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Abstract

This work aims at investigating the possibility to account
for the volumetric growth of a binary solid-fluid mixture, within
the context of biomechanical perspectives in rational mixture
theories.

Growth phenomena are coarsely taken into account by de-
scribing the time evolution of the solid stress-free configuration,
whose introduction contributes a part of the constitutive infor-
mation to the resulting dynamics, while enriching the kinemat-
ical description of the mixture. The issue of invariance require-
ments under changes in observer is also addressed, and some
relevant constitutive implications are briefly outlined.

1 Introduction

Volumetric growth of living tissues, regarded as solid-fluid mixtures,
generally occurs through cell division (or death), cell enlargement (or
shrinkage), and secretion (or resorption) of extracellular matrix [20].
Whenever mass production and mass resorption are not simply due
to local interconvertion, i.e. the growth of one constituent does not
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necessarily occur at the expense of the other, the algebraic sum of
mass supply densities per unit volume of the mixture need not vanish.
Some admissible constitutive prescriptions for these additional mass
supply densities have been recently proposed, for instance, with the
aim of describing the volumetric growth of both incompressible and
compressible elastic biological materials (see e.g. Taber [20], Klisch
and Van Dyke [14]), and the remodeling of living tissues made up of
muscles, elastin and collagen (see e.g. Humphrey and Rajagopal [13]).

As the investigation of the historical development of the theory of
porous media seems to point out (de Boer [7]), a mathematical theory
of mixtures, enriched by the concept of volume fractions, also provides
a suitable framework for the development of a consistent macroscopic
theory of porous solids saturated with fluids (Bowen [2], Wilmanski
[22]), which may be fruitfully employed to describe relevant aspects of
bone mechanics (cf. Cowin [6]).

A solid-fluid mixture may be regarded as a couple of body manifolds,
embedded into the three-dimensional Euclidean space, so as to share a
smooth region of the physical environment while undertaking indepen-
dent motions (see e.g. Atkin and Craine [1], Bowen [2], Rajagopal and
Tao [18], Truesdell [21]). If a smooth region of the Euclidean space is
chosen as a reference shape (which need not ever be occupied by any
constituent), then a motion of the solid body may be described as a time
sequence of mappings which carry it from the reference configuration to
the current one. Similarly, the motion of the fluid constituent may be
conceived as a time sequence of embeddings into the three-dimensional
physical environment.

By virtue of this customary kinematical assumption, any place in the
current shape of the mixture results to be simultaneously occupied by a
material particle belonging to each constituent. Henceforth, the motion
of the fluid-body manifold may be described by taking into account that
any fluid particle may be naturally associated with a 1-parameter family
of reference places, occupied by the solid particles currently overlapped
with it. Accordingly, both the Eulerian fluid and solid velocity fields can
be pulled back to the linear vector space associated with the reference
shape of the solid constituent, and a referential description of relevant
fluid properties can be furthermore considered [17].
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Extending the pioneering proposal put forward by Rodriguez, Hoger
and McCulloch [19] to binary solid-fluid mixtures, we regard the bulk

growth of a soft tissue as the time evolution of its stress-free configu-

ration [8, 9], described by a smooth (but geometrically noncompatible)
tensor field on the reference configuration (section 2).

The issue of invariance requirements under changes in observer and
its relevant constitutive implications are also addressed, regarding all
stress-free configurations that differ by a rigid displacement as indistin-
guishable (section 3).

2 A growing solid infused with a fluid

Let us focus our attention on the kinematics of a binary mixture consist-
ing of two smooth three-dimensional1 material manifolds, B

S
and B

F
.

In order to avoid any possible confusion between particles belonging
to each constituent (see fig.1), we refer to material points Xα ∈ Bα as
α-points, with α ∈ {S,F}, while calling the motion that they undertake
α-motion.

2.1 S-motion

By assumption [16], there exists a smooth embedding of the body man-
ifold B

S
into the three-dimensional Euclidean space E ,

K
S

: B
S

→ E ,

X
S

7→ X ∈ K
S

(B
S
) ,

which associates any material S-point with a reference place.
As the embedding K

S
does not depend on time, a smooth motion

of B
S

may be regarded as a time sequence of mappings,

χ
S

(·, t) : B → E ,

X 7→ x ∈ χ
S

(B, t) ,

1We do not deal with Cantor dust (fluid drops or solid slivers) and fractals such
as Menger sponges and Sierpinski gaskets.
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Figure 1: Kinematics of a growing solid infused with a fluid.
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which carry the solid body from its reference shape, B ⊂ E , to its cur-
rent shape, χ

S
(B, t) ⊂ E . Consistently, at any given time t, the smooth

tensor field on B

F
S

:= Gradχ
S

linearly maps the set of all vectors tangent to B at X (denoted by TXB
for the sake of conciseness), onto the set of free vectors of the Euclidean
space E (denoted by VE):

F
S

(X, t) : TXB → VE .

Moreover, as we exclude a priori the possibility that a three-dimensional
region of the reference shape can collapse under the motion χ

S
(namely,

detF
S

> 0), there exists a smooth inverse mapping,

χ
−1

S
(·, t) : χ

S
(B, t) → E ,

which satisfies the identity

X = χ
−1

S

(

χ
S

(X, t) , t
)

, for any X ∈ B .

Since the reference shape of the solid constituent does not depend
on time, the Eulerian velocity of any given S-point X

S
∈ B

S
can be

obtained by taking the partial derivative of the motion χ
S

with respect
to time,

v
S

(x, t) :=
D

S

Dt

[

χ
S

(·, t) ◦ K
S

]

(X
S
) =

∂χ
S

∂t

∣

∣

∣

∣

X

(X, t) ,

with X = K
S

(X
S
) and x = χ

S
(X, t).

For the sake of brevity, we denote the material derivative following
the S-motion by a superposed dot, i.e.

χ̇
S

(X, t) :=
∂χ

S

∂t

∣

∣

∣

∣

X

(X, t) .
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2.2 Bulk growth

Following the pioneering proposal put forward by Rodriguez, Hoger and
McCulloch [19], we define the bulk growth of the solid constituent as the
time evolution of its stress-free configuration, described by a smooth
(but geometrically noncompatible) tensor field on B, here denoted by
G

S
(fig.1).
The geometrical incompatibility of this additional descriptor (Lee

[15], cf. Taber [20], Epstein and Maugin [9], Di Carlo and Quiligotti
[8]) is mostly due to the fact that if, for any reference place X ∈ B, we
allowed the corresponding body element TXB to grow independently of
neighbouring ones, in the absence of external applied load we would
generally find out that body elements may no longer be geometrically
compatible, after growing. Hence, in order to make them fit together
again, it may be necessary to deform them [20], giving rise to a residual
stress field whose existence in biological tissues has been experimentally
observed and investigated (see, for instance, Fujie, Yamamoto et al.
[10], Yasuda and Hayashi [23]).

In the light of former remarks, the kinematical descriptor G
S

seems
to have a peculiar twofold nature [8]: being closely related to the stan-
dard notion of stress, it contributes a relevant piece of constitutive
information to the resulting dynamics, while enriching the kinematical
description of the mixture.

We notice in passing that for any given reference place X ∈ B and
tangent vector u ∈ TXB, the material derivatives of the corresponding
vectors:

u′(t) := G
S
(X, t) u ∈ VE

u′′(t) := F
S
(X, t) u = F (X, t) u′ (t) ∈ VE ,

following the motion of the material S-point associated with the ref-
erence place X, respectively result in the expressions (dropping the
arguments for the sake of conciseness):

u̇′ = Ġ
S
u =

(

Ġ
S
G

−1

S

)

u′ ∈ VE

u̇′′ = Ḟ
S
u =

(

Ḟ F
−1

)

u′′ + F u̇′ ∈ VE .
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2.3 F-motion

A smooth motion of the fluid constituent may similarly be described
by a time sequence of embeddings,

χ
F

(·, t) : B
F

→ E

X
F

7→ x ∈ χ
F

(B
F
, t) ,

which map the body manifold B
F

onto its current shape χ
F

(B
F
, t) ⊂ E .

Consistently, the Eulerian velocity of any given fluid particle X
F
∈ B

F

is defined by the relation

v
F

(x, t) :=
∂χ

F

∂t

∣

∣

∣

∣

X
F

(X
F
, t) , with x = χ

F
(X

F
, t) .

According to the classical theory of mixtures (see, for instance,
Atkin and Craine [1], Bowen [2], Rajagopal and Tao [18], Truesdell
[21]), any place in the current shape

B
t

:=
{

χ
S

(K
S

(B
S
) , t)

}

⋂

{

χ
F

(B
F
, t)

}

is simultaneously occupied by a material particle belonging to each
constituent, X

S
∈ B

S
and X

F
∈ B

F
, such that

x = χ
S

(K
S

(X
S
) , t) = χ

F
(X

F
, t) .

In order to deal with a description of the motion of F-points through
the reference shape of the solid constituent, we notice that any F-point
which belongs to the mixture at the given time t, namely

X
F
∈ χ

−1

F
(B

t
, t) ⊂ B

F
,

interacts with a 1-parameter family of S-points, moving along the curve

χ
−1

S

(

χ
F

(X
F
, ·) , ·

)

: t 7→ X ,

at the velocity w
F

(X, t), defined by

v
F

(x, t) = F
S

(X, t) w
F

(X, t) + v
S

(x, t) ,

with x = χ
F

(X
F
, t) = χ

S
(X, t) ∈ B

t
.
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3 Invariance requirements

With the aim of addressing the issue of invariance requirements, let us
consider the action of the group of change in observers on the manifold
of admissible motions as given by the relations:

χ̃
S
(X, t) = õ (t) + Q̃ (t)

(

χ
S
(X, t) − o (t)

)

, ∀X ∈ B (1)

χ̃
F
(X

F
, t) = õ (t) + Q̃ (t)

(

χ
F
(X

F
, t) − o (t)

)

, ∀X
F
∈ B

F
(2)

with (see, for instance, Casey [3], Casey and Naghdi [4, 5])

F̃
S
(X, t) = Q̃ (t) F

S
(X, t) (3)

F̃(X, t) = Q̃ (t) F(X, t) Q̄
T

(t) (4)

G̃
S
(X, t) = Q̄ (t) G

S
(X, t) , (5)

for all orthogonal tensor-valued functions of time Q̃ (t) , Q̄ (t) ∈ Orth,
such that F̃

S
= F̃ G̃

S
. These general invariance requirements, observed

by Green and Naghdi [12] in the context of elastic-plastic deformation
at finite strain, are intended to formalize the idea that two stress-free
configurations differing by a rigid displacement are indistinguishable,
and no physical argument can be invoked to support the choice of one
of them rather than another.

By taking the partial time derivative of relations (1)-(2), we can
straightforwardly deduce that

ṽ
S

(x̃, t) = ω (t) + Ω̃ (t) (x̃ − õ (t)) + Q̃ (t) v
S

(x, t) (6)

ṽ
F

(x̃, t) = ω (t) + Ω̃ (t) (x̃ − õ (t)) + Q̃ (t) v
F

(x, t) , (7)

with

x̃ := χ̃
S
(X, t) = χ̃

F
(X

F
, t)

x := χ
S
(X, t) = χ

F
(X

F
, t)

ω (t) := ˙̃o (t) − Q̃ (t) ȯ (t)

Ω̃ (t) := ˙̃
Q (t) Q̃

T

(t) ∈ Skw.
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Finally, we notice that the time derivatives of expressions (3)-(5) yield:

˙̃
F

S
F̃

−1

S
= Ω̃ + Q̃

{

Ḟ
S
F

−1

S

}

Q̃
T

, Ω̃ := ˙̃
QQ̃

T

∈ Skw (8)

˙̃
G

S
G̃

−1

S
= Ω̄ + Q̄

{

Ġ
S
G

−1

S

}

Q̄
T

, Ω̄ := ˙̄QQ̄
T

∈ Skw (9)

˙̃
F F̃

−1

= Ω̃ + Q̃
{

Ḟ F
−1

}

Q̃
T

− F̃ Ω̄ F̃
−1

,

whereas

∂ṽ
F

∂x̃

∣

∣

∣

∣

t

(x̃, t) = Ω̃ (t) + Q̃ (t)

{

∂v
F

∂x

∣

∣

∣

∣

t

(x, t)

}

Q̃
T

(t) . (10)

The proposed extension of the action of the group of changes in
observer (1)-(9) yields some remarkable selection rules on the set of
available constitutive prescriptions for internal (generalized) forces. For
instance,2 we may assume the internal power density per unit current
volume of the mixture, expended on any set of test velocity fields (v̂

S
,

v̂
F

, V̂
S
), to be given by the expression

τ
S
· v̂

S
+ τ

F
· v̂

F
+ σ

S
· grad v̂

S
+ σ

F
· grad v̂

F
+ π

S
· V̂

S
, (11)

which is required to be invariant under superposed rigid-body velocity
fields3 [11]

vR

S
(x, t) := vR

F
(x, t) := ω (t) + Ω̃ (t) (x − o (t))

gradvR

S
(x, t) = gradvR

F
(x, t) = Ω̃ (t) (12)

VR

S
(x, t) := Ω̄ (t) . (13)

As a consequence, it is possible to deduce that

τ
S
+ τ

F
= 0

skw (σ
S
+ σ

F
) = O (14)

skw (π
S
) = O , (15)

2Compare Quiligotti et al. [17] with Di Carlo et al. [8].
3We focus attention on two synchronized moving observers, whose frames coin-

cide at the given time t (namely, Q̃ (t) = Q̄ (t) = I, and x̃ = x in expressions (6)-(7)
and (8)-(10).
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where the dynamical descriptors σα and τ α represent, respectively, the
peculiar Cauchy stress tensor and the zeroth-order interaction associ-
ated with the α-th constituent of the mixture [17], while the descriptor
π

S
expends power on the evolution of the stress-free configuration of

the solid constituent [8].
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O mehanici rasta u mešavinama čvrsto telo-fluid:
kinematika i zahtevi invarijantnosti

UDK 531.01, 532.783, 536.76

Cilj ovog rada je istraživanje mogućnosti uzimanja u obzir zapreminskog
rasta binarne mešavine čvrsto telo-fluid u kontekstu biomehaničkih per-
spektiva racionalnih teorija mešavina.

Fenomeni rasta se grubo uzimaju u obzir opisivanjem vremenske
evolucije beznaponske konfiguracije čvrstof tela, čije uvodjenje učestvuje
u delu konstitutivne informacije na rezultujuću dinamiku, pri čemu
obogaćuje kinematski opis mešavine. Problem zahteva invarijantnosti
pri promeni posmatrača je takodje razmatran, pa su neke relevantne
konstitutivne implikacije kratko izložene.


