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Abstract

The singular surface theory has been used to determine the law

of propagation of weak discontinuities and the problem of growth

and decay of waves. The effect of radiative heat transfer has been

treated using a differential approximation which is valid over entire

optical depth range. The effects of wave geometry and magnetic

field with finite electrical conductivity on the global behaviour of

the wave amplitude have also been studied. The two cases of

diverging and converging waves have been discussed separately.

1 Introduction

With the advancement of space technology, the propagation of waves
in gaseous media at very high temperatures becomes and interesting
problem. In such studies, the radiation stresses, radiative flux effects
and radiation and electromagnetic energy play vital roles in the deter-
mination of the flow field. The inclusion of frequency dependence of
the radiation field effects transform the governing gasdynamic kinemat-
ics into a complex set of nonlinear integrodifferential equations. This
is due to the interaction of solar wind of fully ionized plasma with a
plasma column of the Earth’s atmosphere and compression resulting
out of it. As a consequence of interaction, weak wave characteristics
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emerge and with changing inclinations, they intersect to form a shock
wave. A good deal of work have been reported [1,2,3,4] on the problems
of radiation gasdynamics with radiative heat flux effects and radiation
stresses. In these studies the approximation to the radiative transfer
equation is too strong and deals with the simple cases when the gas
is optically thin or thick. They have also neglected the time depen-
dence in the radiative heat transfer equation. The neglect of the time
dependence in the radiation field suppresses one of the modes of wave
propagation that is excited by the radiation. It may be noted that in
our recent work [5], we have included the effect of magnetic field with
finite electrical conductivity which was not accounted for in the work of
Ram and Mosa [6]. However, in both studies, the gas is assumed to be
transparent with constant absorption coefficient. But, it is imperative
to note that in high temperature gases, the transparent approximation
for the radiative transfer equations with constant absorption coefficient
is no more valid. The problem, therefore, must be considered incor-
porating the entire optical depth range from the transparent limit to
the optically thick limit and the absorption coefficient should also be
taken to be a function of density and temperature. Considering these
ideas, Rai and Vishwakarma [7] studied the nature of weak gasdynamic
discontinuities in high temperature gases. Since at high temperatures,
a gas is likely to fully or partially ionized, the electromagnetic forces
start to play a role in the flow field. But this important aspect was not
included in the study of [7]. Thus the study of interaction between the
radiative field and the electromagnetic field that may arise in the solar
photosphere, rocket re-entry and elsewhere, is of vital importance to
space scientists. This paper provides a mathematical base as to how
and when weak discontinuity will propagate.

The main objective of the present paper is to study the essential
features of the effects of the time dependent radiation field interacting
with the magnetogasdynamic field with finite electrical conductivity
on the propagation of weak discontinuities. The effect of the wave
geometry on the wave amplitude is also discussed. A more general
differential approximation of the equations of radiative transfer have
been used to study the effects of thermal radiation.
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2 Law of propagation

The set of non-linear differential equations governing the three dimen-
sional unsteady flow of an electrically conducting and radiating gases
are,

∂ρ

∂t
+ uiρ,i + ρui,i = 0, (2.1)

ρ
∂ui

∂t
+ ρujui,j + p,i + pR,i + µHj(Hj,i −Hi,j) = 0, (2.2)

∂H i

∂t
+ ujHi,j −Hjui,j +Hiuj,j − (σµ)−1Hi,jj = 0, (2.3)

dp

dt
+ 3(γ − 1)

dp

dt

R

+ {γ p+ 4(γ − 1)pR}ui,i+

(γ − 1)qi,i − (γ − 1)
J2

σ
= 0,

(2.4)

Hi,i = 0, (2.5)

Ji = εijkHk,j, J2 = JkJk, p = ρRT, (2.6a,b,c)

where d/dt = ∂/∂t + ui∂/∂xi, denotes the material time derivative,
ui, qi, Hi, Ji are respectively the components of velocity, radiative flux,
magnetic field and current density, p− denotes pressure, pR− the ra-
diation pressure, ρ− the density, µ− magnetic permeability, σ− the
electrical conductivity, γ− the specific heat ratio and εijk− the well
known permutation tenser and R is the gas constant. A comma fol-
lowed by an index (say i) denotes a partial derivative with respect to
space variable xi.

The equation of radiative heat transfer within the differential ap-
proximation [8] may be written as the pair of equations

∂ER

∂t
+ qi,i = −α

(
cER − 4aRT

4
)

(2.7)
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1

c

∂qi
∂t

+
c

3
ER

,i = −αqi (2.8)

where ER = 3pR is the radiative energy density per unit volume, α is
the absorption coefficient depending on the density and temperature,
aR is the Stefan’s constant and c is the velocity of light.

Let us consider a surface of discontinuity in the flow field across
which the flow parameters p, ρ, ui,Hi, qi and pR etc. are essentially
continuous, but finite discontinuities in their derivatives are permitted.
Such a jump discontinuity is defined as weak wave. The first order
geometric kinematic compatibility conditions due to [9] are,

[Z,i] = Bni

[
∂Z

∂t

]
= −BG




(2.9)

where Z may represent any of the flow variables and the scalar function
B = [Z,i]ni is defined over the surface of discontinuity. G is the normal
speed of propagation of the moving wave front and ni is the unit normal
component of the wave front.

Evaluating the equations(2.1-2.4), (2.7)and (2.8) on the wave front
(forming jumps) and using the first of (2.9) and second order compat-
ibility conditions from [9], we get

Gζ = ρ0λini, (2.10)

ρ
0
Gλi = ξni + θni, (2.11)

η̄i = (σµ)(H0iλjnj −H0nλi), (2.12)

3Gθ = εini, (2.13)

Gεi = c2θni, (2.14)

Gξ − ρ
0
a20λini + (γ − 1)(3Gθ − εini) = 0, (2.15)



Weak discontinuities in electrically conducting... 67

where

ξ = [p,i]ni, ζ = [ρ,i]ni, λi = [ui,j]nj,

θ = [pR,i ]ni, εi = [qi,j]nj,η̄i = [Hi,jk]njnk

with Hon = Hoini and the suffix ′o′ denotes the evaluation just ahead
of the propagation wave surface Σ(t).

Equations (2.10), (2.11), (2.13), (2.14) and (2.15) from a set of nine
homogeneous equations in nine unknowns λi, εi, θ, ξ, ζ. This system
has a non-trivial solution if the determinant of the coefficient matrix
vanishes. Thus we have, G = +C/

√
3 and G = ±ao.

This implies that the flow field admits two types of waves present
in the gas, one of which propagates with a speed called as radiation
induced wave. The other with the speed a0 is called a modified mag-
netogasdynamic wave.

The equation (2.12) can be rewritten as,

η̄k = σµH0{Ik − Innk}Ψ, (2.16)

where λk = ψ nk may be defined as the amplitude of a weak wave.
Here Ik represents the components of the unit vector in the direction
of magnetic field.

3 Behaviour of radiation induced wave

For a radiation induced wave, we have G = C/
√
3. Substituting for G

in equations (2.10), (2.11), (2.13), (2.14), (2.15), we obtain,

λR =
εR

ρoc
2{1− 3a2

0
/c2} , (3.1)

ξR =
εR

c3{1− 3a2
0
/c2} , (3.2)

ζR =

√
3εR

c3{1− 3a2
0
/c2} , (3.3)
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θR =
εR√
3c

, (3.4)

where λR = λRi ni, ε
R = εRi ni and the superscript R denotes a jump

discontinuity associated with a radiation induced wave. To determine
these jump discontinuities, we require to determine εR first. Differenti-
ating equation (2.6c) with respect to xi and forming jumps across Σ(t)
and making use of relations (2.9), (3.3), and (3.2) we get

χ =

√
3εR(a2o − a2oT )

Rρoc
3{1− 3a2

0
/c2} , (3.5)

where χ = [T,i]ni and a2oT = γpo/ρo is the isothermal speed of sound.
Differentiating equations (2.7) and (2.8) partially with respect to

t and xi and forming jumps across Σ(t), we find on using the second
order compatibility conditions [9] and the relations (2.9), (3.1), (3.3),
(3.5) and G = C/

√
3, a differential equation of the form

δεR

δt
+ εR(Γ1 − Γ2) = 0, (3.6)

where Γ1 = (α− Ω/
√
3)c,

Γ2 =
1

2Rρoc
2 (1− 3a2o/c

2)
{16 α aRT

3

0
(a2

0
− a2

0T )−

(
√
3qn + cER

0
− 4aRT

3

0
)

[
Rρ

0

(
∂α

∂ρ

)
0

+

(
∂α

∂T

)
0

(a2
0
− a2

0T )

]}

This equation governs the growth and decay behaviour of the am-
plitude of radiation induced weak wave. The mean curvature Ω(t) at
any point of the wave surface has a representation of the form [9]

Ω =
Ω0 −K0Gt

1− 2Ω0Gt +K0G2t2
, (3.7)

where Ω0 = (K1 +K2)/2 and K0 = K1K2 are the mean and Gaussian
curvature of the wave surface respectively at t = 0 with K1 and K2

being the principal curvatures and G is the constant speed of wave
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propagation. Since a radiation-induced wave is divergent, both K1 and
K2 are negative.

Equation (3.6) with the help of (3.7) can be integrated to yield

εR = εR
0
I exp(−αct), (3.8)

where

I = {(1− 3−1/2K1ct)
−1/2(1− 3−1/2K2ct)

−1/2},

and εR
0
is the value of εR at t = 0.

Since α and c are positive constants, it is obvious from equation
(3.8) that εR → 0 at t → ∞ i.e. a radiation induced wave decays
rapidly and tends to zero at t → ∞. Since c is very large, it follows
from equations (3.1-3.3) that any disturbance caused by a radiation in-
duced weak wave has a negligibly small influence on the non relativistic
gasdynamic field.

4 Behaviour of modified gasdynamic weak

wave

We know that the flow ahead of this wave will be disturbed by radiation
induced waves. But we have seen that for radiation induced waves λR,
ζR, ξR and χ are small compared to εR and θR. Hence, we can study
the propagation of modified gas dynamic weak waves into a medium
which is in a constant state at rest. The jump discontinuities ζ, ξ, λ
and ε, θ related as

ξ = ρ
0
a0λ, (4.1)

aζ = ρ0λ, (4.2)

εini = 0, (4.3)

θ = 0. (4.4)
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Differentiating partially the equations (2.2), (2.4).(2.7) and (2.8)
with respect to xk and taking jumps across Σ(t) and then using (2.6c)
(2.9), (2.16),(4.1), (4.2), (4.3), (4.4) and G = ao and the second order
compatibility condition [8], we obtain

ρ
0

δλ

δt
+ (ξ̄ − ρ

0
a0λ̄ini) + θ̄ + σµρ

0
b2(1− I2n)ψ = 0, (4.5)

ρ
0
a0

δλ

δt
− a0(ξ̄ − ρ

0
a0λ̄ini)−

2ρ0a
2

0
Ωλ− (γ − 1)(3a0θ̄)− (γ − 1)ρ0a0λ

2 = 0,

(4.6)

−3a2
0
θ̄ − λ

{
16αaRT

3

0
− (

cER
0
− 4aRT

4

0

)(∂α

∂T

)
0

a2
0
− a2

0T

R
−

(cER
0
− 4aRT

4

0
)ρ

0

(
∂α

∂ρ

)
0

}
= 0,

(4.7)

a0c
2θ̄ + cqn

[(
∂α

∂ρ

)
0

ρ0 +
a2
0
− a2

0T

R

(
∂α

∂T

)
0

]
λ = 0, (4.8)

where

µH2

0
= ρ0b

2

0
and λ̄i = [ui,jk] njnk,

ξ̄ = [p,jk] njnk, θ̄ = [pR,jk] njnk, an = qini.

On elimination λ̄i, ξ̄ and θ̄ from (4.5-4.8), we have

δλ

δt
+ (Q0 − a0Ω)λ− γ + 1

2
λ2 = 0, (4.9)

where,

Q0 =
1

2
σµb2

0
(1− I2n) +

γ − 1

2ρ0Ra
2

0

[16aRαT
3

0
(a2

0
− a2

0T )−

Rρ
0

(
∂α

∂ρ

)
0

+

(
∂α

∂T

)
0

(a2
0
− a2

0T )(cE
R
0
− 4aRT

4

0
)

]
.
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In the above equation (4.9) the terms containing c2 in the denom-
inator of Q0 are neglected. Since a is an arbitrary function of ρ and
T hence the sign of Q0 may be positive or negative depending on the
form of a [10]. If β be the angle between the direction of the mag-
netic field and that of normal to wave front so that Iini = cosβ, then
(1− I2n) = sin2β which is the tangential component. Hence using this
relation and if λi = ψni equation (4.9) can be rewritten as

δψ

δt
+ {Q0 − a0Ω}ψ − Γ0ψ

2 = 0 (4.10)

Q0 =
1

2
σµb2

0
sin2 β +

γ − 1

2ρ0Ra
2

0

[16aRαT
3

0
(a2

0
− a2

0T )−

Rρ
0

(
∂α

∂ρ

)
0

+

(
∂α

∂T

)
0

(a2
0
− a2

0T )(cE
R
0
− 4aRT

4

0
)

]
,

Γ0 =
1

2
(γ + 1) > 0,

which is a differential equation governing the growth and decay behav-
iour of the weak modified magnetogasdynamic wave.

Let
∑

(t0) represent a weak wave surface at time t0 and let σ repre-
sent the distance measured from

∑
(t0) along the normal trajectories

to the family of surfaces
∑

(t) in the direction of propagation. Then
σ = G (t− t0). Hence we can write

δψ

δt
= G

dψ

dσ
. (4.11)

Using eq.(4.11) and σ = Gt at time t0 in eq.(4.10), we get

dψ

dt
+ [Q0 − a0Ω(t)]ψ − Γ0ψ

2 = 0. (4.12)

The mean curvature Ω(t) of the wave surface propagating normal
to itself into a uniform medium at rest [10] is

2Ω(t) =
K1

1−K1a0t
+

K2

1−K2a0t
. (4.13)
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Equation (4.12) by using (4.13) can be integrated to yield

ψ(t) = ψ0 exp(−Q0t)(1−K1a0t)
−1/2(1−K2a0t)

−1/2 [1− (4.14)

ψ
0
Γ0

t∫
0

exp(−Q0t
′)(1−K1a0t

′)−1/2(1−K2a0t
′)−1/2dt′



−1

where ψ0 is the initial amplitude at t = 0. Now let us study the physical
aspects of the wave amplitude ψ(t). We shall discuss the following two
cases of the diverging and converging waves.

Case 1. Diverging Waves

For diverging waves both the initial principal curvatures K1 and K2

are negative, so that the solution (4.14) can be expressed in the form

ψ(t) = F (t)


 1

ψ0

Γ0

t∫
0

F (τ )dτ



−1

, (4.15)

where

F (t) = exp(−Q0t) (1 + |K1| a0t)−1/2 (1 + |K2| a0t)−1/2.

Let Q0 > 0. Then the function F (t) is non negative and monoton-
ically decreases and tends to zero as t → ∞. If ψ(t) < 0, then ψ(t) is
also negative and limt→∞ |ψ(t)| =0.

This situation arises for weak expansion waves which decay in time
and damp out ultimately. From (4.15), we get

d|ψ|
dQ0

=
−Q0 |ψ|

1 + Γ0|ψ0|w(t)
< 0, (4.16)

where w(t) =
t∫
0

F (τ )dτ .

Equation (4.16) shows that the decrease of the wave amplitude
|ψ| will be accelerated under the radiation and magnetic field effects.
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When ψ0 > 0, then ψ(t) is also positive and there exists a critical value
ψc of ψ given by

ψc = [Γ0w(∞)]−1 > 0 for Q0 �= 0, (4.17)

such that for ψ0 > ψc, a weak discontinuity will terminate into shock
wave at time tc > 0. The critical time tc can be determined by the
following relation

w(tc) =

tc∫
0

exp(−Q0t) (1 + |K1|a0t)−1/2 (1 + |K2|a0t)−1/2 dt = 1

ψ
0
Γ0

,

(4.18)

which clearly shows that the solution (4.14) will break down at t = tc.
This situation will arise for weak compressive waves. For ψ

0
< ψc, the

solution (4.14) is valid for all times and ψ(t) decreases monotonically
and vanishes ultimately i.e. a shock formation is disallowed and weak
wave will damp out. If ψ

0
=ψc, then limt→∞ |ψ(t)| = Q0/Γ0,which

shows that the wave will neither terminate into a shock wave nor damp
out into a shock wave. It ultimately takes a stable form with constant
amplitude. And if Q0 = 0, then ψ

c
=0 and hence, all weak compres-

sive waves will terminate into shock waves within a finite time tc, no
matter, however small its initial amplitude ψ

0
may be.

From (4.17) and (4.18), we get

dψ
c

dQ0

= Γ0ψ
2

c

∞∫
0

t F (t) dt > 0, (4.19)

dtc
dQ0

=
Q0w(tc)

F (tc)
> 0. (4.20)

The equation (4.19) and (4.20) show that both ψ
c
and tc increase or

decrease with the increase or decrease of Q0, since Q0 increases under
radiation effect and also under resistance of the magnetic field with fi-
nite electrical conductivity σ. Thus a shock formation is either delayed
or disallowed due to thermal radiation and magnetic field effects.
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To study the curvature effects on diverging waves, we differentiate
(4.17) and (4.18) with respect to |K1|, getting the following inequalities:

dψ
c

d|K1| =
1

2
Γ0 ψ2

c
a0

∞∫
0

t (1 + |K1|a0t)−1F (t) dt > 0, (4.21)

dtc
d|K1| =

a0
2F (tc)

tc∫
0

tF (t)

1 + |K1|a0t dt > 0. (4.22)

The equations (4.12) and (4.22) show that ψ
c
and tc increase with

curvature effect.

Case 2. Converging Waves

In this case the principal curvatures K1 and K2 are positive. Let t
∗

be the least of two roots of the equation

(1−K1a0t)(1−K2a0t) = 0,

and let K1 > K2 so that t∗ = (K1a0)
−1.

The solution (4.14) is not valid for t > t∗. If Q0 > 0 or Q0 < 0, K1

�= K2 and ψ
0
< 0, then ψ(t) is also negative and limt→∞ |ψ(t)| = ∞.

This means that within a finite time all such converging waves form a
cusp an t = t∗ . If ψ0 > 0, then there exists a critical value ψ∗ of ψ0,
given by

ψ∗ =

[∫ t∗

o

ξ(t)dt

]
−1,

where

ξ(t) = exp(Q0t) (1 +K1a0t)
−1/2 (1 +K2a0t)

−1/2 for K1 �= K2,

such that for ψ0 < ψ∗ a cusp will be formed at t = t∗, otherwise a
shock wave will be formed at time tc < t∗, where tc is given by

∫ tc

o

ξ(t)dt =
1

|ψ
0
|Γ0

, tc < t∗. (4.23)
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If K1 = K2 > 0, we have ψ∗ = 0 so that all compressive weak
waves will terminate into shock waves before a cusp could be formed,
no matter, however small ψ

0
may be. The effects of radiation and

magnetic field on converging waves are of the same nature as in the
case of diverging waves.

If we differentiate (4.23) with respect to K1 > 0 partially we get

dtc
dK1

=
a0

2ξ(tc)

∫
tc

o

tξ(t)(1 +K1a0t)
−1dt < 0. (4.24)

The inequality (4.24) shows that tc decreases under curvature effect.
Hence, from the equations (4.20) and (4.24) we can conclude that under
curvature effects the stability of a diverging wave increases while that
of converging wave decreases.

5 Conclusion

It has been observed that the time dependent radiation field gives rise
to radiation induced weak wave, which has a negligible influence on
the nonrelativistic flow properties of the gas dynamic field. It has also
been concluded that these waves are ultimately damped. It is further
concluded that if the initial wave amplitude is numerically larger than
the critical value (ψ0 > ψ

c
), a weak discontinuity will break down and a

shock type discontinuity will be formed after a finite critical time tc and
with an initial amplitude less than the critical one (ψ

0
< ψ

c
) resulting

in a decay of the weak discontinuity. The effects of thermal radiation
and magnetic field with finite electrical conductivity have stabilizing
effect on the propagation of weak discontinuities in the sense that they
delay the process of shock formation. It is also concluded that under
the curvature affects the stability of diverging wave increases while that
of the converging wave decreases.
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Slabi diskontinuiteti u elektroprovodnim i
zračeċim gasovima

UDK 533.1; 534.13

U radu se koristi teorija singularnih površi za odredjivanje zakona
prostiranja slabih diskontinuiteta kao i rasta i

slabljenja ovih talasa. Efekat radijacionog prenosa toplote je reša-
van korišċenjem diferencijalne aproksimacije

koja je ispravna preko čitavog opsega optičke dubine. Uticaji geometrije
talasa s jedne i magnetnog polja sa

konačnom električnom provodnoš́cu sa druge strane na globalno
ponašanje amplitude talasa su takodje proučeni.

Posebno su diskutovana dva specijalna slučaja divergirajuċih i kon-
vergirajuċih talasa.


