general front (shock-wave of phase-transition front)
that a single thermodynamic Massieu potential, or generating function
M can be introduced, at the front, such that the following two exact
relations hold true :

σΣ = [M ] ≥ 0 , fΣ.V̄ = [θM ] , (17)

where σΣ is the rate of entropy growth at Σ, and fΣ is the co-vectorial
dissipative driving force acting onΣ. Clearly, for a homothermal phase-
transition front eqns.(17) yield the result expressed by eqn.(15) with
HPT = − fΣ.N. Otherwise, as it should, the entropy growth at a shock
wave involves both the power expanded by the driving force and the
jump of temperature since then

σΣ = 〈θ〉−1
{
fΣ.V̄− 〈M〉 [θ]

}
≥ 0. (18)

Generalizations of this formulation to electrodeformable and mag-
netodeformable media, and to media already presenting a bulk intrinsic
dissipation (e.g., of the viscous or plastic type represented by the a set
of internal variables) are more or less straightforward.

5 Other applications

Other applications devised include the driving of the non-inertial mo-
tion of solitonic structures viewed as localized defects on the material
manifold - or quasi-particles -, a presently developing theory of ma-
terial growth in the bulk or by accretion (further work in progress by
M.Epstein, S.Imatani, S.Quiligotti and the author), and the conception
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of numerical methods or algorithms based on Eshelbian mechanics, e.g.
the minimization of parasite driving forces on the material manifold due
to a bad design of finite-difference schemes (C.I.Christov and the au-
thor [24], [25]) or finite-element discretization (M.Braun, P.Steinmann
and the author), and the design of a cellular automaton using the no-
tion of thermodynamical driving force (A.Berezovski and the author).
In all cases, the Eshelby stress is the driving force responsible for local
material rearrangements and the balance of pseudomomentum in local
PDE or jump form, or in integrated form, plays the fundamental role
in both theory and applications, with a special emphasis of the latter
in micromechanics.

Acknowledgment: This work was performed within the frame-
work of the European TMR Network ”Phase Transitions in Crystalline
Solids”.
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”Materijalna” mehanika materijala

UDK 514.753; 534.16; 536.7; 537.6

Rad sadrži nedavni razvoj i perspektive u primeni mehanike kontin-
uuma izražene pomoću materijalne mnogostrukosti same po sebi. Ovo
uključuje primene materijalno nehomogenih materijala, fizičke efekte
koji se, ovakvim načinom gledanja, manifestuju kao kvazi-nehomogenosti
kao i pojam termodinamički pokretačke sile disipativnog razvoja skupova
singularnih tačaka na materijalnoj mnogostrukosti sa specijalnom pri-
menom na lom, udarne talase i frontove faznih transformacija.


