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Introduction

The Brauer group of a field was introduced by Richard Brauer in 1929 in order to classify
finite dimensional division algebras. Its elements are equivalence classes of central simple
algebras. The equivalence relation is defined in such a way that each equivalence class
corresponds to a unique central division algebra. The center of a division algebra is a
field, the classification of such centers (finite field extensions) is covered by the Galois
field theory, whereas the Brauer group of a field K classifies central division K-algebras -
those whose center is isomorphic to K. In general, the computation of the Brauer group
of a field is a hard problem and it is related to number theory, algebraic geometry and
K-Theory. For more details on the Brauer group of a field we refer to [118].

The Brauer group of a field was generalized by Auslander and Goldman in 1960 to the
Brauer group of a commutative ring R. Central simple algebras are replaced by central
separable algebras, which are called Azumaya algebras. Generalizations of the Brauer
group of a field were made also in other directions. Noting that quadratic field extensions
are simple algebras but not central, yet that they are simple and central when considered as
Z2-graded algebras, Wall introduced the Brauer group of Z2-graded algebras in [144] with
the goal to include the mentioned algebras in the Brauer group. This group is called the
Brauer-Wall group, see [84]. It was further generalized by Knus in [78] to the Brauer group
of algebras graded by any abelian group G with a bicharacter χ : G×G −→ K∗, where K∗

is the multiplicative group of the field K. The Brauer-Wall group for a commutative ring
(instead for a field) was proposed in [124] and the respective generalization to any abelian
group was made in [45]. Long generalized all these Brauer groups, introducing in [87] the
Brauer group of G-graded algebras having a grading preserving action. A step forward
was done in [86], where the group G was replaced by a commutative and cocommutative
Hopf algebra H. This is the Brauer group of H-dimodule algebras (dimodules are modules
and comodules with a certain compatibility condition), nowadays called the Brauer-Long
group. It was extensively studied in the literature, see e.g. the excellent monograph [28]
for a comprehensive account. However, from a Hopf algebra point of view the condition
that the Hopf algebra should be commutative and cocommutative was rather restrictive,
because the most interesting examples of Hopf algebras are either not commutative or
not cocommutative. The Brauer-Long group was then generalized by Caenepeel, Van
Oystaeyen and Zhang in [29] into the Brauer group of Yetter-Drinfel’d module algebras
over a Hopf algebra with an invertible antipode. This condition on a Hopf algebra is not
restrictive, as it is fulfilled by any finite dimensional Hopf algebra over a field. When
the Hopf algebra is commutative and cocommutative, the category of Yetter-Drinfel’d
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ii Introduction

modules coincides with that of dimodules, so the newest Brauer group generalizes in a
proper way the Brauer-Long group. At this point, it is worthwhile to mention that the
Brauer group of a symmetric monoidal category was introduced much earlier, by Pareigis
in 1976, [109], yet it is conceptually much more general than all the previous ones. The
author had noticed that there were Brauer groups of non-symmetric categories, like the
Brauer-Long group. Though such constructions had to wait for the development of a
suitable mathematical framework. This was achieved when the concept of a braided
monoidal category arose in 1985. However, it was not until 1998 that the Brauer group
of a braided monoidal category was given in [140]. This group is the most general Brauer
group and all the preceding groups appear as special cases of this one - they all are Brauer
groups of a particular braided monoidal category.

Since all these Brauer groups were introduced many computations of them were done.
In the first part of this thesis, which is presented in Chapters 1–6, we will explain re-
cent computations which refer to noncommutative and noncocommutative quasitriangu-
lar Hopf algebras. Concretely, those for Sweedler’s Hopf algebra [141], for Radford Hopf
algebras Hν [38], for Nichols’ Hopf algebra [39], and for a modified supergroup algebra
[40]. We propose a unifying way to compute the Brauer group of certain quasitriangular
Hopf algebras which are Radford biproducts, covering the above examples. If H is a
Hopf algebra with bijective antipode and if B is a Hopf algebra in the category of Yetter
Drinfel’d modules over H, then there is a structure of an ordinary Hopf algebra on B⊗H,
called Radford biproduct, [113]. Thus Radford biproducts are connecting ordinary Hopf
algebras, braided monoidal categories and braided Hopf algebras. The latter two notions
together with braided algebraic structures will be the main ingredients in our work. Hopf
algebras in braided monoidal categories are studied in [94].

One of the important constructions in our research is the group of Galois (co)objects
(Chapters 4 and 10). Extending the classical Galois theory of fields, a finite Galois
theory of commutative rings was constructed by Chase, Harrison and Rosenberg in [41].
Replacing the Galois group G by a finite Hopf algebra H (think for example of (RG)∗)
Chase and Sweedler generalized the preceding theory introducing the notion of a Galois
H-object in [42]. It is a commutative right H-comodule R-algebra A that is faithfully
flat over the commutative base ring R and for which a certain morphism can : A ⊗R A
−→ A⊗R H is an isomorphism. As observed by Nakajima in [102], for a Galois H-object
the subalgebra of H-coinvariants AcoH is trivial. Kreimer and Takeuchi define an H-
Galois extension A/AcoH for a finitely generated and projective Hopf algebra H to be a
right H-comodule algebra A (not necessarily commutative) for which can is surjective,
[83]. In view of the finiteness conditions on H, surjectivity of can implies bijectivity of
can. Faithful flatness condition on A is omitted here, thus AcoH is not necessarily trivial.
Versions of noncommutative Hopf-Galois extensions have been studied in [83, 138, 147].
Taking for the Hopf algebra the dual of a group algebra and assuming the Hopf-Galois
extension is a field, one recovers the classical Galois field extension, as it is shown in [10].

Hopf-Galois extensions have a geometrical interpretation as well. Namely, they may
be viewed as a noncommutative analogue of principal fibre bundles, or principal homo-
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geneous spaces, also called torsors (for a definition we refer to [53, 145, 101]). In terms
of representation theory Oberst gave in [104] a criterion of the free action for an affine
scheme X to be a principal fibre bundle over the quotient of X by a group G. Doi treated
the subject in [55] in a purely Hopf algebraic way. To understand how a principal fibre
bundle translates into a Hopf-Galois extension via the affine schemes – algebra duality we
refer to [56], [123].

That the set of isomorphism classes of Hopf-Galois objects for a cocommutative Hopf
algebra forms a group was shown by Chase [42], Beattie [12] and Nakajima [102]. In [46]
it was proved that the three constructions are equivalent.

Much of the Galois theory from [42] was developed for a finite Hopf algebra in a closed
symmetric monoidal category in [88]. Schauenburg developed in [122] the theory of bi-
Galois objects in a braided monoidal category. He proved that the isomorphism classes
of braided bi-Galois objects form a group. Inspired by this work we verify in the first
part of this dissertation that the isomorphism classes of Galois objects do not necesserily
form a group in a braided monoidal category, although this is fulfilled if the braiding
is symmetric on Galois objects. In particular, we prove that one always has the group
structure if one considers the Galois objects with normal basis over a cocommutative Hopf
algebra. A Hopf-Galois object is said to have a normal basis if it is isomorphic to H as a
right H-comodule. We also contribute to Schauenburg’s braided Galois theory providing
a characterization of a braided Galois object, Theorem 3.2.3.

Dually to Hopf-Galois objects there is a notion of a Hopf-Galois coobject. For the
construction of the group of Hopf-Galois coobjects we refer to [28]. In the third part
of the thesis we will introduce Galois coobjects over a commutative Hopf algebroid and
prove in Theorem 10.2.12 that the set of their isomorphism classes forms a group. Below
we will discuss Hopf algebroids in more details.

We now closely present the subject of research of the dissertation.

The goal of the first part of this thesis is to give a deeper understanding of some recent
computations of Brauer groups of Hopf algebras, finding their root. Let K be a field with
char(K) 6= 2. Sweedler’s Hopf algebra is H4 = K〈g, x|g2 = 1, x2 = 0, gx = −xg〉
as an algebra, the element g is group-like and x is (g, 1)-primitive. The antipode is
given by S(g) = g−1 and S(x) = gx. In [141] for the quasitriangular structure R0 =
1
2
(1⊗ 1 + g ⊗ 1 + 1⊗ g − g ⊗ g) it was proved that there is a direct sum decomposition

BM(K,H4,R0) ∼= BW(K)× (K,+)

where BW(K) denotes the Brauer-Wall group of K, BM(K,H4,R0) the Brauer group
of H4-module algebras with respect to the quasitriangular structure R0, and (K,+) the
additive group of the field.

Later in [38] for the Hopf algebra Hν = K〈g, x|g2ν = 1, x2 = 0, gx = −xg〉, where ν
is an odd natural number, g is grouplike, x is (gν , 1)-primitive, and the antipode is given
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by S(g) = g and S(x) = gx, with the quasitriangular structure

Rs,0 =
1

2ν
(
2ν−1∑
i,l=0

ω−ilgi ⊗ gsl), 1 6 s < 2ν odd

and ω a primitive 2ν-th root of unity, the authors proved that

BM(K;Hν ,Rs,0) ∼= Br(K;Z2ν , θs)× (K,+)

is as well a direct sum decomposition. Here BM(K;Hν ,Rs,0) denotes the Brauer group
of Hν-module algebras with respect to Rs,0, and Br(K;Z2ν , θs) is the Brauer group of
Z2ν-graded algebras with respect to the bicharacter θs induced on Z2ν by Rs,0. Putting
ν = 1 and s = 0 we recover Sweedler’s Hopf algebra and the quasitriangular structure
R0.

Looking at these two computations we wondered why this type of decomposition
emerges, why the additive group of the field appears in the decomposition and how it
is related to the corresponding Hopf algebras. We were interested in finding an interpre-
tation of this weird factor in terms of some algebraic invariant. We noticed that there
were two common features connecting the two examples. The first one is that both Hopf
algebras are Radford biproducts,

H4 = K[x]/(x2)×KZ2

Hν
∼= K[x]/(x2)×KZ2ν .

That means that K[x]/(x2) is a Hopf algebra in the categories of Z2- and Z2ν-graded
vector spaces, respectively. The second common property is that in both cases the re-
spective quasitriangular structures on Radford biproducts are obtained as extensions of
the quasitriangular structures of the Hopf algebras KZ2 and KZ2ν , respectively. In Propo-
sition 6.2.9 we have proved that the quasitriangular structure R of the Hopf algebra L
extends to the quasitriangular structure of the Radford biproduct Hopf algebra H × L if
and only if the braiding ΦR induced by the quasitriangular structureR is H-linear in LM.
Let us concentrate on the second example, as the first one can be considered as a partic-
ular case of the second one. The fact that KZ2ν is quasitriangular non-triangular means
that the category C of Z2ν-graded vector spaces is a braided monoidal non-symmetric
one, [100, Theorem 10.4.2], [96, Theorem 9.2.4]. We have that H = K[x]/(x2) is a Hopf
algebra in C and that the braiding Φ in C is H-linear. As we prove in Proposition 2.2.3
then the category HC is a braided monoidal one and we can consider its Brauer group
BM(C;H) := Br(HC), due to [140]. Azumaya algebras in HC we call H-Azumaya algebras.
On the other hand, from the Radford biproduct one has that the category of Hν-modules
is isomorphic as a braided monoidal category to that of H-modules in C, Corollary 6.2.10.
This implies that the Brauer groups of these braided monoidal categories are isomorphic,
BM(C;H) ∼= BM(K;Hν ,Rs,0).
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If one forgets the H-module structure on an H-Azumaya algebra, one obtains an
ordinary Azumaya algebra in C. Hence, we may consider the following forgetting map p
and its kernel:

Ker(p) Br(HC)- Br(C) = Br(K;Z2ν , θs)-p
�

q

[A] 7−→ [A].

This forgetting map splits by q – any algebra in Br(C) we can equip with a trivialH-module
structure obtaining an H-Azumaya algebra. Computing the kernel of p we would recover
the information we lost forgetting the H-module structure on an H-Azumaya algebra.
On the other hand, this kernel would explain why the additive group of the field occurs in
the above two decomposition. This led us to Beattie’s sequence, [12], as a forgetting map
of this type and its kernel are computed there in a specific case. For a commutative ring
R and a finitely generated and projective commutative and cocommutative Hopf algebra
H over R Beattie proved that there is a split exact sequence

1 Br(R)- BM(R;H)-q�
p

Gal(R;H)-Π 1.-

Here BM(R;H) is the Brauer group of H-module algebras, Br(R) the Brauer group of R
and Gal(R;H) denotes the group of H-Galois objects. Our idea was to extend Beattie’s
exact sequence to a braided monoidal category and to compute Ker(p) using this new
Beattie’s exact sequence, expecting to be able to explain the known recent decompositions
of Brauer groups of Hopf algebras, which appear in different braided monoidal categories.

Beattie’s exact sequence was constructed in [64] for a symmetric monoidal category.
We generalize this construction in Chapter 5 to a braided monoidal category C and a
finite commutative Hopf algebra H ∈ C, such that the braiding Φ is H-linear and satisfies
ΦA,X = Φ−1

A,X for any H-Galois object A and any X ∈ C, with the goal of revealing that
Beattie’s exact sequence lies behind the computations of Brauer groups presented above.
Let C denote any braided monoidal category and H ∈ C a Hopf algebra. As mentioned in
earlier paragraphs, our generalization was possible because we require that the braiding
in C should be H-linear and assume the above-mentioned symmetricity condition of the
braiding. We prove in Proposition 2.2.5 that the braiding in C is H-linear if and only if H
is cocommutative and the braiding when acting on H⊗X for any object X is symmetric.
This is why cocommutativity does not appear explicitly in our list of assumptions, as it
is the case in [64]. In Theorem 5.4.3 we prove that if C is closed and has equalizers and
coequalizers, H is finite and commutative and the braiding is H-linear, and ΦA,X = Φ−1

A,X

for any H-Galois object A and any X ∈ C, then there is a split exact sequence

1 Br(C)- BM(C;H)-q
�
p

Gal(C;H)-Π 1.-

Here BM(C;H) denotes the Brauer group of H-module algebras, Br(C) the Brauer group
of C and Gal(C;H) the group of H-Galois objects. Moreover, although C is not symmetric
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and thus BM(C;H) is not necessarily abelian, we obtain the direct sum decomposition

BM(C;H) ∼= Br(C)×Gal(C;H).

This result is applied to a certain family of Radford biproducts that we next describe.
Let (H,R) be a quasitriangular Hopf algebra over a field K and C = HM the braided
monoidal category of left H-modules. Let ΦR denote the braiding of C stemming from
R. Let B ∈ C be a finite dimensional Hopf algebra and consider the Radford biproduct
B × H. If ι : H −→ B × H denotes the canonical inclusion, ι(R) is a quasitriangular
structure for B × H if and only if the braiding ΦR is B-linear, Proposition 6.2.9. The
category of left B ×H-modules B×HM is isomorphic, as a braided monoidal category, to

BC, Corollary 6.2.10. If ΦR is symmetric on A ⊗ X for any B-Galois object A ∈ C and
any X ∈ C, we have

BM(K,B ×H, ι(R)) ∼= BM(K,H,R)×Gal(HM;B).

Now, applying this to our previous example we obtain

BM(Gr2ν ;K[x]/(x2)) ∼= Br(K;Z2ν , θs)×Gal(Gr2ν ;K[x]/(x2))

where now Gr2ν stands for the category of Z2ν-graded vector spaces. On the left hand-side
is the Brauer group of the category of K[x]/(x2)-module algebras in Gr2ν . Recall that we
observed above that we have an isomorphism BM(Gr2ν ;K[x]/(x2)) ∼= BM(K;Hν ,Rs,0).
In Section 6.1 we proved the isomorphism Gal(Gr2ν ;K[x]/(x2)) ∼= (K,+). Thus we have
recovered the decomposition for the Brauer group of Hν . Note that the sequence from
[64] is not sufficient to explain the decomposition for Hν , as the base category Gr2ν is
braided but not symmetric, as we observed before. This family of examples then justifies
our generalization.

There are further decompositions of Brauer groups of Hopf algebras which are Radford
biproducts, where the quasitriangular structure of the ordinary Hopf algebra extends
to a quasitriangular structure of the Radford biproduct. Let E(n) = K〈g, xi, i, j ∈
{1 · · ·n}|g2 = 1, x2

i = 0, gxi = −xig, xixj = −xjxi, 〉 be Nichols’ Hopf algebra with the
structures given as follows. The element g is group-like, whereas xi for i = 1, . . . , n are
(g, 1)-primitive elements, that is, ∆(xi) = 1⊗ xi + xi ⊗ g and ε(xi) = 0. The antipode is
given by S(g) = g−1 and S(xi) = gxi. The quasitriangular structure on E(n) is R0, as in
the decomposition of H4. In [39] was obtained the following direct sum decomposition

BM(K,E(n),R0) ∼= BW(K)× (K,+)n(n+1)/2

where BM(K,E(n),R0) denotes the Brauer group of E(n)-module algebras and BW(K)
the Brauer-Wall group of K. More precisely, the same decomposition is proved for qua-
sitriangular structures RA given in terms of any symmetric n-dimensional matrix A over
K. We have the Radford biproduct

E(n) ∼= K[xn]/(x2
n)× E(n− 1)
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whereK[xn]/(x2
n) is a Hopf algebra in the category E(n−1)M of left E(n−1)-modules. Take

E(n−1)M for the base category in Beattie’s sequence with the Hopf algebra K[xn]/(x2
n)

in it. Being a Radford biproduct of the desired type, the assumptions for our Beattie’s
sequence are fulfilled and we get a decomposition of the Brauer group of E(n) proving the
group isomorphism Gal(E(n−1)M;K[xn]/(x2

n)) ∼= (K,+)n. We recover the decomposition
from [39] by iteration from the latter one.

For a modified supergroup algebra Λ(V ) × KG, where G is a finite group, and the
quasitriangular structure Ru = 1

2
(1 ⊗ 1 + u ⊗ 1 + 1 ⊗ u − u ⊗ u) for a certain u ∈ G, in

[40] is proved the direct sum decomposition

BM(K; Λ(V )×KG,Ru) ∼= BM(K;KG,Ru)× S2(V ∗)G.

Here S2(V ∗)G is the group of symmetric matrices over V ∗ invariant under the conjugation
by elements of G. Requirements of our Beattie’s sequence are satisfied for the category
of G-graded vector spaces C = GrG and the Hopf algebra Λ(V ) ∈ C, since Λ(V )×KG is
a Radford product of the desired type. Then the above decomposition is a consequence
of Beattie’s sequence, if we prove the group isomorphism S2(V ∗)G ∼= Gal(GrG; Λ(V )).

The symmetricity condition on the braiding, although satisfied by our examples, seems
weird. We can drop this condition and we still have a split exact sequence relating Br(C),
the subgroup BMinn(C;H) of BM(C;H) of H-Azumaya algebras with inner actions, and
the group Galnb(C;H) of Galois objects with normal basis, that exists in any braided
monoidal category. We prove in Theorem 5.4.4 that

BMinn(C;H) ∼= Br(C)×Galnb(C;H).

Indeed Galnb(C;H) is isomorphic to the image of the first map in the following short exact
sequence, presented in Chapter 4:

1 H2(C;H, I)- Gal(C;H)-ιζ Picco(C;H).-ξ

Here H2(C;H, I) is Sweedler’s second cohomology group ofH with values in the unit object
I, and Picco(C;H) the Picard group of invertible comodules. This sequence generalizes
the one obtained in [2, Theorem 11] and [4, Proposition 0.3]. Whereas the latter is made
in a symmetric monoidal category and for a finite Hopf algebra, ours holds in any braided
monoidal category whose braiding Φ satisfies the condition ΦA,B = Φ−1

A,B for any two H-
Galois objects A and B, and the Hopf algebra is not necessarily finite. Though, taking a
finite Hopf algebra we recover the other sequence.

Applying our result on the decomposition of BMinn(C;H) to the family of Radford
biproducts described before we can to show that BM(K,H,R) × H2(HM;B,K) is a
subgroup of BM(K,B ×H, ι(R)).

In the second part of the thesis (Chapters 7 and 8) we propose the Brauer group of
Azumaya corings as an alternative construction of the Brauer group of a commutative
ring, exposed at the beginning of this Introduction, which will make some proofs simpler
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and will behave better in a certain sense. Corings were introduced by Sweedler in [128].
They extend the notion of a coalgebra over a commutative ring R to a bimodule over a
not necessarily commutative base algebra A, so that a coring may be seen as a coalgebra
in the monoidal category (AMA,⊗A, A) of A-bimodules. During 25 years after their
introduction, the corings appeared in the literature only in [69] and [98]. In [133] Takeuchi
observed that the entwining structures introduced in [24] in the context of gauge theory on
non-commutative spaces provide new examples of corings. On the other hand, entwining
structures and modules associated to them generalise the notion of Doi-Koppinen Hopf
modules introduced in [57] and [77] and developed for weak bialgebras in [18]. Various
structure theorems concerning Doi-Koppinen modules can be formulated more generally
in terms of (weak) entwined modules, [31]. In [25] Brzeziński shows that many of those
structure theorems are special cases of structure theorems for the category of comodules
of a coring. This article revived the interest in corings and it was followed by a series
of papers providing new applications of corings. It turned out that when dealing with
corings, new, more elegant, more general proofs and sometimes much simpler could be
given to the known results on generalized Hopf modules. We refer to the monograph [27]
for a comprehensive treatment of the theory of corings.

The main contribution of the second part of this thesis is the construction of the
Brauer group of Azumaya corings and the proof that it is isomorphic to the full second flat
Amitsur cohomology group. For a Galois field extension L/K with group G we have the
Crossed Product Theorem asserting that there is an isomorphism Br(L/K) ∼= H2(G,L∗).
Here the map from the second cohomology group to the Brauer group can be described
easily and explicitly. Since every central simple algebra can be split by a Galois extension,
it follows that the full Brauer group Br(K) can be described as a second cohomology group

Br(K) ∼= H2(Gal(Ksep/K), Ksep∗),

where Ksep is the separable closure of K.
The cohomological description of the Brauer group of a commutative ring is more

complicated. As first, Galois cohomology is no longer sufficient, since not every Azu-
maya algebra can be split by a Galois ring extension. More general cohomology theories
have to be introduced, such as Amitsur cohomology (over commutative rings). Secondly,
the Crossed Product Theorem is replaced by a long exact sequence, called the Chase-
Rosenberg sequence. We can introduce the second étale cohomology group H2(Ret,Gm),
as the second right derived functor of a global section functor. If R = K is a field, then
this group equals the total Galois cohomology group H2(Gal(Ksep/K), Ksep∗). Then we
have a monomorphism

Br(R) ↪→ H2(Ret,Gm).

In general, this monomorphism is not surjective, as the Brauer group is always torsion,
and the second cohomology group is not torsion in general. Gabber [66] proved that the
Brauer group is isomorphic to the torsion part of the second cohomology group.

In [134], Taylor introduced a new Brauer group, consisting of equivalence classes of
algebras that do not necessarily have a unit. The classical Brauer group is a subgroup,
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and it is shown in [116] that Taylor’s Brauer group is isomorphic to the full second
étale cohomology group. The proof depends on deep results, such as Artin’s Refinement
Theorem (see [9]); also the proof does not provide an explicit procedure producing a
Taylor-Azumaya algebra out of an Amitsur cocycle.

As announced, in the second part of this thesis we propose a new Brauer group whose
elements are equivalence classes of Azumaya corings. Let S be a commutative R-algebra.
On the S-bimodule S ⊗R S one defines a comultiplication and a counit obtaining the so
called Sweedler canonical coring. This coring can be used to give an elegant approach to
descent theory: the category of descent data is isomorphic to the category of comodules
over the coring, [32, Section 4.8], [33]. Our starting observation is now the following:
an Amitsur 2-cocycle can be used to deform the comultiplication on S ⊗R S, such that
the new comultiplication is still coassociative. Thus the Amitsur 2-cocycle condition
should be viewed as a coassociativity condition rather than an associativity condition (in
contrast with the Galois 2-cocycle condition, which is really an associativity condition).
We use the opportunity to point out that on the categorical level we proved the bijective
correspondence between Sweedler’s 2-cocycle condition and the associativity condition in
Corollary 4.1.5. As Sweedler cohomology generalizes Galois cohomology to Hopf algebras,
our categorical result can be seen as a generalization of the above statement for algebras
over rings.

We can take the dual of the coring S⊗RS, which is an S-ring, isomorphic to EndR(S).
Amitsur 2-cocycles can then be used to deform the multiplication on EndR(S), leading to
an Azumaya algebra in the classical sense. This construction leads to a map H2(S/R,Gm)
−→ Br(S/R) when S is faithfully projective as an R-module, and we will show that it is one
of the maps in the Chase-Rosenberg sequence. The duality between the S-coring S ⊗R S
and the S-ring EndR(S) works well in both directions if S/R is faithfully projective, but
fails otherwise; this provides an explanation for the fact that we need the condition that
S/R is faithfully projective in order to fit the relative Brauer group Br(S/R) into the
Chase-Rosenberg sequence.

The canonical coring construction can be generalized slightly: if I is an invertible
S-module, then we can define a coring structure on I∗ ⊗R I. Such a coring will be
called an elementary S/R-coring. Azumaya S/R-corings are then introduced as twisted
forms of elementary S/R-corings for S/R faithfully flat. That is, C is an Azumaya S/R-
coring if after the extension by a faithfully flat R-algebra T it becomes isomorphic as an
S ⊗R T -bimodule to an elementary S/R-coring I∗ ⊗R I extended by T , i.e. C ⊗R T ∼=
(I∗ ⊗R I)⊗R T . If S/R is faithfully projective, then the dual of an Azumaya S/R-coring
is an Azumaya algebra split by S. The set of isomorphism classes of Azumaya S/R-
corings forms a group; after we factor by the subgroup consisting of elementary corings,
we obtain the relative Brauer group Brc(S/R); we will show that Brc(S/R) is isomorphic
to Villamayor and Zelinsky’s cohomology group with values in the category of invertible
modules H1(S/R,Pic) [143]. As a consequence, Brc(S/R) fits into a Chase-Rosenberg
type sequence (even if S/R is not faithfully projective).

An Azumaya coring will consist of a couple (S,C), where S is a (faithfully flat) commu-
tative ring extension of R, and C is an S/R-coring. On the set of isomorphism classes, we
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define a Brauer equivalence relation and show that the quotient set is a group under the
operation induced by the tensor product over R. This group is called the Brauer group
of Azumaya corings and we can show that it is isomorphic to the full second cohomology
group.

The third part of the thesis (Chapters 9 and 10) is dedicated to constructions with
commutative bialgebroids. Bialgebroids appear for the first time in the literature in [127]
under the name “×B-bialgebras” for an R-algebra B. They emerge as a generalization of
bialgebras, which are modules over a commutative ring (i.e. bimodules with the same left
and right actions) to bimodules, in the similar way as corings generalize coalgebras. A
B-bialgebroid is a B⊗RBop-algebra (hence a B⊗RBop-bimodule) and a B-coring (hence
a B-bimodule). Different compatibility conditions between the two bimodule structures,
the algebra and the coring structure led to different definitions of bialgebroids. Sweedler
introduced ×B-bialgebras for commutative B; Takeuchi generalized them to any B in
[130]; Lu gave an alternative definition and introduced Hopf algebroids in [89] in the line
of a generalization of quantum groups to “quantum groupoids”; Schauenburg studied in
[120] the monoidal structures of the categories of (co)modules over bialgebroids; Böhm
developed Galois and integral theory for Hopf algebroids; a Schneider type theorem is
provided in [8], the work of Szlachanyi has also to be mentioned. We recommend [27]
for a review on bialgebroids. The simplest example of a bialgebroid (over the base B) is
Sweedler coring B ⊗R Bop for any algebra B over a commutative ring R.

In the third part of the thesis we introduce a cohomology over commutative bialge-
broids. We propose an exact sequence a la Villamayor-Zelinsky, studied in the second
part of the thesis, in terms of this cohomology. Once we establish this, following the same
pattern as in the case of the Brauer group of Azumaya corings we manage to give an
interpretation of the zero-th (first level of the new sequence) and the first cohomology
group (second level) with values in the category of invertible modules over a commutative
S-bialgebroid A. At the first level we obtain the group of invertible S-modules which are
at the same time (invertible) A-comodules, recovering [34, Corollary 2.3] as a special case.
At the second level, rather than obtaining some Brauer group of Azumaya algebroids, as
one might expect, we obtain the abelian group of A-Galois coobjects. Though, in the
case when A = S ⊗R S, the group of S ⊗R S-Galois coobjects is nothing but the Brauer
group of Azumaya corings. A-Galois coobjects are a Hopf bialgebroid and dual version
of Galois objects over a Hopf algebra, which we discussed above in this Introduction.
Hopf-Galois objects have already gotten a generalization in terms of corings. This was
done by Brzeziński in [25] with the introduction of Galois corings. For a faithfully flat
algebra S over its base ring an S-coring C with a group-like element is termed Galois
if certain canonical morphism can : S ⊗R S −→ C is an isomorphism. In the case of the
coring C = S⊗RH for a Hopf algebra H over a commutative ring and a right H-comodule
algebra S, [34], one recovers the definition of a Galois object. Our Galois coobject over a
commutative Hopf algebroid A (over S) will be an A-module (S-)coring C which is faith-
fully flat as an S-module and for which an appropriate canonical morphism can : C⊗S A
−→ C ⊗S C is an isomorphism. As a further application of our sequence for A = H∗, for
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a Hopf algebra H, we recover an infinite version of the sequences constructed in [58] and
[46, 102], of which the latter we generalized to a braided monoidal category in Section 4.5.

The interpretation of the first and the second level of our long exact sequence for the
cohomology over commutative bialgebroids can be continued to the next levels. This is
the subject of the work in progress.

As we mentioned, this dissertation can be divided in three parts. We now proceed
to describe how the contents are organized. The first part is the subject of the first six
chapters. Chapters 7 and 8 make the second part, while Chapters 9 and 10 constitute the
third part of the thesis. In the first chapter we mainly recall and define notions together
with their basic properties that we will deal with in Chapters 1–6, like braided monoidal
categories, inner-hom objects, tensor products over algebras, finite and dual objects, and
(faithfully) flat and faithfully projective objects. We record in several results how certain
algebraic properties of two morphisms pass to their (co)equalizer. We also investigate
when the forgetful functor preserves (co)equalizers. The second chapter briefly recalls the
construction of the Brauer group of a braided monoidal category from [140], with the
difference that here we work with braided diagrams as a means of computation, whereas
in the mentioned paper the Yoneda lemma was employed. We prove that the functors
(−)A and A⊗Aop [A,−] for an algebra A and its opposite algebra Aop are isomorphic in
Proposition 2.1.12. We also prove several claims related to Azumaya algebras which will
be useful in later chapters. In Lemma 2.2.1, 2) we equip an inner hom-object in C with
a module structure over a Hopf algebra H and prove that the category of H-modules
is a closed braided monoidal one if so is the base category and the braiding is H-linear
(Proposition 2.2.3). This gives rise to the Brauer group of H-module algebras assuming
the latter conditions. We then analyze when the braiding of a category is H-linear, as
this is the key requirement we will put on in our construction of Beattie’s sequence. This
result is expressed in Proposition 2.2.5. At the end of the second section we construct the
Brauer group of H-module algebras with inner actions, which is a subgroup of the Brauer
group of H-module algebras.

Chapter 3 treats braided Hopf-Galois objects. In the first section we recall relative
Hopf modules and establish a pair of adjoint functors related to the category of relative
Hopf modules. We then turn to study some properties of a bialgebra, among which
we prove that any flat bialgebra is faithfully flat and that if the category is closed any
finite bialgebra is faithfully projective, and thus in particular faithfully flat. At the end of
Section 3.1 we recall the Fundamental Theorem for Hopf modules in any braided monoidal
category with equalizers.

We define (Hopf) Galois objects in Section 3.2 as faithfully flat comodule algebras
over a Hopf algebra H for which the canonical morphism is an isomorphism. From this
definition we deduce that the subalgebra of H-coinvariants is trivial, which sometimes is
taken in the definition of an H-Galois object omitting the requirement on faithful flatness.
In Theorem 3.2.3 we prove a generalization of the Fundamental Theorem of Hopf modules
to Galois objects. It states that A is an H-Galois object if and only if the category of
relative (A,H)-Hopf modules is equivalent to the base category, by the adjoint pair of
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functors we established in the previous section. In Proposition 3.2.6 we prove that an
H-comodule algebra morphism between two H-Galois objects in C is an isomorphism –
the result known for module categories, [28, Proposition 8.1.10], and originally for finite
Hopf algebras in [12, Lemma 1.1]. This observation will be of fundamental importance in
our proofs.

In Section 3.3 we recall the cotensor product of comodules and prove some of its pro-
perties employing the notion of flatness. We introduce coflatness in a category of comod-
ules – dually to the notion of coflatness in the category of modules, that one encounters in
Morita Theorems. We study under which conditions associativity of the cotensor product
is accomplished. That an opposite algebra of an H-Galois object A is such an object as
well is the subject of Section 3.4, whereas in Section 3.5 we prove that its isomorphism
class determines the inverse of the class of A and that the set of isomorphism classes of
H-Galois objects forms a group. This is an abelian subgroup of the group of H-biGalois
objects studied in [122]. In the latter two sections we assume that the braiding satisfies
ΦA,B = Φ−1

A,B for any two H-Galois objects A and B. We define Galois objects with
normal basis and prove that the above-mentioned condition on the braiding is fulfilled
on H-Galois objects with normal basis, hence they induce a group. Here we employed
Schauenburg’s observation, [119, Corollary 5], that the braiding when acting on H ⊗ H
is symmetric for a commutative or cocommutative Hopf algebra H.

A short exact sequence connecting Sweedler’s second cohomology group, the group of
H-Galois objects and the Picard group of invertible comodules is the subject of Chapter 4.
In its first section we recall Sweedler’s second cohomology group. We observe, similarly
as in many occasions in algebra, that the 2-cocycle condition on σ is equivalent to the
associativity of the σ-twisted multiplication on a Hopf algebra H. In particular, this 2-
cocycle-twisted object is an H-comodule algebra. Making use of it in the second section
we define a group monomorphism from Sweedler’s second cohomology group to the group
of Galois objects with a normal basis. Section 4.3 further studies Galois objects with a
normal basis. We prove that they are H-cleft and show that the above monomorphism is
in fact an isomorphism. In Section 4.4 we construct the Picard group of a Hopf algebra
H as the set of isomorphism classes of C-autoequivalences of the category of H-comodules
in C. An equivalent condition for such equivalences is that the comodule determining the
equivalence is invertible with respect to the cotensor product over H. We prove that any
H-Galois object is an invertible H-comodule. The announced short exact sequence we
construct in Section 4.5 and prove that if the category is symmetric and H finite, the short
exact sequence from [4] and [2] can be recovered. We end this section proving that the
Picard group of invertible H-comodules is isomorphic to that of invertible H∗-modules.

Chapter 5 is dedicated to Beattie’s sequence in a braided monoidal category. The goal
of the first section is to define a group morphism from the Brauer group of H-Azumaya
algebras (resp. with inner actions) to the group of H-Galois objects (resp. with a normal
basis). At the beginning we define the smash product, necessary for this construction. In
the second section we assign to any H-Galois object an Azumaya algebra. This will in
fact be an H-Azumaya algebra, as we prove in the third section. Using this assignment
we prove that the group morphisms from Section 5.1 are surjective. In Section 5.4 we
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see that these group morphisms together with the embedding of the Brauer group of the
base category into the Brauer group of H-Azumaya algebras (with inner actions) form
split exact sequences. We also show that these sequences give rise to two direct product
decompositions, of the Brauer group of H-Azumaya algebras and the Brauer group of
H-Azumaya algebras with inner actions, respectively.

That Beattie’s sequence lies behind the computations of Brauer groups of the Hopf
algebras H4, Hν and E(n) we reveal in the last chapter. In its first section we compute
the group of Galois objects with a normal basis over the Hopf algebra K[x]/(x2) in the
category of Z2ν-graded vector spaces, for an odd natural number ν (and in that of Z2-
graded vector spaces), proving that it is isomorphic to the additive group of the base
field. In the second section we recall the definition of a quasitriangular structure and the
known fact that its existence on a bialgebra is equivalent to having a braided structure on
the monoidal category of the respective modules. We further recall Radford biproducts
B×H, the sufficient condition to have a Hopf algebra structure on the Radford biproduct
in terms of Yetter Drinfel’d modules and recall Majid’s bosonization. Finally we prove
in Proposition 6.2.9 our observation on the extension of the quasitriangular structure of
the Hopf algebra H to that of the total Hopf algebra. We apply this in the third section
proving Theorems 6.3.1 and 6.3.2 and recover the decompositions in [141], [38] and [39]
from Beattie’s sequence and give directions to do the same in the cases of [40].

We next say a few words about the degree of originality of the first part of the disserta-
tion. The main idea, that is totally original, is to discover that the computations of Brauer
groups mentioned above may be framed and better understood by means of Beattie’s ex-
act sequence in a braided monoidal category. Taking into account that such a sequence
existed for symmetric monoidal categories, our extension to braided ones may not be con-
sidered highly innovative. Nevertheless, this extension is needed to cover the case of Hν

and some other case that will be treated in the future. What is original in this extension
is our approach, using braided notation, the notion of flatness and faithful flatness com-
bined with the fact that the braiding is symmetric on H⊗H for a (co)commutative Hopf
algebra H and on H-Galois objects with a normal basis. The techniques used here may
be useful to establish for braided monoidal categories other results known for symmetric
ones. We managed to do so also in our construction of the sequence relating Sweedler’s
second cohomology group, the group of Galois object and the Picard group of invertible
comodules. Further original contribution is our observation that a quasitriangular struc-
ture on a Hopf algebra H extends to the one on the Radford biproduct B×H if and only
if the braiding in HM is B-linear, which permits the computation of the Brauer group of
Radford biproducts where this extension occurs, using Beattie’s exact sequence.

Being more concrete, Chapters 1 and 2 compile known results needed for other chap-
ters. The only original result here is Proposition 2.1.12. Chapter 3 is strongly based on
Schauenburg’s construction of the groupoid of biGalois objects. The original results here
are the implication 2)⇒ 1) in Theorem 3.2.3 characterizing Galois objects, and the veri-
fication that the group of Galois objects with a normal basis may be defined in a braided
monoidal category. In Chapter 4, the original result is Proposition 4.3.3, the Normal Basis



xiv Introduction

Theorem for braided monoidal categories, extending the result in [2, Theorem 11] for a
symmetric monoidal category. Chapter 5 is highly original, except for a few notions like
the one of smash product, and taking into account what we said in the previous para-
graph. The main results in Chapter 6 are completely original. The material presented in
this part of the dissertation will appear in the papers [50] and [49].

In the second part of the thesis the first three sections assemble known facts, whereas
the rest of the results is original. In Section 7.1 we recall Amitsur cohomology over a
commutative ring R and in the next section we present cohomological interpretations of
the (relative) Brauer group of R. In the third section of Chapter 7 we recall the definition
of corings and in the fourth section we discuss some adjointness properties of bimodules.
Chapter 8 is devoted to the construction of the Brauer group of Azumaya corings. We
define Azumaya corings in Section 8.1 and analyze their relation to Azumaya algebras in
the next section. The relative Brauer group of Azumaya corings is constructed. We define
the normal basis property on bimodules in Section 8.3 and prove that the Brauer group
of Azumaya corings with normal basis is isomorphic to Amitsur’s second cohomology
group with values in units, that is the Normal Basis Theorem for Azumaya corings.
The full Brauer group of Azumaya corings we construct in Section 8.4 and prove that it is
isomorphic to Amitsur’s full second flat cohomology group with values in units. The main
results of this part of the thesis are Corollary 8.1.9 and Theorem 8.4.7. The contents of
this part of the thesis is published in [35].

In Chapters 9 and 10 we deal with commutative bialgebroids. Except from the first
two sections, the results of the third part of the thesis are original. Section 9.1 is a
preliminary one on some properties of invertible modules that we will employ in our
construction. We define and collect some basic properties of commutative bialgebroids
and Hopf algebroids in the next section. In Section 9.3 we introduce Harrison cohomology
over a commutative bialgebroid and prove that it fits into an infinite exact sequence a
la Villamayor–Zelinsky. The zero-th cohomology group with values in the category of
Picard modules is interpreted in the next section. The second cohomology group is the
subject of Chapter 10. For it we introduce in the first section A-module corings and A-
Galois coobjects for a commutative bialgebroid and Hopf algebroid A, respectively. In the
second section we prove that A-Galois coobjects give rise to a group as well as that this
group is isomorphic to Harrison’s first cohomology group with values in the category of
Picard modules. Moreover, we prove the Normal Basis Theorem for a commutative Hopf
algebroid. The final section is devoted to the analysis of the above-mentioned infinite
exact sequence and the Normal Basis Theorem for some special cases of a commutative
bialgebroid A. Particularly, we recognize that this sequence with A = H∗, where H is a
Hopf algebra, is an infinite version of the sequence from Section 4.5 when C is the category
of modules over a commutative ring. The crucial results in this part are Theorem 9.3.5,
Theorem 9.4.7, Corollary 9.4.10, Theorem 10.1.10, Theorem 10.2.12 and Corollary 10.3.9.
The material presented in this part of the thesis will appear in [36].
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thankful to them for their good energy, love and emotional support which followed me
while this thesis was arising.



Chapter 1

Basic structures in braided monoidal
categories

The first chapter is a preliminary one for the first part of the thesis, exposed in Chapters
1–6. In it we recall the basic objects and their properties which we will use throughout.
In the first section we will recall braided diagrams which use strings and boxes to denote
morphisms. They will be our main tool of computation in the sequel.

After the first section in which we speak about a braided monoidal category C will
denote a monoidal category (C,⊗, I) in this chapter unless otherwise specified.

1.1 Braided monoidal categories and notation

We assume that the general category theory is familiar to the reader and recommend the
monographs [105] and [92] as references. Our research is carried out in a braided monoidal
category. We recall here the necessary definitions.

Definition 1.1.1 A monoidal category is a sextuple (C,⊗, I, α, λ, ρ), where C is a cat-
egory, ⊗ : C × C −→ C a covariant functor called tensor product, I ∈ C an object called
unit, and

α(X, Y, U) : (X ⊗ Y )⊗ U −→ X ⊗ (Y ⊗ U),

λ(X) : I ⊗X −→ X and ρ(X) : X ⊗ I −→ X

are natural isomorphisms, whose compatibility is expressed in terms of the following com-
mutative diagrams:

((X ⊗ Y )⊗ U)⊗W (X ⊗ (Y ⊗ U))⊗W-
α(X, Y, U)⊗W

X ⊗ ((Y ⊗ U)⊗W )-
α(X, Y ⊗ U,W )

?

X ⊗ α(Y, U,W )

?

α(X ⊗ Y, U,W )

(X ⊗ Y )⊗ (U ⊗W ) X ⊗ (Y ⊗ (U ⊗W ))-
α(X, Y, U ⊗W )

1



2 1. Basic structures in braided monoidal categories

(X ⊗ I)⊗ Y X ⊗ (I ⊗ Y )-
α(X, I, Y )

X ⊗ Y

ρ(X)⊗ Y
@
@
@@R

X ⊗ λ(Y )
�
�

��	

where X, Y, U,W ∈ C. The natural transformations α, λ and ρ we call associativity-, left
unity- and right unity constraints, respectively.

A monoidal category is said to be strict if α, λ and ρ are the identity morphisms.

We now give the definition of a braided monoidal category due to Joyal and Street,
[72].

Definition 1.1.2 Let C be a monoidal category and τ : C × C −→ C × C the flip functor,
given by τ(X, Y ) := (Y,X) for X, Y ∈ C. We say that C is braided if there is a natural
isomorphism Φ : −⊗− −→ (−⊗−)τ in C for which the following two hexagons commute
for all U, V,W ∈ C:

(H1) U ⊗ (V ⊗W )

(U ⊗ V )⊗W

αU,V,W

�
�
�
���

-
ΦU,V⊗W

(V ⊗W )⊗ U

V ⊗ (W ⊗ U)

αV,W,U
@
@
@
@@R

(V ⊗ U)⊗W

ΦU,V ⊗ id
@
@
@
@@R

-
αV,U,W

V ⊗ (U ⊗W )

id ⊗ ΦU ,W

�
�
�
���

and
(H2) (U ⊗ V )⊗W

U ⊗ (V ⊗W )

α−1
U,V,W

�
�
�
���

-
ΦU⊗V,W

W ⊗ (U ⊗ V )

(W ⊗ U)⊗ V

α−1
W,U,V

@
@
@
@@R

U ⊗ (W ⊗ V )

id ⊗ ΦV ,W

@
@
@
@@R

-
α−1
U,W,V

(U ⊗W )⊗ V.

ΦU,W ⊗ id

�
�
�
���

Morphism Φ is called a braiding.

A monoidal category C is called symmetric if there is a natural isomorphism Φ : −⊗−
−→ (− ⊗ −)τ in C satisfying any of the two above hexagon relations and the symmetry
condition ΦU,V = Φ−1

U,V for all U, V ∈ C.
In [91] and [92], before the concept of a braided monoidal category was known, Mac

Lane proved the coherence theorem which claims that any monoidal category is monoidally
equivalent to a strict one. Later Joyal and Street proved the coherence theorem for braided
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monoidal categories in [74]. The pentagon axiom for a monoidal category expresses the
demand that the two ways one can go from ((X ⊗ Y ) ⊗ U) ⊗ W to X ⊗ (Y ⊗ (U ⊗
W )) by applying α repeatedly are the same. The coherence theorems assert that if this
requirement holds for any four objects, then any two choices of distribution of parenthesis
between n objects in an n-fold tensor product for n > 4 give isomorphic two objects (by
applying successively α’s in a proper way). Similarly, one may insert the unit object at
an arbitrary place in an n-fold tensor product arbitrarily many times. Applying λ’s and
ρ’s, together with α’s, one will get to an object isomorphic to the initial one. In this sense
the parenthesis, and therefore the natural isomorphisms α, λ and ρ, may be neglected in
the computations. Consequently, we are allowed to execute the proofs in strict (braided)
monoidal categories.

For strict braided monoidal categories there is a very intuitive and powerful graphical
calculus which replaces complex algebraic formulas. This is the language of (planar)
braided diagrams which originates from [73], [93], [95] and can also be found e.g. in [137],
[76], [75], [15]. There algebraic operations ‘flow’ along strings.

For more details on braided monoidal categories we refer to [72], [73], [75], [83], [92],
[94] and [136]. We now define in terms of braided diagrams the algebraic structures we will
deal with. The duality principle in a category is reflected in braided diagram notation in
the fact that when reading the diagrams up-side-down, we obtain morphisms in the dual
category, and respectively dual algebraic structures. When the domain or the codomain
of a morphism is the unit I of the category, we will not write it down.

An algebra in C is an object A together with morphisms

η := r
A

and ∇ :=
A A
	
A

called unit and multiplication, respectively, satisfying the compatibility conditions

Ar
	
A

=

A

A

=

A r
	
A

and the associativity law
A A A� 
� 


A

=

A A A� 
� 

A.

Let A,B ∈ C be algebras. A morphism f : A −→ B is an algebra morphism if it obeys

A A� 

f

B

=

A A

f f� 

B

and
r
f

B

=
r
B.

In a braided category an algebra A is said to be commutative if it holds

A A


	
A

=
A A
	
A.
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The notions of a coalgebra, a coalgebra morphism and of a cocommutative coalgebra
are defined dually (considering the diagrams turned upside-down).

For an algebra A an object M ∈ C together with a morphism

Aλ :=
A M

PP

M

is called a left A-module if it fulfills the compatibility conditions

A A M� 

PP

M

=

A A M

PP

PP

M

and

Mr
PP

M

=

M

M.

Let M and N be two left A-modules. A morphism f : M −→ N is called a left
A-module morphism if the following equality holds:

A M

PP
f

N

=

A M

f

PP

N.

A right A-module is an object M ∈ C with a morphism

λA :=
M A

��

M

satisfying symmetric conditions to those for a left A-module. A right A-module morphism
is defined symmetrically to a left A-module morphism.

An A-B-bimodule is a left A- and a right B-module M for which one has

A M B

PP
��

M

=

A M B

��
PP

M.

The category of left (resp. right)A-modules and left (resp. right)A-module morphisms
is denoted by AC (resp. CA). The category of A-B-bimodules and left A-module and right
B-module morphisms is denoted by ACB.

The notions of left and right comodules, bicomodules and comodule morphisms are
defined dually. Let C,D ∈ C be coalgebras. The categories of left (resp. right) C-
comodules and left (resp. right) C-comodule morphisms is denoted by CC (resp. CC).
The category of C-D-bicomodules and left C-comodule and right D-comodule morphisms
is denoted by CCD.

An algebra and a coalgebra B ∈ C is called a bialgebra if the following compatibility
conditions are satisfied:

B B� 
� �
B B

=

B B����

	
	
B B

,
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r��
B B

=
r r
B B

,

B B
	r =

B B

r r and
rr = idI .

A bialgebra morphism is an algebra and a coalgebra morphism.

A Hopf algebra is a bialgebra H ∈ C that has a morphism S : H −→ H called antipode
satisfying

H��hS
	
H

=

Hrr
H

=

H��hS
	
H.

As in the category of modules over a commutative ring the bialgebra morphisms are
compatible with the antipode. Hence we define a Hopf algebra morphism as a bialgebra
morphism.

Observe that if we look the diagrams defining a bialgebra and a Hopf algebra up-side-
down, we obtain the diagrams we started with. This reflects the fact that the notions of
a bialgebra and a Hopf algebra are self-dual.

We will also use the classical diagrams with arrows. In them, a reference to a diagram
n, which is a constituting diagram of a larger one, we denote by 〈n〉. When writing
formulas, we will adopt the following notation: unit and multiplication of an algebra we
denote by η and ∇, counit and comultiplication of a coalgebra by ε and ∆, the antipode
of a Hopf algebra by S, the module structure morphism by µ and the left and right
comodule structure morphisms by λ and ρ, respectively. The difference between the
latter two morphisms and the left and right unity constraints of a monoidal category will
be clear from the context.

In the following sections we will record claims mostly without proving them. The
proofs are not difficult and can be found in [63]. We omit them in order to save space,
because they sometimes require long diagram computations.

1.2 Structure transmission lemmas

We first introduce the notion of flatness and faithfull flatness due to Schauenburg, [122].

1.2.1 Let C be a braided monoidal category. An object M ∈ C is called flat if the functor
M ⊗ − : C −→ C preserves equalizers in C. If in addition it reflects isomorphisms, then
M is called faithfully flat. If C is not braided, we may speak about obvious notions of
left/right (faithful) flatness. By naturality of the braiding the functor M ⊗ − : C −→ C
preserves equalizers (resp. reflects isomorphisms) if and only if − ⊗M : C −→ C does it.
The following statements for objects M,N ∈ C are easy to prove:
(i) If M and N are flat, then so is M ⊗N .
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(ii) If M and N are faithfully flat, then so is M ⊗N .
(iii) If the functor M ⊗− reflects equalizers in C and M ⊗N is faithfully flat, then N is
faithfully flat.

1.2.2 Let E A-
e -f

B-
g be an equalizer in a monoidal category C.

(i) If f and g are algebra morphisms, then E is an algebra and e is an algebra morphism.
(ii) If f and g are left/right H-comodule morphisms and H is flat, then E is a left/right
H-comodule and e is a left/right H-comodule morphism.
(iii) If f and g are left/right H-module morphisms, then E is a left/right H-module and
e is a left/right H-module morphism.

If the respective conditions on f and g are satisfied, we will refer to (E, e) as an algebra
(resp. left/right H-(co)module-) pair.

Assume that A and B are H-comodule algebras, where H is flat, and let (E, e) be the
equalizer of H-comodule algebra morphisms f, g : A −→ B. Then E is an H-comodule
algebra and e is a morphism of H-comodule algebras. In this case we say that (E, e) is
an H-comodule algebra pair.

1.2.3 Let H be a coalgebra and A an algebra in C.
(i) If C has equalizers and H is flat, then CH has equalizers, too - an equalizer in C of
two morphisms in CH is an equalizer in CH . Moreover, the forgetful functor U : CH −→ C
preserves equalizers. The same statement holds when we substitute CH by HC.
(ii) If C has equalizers, then AC has equalizers, too - an equalizer in C of two morphisms in

AC is an equalizer in AC. Moreover, the forgetful functor U : AC −→ C preserves equalizers.
The same statement holds when AC is substituted by CA.

1.2.4 Consider a commutative diagram

E1 A1
-e1

E2 A2
-e2

?
f

?
f

and assume that e2 is a monomorphism.
(i) If e1, e2 and f are right (respectively left) H-comodule morphisms and e2⊗H (respec-
tively H ⊗ e2) is a monomorphism, then f is an H-comodule morphism.
(ii) If e1, e2 and f are (right or left) H-module morphisms, then f is an H-module mor-
phism.
(iii) If e1, e2 and f are algebra morphisms, then f is an algebra morphism.

As a consequence we have:
Let f : A −→ R and g : B −→ R be algebra (respectively H-comodule) morphisms and
assume that g (and g ⊗ H) is a monomorphism. Let h : A −→ B be such that gh = f .
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Then h is an algebra (resp. H-comodule) morphism.

Dually to 1.2.3, ii) we have:

1.2.5 Let N Q-
q-f

M -
g

be a coequalizer in a monoidal category C.
(i) If f and g are morphisms in AC and C is left closed, then (Q, q) is a coequalizer in AC.
The forgetful functor U : AC −→ C preserves coequalizers.
(ii) If f and g are morphisms in CA and C is right closed, then (Q, q) is a coequalizer in
CA. The forgetful functor U ′ : CA −→ C preserves coequalizers.

1.3 Inner hom-objects

A braided monoidal category C is called closed if the functor −⊗M : C → C has a right
adjoint for all M ∈ C. The right adjoint, called the inner hom functor, will be denoted
by [M,−] : C → C. For N ∈ C, the object [M,N ] we call inner hom-object. The counit
of the adjunction evaluated at N is denoted by evM ,N : [M ,N ]⊗M → N , for M,N ∈ C.
It satisfies the following universal property: for any morphism f : T ⊗M → N there is a
unique morphism g : T → [M,N ] such that f = evM ,N (g ⊗M ). The functor [M,−] acts
on morphisms as follows: Let f : N −→ N ′ be a morphism in C. Then [M, f ] : [M,N ]
−→ [M,N ′] is the unique morphism such that the following diagram commutes:

[M,N ]⊗M -ev

?
[M, f ]⊗M

N

?
f

[M,N ′]⊗M N ′.-
ev

(1.3.1)

Let us now describe the natural isomorphism C(N ⊗M,Q) ∼= C(N, [M,Q]) coming from
this adjunction. If ϕ ∈ C(N ⊗M,Q) corresponds to ψ ∈ C(N, [M,Q]) via this isomor-
phism, in braided diagrams they are related like this:

N M

ψ

hev
Q

=

N⊗M

ϕ

Q.

(1.3.2)

The unit of the adjunction, α : N −→ [M,N ⊗M ], is the image of idN⊗M , satisfying

N M

α

hev
N⊗M

=

N⊗M

N⊗M.

(1.3.3)

Since C is braided, the functor M ⊗− : C → C has the same right adjoint [M,−] : C → C
for all M ∈ C. For M,N ∈ C the counit of this adjunction evaluated at N is denoted by
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evM,N : M ⊗ [M,N ]→ N . It satisfies the following universal property: for any morphism
f : M ⊗T → N there is a unique morphism g : T → [M,N ] such that f = evM,N(M ⊗g).
The functor [M,−] acts on morphisms as follows: Let f : N −→ N ′ be a morphism in C.
Then [M, f ] : [M,N ] −→ [M,N ′] is the unique morphism such that the following diagram
commutes:

M ⊗ [M,N ] -ev

?
M ⊗ [M, f ]

N

?
f

M ⊗ [M,N ′] N ′-
ev

(1.3.4)

Similarly as above, if ϕ ∈ C(M⊗N,Q) corresponds to ψ ∈ C(N, [M,Q]) via the adjunction
isomorphism C(M ⊗N,Q) ∼= C(N, [M,Q]), in braided diagrams they are related like this:

M N

ψ

hev
Q

=

M⊗N

ϕ

Q.

The unit α : N −→ [M,M ⊗N ] in this case obeys

M N

α

hev
M⊗N

=

M⊗N

M⊗N.

(1.3.5)

The relation between the counits of the two adjunctions is evM,N = evM ,NΦM ,[M ,N ], while
the units are related by

α = [M,Φ−1
N,M ]α. (1.3.6)

1.3.1 In a left closed monoidal category on inner hom-objects there is an associative pre-
multiplication ϕM,Y,Z : [Y, Z]⊗ [M,Y ] −→ [M,Z] and a unital morphism ηY : I −→ [Y, Y ]
such that

ϕM,Y,Y (ηY ⊗ [M,Y ]) = λ[M,Y ] and ϕM,M,Y ([M,Y ]⊗ ηM) = ρ[M,Y ]

where λ and ρ are unity constraints. The morphisms ϕM,Y,Z and ηY are given via the
universal properties of [M,Z] and [Y, Y ], respectively, by the diagrams:

-
[Y, Z]⊗ ev

[Y, Z]⊗ Y

?

ev

[Y, Z]⊗ [M,Y ]⊗M

?

ϕ⊗M

[M,Z]⊗M Z-ev
and [Y, Y ]⊗ Y Y.-

ev

H
HHHH

HHj

λ

I ⊗ Y

?
η ⊗ Y

As a consequence we have that for each M ∈ C, the object [M,M ] is equipped with
an algebra structure via ϕM,M,M and ηM .
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1.3.2 For an algebra A ∈ C and M ∈ AC we can consider the functor M ⊗− : C −→ AC.
For each X ∈ C the object M ⊗X is a left A-module in the natural way. We recall from
the discussion preceding Theorem 3.2 in [106] that if C is closed and has equalizers, the
right adjoint functor of M ⊗ − : C −→ AC is given by A[M,−]. For N ∈ AC, the object

A[M,X] is the following equalizer:

A[M,N ] [M,N ]-ι -u [A⊗M,N ],-
v

where u and v are given via the commutative diagrams

A⊗M ⊗ [M,N ] -
µM ⊗ [M,N ]

?
A⊗M ⊗ u

M ⊗ [M,N ]

?
ev

A⊗M ⊗ [A⊗M,N ] N-
ev

(1.3.7)

and

A⊗M ⊗ [M,N ] -A⊗ ev

?
A⊗M ⊗ v

A⊗N

?

µN

A⊗M ⊗ [A⊗M,N ] N.-
ev

(1.3.8)

If f : N −→ N ′ is a morphism in AC, then A[M, f ] : A[M,N ] −→ A[M,N ′] is induced as
a morphism on an equalizer via the diagram

A[M,N ] [M,N ]-ιN

A[M,N ′] [M,N ′]-ιN ′
?

A[M, f ]
?
[M, f ]

-
u′N

[A⊗M,N ′].-
v′N

That [M, f ] induces A[M, f ] is provided by A-linearity of f .

The unit α : M −→ [M,M ⊗A] and the counit ev : A⊗ [A,M ] −→M of the adjunction
(M ⊗ −, [M,−]) between the categories C and C, on the one hand, and the unit a : M
−→ A[M,M⊗A] and the counit ev : A⊗A[A,M ] −→M of the adjunction (M⊗−, A[M,−])
between the categories C and AC, on the other hand, are related by α = ιa and ev =
ev(A⊗ ι), respectively.

1.4 Tensor product of modules over an algebra

1.4.1 Let C be a monoidal category with coequalizers. A tensor product over an algebra
A in C of a right A-module M and a left A-module N is the coequalizer

M ⊗A N.-
ΠM,N-µM ⊗N

M ⊗ A⊗N M ⊗N-
M ⊗ µN

Consider a right A-linear morphism f : M −→ M ′ and a left A-linear morphism g : N
−→ N ′. Then f⊗g : M⊗N −→M ′⊗N ′ induces a morphism f⊗Ag : M⊗AN −→M ′⊗AN ′.
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1.4.2 Let C be a closed monoidal category with coequalizers and let A,B, S ∈ C be
algebras. For M ∈ ACB and N ∈ BCS the object M ⊗ N admits a structure of a left A-
module and a right S-module inherited from M and N respectively. Denote the module
structure morphisms by νM⊗N and µM⊗N respectively. The object M ⊗B N is an A-S-
bimodule with the structure morphisms

ν : A⊗ (M ⊗B N) −→M ⊗B N and µ : (M ⊗B N)⊗ S −→M ⊗B N

defined via the universal properties of the coequalizers (A ⊗ (M ⊗B N), A ⊗ ΠM,N) and
((M ⊗B N)⊗ S,ΠM,N ⊗ S) respectively, by

ν(A⊗ ΠM,N) = ΠM,NνM⊗N and µ(ΠM,N ⊗ S) = ΠM,NµM⊗N

where Π’s denote the respective coequalizer morphisms. Furthermore, the coequalizer
morphism ΠM,N is an A-S-bimodule morphism.

1.4.3 Let M be a left A-module in a monoidal category C. There is a natural isomor-
phism A ⊗A M ∼= M . If additionally M ∈ ACB and C is left closed, then this is an
isomorphism of A-B-bimodules. Analogously, if C is right closed, it is M ⊗B B ∼= M as
A-B-bimodules.

1.4.4 Let M ∈ ACA and N ∈ C. View M ⊗A (A⊗N) and M ⊗N as A-bimodules with
the structures induced by that of M . Then M ⊗A (A⊗N) ∼= M ⊗N in ACA by

γ : M ⊗A (A⊗N) −→M ⊗N

induced on the coequalizer by the commuting diagram:

-
µM ⊗ (A⊗N)

M ⊗ A⊗ (A⊗N) -
M ⊗ [(∇A ⊗N)α−1

A,A,N ]

?

α−1
M,A,N

M ⊗ (A⊗N) M ⊗A (A⊗N)-
ΠM,A⊗N

M ⊗N.
?

γ

(M ⊗ A)⊗N -
µM ⊗N

Subsequently, we have an isomorphism in ACA

ω := γ−1(δ ⊗N) : (M ⊗A A)⊗N −→M ⊗A (A⊗N),

where δ is the right version of the morphism from 1.4.3.

From [105, Theorem 2.7.3] we have:

Lemma 1.4.5 Left adjoint functors preserve coequalizers and right adjoint functors pre-
serve equalizers.

In particular, in a closed category the tensor functor will preserve coequalizers. This
fact we will use repeatedly later on.
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Definition 1.4.6 Let A and B be algebras in a monoidal category C. An object M ∈
BCA is called A-coflat if for all algebras R, S ∈ C and objects L ∈ ACR the coequalizer
M ⊗A L ∈ BCR exists and if the natural morphism in BCS, induced by the associativity of
the tensor product, M ⊗A (L⊗P ) −→ (M ⊗AL)⊗P is an isomorphism, for every P ∈ CS.

Symmetrically we define that M is B-coflat. If it is both B- and A-coflat, we will say
it is bicoflat.

For the associativity of the tensor product over algebras we find:

Lemma 1.4.7 For every M ∈ CA, N ∈ ACB and L ∈ BC the coequalizers M ⊗A (N ⊗B L)
and (M ⊗A N)⊗B L are isomorphic if one of the following three conditions is satisfied:

(i) M is A-coflat and C is left closed;

(ii) M is A-coflat and L is B-coflat;

(iii) C is closed.

1.4.8 If C is a category with coequalizers and it is both left and right closed (i.e. closed),
then any B-A-bimodule M is B- and A-coflat. Indeed, for any N ∈ AC, X ∈ RC and
Y ∈ CT it is X ⊗ (M ⊗A N) ∼= (X ⊗M)⊗A N and (M ⊗A N)⊗ Y ∼= M ⊗A (N ⊗ Y ) in
C, because X ⊗− and −⊗ Y as left adjoint functors preserve coequalizers. For N ∈ ACS
these isomorphisms of coequalizers will be in RCS and in BCT , respectively, because of
1.2.5. Recall that a braided category is closed if and only if it closed from at least one
side.

1.5 Dual objects and finiteness

1.5.1 Let P be an object in C. An object P ∗ ∈ C together with a morphism eP : P ∗⊗P
−→ I is called a dual object for P if there exists a morphism dP : I −→ P ⊗ P ∗ in C such
that (P ⊗ eP )(dP ⊗ P ) = idP and (eP ⊗ P ∗)(P ∗ ⊗ dP ) = idP ∗ . The morphism eP and dP
are called evaluation and dual basis respectively. In braided diagrams the evaluation eP
and dual basis dP are denoted by:

eP = P ∗ P
	 and dP = ��
P P ∗.

Then the conditions in the definition take the form:

P��
	
P

= idP and

P ∗ ��
	
P ∗

= idP∗ .

A dual object is unique up to isomorphism. For a dual object (P ∗, eP ) for P the functor
− ⊗ P ∗ : C −→ C is a right adjoint of − ⊗ P : C −→ C. Hence the morphism eP : P ∗ ⊗ P
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−→ I satisfies the following universal property: for any object X ∈ C and any morphism
f : X ⊗ P → I there is a unique morphism g : X → P ∗ such that f = eP (g ⊗ P ). If P
has a dual (P ∗, eP ), then there exist inner hom-objects defined by [P,X] := X ⊗ P ∗ for
X ∈ C. From the above adjunction then follows that the functors [P,−] and −⊗ P ∗ are
isomorphic.

Definition 1.5.2 An object P ∈ C is called finite, if [P, I] and [P, P ] exist and the mor-
phism db : P ⊗ [P , I ] −→ [P ,P ], called the dual basis morphism as well, defined via the
universal property of [P, P ] by:

H
HHH

HHHj

P ⊗ ev

?
db ⊗ P

P ⊗ [P, I]⊗ P

[P, P ]⊗ P P ∼= P ⊗ I-
evP ,P

(1.5.9)

is an isomorphism.

In braided diagrams we denote db : P ⊗ [P , I ] −→ [P ,P ] using the universal property
of ([P, P ], evP ,P : [P ,P ]⊗ P −→ P) by

P⊗[P,I] P

db

hev
P

=

P [P,I] P
	
P .

1.5.3 One may easily prove that if P is finite, then ([P, I], eP = ev) is its dual. We
define the evaluation eP to be the categorical evaluation ev and the dual basis morphism
associated to the dual as:

��
P P ∗

:=
r

db−1

P P ∗.

Then from the definition of the dual object we obtain the identities

Pr
db−1
	
P

=
P

P

(1.5.10)

P ∗ r
db−1
	
P ∗

=

P ∗

P ∗.

(1.5.11)

If P is a finite object, then so is P ∗ and there is a natural isomorphism P ∼= P ∗∗.

Lemma 1.5.4 In a closed braided monoidal category C a finite object P is flat.
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Proof. Since P is finite, by 1.5.3, P ∗ := [P, I] is a dual for P and we have P ∼= P ∗∗.
Hence P ∗∗ is a dual of P ∗ and by 1.5.1 we get that −⊗ P ∗∗ ∼= −⊗ P is a right adjoint
functor to −⊗P ∗. As such −⊗P preserves equalizers, Lemma 1.4.5. Since C is braided,
the same holds for P ⊗−. Hence P is flat.

1.5.5 Let M and N be finite objects in C. There is a natural isomorphism

[M ⊗N, I] ∼= [N, I]⊗ [M, I] = N∗ ⊗M∗

induced via the universal property of ([M ⊗N, I], ev : [M ⊗ N , I ]⊗M ⊗ N −→ I ) by

M∗⊗N∗ M⊗N
δM,H

hev =

M∗N∗M N


	
	 nat.
=

M∗N∗M N


	
	. (1.5.12)

1.5.6 Let C be a braided monoidal category.
(i) If H is a coalgebra in C, then [H, I] is an algebra.
(ii) If H is a finite algebra in C, then H∗ = [H, I] is a coalgebra.
(iii) If H is a finite Hopf algebra in C, then so is H∗ = [H, I].

We give here the necessary structure morphisms, for more details see [131, 2.5, 2.14
and 2.16]. Multiplication and unit for H∗ are given via the universal property of (H∗, ev :
[H , I ]⊗ H −→ I ) by

H∗ H∗ H� 


	 =

H∗H∗ H��

	
	 (1.5.13)

Hr
	 =
H

r
.

(1.5.14)

The finiteness condition in (ii), and hence also in (iii), is needed in order to be able to
consider H∗ ⊗H∗ ∼= (H ⊗H)∗. Then one may apply 1.5.5 and thus define a codiagonal
on H∗ using the universal property of ([H⊗H, I], ev : [H ⊗H , I ]⊗H ⊗H −→ I ) applying
the isomorphism induced by (1.5.12), The comultiplication and counit are given by the
following diagrams:

H∗ H H��

	
	=

H∗ H H� 


	 (1.5.15)

H∗

r =
H∗ r
	. (1.5.16)
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Via the universal property of (H∗, ev : [H , I ] ⊗ H −→ I ) we may define the antipode S∗

for H∗ as,

H∗ H

S∗h
	=
H∗ H

Sh
	. (1.5.17)

The next statement is easily verified.

1.5.7 Let C be a braided monoidal category. A finite algebra A in C is commutative if
and only if A∗ is a cocommutative coalgebra.

The proof of the following proposition is not difficult. The first statement is proved
in [131, Proposition 2.7].

1.5.8 Let H be a finite coalgebra in a braided monoidal category C and M ∈ C. If
M ∈ CH , then M ∈ H∗C with the structure morphism given in (1.5.18). If N ∈ H∗C, then
N ∈ CH with the structure morphism given in (1.5.19). The categories CH and H∗C are
monoidally isomorphic via these assignments.

H∗ M

PP

M

=

H∗M

PP


	
M

(1.5.18)
N

PP

N H

=

N��
PP

N H.

(1.5.19)

1.6 Faithful projectiveness and Morita Theorems

One can consider faithfully projective objects in AC or in CB for algebras A,B ∈ C. In
this sense we obtain left A-faithfully projective and right B-faithfully projective objects.
In [108] are handled what we call left A-faithfully projective objects. For the sake of com-
pleteness, we give here the definitions both of left A- and of right B-faithfully projective
objects. Subsequently we study some of their properties. In this section C will denote a
monoidal category.

Definition 1.6.1 An object P ∈ AC is called faithfully projective, if A[P,A] and A[P, P ]
exist, P is A[P, P ]-coflat, A[P,A] is A-coflat, the morphism db : A[P,A]⊗A P −→ A[P, P ]
defined via the universal property of (A[P, P ], evP,P : P ⊗ A[P, P ] −→ P ) by:

H
HHH

HHHj

ev ⊗A P

?
P ⊗ db

P ⊗ A[P,A]⊗A P

P ⊗ A[P, P ] P ∼= A⊗A P-

evP,P
(1.6.20)
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and the canonical morphism êv : P ⊗
A[P,P ] A[P,A] −→ A induced by ev : P ⊗ A[P,A] −→ A

are isomorphisms.

Definition 1.6.2 An object P ∈ CB is called faithfully projective, if [P,B]B and [P, P ]B
exist, P is B-coflat, [P,B]B is [P, P ]B-coflat, the morphism db : P ⊗B [P ,B ]B −→ [P ,P ]B
defined via the universal property of ([P, P ]B, evP ,P : [P ,P ]B ⊗ P −→ P) by:

HHH
HHHHj

P ⊗B ev

?
db ⊗ P

P ⊗B [P,B]B ⊗ P

[P, P ]B ⊗ P P ∼= P ⊗B B-
evP ,P

(1.6.21)

and the canonical morphism ẽv : [P,B]B ⊗[P,P ]B P −→ B induced by the morphism ev :
[P ,B ]B ⊗ P −→ B are isomorphisms.

Morita Theorems for monoidal categories were developed by Pareigis in [108]. We
quote below [108, Theorems 5.1 and 5.3], recalling first the definition of a Morita context
and the notion of a C-functor.

Definition 1.6.3 Let C be a left closed monoidal category. Let A,B ∈ C be algebras, P an
A-B-bimodule that is B-coflat and Q an B-A-bimodule that is A-coflat. If the morphisms
f : P ⊗B Q −→ A in ACA and g : Q⊗A P −→ B in BCB are given so that the diagrams

-f ⊗A P
A⊗A P

P
?

Aλ

P ⊗B (Q⊗A P ) ∼= (P ⊗B Q)⊗A P

P ⊗B B
?

P ⊗B g

-
ρB

(1.6.22)

and

-g ⊗B Q B ⊗B Q

Q
?

Bλ

Q⊗A (P ⊗B Q) ∼= (Q⊗A P )⊗B Q

Q⊗A A
?

Q⊗A f

-
ρA

(1.6.23)

commute, we call the sextuple (A,B, P,Q, f, g) a Morita context in C.
If moreover there exist morphisms ζ ∈ C(I, P ⊗B Q) and ξ ∈ C(I,Q⊗A P ) so that

f ◦ ζ = idC(I,A) = ηA and g ◦ ξ = idC(I,B) = ηB,

we say that the context is strict.

Definition 1.6.4 Let A and B be algebras in C. A functor F : AC −→ BC is called a
C-functor if it fulfills F(M ⊗X) ∼= F(M)⊗X for all M ∈ AC, X ∈ C.
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Observe that if Q ∈ BCA is A-coflat, then the functor Q⊗A− : AC −→ BC is a C-functor.

Theorem 1.6.5 Let F : AC −→ BC and G : BC −→ AC be inverse C-equivalences. Then
there are objects P ∈ ACB and Q ∈ BCA such that:

(i) There are natural isomorphisms

F(M) ∼= Q⊗AM ∼= A[P,M ] in BC for all M ∈ AC,

G(N) ∼= P ⊗B N ∼= B[Q,N ] in AC for all N ∈ BC,

and P is B-coflat and Q is A-coflat;

(ii) There are isomorphisms of A- respectively B-bimodules

A ∼= P ⊗B Q and B ∼= Q⊗A P

so that the diagrams (1.6.22) and (1.6.23) commute;

(iii) There are isomorphisms

B[Q,B] ∼= P in ACB,

A[P,A] ∼= Q in BCA;

(iv) There are isomorphisms

B[Q,Q] ∼= A in ACA and of algebras,

A[P, P ] ∼= B in BCB and of algebras.

Theorem 1.6.6 Let (A,B, P,Q, f, g) be a strict Morita context in a left closed monoidal
category C. Then f and g are isomorphisms and P ⊗B − : BC −→ AC and Q ⊗A − : AC
−→ BC are inverse C-equivalences. In particular, P ∈ AC and Q ∈ BC are (left) faithfully
projective.

Remark 1.6.7 We require the condition on left closedness of the category in the above
theorem only in order to assure the associativity of the tensor product present in the
Morita context.

Alternatively, instead of closedness of the category one may require that the objects
P and Q be bicoflat (see Lemma 1.4.7). Using this condition [140, Theorem 2.1] unifies
in a way left and right versions of the above two Morita Theorems of Pareigis. We quote
it here.

Theorem 1.6.8 Let (A,B, P,Q, f, g) be a Morita context in a monoidal category C. If P
and Q are bicoflat and f and g are rationally surjective (equivalently isomorphisms) then

(i) A ∼= [P, P ]B ∼= B[Q,Q] and B ∼= [Q,Q]A ∼= A[P, P ] as algebras in C;
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(ii) P ∼= [Q,A]A ∼= B[Q,B] and Q ∼= [P,B]B ∼= A[P,A] as bimodules in C;

(iii) AP, PB, BQ and QA are faithfully projective.

We will make advantage of Morita theorems to deduce several properties of a faithfully
projective object. In the case when A = B = I, an object faithfully projective in IC = C
we call left faithfully projective and an object faithfully projective in CI = C we call right
faithfully projective. For the purposes of our work we will concentrate on the right sided
objects and we will omit the label “right”. Exceptionally, in the coming proposition we
will use both terms in order to cover the two known derived Morita contexts. The proof
of the proposition is easy.

Proposition 1.6.9 (i) If P is a right faithfully projective object in a monoidal category
C, then ([P, P ], I, P, [P, I], db, ẽv) is a strict Morita context.

(ii) If P is a left faithfully projective object in a monoidal category C, then (I, [P, P ], P,
[P, I], êv , db) is a strict Morita context.

We can now prove the following.

Proposition 1.6.10 If P is a faithfully projective object in a monoidal category C, then
P ⊗− : C −→ [P,P ]C is a C-equivalence.

Proof. If P is faithfully projective, by the right version of Proposition 1.6.9 we have a strict
Morita context ([P, P ], I, P, [P, I], db, ẽv). Now the claim follows from Theorem 1.6.6 and
Remark 1.6.7.

1.7 Faithful projectiveness and faithful flatness

In this section we relate faithfully flat, finite and faithfully projective objects.

Lemma 1.7.1 Let C be a braided monoidal category with equalizers. A faithfully projec-
tive object is faithfully flat.

Proof. Let P be faithfully projective in C and denote P ∗ = [P, I]. By Proposition 1.6.10
(P ⊗−, P ∗⊗[P,P ]−) defines then a C-equivalence between the categories C and [P,P ]C. To
prove that P is flat, consider an equalizer:

E M-
e -f

N-
g

in C. By the equivalence P ⊗−:

P ⊗ E P ⊗M-P ⊗ e -P ⊗ f
P ⊗N-

P ⊗ g
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is an equalizer in [P,P ]C. By 1.2.3, ii), P ⊗ E is the equalizer in C of P ⊗ f and P ⊗ g.
To see that P⊗− reflects isomorphisms, let P⊗f be an isomorphism in C. Considering

P ⊗ f as a morphism in [P,P ]C, it is then an isomorphism in [P,P ]C. By the inverse
equivalence P ∗ ⊗[P,P ] (P ⊗ f) ∼= (P ∗ ⊗[P,P ] P )⊗ f ∼= f will then be an isomorphism in C.

Proposition 1.7.2 If P is finite, P ⊗ − preserves coequalizers in a braided monoidal
category C and reflects isomorphisms, then P is faithfully projective.

Proof. In order to prove that P is faithfully projective we need to prove that ẽv : P ∗⊗[P,P ]P
−→ I is an isomorphism. Since P ⊗ − preserves coequalizers we have an isomorphism
β : P ⊗ (P ∗ ⊗[P,P ] P ) −→ (P ⊗ P ∗) ⊗[P,P ] P induced by the associativity of the tensor
product. If we show that the composition

P ⊗ (P ∗ ⊗[P,P ] P )
β∼= (P ⊗ P ∗)⊗[P,P ] P

db⊗[P,P]P∼= [P, P ]⊗[P,P ] P
δ∼= P

equals P⊗ẽv , since P⊗− reflects isomorphisms we would obtain that ẽv is an isomorphism
and we would be done.

That P ⊗ ẽv = δ(db ⊗[P ,P ] P)β we will conclude from the following diagram:

-
P ⊗ ΠP ∗,P

P ⊗ I ∼= P-
P ⊗ ẽv

-P ⊗ ev
P ⊗ (P ∗ ⊗ P )

(P ⊗ P ∗)⊗ P
?

∼=

?

β

P ⊗ (P ∗ ⊗[P,P ] P )

(P ⊗ P ∗)⊗[P,P ] P-
ΠP⊗P ∗,P

[P, P ]⊗ P
?

db⊗ P

[P, P ]⊗[P,P ] P.-
Π[P,P ],P ?

db ⊗[P ,P ] P

δ

�
�
�
�
�
�
�
�
�
�
�
���

2

3

1

Our question is formulated in the diagram 〈1〉. It suffices to prove that it commutes when
composed to P ⊗ ΠP ∗,P , as the latter is an epimorphism - recall that P ⊗ − preserves
coequalizers. In the top row of the diagram we have P ⊗ ev = (P ⊗ ẽv) ◦ (P ⊗ΠP∗,P) by
the definition of ẽv . Diagrams 〈2〉 and 〈3〉 commute by the definition of β and db⊗[P ,P ] P
respectively. Hence by a diagram chasing argument our claim will follow when we prove
that the outer diagram commutes.

Note that δ : [P, P ] ⊗[P,P ] P −→ P is induced by evP ,P : [P ,P ] ⊗ P −→ P so that
evP ,P = δΠ[P ,P ],P . On the other hand, by Diagram (1.5.9), we have evP ,P(db⊗P) = P⊗ev ,
omitting the associativity constraint. Combining these two we get δΠ[P,P ],P (db ⊗ P) =
P ⊗ ev as it was to prove.
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Remark 1.7.3 In a closed category P ⊗ − is a left adjoint functor to [P,−], hence it
preserves coequalizers (Lemma 1.4.5). Thus the second condition in the above proposition
can be replaced by closedness of C. Then the following corollary is obvious.

Corollary 1.7.4 Let C be a closed monoidal category. If P is finite and (left) faithfully
flat, then P is faithfully projective.





Chapter 2

The Brauer group of a braided
monoidal category

A big step forward in the construction of Brauer groups was done by Pareigis in 1976 when
he introduced the Brauer group of a symmetric monoidal category, [109]. It is noteworthy
to mention that in the introduction of his paper Pareigis observed that the Brauer group
constructed by Long in [86] did not fit in this general setting because the category of
dimodules, needed to construct the Brauer-Long group, is braided monoidal but not
symmetric. A decade later the concept of a braided monoidal category was proposed
by Joyal and Street. It took around another decade until Pareigis’ construction was
generalized to a braided monoidal category by Van Oystaeyen and Zhang in [140]. This is
the most general Brauer group – practically all known Brauer groups are Brauer groups
of a particular braided monoidal category. In this chapter we recall this construction, but
we will use braided diagrams instead of applying the Yoneda lemma, as it was done in
the two cited articles. For this purpose we will assume that the category is closed. Thus
we may freely use inner hom-objects and morphisms between them without repeating the
condition “if [P,X] exists”, as it is done in the above references. We will also give an
alternative description of one of the functors associated to an Azumaya algebra. In the
second part, we will introduce the Brauer group of module algebras.

In this chapter, C will denote a closed braided monoidal category with braiding Φ.

2.1 Azumaya algebras

Let A be an algebra in C. The opposite algebra of A is A = A as an object, with the same
unit as in A and multiplication given by

A A
	
A

=

A A


	
A.

Denote by αA : IdC −→ [A,−⊗A] the unit of the adjunction (−⊗A, [A,−]). We define

21
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morphism F : A⊗ A −→ [A,A] as the composition

A⊗ A [A, (A⊗ A)⊗ A]-
αA(A⊗ A)

[A,A]-
[A,∇A ◦ (∇A ⊗ A) ◦ (A⊗ Φ)]

and can describe it, putting F = [A, f ] ◦ αA(A⊗ A) with f := ∇A ◦ (∇A ⊗A) ◦ (A⊗ Φ),
as follows:

A⊗A A

F

hev
A

=

A⊗A A

α

[A,f ]

hev
A

(1.3.1)
=

A⊗A A

α

hev
f

A

(1.3.3)
=

(A⊗A)⊗A

f

A

=

A A A

� 
� 

A.

(2.1.1)

Let αA : IdC −→ [A,A⊗−] denote the unit of the adjunction (A⊗−, [A,−]). Recall from
(1.3.6) how it is related to the unit αA : IdC −→ [A,−⊗A]. Let g = ∇A(A⊗∇A)(Φ⊗A).
We define the morphism G : A⊗ A −→ [A,A] as the composition

A⊗ A [A,A⊗ (A⊗ A)]-
αA(A⊗ A)

[A,A].-
[A,∇A ◦ (A⊗∇A) ◦ (Φ⊗ A)]

It can be described as follows:

A A⊗A
G

hev
A

=

A A⊗A
α

[A,g]

hev
A

(1.3.4)
=

A A⊗A
α

hev
g

A

(1.3.5)
=

A⊗(A⊗A)

g

A

=

A A A

� 
� 

A.

(2.1.2)

Definition 2.1.1 A faithfully projective algebra A in C is called an Azumaya algebra
if the morphisms F and G are isomorphisms. We call F and G the Azumaya defining
morphisms.

In a symmetric monoidal category the Azumaya defining morphisms F and G coincide.
This is why in the construction in [109] appears only one Azumaya defining morphism.

We recall a characterization of Azumaya algebra which appears in [140, Theorem 3.1]
and in [109, Proposition 1] for a symmetric monoidal category. First we observe that for
two algebras A,B ∈ C the category of A-B-bimodules is isomorphic to the category of left
A⊗B-modules. An A-B-bimodule M is equipped with a structure of a left A⊗B-module
by

A⊗B M

PP

M

=

A B M

PP
��

M.

(2.1.3)
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A left A⊗B-module M we give a structure of a left A- and a right B-module by

A M

PP

M

=

A Mr
A⊗B
PP

M

and
M B

��

M

=

M B

r
A⊗B
PP

M.

Analogously, the category of A-B-bimodules is also isomorphic to the category of right
A⊗B-modules.

An algebra A ∈ C is an A-A-bimodule through the multiplication and then it becomes
a left A⊗ A-bimodule and a right A⊗ A-module. For any X ∈ C the object A⊗X has
a structure of an A-bimodule induced by that of A, with

A X A


	
A X.

(2.1.4)

Thus we can define the functor A ⊗ − : C → A⊗AC. Similarly, we can define the functor
−⊗A : C −→ CA⊗A. Both are C-funtors. These two functors allow to characterize Azumaya
algebras.

Theorem 2.1.2 An algebra A ∈ C is an Azumaya algebra if and only if the functors
A⊗− : C −→ A⊗AC and −⊗ A : C −→ CA⊗A establish equivalences of categories.

The inverse functor of A ⊗ − is its right adjoint A⊗A[A,−] : A⊗AC −→ C, see 1.3.2.

The algebra A⊗ A is called the enveloping algebra of A and it is denoted by Ae.

We now present [140, Theorem 3.3] and define the Brauer group of a closed braided
monoidal category as it is done in the cited article.

Proposition 2.1.3 We have:

1. If P ∈ C is faithfully projective, then [P, P ] is an Azumaya algebra in C;

2. If A is an Azumaya algebra in C, then so is A;

3. If A and B are Azumaya algebras in C, then so is A⊗B.

Let A and B be two Azumaya algebras in C. They are called Brauer equivalent,
denoted by A ∼ B, if there exist faithfully projective objects P and Q in C so that

A⊗ [P, P ] ∼= B ⊗ [Q,Q]

as algebras. This defines an equivalence relation in the set B(C) of isomorphism classes
of Azumaya algebras.
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Definition 2.1.4 The quotient set Br(C) = B(C)/ ∼ is a group with product induced by
⊗, unit the class of I, and the inverse of a class of an Azumaya algebra A is given by the
class of A. This group is called the Brauer group of C.

We present here several examples of Brauer groups of various braided monoidal cate-
gories.

Example 2.1.5 Let C be the symmetric monoidal category KM of vectors spaces (mod-
ules) over a field (commutative ring) K. The tensor product is the usual one, ⊗K , and
the braiding is the flip map. Then Br(C) = Br(K).

Example 2.1.6 Let C be the braided monoidal category GrZ2 of Z2-graded modules over
a commutative ring R. Consider R with trivial gradation. The tensor product is over R
and it has the following gradation:

(M ⊗N)i = ⊕1
j=0Mj ⊗Mi−j, i = 0, 1, M,N ∈ GrZ2 .

The braiding Φ : M ⊗ N −→ N ⊗ M is given by Φ(mi ⊗ nj) = (−1)ijnj ⊗ mj for
homogeneous elements mi ∈ M and nj ∈ N . Then Br(C) = BW(R), the Brauer-Wall
group of R constructed in [124]. If R is a field, this is the original Brauer-Wall group from
[144].

Example 2.1.7 Let G be a finite abelian group, R a commutative ring with trivial
gradation and χ : G×G −→ R∗ a bicharacter, where R∗ is the group of units of the ring
R. Let C be the braided monoidal category GrG of G-graded R-modules. The tensor
product is over R and it has the following gradation:

(M ⊗N)g = ⊕h∈GMh ⊗Mh−1g, g ∈ G, M,N ∈ GrG.

The braiding Φ : M ⊗N −→ N ⊗M in GrG is given by

Φ(mg ⊗ nh) = χ(h, g)nh ⊗mg

where mg ∈ M and nh ∈ N are homogeneous elements of degrees g and h, respectively.
Then Br(GrG) is the Brauer group Br(R;G,χ) defined in [45]. When R is a field, this is
the Brauer group due to Knus [78].

Example 2.1.8 Let H be a commutative and cocommutative Hopf algebra over a com-
mutative ring R. An H-dimodule is a left H-module and a right H-comodule M satisfying
the compatibility condition

ρ(h ·m) = (h ·m[0])⊗m[1]

where ρ denotes the right H-comodule structure morphism for M . The category H-Dimod
of H-dimodules and left H-linear right H-colinear morphisms is a braided monoidal cat-
egory with the tensor product over R. The left H-module and the right H-comodule
structures on the tensor product M ⊗N for M,N ∈ H-Dimod are given respectively by

h · (m⊗ n) = (h(1) ·m)⊗ (h(2) · n) and ρM⊗N(m⊗ n) = m[0]n[0] ⊗m[1]n[1].
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The braiding in H-Dimod is given by

Φ : M ⊗N −→ N ⊗M, m⊗ n 7→ (m[1] · n)⊗m[0].

Then Br(H-Dimod) is the Brauer-Long group BD(R;H) from [86]. The categoryH-Dimod
has two braided monoidal subcategories: the subcategory of left H-modules HM (with
the trivial H-coaction) and the subcategory of right H-comodules MH (with the trivial
H-action). In both subcategories the braiding becomes the flip map, so they are sym-
metric monoidal categories. Then the Brauer groups Br(HM) and Br(MH) are abelian
subgroups of Br(H-Dimod) and they are denoted by BM(R;H) and BC(R;H) respec-
tively.

Example 2.1.9 Let H be a Hopf algebra over a commutative ring R with a bijective an-
tipode S. A left-right Yetter-Drinfel’d module is a left H-module and a right H-comodule
M satisfying the compatibility condition

ρ(h ·m) = (h(2) ·m[0])⊗ h(3)m[1]S
−1(h(1))

for m ∈M,h ∈ H. Let HYDH denote the category of left-right Yetter-Drinfel’d modules
and left H-linear right H-colinear morphisms. It is a braided monoidal category with the
tensor product over R. The left H-module and the right H-comodule structures on the
tensor product M ⊗N for M,N ∈ HYDH are given respectively by

h · (m⊗ n) = (h(1) ·m)⊗ (h(2) · n) and ρM⊗N(m⊗ n) = m[0]n[0] ⊗ n[1]m[1].

for h ∈ H,m ∈M and n ∈ N . The braiding in HYDH is given by

Φ : M ⊗N −→ N ⊗M, m⊗ n 7→ n[0] ⊗ (n[1] ·m).

The Brauer group of HYDH is called the Brauer group of Yetter-Drinfel’d H-module
algebras and is denoted by BQ(R;H). When H is commutative and cocommutative the
category of Yetter-Drinfel’d H-modules becomes the category of H-dimodules. Thus the
Brauer-Long group BD(R;H) is a special case of the Brauer group BQ(R;H).

AssumeH is a quasitriangular Hopf algebra, that is a Hopf algebraH with an invertible
element R = R(1) ⊗R(2) ∈ H ⊗H satisfying several axioms (see [100, Definition 10.1.5]
or Definition 6.2.1 of this work). The category HM of H-modules is a braided monoidal
category with the braiding

Φ : M ⊗N −→ N ⊗M, m⊗ n 7→ (R(2) · n)⊗ (R(1) ·m)

forM,N ∈ HM andm ∈M,n ∈ N . The Brauer group of HM is denoted by BM(R;H,R).
It is a subgroup of BQ(R;H).

On the other hand, if H is a coquasitriangular Hopf algebra, that is a Hopf algebra H
with a convolution invertible element r ∈ (H ⊗ H)∗ satisfying several axioms (see [100,
Definition 10.2.1]), the categoryMH of right H-comodules is a braided monoidal category
with the braiding

Φ : M ⊗N −→ N ⊗M, m⊗ n 7→ n[0] ⊗m[0]r(n[1] ⊗m[1])
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for M,N ∈MH and m ∈M,n ∈ N . The Brauer group ofMH is denoted by BC(R;H, r).
It is a subgroup of BQ(R;H). Example 2.1.6 and Example 2.1.7 are special cases of
BC(R;H, r) when H is RZ2 and RG, respectively.

The rest of this section is devoted to provide an alternative description of the functor

Ae [M,−]. For this we additionally assume that C has equalizers.

Definition 2.1.10 For M ∈ AeC, let MA denote the equalizer:

MA M-
j

[A,A⊗M ]-αA -
[A,A⊗ ηA ⊗M ]

[A,A⊗ A⊗M ]-

[A, ηA ⊗ A⊗M ]
[A,M ],-

[A, µ]

where αA is the unit of the adjunction (A⊗−, [A,−]).

For simplicity set θ1 := µ ◦ (A⊗ ηA⊗M), θ2 := µ ◦ (ηA⊗A⊗M) and let αA = α. We
have

A M

α

[A, θ1]

hev
M

(1.3.4)
=

A M

α

hev
θ1

M

(1.3.5)
=

A⊗M

θ1

M

=

A Mr
A#A

PP

M

=
A M

PP

M

(2.1.5)

and similarly

A M

α

[A, θ2]

hev
M

=

A M

α

hev
θ2

M

=

A⊗M

θ2

M

=

A Mr
A#A

PP

M

=

A M

��

M.

(2.1.6)

Thus we obtain a short description of the property satisfied by the equalizer (MA, j):

A MA

j

PP

M

=

A MA

j

��

M.

(2.1.7)

If f : M −→ N is a morphism in AeC, then fA : MA −→ NA is induced as a morphism
on an equalizer via the diagram

MA M-
jM

NA N-
jN

?
fA

?
f

-
[A, µ ◦ (A⊗ ηA ⊗N)] ◦ αA

[A,N ].-

[A, µ ◦ (ηA ⊗ A⊗N)] ◦ αA
(2.1.8)
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In the sequel we will adopt the following notation for the equalizer (MA, jM):

MA M-
jM -Ψ1

[A,M ]-
Ψ2

(2.1.9)

where Ψ1 := [A, θ1] ◦ αA and Ψ2 := [A, θ2] ◦ αA.

Remark 2.1.11 To define a morphism with codomain MA, for example f̃ : Q −→ MA,
we will have to give first a morphism f : Q −→ M and then check that Ψ1f = Ψ2f . By
the equalizer property of (MA, jM) we will always do this using the universal property of
([A,M ], ev : A⊗[A,M ] −→M). We will prove that ev(A⊗Ψ1)(A⊗f) = ev(A⊗Ψ2)(A⊗f),
then it will follow Ψ1f = Ψ2f . Now by diagrams (2.1.5) and (2.1.6) it is to check

A Q

f

PP

M

=

A Q

f

��

M.

(2.1.10)

The following result is the first original result of the dissertation. It gives another
description of the functor Ae [A,−] for an algebra A. This description is one of the key
pieces to prove our main theorem in Chapter 5. The same applies to Proposition 2.1.15
and Proposition 2.1.16.

Proposition 2.1.12 Let A be an algebra in C. Then the functors Ae [A,−] and (−)A are
isomorphic. In particular, if A is an Azumaya algebra, the pair of functors (A⊗−, (−)A)
establishes an equivalence of categories between C and AeC.

Proof. Take M ∈ AeC. We define the morphisms g : [A,M ] −→ M and h : M −→ [A,M ]
in the following way:

[A,M ]

g

M

:=

[A,M ]r
h̃ev
M

and

A M

h

hev
M

:=

A M

PP

M.

From the equalizer property of Ae [A,M ] and the universal property of ([A⊗A⊗A,M ], ẽv :
A⊗ A⊗ A⊗ [A⊗ A⊗ A,M ] −→M) we obtain the diagram

A⊗A A Ae [A,M ]

PP ι

h̃ev
M

=

A⊗A A Ae [A,M ]

ι

h̃ev
PP

M

(2.1.11)

where we applied the definitions of morphisms u and v from (1.3.7). Consider the diagram

?

g
6
h

Ae [A,M ] [A,M ]-ι

MA M-j

?

g
6
h

-u
[(A⊗ A)⊗ A,M ]-

v

-Ψ1
[A,M ].-

Ψ2

1
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We are going to prove that the composition gι induces g and hj induces h so that the
square 〈1〉 commutes both with left and right arrows. We proceed with g:

A Ae [A,M ]

ι

g

PP

M

=

A Ae [A,M ]r ι

h̃ev
PP

M

(2.1.3)
=

A Ae [A,M ]r r ι

A⊗A h̃ev
PP

M

(2.1.11)
=

A Ae [A,M ]r r
A⊗A ι

PP

h̃ev
M

(2.1.3)
=

A Ae [A,M ]r r
ι
	
	
h̃ev
M

=

A Ae [A,M ]

ι

h̃ev
M

=

A Ae [A,M ]r r
ι
	
	
h̃ev
M

(2.1.3)
=

A Ae [A,M ]r r
A⊗A ι

PP

h̃ev
M

(2.1.11)
=

A Ae [A,M ]r r ι

A⊗A h̃ev
��

M

(2.1.3)
=

A Ae [A,M ]r ι

h̃ev
��

M

g
=

A Ae [A,M ]

ι

g

��

M

By Remark 2.1.11 and Diagram (2.1.10), gι induces g so that jg = gι. Let us now prove
that h is well defined. We compute:

A⊗A A MA

j

PP h

h̃ev
M

=

A⊗A A MA

PP j

PP

M

(2.1.3)
=

A A A MA


	j
	
PP

M

ass.
=

A A A MA


	 j
	
PP

M

mod.
=

A A A MA

j
	PP
PP

M

(2.1.7)

mod.
=

A A A MA

j

��
PP
PP

M

bimod.
=

A A A MA

j

PP
��

PP

M

nat.
=

A A A MA

j

PP

��
PP

M

(2.1.3)
=

A⊗A A MA

j

PP
PP

M

h
=

A⊗A A MA

j

h

h̃ev
PP

M

Thus hj induces h so that ιh = hj. We now prove that g and h are inverse to each other.
We have:

A Ae [A,M ]

ι

g

h

hev
M

h
=

A Ae [A,M ]

ι

g

PP

M

develop.
Σ
=

A Ae [A,M ]

ι

hev
M.
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From the universal property of ([A,M ], ẽv : A ⊗ [A,M ] −→ M) we conclude from here
ι = hgι = hjg = ιhg. Since ι is a monomorphism, we get hg = id

Ae [A,M ]. On the other
hand, it is gh = ẽv(ηA ⊗ h) = µ(ηA ⊗M) = idM . Composing this from the right with j
and using the fact that it is a monomorphism, similarly as above we obtain gh = idMA .

We finally prove that the isomorphism Ae [A,M ] ∼= MA is natural. Let N ∈ AeC and
let f : M −→ N be a morphism in AeC. Observe the following diagram

Ae [A,M ] [A,M ]-ιM

?
Ae [A, f ]

Ae [A,N ]

M
?

gM

N.
?

f

[A,N ]
?

ιN

-
gN

H
HHHHj

HHH
HHj

gM

gN

MA

NA
?

fA
H
HHHHj

HHH
HHj

jM

jN

1

The upper and lower diagrams in this picture commute by the definitions of gM and
gN , respectively. The right inner trapeze commutes by the definition of fA. The outer
diagram commutes as well, it can be seen as a juxtaposition

?
Ae [A, f ]

Ae [A,M ] [A,M ]-ιM

Ae [A,N ] [A,N ]-ιN
?

[A, f ]

M-
gM

?
f

N-
gN

where the left inner parallelogram commutes by the definition of the morphism Ae [A, f ],
and the right one since g : [A,−] −→ IdC, due to the definition, is a natural transformation.
Now a diagram chasing argument applied to the previous diagram provides jNgNAe [A, f ] =
jNf

AgM , which, since jN is a monomorphism, yields that g, and hence also h, is a natural
transformation.

Remark 2.1.13 Let us compute the counit of the adjunction (A⊗−, (−)A), as we will use
it later on. From the square 〈1〉 in the above proof we obtain the following commutative
diagram:

?
A⊗ g

6
A⊗ h

A⊗ Ae [A,M ] A⊗ [A,M ]-A⊗ ι

A⊗MA A⊗M-
A⊗ j

?
A⊗ g

6
A⊗ h

M-ev

µ

�
�
�
�
��

where the right triangle commutes by the definition of h. The counit of the adjunction
(A ⊗ −, A⊗A[A,−]) is β := evA = ev ◦ (A ⊗ ι), hence the counit of the adjunction
(A⊗−, (−)A) will be β′ := µ(A⊗ j).
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Lemma 2.1.14 The unit of the adjunction (A ⊗ −, (−)A) evaluated at M ∈ C is the
morphism ζM : M −→ (A⊗M)A induced by the commutative diagram

(A⊗M)A A⊗M.-
jA⊗M

M

ηA ⊗M
@
@
@
@R

ζM
�
�

�
�	

(2.1.12)

Proof. We have that ηA ⊗M factors through (A⊗M)A. Indeed,

A M

ηA⊗M
PP

A⊗M

=

A Mr
	
A M

= idA⊗M =

A Mr
	
A M

nat .
=

A Mr


	
A M

=

A M

ηA⊗M

��

A⊗M

where in the last equality we consider the right A-module structure of A⊗M as in (2.1.4).
Thus ηA ⊗M induces a morphism ζM : M −→ (A ⊗M)A so that the Diagram (2.1.12)
commutes. We are going to prove that ζM is the unit of the adjunction (A⊗−, (−)A).

Let α : M −→ [A,A ⊗ M ] and αAe : M −→ Ae [A,A ⊗ M ] denote the units of the
adjunctions

A⊗− : C C : [A,−]-� and A⊗− : C AeC : Ae [A,−]-�

respectively. Then ιαAe = α. In the diagram from Remark 2.1.13 we put A⊗M instead
of M and we add the morphism A⊗ αAe : A⊗M −→ A⊗ Ae [A,A⊗M ] at the beginning
of the composition. We obtain

A⊗M -A⊗ αAe

?
A⊗ g

6
A⊗ h

A⊗ Ae [A,A⊗M ] A⊗ [A,A⊗M ]-A⊗ ι

A⊗ (A⊗M)A A⊗ A⊗M,-
A⊗ jA⊗M

?
A⊗ g

6
A⊗ h

A⊗M-ev

µ = ∇A ⊗M
�
��
�
��

��*

(2.1.13)

where g, h and g, h are now the corresponding morphisms for A⊗M . Due to (1.3.5) we
have that the composition of morphisms in the top row of Diagram (2.1.13) equals idA⊗M .
On the other hand, we have also

idA⊗M = (∇A ⊗M )(A⊗ ηA ⊗M ) = (∇A ⊗M )(A⊗ jA⊗M )(A⊗ ζM ),

by the definition of ζM . From the commutativity of Diagram (2.1.13) we then get

ev(A⊗ ι)(A⊗ αAe) = (∇A ⊗M)(A⊗ jA⊗M)(A⊗ ζM) = ev(A⊗ ι)(A⊗ h)(A⊗ ζM),

i.e., evA(A ⊗ αAe) = evA(A ⊗ (h ◦ ζM)). Here evA = ev(A ⊗ ι) is the counit computed
in Remark 2.1.13. By the universal property of (Ae [A,A ⊗M ], evA : A ⊗ Ae [A,A ⊗M ]
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−→ A ⊗ M) this implies αAe = hζM , proving that ζM is the unit of the adjunction
(A⊗−, (−)A).

In the sequel we are going to deduce some properties from the adjunction (A⊗−, (−)A).
It is clear that A⊗− : C −→ AeC is a C-functor. Suppose that A is an Azumaya algebra.
Then Ae [A,−] is as well a C-functor and by Proposition 2.1.12 so is (−)A. Therefore for
every M ∈ AeC and V ∈ C we know that MA⊗V ∼= (M⊗V )A. The A-bimodule structure
of M ⊗ V is induced by that of M . In particular, similarly as in (2.1.4), we have

µM⊗V =

M V A

��

M V.

(2.1.14)

Let us explicitly construct the isomorphism MA ⊗ V ∼= (M ⊗ V )A.
Let βM := µM(A⊗j) : A⊗MA −→M denote the counit of the adjunction (A⊗−, (−)A).

In the adjunction isomorphism AeC(A ⊗ X, Y ) ∼= C(X, Y A) put X = MA ⊗ V and Y =
M ⊗ V . Let tM,V : MA ⊗ V −→ (M ⊗ V )A denote the image by this isomorphism of
βM ⊗ V ,

AeC(A⊗MA ⊗ V,M ⊗ V ) ∼= C(MA ⊗ V, (M ⊗ V )A)

βM ⊗ V 7→ tM,V .

By the universal property of ((M ⊗ V )A, βM⊗V : A⊗ (M ⊗ V )A −→ M ⊗ V ) we have
that tM,V : MA ⊗ V −→ (M ⊗ V )A is the unique morphism that makes the diagram

HHH
HHHHj

βM ⊗ V
A⊗MA ⊗ V

?

A⊗ tM,V

A⊗ (M ⊗ V )A M ⊗ V-

βM⊗V
(2.1.15)

commutative. Taking into account that β’s are isomorphisms, A⊗ tM,V is an isomorphism
as well. Further, as an Azumaya algebra A is faithfully projective, hence faithfully flat,
so tM,V is an isomorphism.

Using another approach, we will now find another property of tM,V . We claim that
idM⊗V induces a morphism χM,V : MA ⊗ V −→ (M ⊗ V )A. To this end we check:

A MA V

j

M⊗V
PP

M⊗V

=

A MA V

j

PP

M V

j
=

A MA V

j

��

M V

nat.
=

A MA V

j

��

M V

=

A MA V

j

M⊗V

��

M⊗V,

where in the first and last equalities we applied the right A-module structure of M ⊗ V
as in (2.1.14). Thus we have the existence of χM,V : MA ⊗ V −→ (M ⊗ V )A such that
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jM⊗V ◦χM,V = jM⊗V . This makes the left triangle in the following picture commutative:

XXXXXXXXXXXXXXXXXz

βM ⊗ V

M ⊗ V.A⊗M ⊗ V

Q
Q
Q
QQs

-µM ⊗ V
A⊗ jM ⊗ V

A⊗MA ⊗ V

A⊗ (M ⊗ V )A
?

A⊗ χM,V

��
��
�*
A⊗ jM⊗V
��

���
���

���
���

���:

βM⊗V

The other two triangles in the picture also commute by definition of βM and βM⊗V , bearing
in mind that the left A-module structure of M ⊗ V is given by µM ⊗ V . Now from the
commutativity of the outer diagram we deduce that χM,V satisfies the same property as
tM,V . Then χM,V = tM,V . Thus jM⊗V ◦ tM,V = jM ⊗ V and we can state the following
claim.

Proposition 2.1.15 Let A be an Azumaya algebra in C. For every M ∈ AeC and V ∈ C
we have a natural isomorphism

MA ⊗ V ∼= (M ⊗ V )A

given by tM,V : MA ⊗ V −→ (M ⊗ V )A from the Diagram (2.1.15). This isomorphism is
such that the diagram

(M ⊗ V )A M ⊗ V-jM⊗V

MA ⊗ V

?
tM,V

H
HHHHHj

jM ⊗ V

commutes.

Taking two bimodules over two different Azumaya algebras A and B, we may tensor
two respective right adjoint functors in order to establish a key result for our purposes.
Namely, take M ∈ AeC and N ∈ BeC. Then M ⊗ N ∈ (A⊗B)eC with the structures given
by

A⊗B M⊗N

PP

M⊗N

=

A B M N

PP PP

M N

and

M⊗N A⊗B

��

M⊗N

=

M N A B

�� ��

M N.

(2.1.16)

Employing the same strategy as for the proof of Proposition 2.1.15, we prove that the
bifunctors

(−)A ⊗ (−)B : AeC ⊗ BeC −→ C
and

(−⊗−)A⊗B : AeC ⊗ BeC −→ C
are isomorphic if the braiding fulfills ΦNB ,A = Φ−1

NB ,A
for every N ∈ BeC.
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In the adjunction isomorphism (A⊗B)eC(A⊗B⊗X, Y ) ∼= C(X, Y A⊗B) put X = MA⊗
NB and Y = M ⊗ N . Let ζM,N : MA ⊗ NB −→ (M ⊗ N)A⊗B denote the image of
(βM ⊗ βN)(A⊗ ΦB,MA ⊗NB) by this isomorphism. By the universal property of ((M ⊗
N)A⊗B, βM⊗N : A ⊗ B ⊗ (M ⊗ N)A⊗B −→ M ⊗ N) we have that ζM,N : MA ⊗ NB

−→ (M ⊗N)A⊗B is the unique morphism making the diagram

A⊗B ⊗MA ⊗NB -
A⊗ ΦB,MA ⊗NB

?

A⊗B ⊗ ζM,N

A⊗MA ⊗B ⊗NB

?
βM ⊗ βN

A⊗B ⊗ (M ⊗N)A⊗B M ⊗N-
βM⊗N

(2.1.17)

commutative. Observe that, as a tensor product of Azumaya algebras, A⊗B
is an Azumaya algebra. Then we have that all β’s in the diagram are isomorphisms, so
A ⊗ B ⊗ ζM,N turns out to be one as well. Further, as an Azumaya algebra A ⊗ B is
faithfully projective, hence faithfully flat, so ζM,N is an isomorphism itself.

Analogously as in Proposition 2.1.15, we will find a further property of ζM,N similar
to the one of tM,V . We claim that idM⊗N induces a morphism χM,N : MA ⊗ NB −→
(M ⊗N)A⊗B. To this end we check:

A⊗B MA⊗NB

jM⊗jN

PP

M⊗N

=

A B MANB

jM jN

PP PP

M N

=

A B MANB

jM jN

�� ��

M N

=

A B MANB

jM jN

�� ��

M N

=

A⊗BMANB

jM jN

A⊗B

�� ��

M N

=

A⊗B MA⊗NB

jM⊗jN

��

M⊗N.

The middle three equalities are respectively due to: equalizer property of MA and NB,
naturality and because of the assumption ΦNB ,A = Φ−1

NB ,A
– applying naturality and

the structure from Diagram (2.1.16). Then there exists a morphism χM,N : MA ⊗ NB

−→ (M ⊗N)A⊗B such that jM⊗N ◦ χM,N = jM ⊗ jN . With this we have

(A⊗ ΦB,M ⊗N)(A⊗B ⊗ (jM⊗N ◦ χM,N)) = (A⊗ ΦB,M ⊗NB)(A⊗B ⊗ jM ⊗ jN)

= (A⊗ jM ⊗B ⊗ jN)(A⊗ ΦB,MA ⊗NB)

because of naturality. This makes the left pentagram in the following picture commutative:

A⊗MA ⊗B ⊗NB-
A⊗ ΦB,MA ⊗NB

HHH
HHHHj

βM ⊗ βN

M ⊗N-µM ⊗ µN
A⊗ jM ⊗B ⊗ jN

��
���

���
A⊗M ⊗B ⊗N

A⊗B ⊗MA ⊗NB

A⊗B ⊗ (M ⊗N)A⊗B
?

A⊗B ⊗ χM,N

�
��
��

��
�*

µM⊗N

A⊗B ⊗M ⊗N-
A⊗B ⊗ jM⊗N

HH
HH

H
HHY

A⊗ ΦB,M ⊗N
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The other two triangles in the picture also commute by the definitions of βM and βN and
the left A ⊗ B-module structure of M ⊗ N . Now from the commutativity of the outer
diagram, bearing in mind that by definition βM⊗N = µM⊗N(A ⊗ B ⊗ jM⊗N), we deduce
that χM,N satisfies the same property as ζM,N . Since ζM,N is unique such a morphism, we
obtain χM,N = ζM,N . Thus jM⊗NζM,N = jM ⊗ jN . We now check the naturality.

Let f : M −→M ′ and g : N −→ N ′ be morphisms in AeC and BeC, respectively. Because
of the definition of ζ the diagrams 〈1〉 and 〈4〉 in the following picture commute

MA ⊗NB (M ⊗N)A⊗B-
ζM,N

M ⊗N

M ′ ⊗N ′
?
f ⊗ g

MA ⊗NB (M ′ ⊗N ′)A⊗B-
ζM ′,N ′

HHH
HHHHj

jM ′⊗N ′

�
���

��� jM⊗N

H
HHH

HHHjjM ⊗ jN

�
��
�
��*j′M ⊗ j′N

?

(f ⊗ g)A⊗B

?

fA ⊗ gB

1

2 3

4

Diagrams 〈2〉 and 〈3〉 commute by the definitions of the induced morphisms fA, gB and
(f ⊗ g)A⊗B (see Diagram (2.1.8)). Now from the commutativity of the outer diagram we
obtain that ζ : (−)A ⊗ (−)B −→ (− ⊗ −)A⊗B is a natural transformation. Knowing that
ζM,N is an isomorphism for all M ∈ AeC and N ∈ BeC, we finally conclude that ζ is a
natural isomorphism. We can now claim:

Proposition 2.1.16 Let A and B be Azumaya algebras in a closed, braided monoidal
category C with equalizers and braiding Φ. For every M ∈ AeC and N ∈ BeC we have the
natural isomorphism

MA ⊗NB ∼= (M ⊗N)A⊗B

if ΦNB ,A = Φ−1
NB ,A

. It is given by ζM,N : MA⊗NB −→ (M⊗N)A⊗B from Diagram (2.1.17)
and is such that

(M ⊗N)A⊗B M ⊗N-jM⊗N

MA ⊗NB

?
ζM,N

HH
HHHHj

jM ⊗ jN

commutes.

2.2 H-Azumaya algebras

In this section we present the main protagonist of our study, that is, the Brauer group of
H-module algebras for a Hopf algebra H ∈ C. We will start by showing how the category
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of left H-modules inherits the structure of a closed monoidal category from C. The tensor
product of two H-modules M,N ∈ C is again an H-module via

H M⊗N

PP

M⊗N

=

H M N��
PP PP

M N.

(2.2.18)

In the following lemma, which is not difficult to prove, we record on categorical level some
facts known in the category of vector spaces.

Lemma 2.2.1 Let H be a Hopf algebra in C.

1. An object M in C is a left (right) H-module if and only if there is an algebra
morphism θ : H −→ [M,M ] in C. If λ : H ⊗M → M (resp. ρ : M ⊗H −→ M) is
the structure morphism, then θ is the unique morphism such that ev(θ ⊗M) = λ
(resp. ev(M ⊗ θ) = ρ).

2. If M and N are left H-modules, then so is [M,N ] with the action given by:

H [M,N ]

PP

[M,N ]

=

H [M,N ]��hS
θ′ θ
	� 


[M,N ]

where θ : H −→ [M,M ] and θ′ : H −→ [N,N ] are the algebra morphisms from 1).

Behind the first claim lie the adjunction isomorphisms C(H ⊗M,M) ∼= C(H, [M,M ])
and C(M ⊗ H,M) ∼= C(H, [M,M ]), respectively. In the proof of the second claim one
uses the fact that in a braided monoidal category, as in the category of vector spaces, the
antipode of a Hopf algebra is an antihomomorphism of algebras and coalgebras. Moreover,
one has that if a Hopf algebra is commutative or cocommutative, then the square of its
antipode is the identity. Evaluating on M we obtain another description of the action of
H on [M,N ]:

H [M,N ] M

PP

hev
N

=

H [M,N ] M��hS
PP

hev
PP

N.

(2.2.19)

We are now able to prove that the category HC inherits right adjoint functors from C.
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Proposition 2.2.2 Let H ∈ C be a Hopf algebra and M,P,Q ∈ C left H-modules. Con-
sider the adjunction isomorphism Θ : C(M ⊗ P,Q) ∼= C(M, [P,Q]). By restriction Θ
induces an isomorphism HC(M ⊗ P,Q) ∼= HC(M, [P,Q]). Analogously, for the functor
P ⊗− we have HC(P ⊗M,Q) ∼= HC(M, [P,Q]).

Proof. Since M,P and Q are H-modules, we know that M ⊗ P is an H-module with the
codiagonal action and that [P,Q] is an H-module by the structure from Lemma 2.2.1, 2).
The proof is then straightforward using relations (2.2.19) and (1.3.2) and the universal
property of ([P,Q], ev : [P ,Q ]⊗ P −→ Q).

Majid pointed out in [94, Proposition 2.5] that for a Hopf algebra H ∈ C, the category
of left H-modules HC is monoidal where the action on the tensor product of two H-
modules is given as in (2.2.18) and the monoidal structure is inherited from that of C.
This together with the preceding proposition allows us to state:

Proposition 2.2.3 Let H ∈ C be a Hopf algebra and assume that the braiding is H-linear.
Then HC is a closed braided monoidal category.

Remark 2.2.4 Applying 1.3.1 to the closed monoidal category HC, we obtain that for
M ∈ HC the inner hom-object [M,M ] belongs to HC. In particular, it is an H-module
algebra in C, with the H-module structure given by Lemma 2.2.1, 2).

The following proposition gives necessary and sufficient condition for the braiding of
a category to be left H-linear. As a consequence, in a symmetric monoidal category the
braiding is H-linear if and only if H is cocommutative. In Section 6.3 we will give more
examples of H-linear braidings for certain Hopf algebras H.

Proposition 2.2.5 Let H ∈ C a bialgebra.

1. The braiding Φ of C is left H-linear if and only if ΦH,X = Φ−1
H,X for any X ∈ C and

H is cocommutative. When the above condition on Φ is satisfied, we will say that
the braiding is symmetric on H ⊗X.

2. The braiding Φ of C is right H-colinear if and only if ΦH,X = Φ−1
H,X for any X ∈ C

and H is commutative.

3. H is commutative and Φ is left H-linear if and only if H is cocommutative and Φ
is right H-colinear.

Proof. 1) Suppose that Φ is H-linear. Then we have

H��
H H

unit
=

H��r
	r
	
H H

nat.
=

H��r r
	

	
H H

nat.
=

H r r��

	
	
H H

Φ
H-lin.

=

H��r r

	
	
H H

=

H��
H H
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i.e. H is cocommutative.
Observe that since Φ is H-linear, so is Φ−1. For X ∈ C we have that H ⊗X is a left

H-module via ∇H ⊗X. Now, H-linearity applied to Φ−1
H,H⊗X means that we have

H H H X��

	
	

H X H

=

H H H X��

	 
	
H X H.

Apply this to H ⊗ ηH ⊗ ηH ⊗X to get

H X��r r

	
	

H X H

=

H Xr r��

	 
	
H X H,

implying

H X��
H X H

=

H X��
H X H.

Finally, apply to this εH ⊗X ⊗H and we have

H X

X H

=
H X

X H

as claimed.
Conversely, suppose that H is cocommutative and that ΦH,X = Φ−1

H,X for any X ∈ C.
Let X, Y ∈ HC, then we find, applying the condition on Φ in the first equation

H X Y��
PP PP

Y X

=

H X Y��
PP PP

Y X

nat.
=

H X Y��
PP

PP

Y X

coc.
=

H X Y��
PP

PP

Y X

nat.
=

H X Y��
PP PP

Y X,

i.e. Φ is left H-linear.
2) Dual to 1).

3) Consequence of 1) and 2).

Let H ∈ C be a Hopf algebra and suppose that the braiding is H-linear. Since the
category of left H-modules is braided, we define the Brauer group of H-module algebras,
denoted by BM(C;H), as Br(HC). Azumaya algebras in HC will be called H-Azumaya
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algebras. Notice that an object A ∈ C is an algebra in HC if and only if A is an H-module
algebra in C. For an algebra A ∈ HC, the H-Azumaya defining morphisms

FH : A⊗ A −→ [A,A] and GH : A⊗ A −→ [A,A]

in HC are given respectively by

A⊗ A [A, (A⊗ A)⊗ A]-
αA(A⊗ A)

[A,A]-
[A,∇A ◦ (∇A ⊗ A) ◦ (A⊗ Φ)]

and

A⊗ A [A,A⊗ (A⊗ A)]-
αA(A⊗ A)

[A,A]-
[A,∇A ◦ (A⊗∇A) ◦ (Φ⊗ A)]

where αA : IdC −→ [A,−⊗A] and αA : IdC −→ [A,A⊗−] are the units of the adjunctions
(−⊗A, [A,−]) and (A⊗−, [A,−]), respectively, between the categories HC and HC (the
adjunction we saw in Proposition 2.2.2). Note that αA and αA are precisely the units of
the respective adjunctions between the categories C and C, only here they are evaluated
on H-modules. Thus the morphisms FH and GH in HC are indeed the Azumaya defining
morphisms F : A⊗A −→ [A,A] and G : A⊗A −→ [A,A] in C of A. Summing up, we have
obtained that an H-module algebra A is H-Azumaya if and only if it is Azumaya in C.

Proposition 2.2.6 The forgetful functor induces a group morphism q : BM(C;H) −→
Br(C), [A] 7→ [A] by forgetting the H-module structure of an H-Azumaya algebra. This
morphism splits by the group morphism q : Br(C) −→ BM(C;H) induced by assigning to
any Azumaya algebra the same algebra equipped with the trivial H-module structure.

The main aim of the first part of this dissertation is to compute the cokernel of the
morphism q. We will prove that it is isomorphic to the group of H-Galois objects. We
will recall them in the next chapter. We finally introduce a subgroup of BM(C;H), that
will also be a main object of our study.

Definition 2.2.7 The action of an H-Azumaya algebra A is said to be inner if there
exists a convolution invertible morphism f : H −→ A satisfying

H A

PP

A

=

H A��
f f−1


	� 

A.

Lemma 2.2.8 Assume that the braiding in C is H-linear. The subset

BMinn(C;H) = {[A] ∈ BM(C;H) | A has inner action}

is a subgroup of BM(C;H).
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Proof. Recall from Lemma 2.2.1, 1) the H-module structure of [A,A] and note that the
morphism θ : H −→ [A,A] from Lemma 2.2.1, 2), with its convolution inverse θS, makes
this H-action inner. Let A and B be H-Azumaya algebras with inner actions with the
corresponding morphisms f : H −→ A and g : H −→ B. We will prove that the morphism
h := (f ⊗ g)∆H : H −→ A⊗B makes the action of A⊗B inner. Note first that applying
in an appropriate way four times coassociativity and once cocommutativity of H we have:

H� �����
H H H H

=

H� �����
H H H H.

(2.2.20)

Using this equality it is easy to prove that the convolution inverse for h is given by
(f−1 ⊗ g−1)∆H . We now compute

H A⊗B

PP

A⊗B

=

H A B��
PP PP

A B

=

H A B� �� �
f f−1 � �
	g g−1� 
 
	� 


A B

2xnat.
=

H A B� �����
f g g−1


	
f−1 
	� 
� 


A B

nat.
=

H A B� �����
f g−1

g

f−1
	 
	
� 
� 

A B

(2.2.20)
nat.
=

H A B� �����
f g g−1

f−1 
	
	

	� 

A B

P. 2.2.5
=

H A B� �����
f g g−1

f−1 
	
	

	� 

A B

2xnat.
=

H A B� �����
f g g−1

f−1


	
	

	� 

A B

=

H A⊗B� �
h h−1


	� 

A⊗B
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thus the H-action of A ⊗ B is inner. Finally, using the cocommutativity of H and that
ΦH,A is symmetric by Proposition 2.2.5, it is easy to show that f−1 makes the H-action
of A inner.



Chapter 3

The group of Galois objects

The notion of a Hopf-Galois extension, defined in [83], is one of the pillars in the Hopf
algebra theory. It is strongly related to algebraic geometry. A faithfully flat commutative
Hopf-Galois extension for a Hopf algebra that is the coordinate algebra of an affine group
scheme is a principle homogeneous space. Then faithfully flat not necessarily commuta-
tive Hopf-Galois extensions may be seen as a noncommutative analogue of this geometric
concept. Hopf-Galois extensions arose from Hopf-Galois objects, also called Galois ob-
jects. The group of Galois objects over a commutative ring was introduced by Chase and
Sweedler in 1969, [42]. It emerged as a generalization from the classical Galois field theory
and the Galois theory for commutative rings developed in [41]. Galois objects in a closed
symmetric monoidal category were studied in [88] in 1980. A recent construction was
made in [122]. There, as for the category of modules in [12], the product in the group is
induced by the cotensor product, which in categorical language is a particular equalizer.
For the definition of Galois objects in a braided monoidal category one needs that equal-
izers are preserved by certain tensor products. For this purpose Schauenburg introduced
the notions of flatness and faithful flatness, which we start this chapter with. It turns out
that using them the construction of Galois objects from [88] is much simplified. For the
results in this chapter, which lead to the construction of the group of Galois objects, we
partially follow the ideas from [122], but also use [28] as a base reference for the module
category case.

In this chapter C will denote a braided monoidal category with braiding Φ. From the
third section on C will have equalizers.

3.1 Hopf modules and relative Hopf modules

We now define relative Hopf modules in C for a right comodule algebra A over a Hopf
algebra H. We show that there is an adjoint pair of functors between the category of
relative Hopf modules and the base category. Subsequently we study some properties of
a bialgebra in a monoidal category. The category of Hopf modules will be the category
of relative Hopf modules with A = H. At the end of the section we will recall the

41
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Fundamental Theorem for Hopf modules.

Definition 3.1.1 Let H be a Hopf algebra in C. For a right H-comodule algebra A a
right relative Hopf module (or an (A,H)-Hopf module) M ∈ C is a right H-comodule
and a right A-module such that the H-comodule structure of M is right A-linear, with the
codiagonal A-module structure on M ⊗H. The compatibility condition takes the form:

M A

��
PP

M H

=

M A

PP PP

�� 
	
M H.

We will denote by CHA the category whose objects are right relative Hopf modules and
whose morphisms are A-linear H-colinear morphisms.

Definition 3.1.2 Assume that C has equalizers and let H be a bialgebra and M a right
H-comodule in C. The object of H-coinvariants of M is the equalizer:

M coH M-
i -ρM

M ⊗H.-
M ⊗ ηH

Actually, (−)coH defines a functor from CH to C. If f : M −→ N is a morphism in
CH , then f coH : M coH −→ N coH is induced by the commutativity of the left square in the
diagram:

M coH M-
iM

N coH N-
iN

?
f coH

?
f

-ρN
N ⊗H.-

N ⊗ ηH
Clearly, the functor (−)coH also acts on CHA . Indeed, it is part of an adjoint pair as we

see next.

Proposition 3.1.3 With A and H in C as above F : C −→ CHA , N 7→ N ⊗ A, is a left
adjoint to G : CHA −→ C,M 7→M coH .

Proof. Let N ∈ C. We view N⊗A as a right H-comodule by the coaction ρN⊗A = N⊗ρA
and a right A-module by the action µN⊗A = N⊗∇A. Then the compatibility condition of
CHA holds for N⊗A, since A is an H-comodule algebra. The definition of F on morphisms
is clear. Thus F is well defined.

Let N ∈ C and M ∈ CHA . We define morphisms Θ and Ψ in

CHA (N ⊗ A,M) C(N,M coH)
-Θ

�
Ψ

as follows. For f ∈ CHA (N ⊗ A,M) the image Θ(f) ∈ C(N,M coH) is defined as
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N

Θ(f)

i

M

=

N r
f

M,

whereas for g ∈ C(N,M coH) the image Ψ(g) ∈ CHA (N ⊗ A,M) is given by

N⊗A

Ψ(g)

M

=

N A

g

i

��

M.

Then Θ and Ψ are well defined inverses of each other and they are proved to be natural
transformations.

The unit α of the adjunction (−⊗ A, (−)coH) is induced by

iN⊗Aα(N) = iN⊗AΘ(N,N ⊗ A)(idN⊗A) = N ⊗ ηA. (3.1.1)

The counit β is given via

β(M) = Ψ(M coH ,M)(idM coH ) =

McoHA

i

��

M.

(3.1.2)

Remark 3.1.4 Analogously, the pair of functors (A⊗−, (−)coH) is also an adjoint pair
between the same categories, with the counit β′ : A⊗M coH −→M given by β′ = βΦA,McoH .
For N ∈ C we consider A⊗N as a relative Hopf module with the right H-comodule and
A-module structures given by

ρA⊗N =

A N

PP

A N H

and µA⊗N =

A N A


	
A N.

(3.1.3)

Using 1.2.3 and similarly to its proof one obtains:

Lemma 3.1.5 If H is flat, then an equalizer in C of two morphisms in CHA is an equalizer
in CHA . Moreover, the forgetful functor U : CHA −→ C preserves equalizers.

Before examining the case when A = H we state some useful properties of a bialgebra.
Because of their simplicity we omit the proofs of the first two observations.

Let B be a bialgebra in C. Then

I B-
ηB -∆B

B ⊗B-
B ⊗ ηB

is an equalizer. In particular, BcoB ∼= I. For any M ∈ C it can be proved that (M,M⊗ηB)
satisfies the same universal property as the equalizer ((M ⊗ B)coB, iM⊗B), hence there is
a natural isomorphism in C

θM : M −→ (M ⊗B)coB (3.1.4)
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satisfying iM⊗BθM = M ⊗ ηB.

Note that in the proof of Proposition 3.1.3 we have not used the antipode of the Hopf
algebra so the adjunction works for any bialgebra. Clearly, B is a comodule algebra over

itself by the bialgebra property so we have that −⊗B : C CBB : (−)coB-� is an adjoint
pair of functors. From (3.1.1) we get that the unit of the adjunction is the above morphism
θM : M −→ (M ⊗B)coB, which is always an isomorophism.

Proposition 3.1.6 Let B be a bialgebra in C. Then −⊗B (and B⊗−) reflects isomor-
phisms in C. In particular, a flat bialgebra is faithfully flat.

Proof. Let f : M −→ N be a morphism in C such that f ⊗ B : M ⊗ B −→ N ⊗ B is an
isomorphism. Since f⊗B ∈ CBB (M⊗B,N⊗B), it is an isomorphism in here. Now we can
apply to it the functor (−)coB : CBB −→ C to obtain an isomorphism (f⊗B)coB : (M⊗B)coB

−→ (N ⊗B)coB.
By the naturality of the unit of the adjunction θ from (3.1.4) we have the commutative

diagram:

-
(f ⊗B)coB

-
f

(M ⊗B)coB

M
?

θ−1
M

(N ⊗B)coB

N.
?

θ−1
N

Being a composition of isomorphisms, f : M −→ N is such itself.

Proposition 3.1.7 In a closed braided monoidal category C a finite bialgebra B is faith-
fully projective, hence also faithfully flat.

Proof. From Proposition 3.1.6 we know that B ⊗ − reflects isomorphisms. Then by
Proposition 1.7.2 and Remark 1.7.3 it follows that B is faithfully projective. The rest
follows by Lemma 1.7.1.

When A = H the category CHH is called the category of Hopf modules. The Fundamen-
tal Theorem for Hopf modules was first proved by Larson and Sweedler for the category of
vector spaces in [85], it also appears in [100, Theorem 1.9.4]. We proved that it holds also
in any braided monoidal category that has equalizers. Our proof coincides with that of
[90, Theorem 1.1]. We mention that the theorem was also proved in [14, Theorem 3.5.2],
where instead of the existence of equalizers for the category is assumed that it admits
split idempotent morphisms. We formulate the theorem here.

Theorem 3.1.8 (The Fundamental Theorem of Hopf modules) Let C be a braided
monoidal category with equalizers and H ∈ C a flat Hopf algebra. Then the pair of functors

−⊗H : C CHH : (−)coH-� is an equivalence. In particular,

M coH ⊗H ∼= M

for all M ∈ CHH .



3.2. Galois objects 45

That the adjunction −⊗H : C CHH : (−)coH-� gives an equivalence of categories is
a particular property of a flat Hopf algebra. However, also the category of relative Hopf
modules CHA admits an equivalence with C. Under which conditions this happens we will
see in the next section.

3.2 Galois objects

We are now ready to introduce Galois objects in C. Since they are related to Hopf algebras,
we refer to them also as Hopf-Galois objects, and when the Hopf algebra H is known, we
call them H-Galois objects.

Definition 3.2.1 Let C be a braided monoidal category and H ∈ C a Hopf algebra. A right
H-comodule algebra A in C is called an H-Galois object if the following two conditions
are satisfied:

1. A is faithfully flat;

2. The canonical morphism can : A⊗ A A⊗ A⊗H-A⊗ ρA A⊗H,-∇A ⊗H

is an isomorphism.

Consider A⊗A and A⊗H as right H-comodules by the structure morphisms A⊗ ρA
and A⊗∆ respectively, where ρA denotes the H-comodule structure morphism of A. By
the H-comodule property it is immediate that can is right H-colinear. If we view A⊗A as
a right A-module by the structure morphism A⊗∇ and equip A⊗H with the codiagonal
structure, can is also right A-linear.

In [139, Lemma 1.1] the author proved that if H is a commutative Hopf algebra over
a field K, then AcoH ∼= K for a commutative H-Galois object A. As a matter of fact,
the dual statement over a commutative ring was proved before for a finite Hopf algebra
in [102, Lemma 2.9]. We prove here that this result for the category of vector spaces
(and R-modules) extends to any braided monoidal category with equalizers even for a not
necessarily commutative Hopf algebra. In other words, faithful flatness of an H-comodule
algebra A together with the bijectivity of the morphism can implies that the subalgebra
of its coinvariants with respect to the coalgebra H is trivial.

Proposition 3.2.2 Let A be an H-Galois object in C. There is an isomorphism η : I
−→ AcoH such that iAη = ηA. In particular,

I A-
ηA -ρA

A⊗H-
A⊗ ηH

is an equalizer.

Proof. From the claim we get that (I, ηA) and (AcoH , iA) are isomorphic as equalizers.
Note that can(A⊗ iA) : A⊗ AcoH −→ A⊗H factors through A⊗HcoH , since
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A AcoH

iA

PP
	��
A H H

=

A AcoH

iA

PP

PP
	
A H H

=

A AcoH

iA

PP
	 r
A H H.

By flatness of A the diagram

A⊗ I A⊗H-A⊗ ηH -A⊗∆H
A⊗H ⊗H-

A⊗H ⊗ ηH

is an equalizer. Then A ⊗ HcoH ∼= A ⊗ I. This assures the existence of ϕ : A ⊗ AcoH

−→ A⊗ I such that

(A⊗ ηH)ϕ = can(A⊗ iA). (3.2.5)

It is clear that ηA factors through AcoH , since it is H-colinear. Therefore there is η : I
−→ AcoH with iAη = ηA. We show that A⊗ η is the inverse of ϕ,

(A⊗ ηH)ϕ(A⊗ η) = can(A⊗ iA)(A⊗ η) = can(A⊗ ηA) = A⊗ ηH .

By flatness of A we get that ϕ(A⊗ η) = idA. On the other hand,

can(A⊗ iA)(A⊗ η)ϕ
(3.2.5)

= (A⊗ ηH)ϕ(A⊗ η)ϕ = (A⊗ ηH)ϕ
(3.2.5)

= can(A⊗ iA).

Since A⊗ iA is a monomorphism, clearly so is can(A⊗ iA), and thus we obtain (A⊗η)ϕ =
idA⊗AcoH . This proves that A ⊗ η : A −→ A ⊗ AcoH is an isomorphism. By the faithful
flatness of A we finally get that η : I −→ AcoH is an isomorphism.

We are now in a position to characterize when the adjunction from Proposition 3.1.3 is
an equivalence. This result can be seen as a generalization of the Fundamental Theorem
of Hopf modules. In this regard we might call it the Fundamental Theorem of relative
Hopf modules.

Theorem 3.2.3 Let A ∈ C be a right H-comodule algebra and suppose that H is flat.
The following statements are equivalent:

1. A is a right H-Galois object;

2. The functors −⊗ A : C CHA : (−)coH-� establish an equivalence of categories.

Proof. 1) ⇒ 2) In Diagram (3.1.2) we computed for the counit of the adjunction β :
M coH ⊗ A −→ M that β = µ(i ⊗ A), where µ is the right action of A on M ∈ CHA
and i : M coH −→ M the equalizer monomorphism. It was shown by Schauenburg in
[122, Proposition 3.8] that β is an isomorphism. Recall from (3.1.1) that the unit of the
adjunction α : N −→ (N ⊗ A)coH is induced by N ⊗ ηA. In [122, Lemma 3.9] it is proved
that α is an isomorphism. Note that for this is needed faithful flatness of A.
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2) ⇒ 1) Being an equivalence of categories, the functor − ⊗ A : C −→ CHA preserves
equalizers. From Lemma 3.1.5 we obtain that A is flat.

Suppose that f ⊗ A is an isomorphism in C for f : M −→ N in C. Lying in CHA , it
is then an isomorphism also in there. Then G(f ⊗ A) = GF(f) = f is an isomorphism,
yielding that A is faithfully flat.

We next prove that can : A ⊗ A −→ A ⊗ H is an isomorphism. First of all, note
that A ⊗ H ∈ CHA . It is a right A-module by the codiagonal structure. Clearly, it is
an H-comodule with the coaction A ⊗ ∆. We prove that the compatibility condition is
satisfied:

A⊗H A

��
PP

A⊗HH

=

A H A

PP


	
	��
A H H

=

A H A

PP


	����

	
	

A H H

=

A H A��PP
PP


	
	
	
A H H

=

A H A��PP
PP
	

	
	
A H H

=

A⊗H A

PP PP

�� 
	
A⊗H H.

Recall that the counit β of the adjunction (− ⊗ A, (−)coH) is given by the Dia-
gram (3.1.2). Let further δ : A −→ (A ⊗ H)coH be the isomorphism from (3.1.4) with
M = A and B = H. Observe that we have an isomorphism

ν : A⊗ A = F(A)
F(δ)−→ F((A⊗H)coH) = FG(A⊗H)

β(A⊗H)−→ A⊗H.

We compute that ν equals to

β(A⊗H)F(δ) = β(A⊗H)(δ ⊗ A) = µA⊗H(iA⊗H ⊗ A)(δ ⊗ A) = µA⊗H(A⊗ ηH ⊗ A).

In braided diagrams this is

ν =

A Ar
PP


	
	
A H

=

A A

PP
	
A H

= can.

Thus can is an isomorphism.

Remark 3.2.4 Recall from Remark 3.1.4 that A⊗− : C CHA : (−)coH-� is also an

adjoint pair of functors with the counit β′ : A⊗M coH −→M . The above theorem is true
also with this new pair of functors.

For the category of modules over a commutative ring the preceding theorem recovers
1)⇔ 4) in [33, Proposition 5.7].

The Fundamental Theorem of Hopf modules, Theorem 3.1.8, asserts that for every flat

Hopf algebra H the functors −⊗H : C CHH : (−)coH-� are an equivalence of categories.
Now by Theorem 3.2.3 with A = H we get that a flat Hopf algebra is itself an H-Galois
object and as such in particular faithfully flat. (Recall that in Proposition 3.1.6 we proved
that any flat bialgebra is faithfully flat.) Thus we may state the following.
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Proposition 3.2.5 A flat Hopf algebra H in a braided monoidal category is an H-Galois
object.

The inverse of canH is explicitly given by

H H

can−1
H

H H

:=

H H��
Sh
	

H H.

The next proposition will be essential in proving future results in the first part of the
thesis.

Proposition 3.2.6 Let H ∈ C be a flat Hopf algebra. An H-comodule algebra morphism
f : A −→ B between two H-Galois objects A and B is an isomorphism.

Proof. As an H-Galois object, B is a right H-comodule. Equip it with the right A-module
structure given by µA := ∇B(B ⊗ f). This is a well defined structure since

B A A

f f
	

	
B

=

B A A

f f
	

	
B

=

B A A
	
f
	

B

and

B r
f
	

B

=

B r
	
B

= idB ,

where we used associativity of B, compatibility of f with multiplication and unit and
the unit-multiplication compatibility in B. With these structures of an H-comodule and
A-module B lies in CHA ,

B A

��
PP

B H

=

B A

f
	
PP

B H

comod.
-alg.
=

B A

f

PP PP


	
	
B H

f :
H-colin.

=

B A

PP PP

f


	
	
B H

nat.
=

B A

PP PP

f
	
	
B H

A-act.
=

B A

PP PP


	
	
B H.

Having that A is an H-Galois object, by the preceding theorem the counit β of the
adjunction (− ⊗ A, (−)coH) given as in Diagram (3.1.2), is an isomorphism. Let η : I
−→ BcoH be the isomorphism from Proposition 3.2.2. Then we obtain that

β(B)(η ⊗ A) =

I A

η

i

��

B

=

Ar
��

B

=

Ar f
	
B

=

A

f

B

is an isomorphism.
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3.3 Cotensor product over a coalgebra

In this section we define the cotensor product over a coalgebra. Here C will denote a
monoidal category with equalizers if not otherwise indicated and H will denote a coalgebra
(not a Hopf algebra).

Definition 3.3.1 The cotensor product over a coalgebra H in C of a right H-comodule
M and a left H-comodule N is the equalizer

M2HN M ⊗N-e -ρM ⊗N
M ⊗H ⊗N.-

M ⊗ λN
(3.3.6)

In braided diagrams the equalizer property of M2HN reads as:

M2HN

eM,N

PP

M H N

=

M2HN

eM,N

��

M H N.

Consider a right H-colinear morphism f : M −→ M ′ and a left H-colinear morphism
g : N −→ N ′. Then f ⊗ g : M ⊗ N −→ M ′ ⊗ N ′ induces a morphism f2Hg : M2HN
−→M ′2HN

′ so that the square in the diagram

M2HN M ⊗N-
eM,N

M ′2HN
′ M ′ ⊗N ′-
eM ′,N ′ -ρM ′ ⊗N ′

M ′ ⊗H ⊗N ′-
M ′ ⊗ λN ′

?

f2Hg

?

f ⊗ g

commutes.

Lemma 3.3.2 Let C be a braided monoidal category with a cocommutative coalgebra H. A
right H-comodule M is a left H-comodule and an H-bicomodule both via λ′M = Φ−1

M,H ◦ρM
and λM = ΦM,H ◦ ρM .

Proof. The proof is immediate using cocommutativity of H and, as usual, naturality.

Later on we will work with right H-comodules and we will convert them into left
ones using Lemma 3.3.2. Thus we will be able to make cotensor products of two right
H-comodules. For this purpose we will require then H to be cocommutative.

Lemma 3.3.3 Let M be a right H-comodule, N a left H-comodule and X a flat object
in C. There are natural isomorphisms of equalizers

(M2HN)⊗X ∼= M2H(N ⊗X) and X ⊗ (M2HN) ∼= (X ⊗M)2HN.
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Proof. One proves that there is a well defined morphism

θM,N,X : (M2HN)⊗X −→M2H(N ⊗X)

such that the diagram

(M2HN)⊗X (M ⊗N)⊗X-
eM,N ⊗X

M2H(N ⊗X) M ⊗ (N ⊗X)-
eM,N⊗X

?

θM,N,X

?

αM,N,X

(3.3.7)

commutes. Here αM,N,X denotes the associativity constraint. Flatness of X makes
((M2HN)⊗X, eM,N ⊗X) an equalizer. Then using the same diagram but with α−1

M,N,X

instead of αM,N,X on the right arrow, one defines the morphism θ′M,N,X : M2H(N ⊗ X)
−→ (M2HN)⊗X. That the two morphisms are inverses of each other one proves putting
the two diagrams inducing θ’s one on top of the other. The outer arrows of the to-
tal diagram will then imply the equality (eM,N ⊗ X)θ′M,N,XθM,N,X = eM,N ⊗ X and
eM,N⊗XθM,N,Xθ

′
M,N,X = eM,N⊗X . Having that both eM,N ⊗X and eM,N⊗X are monomor-

phisms, one obtains θ′M,N,X = θ−1
M,N,X .

Similarly, there is an isomorphism

κX,M,N : X ⊗ (M2HN) −→ (X ⊗M)2HN

induced by the commutative diagram

M ⊗ (N2HX) M ⊗ (N ⊗X)-
M ⊗ eN,X

(M ⊗N)2HX (M ⊗N)⊗X.-
eM⊗N,X

?

κM,N,X

?

α−1
M,N,X

(3.3.8)

In the proof of naturality of θ and κ one uses the fact that α is a natural transformation as
well as that being monomorphisms, the morphisms e’s from the corresponding equalizers
are left cancelable.

Remark 3.3.4 Let C,H and F be coalgebras in C, where C and F are flat. For M ∈ CCH
and N ∈ HCF it can be proved that M2HN is a left C- and a right F -comodule by
κ−1
C,M,N(λM2HN) and θ−1

M,N,F (M2HρN) respectively. Moreover, the equalizer morphism

eM,N is C-F -bicolinear. If D is a further flat coalgebra, M ∈ CCH and X ∈ CD, the
isomorphisms from Lemma 3.3.3 are of C-D-bicomodules.

Applying Lemma 3.3.2 we then have:

Corollary 3.3.5 Let C be a braided monoidal category with equalizers and a flat and
cocommutative coalgebra H. For two right H-comodules M and N we have that M2HN
is a right and a left H-comodule by θ−1

M,N,H(M2HρN) and κ−1
H,M,N(λM2HN) respectively,

where λM = Φ−1
M,H ◦ ρM .
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For a left H-comodule M one has that its structure morphism λ : M −→ H⊗M factors
through λ : M −→ H2HM . Moreover, ε2HM : M −→ H2HM −→ M is proved to be its
inverse and we obtain:

Lemma 3.3.6 Let M be a left H-comodule in a monoidal category C. There is a natural
isomorphism H2HM ∼= M . If additionally M ∈ HCC, then this is an isomorphism of
H-C-bicomodules. Analogously, it is M2CC ∼= M as H-C-bicomodules.

In Morita Theorems [108, Theorems 5.1 and 5.3] Pareigis uses the notion of an A-coflat
object for an algebra A. For such an object we can also say it is coflat in CA. Dually we
define an object coflat in CC for a coalgebra C. Unlike usual terminology for opposite
categories we will keep the same notion “coflat” in both senses. The reason for this is
that A-coflatness is established in the literature (see e.g. [106]) and omitting the prefix
“co” would be misleading – “flatness” determines another although confusingly similar
property. For clarity we write out the following definition.

Definition 3.3.7 Let C be a monoidal category and D and C coalgebras in C. An object
M ∈ DCC is called coflat in CC if for all coalgebras F and objects N ∈ CCF the equalizer
M2CN ∈ DCF exists and if the natural morphism θM,N,X : (M2CN)⊗X −→M2C(N⊗X)
in DCH from Lemma 3.3.3 is a well defined isomorphism for any X ∈ CH .

Lemma 3.3.8 Let C and D be flat coalgebras in C and M ∈ CC flat. For every N ∈ CCD
and L ∈ DC it is M2C(N2DL) ∼= (M2CN)2DL as equalizers if one of the following two
conditions is satisfied

1. L is flat;

2. M is coflat in CC.

If, in addition, M ∈ ECC and L ∈ DCF , this isomorphism is of E-F -bicomodules.

Proof. We view N2DL as a left C-comodule and M2CN as a right D-comodule with the
structures from Remark 3.3.4. Consider the diagram

(M2CN)2DL (M2CN)⊗ L-
eM2CN,L -

ρM2CN ⊗ L
(M2CN)⊗D ⊗ L-

(M2CN)⊗ λL

(M ⊗N)2DL (M ⊗N)⊗ L-
eM⊗N,L -ρM⊗N ⊗ L

(M ⊗N)⊗D ⊗ L-
(M ⊗N)⊗ λL

?

eM,N2DL

?

eM,N ⊗ L
?

eM,N ⊗D ⊗ L

(M ⊗ C ⊗N)2DL (M ⊗ C ⊗N)⊗ L-
eM⊗C⊗N,L -ρM⊗C⊗N ⊗ L

(M ⊗ C ⊗N)⊗D ⊗ L.-
(M ⊗ C ⊗N)⊗ λL

?

(ρM ⊗N)2DL

?

(M ⊗ λN)2DL

??
(ρM ⊗N)⊗ L (M ⊗ λN)⊗ L

?

(ρM ⊗N)⊗D ⊗ L

?

(M ⊗ λN)⊗D ⊗ L
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The three rows are equalizers. Assume L is flat. Then by Lemma 3.3.3 we get that the
second and – since D is flat too – the third column are equalizers. The same conclusion
we get if we suppose that M is coflat in CC , because then M2C(N ⊗L) ∼= (M2CN)⊗L
and M2C(N ⊗D⊗L) ∼= (M2CN)⊗D⊗L. Note that all inner squares commute. Then
by Lemma 3 × 3 ([7, Exercise 2.2.3.13]) we obtain that the first column is an equalizer
too.

Let us show that (M2C(N2DL), eM,N2DL) and ((M2CN)2DL, eM,N2DL) are iso-
morphic as equalizers. For this purpose we observe the diagram

M2C(N2DL) M ⊗ (N2DL)-
eM,N2DL -

ρM ⊗ (N2DL)
M ⊗ C ⊗ (N2DL)-

M ⊗ λN2DL

(M2CN)2DL (M ⊗N)2DL-
eM,N2DL -

(ρM ⊗N)2DL
(M ⊗ C ⊗N)2DL.-

(M ⊗ λN)2DL

?

ωM,N,L

?

κM,N,L

?

κM⊗C,N,L1

SinceM and C are flat we have that κM,N,L and κM⊗C,N,L are isomorphisms (Lemma 3.3.3).
The right square obviously commutes with upper lines. It commutes with lower lines as
well, because λN2DL is induced by λN2DL. Knowing that both rows are equalizers we
get that κM,N,LeM,N2DL induces ωM,N,L so that the left square commutes. Similarly,
κ−1
M,N,L(eM,N2DL) induces the inverse of ωM,N,L.

Suppose M ∈ ECC and L ∈ DCF . Due to Remark 3.3.4, eM,N2DL is E-F -bicolinear
and eM,N is left E-colinear. Hence eM,N2DL is E-F -bicolinear, as so is κM,N,L, by
Lemma 3.3.3. Then because of 1.2.4 (i), ωM,N,L is E-F -bicolinear.

Corollary 3.3.9 Let M,N and L be right H-comodules where H is flat and cocommu-
tative. If M and L are flat, then M2H(N2HL) ∼= (M2HN)2HL as equalizers and
H-bicomodules.

The categories in the examples we will treat in Chapter 6 will be the categories of
graded vector spaces. Hence the conditions needed for the associativity of the cotensor
product will be automatically satisfied.

3.4 Galois and biGalois objects

Until the end of this chapter our goal will be to study when the isomorphism classes
of H-Galois objects form a group with the product induced by the cotensor product
over a cocommutative Hopf algebra H. We will turn right H-comodules into left ones
as described in Lemma 3.3.2. The unit in the group would be the class of H, which is
supported by Lemma 3.3.6 and Proposition 3.2.5.

In [122] Schauenburg studies biGalois objects. These are both left and right Galois
objects so that they are bicomodule algebras, left Galois objects being defined in the
obvious way. Our definition of an H-Galois object is in this sense a faithfully flat right
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H-Galois object. For a flat Hopf algebra H with an invertible antipode in [122, Theorems
5.2 and 6.6] is proved that H-biGalois objects form a group, BiGal(C;H). If we would
consider its subgroup induced by those biGalois objects whose left H-comodule structure
comes from the right one, this subgroup would consist only of the class of H. Namely,
as we will see in this section, certain condition on the braiding will be necessary in order
that the group of (right) Galois objects be well established and nontrivial. With this
condition, the group BiGal(C;H) will be larger and our group of (right) Galois objects
will be its subgroup. In this section we collect those properties of (right) Galois objects
that will make possible for us to prove in the next section that they are biGalois objects
in the sense of [122].

The above-mentioned condition we state here.

Assumption 3.4.1 For any two H-Galois objects A and B it holds

A B

B A

=
A B

B A

i.e., ΦB,AΦA,B = idA⊗B . We say that the braiding when acting between two H-Galois
objects is symmetric.

Lemma 3.4.2 Let H be a cocommutative Hopf algebra, B a right H-comodule algebra in
C and suppose that ΦB,H = Φ−1

B,H . Then B is a left H-comodule algebra. Consequently, if
H is flat and Assumption 3.4.1 holds, the claim is true for an H-Galois object B.

Proof. Recall from Lemma 3.3.2 that B is a left H-comodule with structure morphism
λB = Φ−1

B,H ◦ ρB. We prove that λB is an algebra morphism. We have

B B
	
PP

H B

=

B B

PP PP


	
	
H B

nat.
=

B B

PP PP


	
	
H B

=

B B

PP PP


	
	
H B

=

B B

PP PP


	
	
H B

the last equation due to the assumption ΦB,H = Φ−1
B,H . The compatibility of λB with the

unit follows from the one of ρB. Recall that if H is flat it is an H-Galois object. The
claim then holds true for an H-Galois object B in view of Assumption 3.4.1.

Let A be a right H-comodule algebra and B an H-bicomodule, so that it is both left
and right H-comodule algebra. Then one has that (A2HB, eA,B) is a (right) H-comodule
algebra pair. Moreover, if A and B are right H-Galois objects and Assumption 3.4.1 is
fulfilled, it can be shown that A2HB is a right H-Galois object.

The inverse element for an isomorphism class of an H-Galois object A will be the
isomorphism class of the opposite algebra of A. In [122] Schauenburg proves that if A is
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a Galois object on one side, then A is a Galois object on the other side. A direct proof
that if A is a Galois object on one side, then itself is a Galois object on the other side as
well is not provided. In this section we will prove that if A is right Galois, then A is also
right Galois, which will allow us to prove in the next section that A is then also a left
Galois object. We first show what the H-comodule structure of A is, and that equipped
like this A becomes indeed an H-Galois object. For this we were inspired in [28].

Lemma 3.4.3 Let H be a flat and cocommutative Hopf algebra in C and A a right H-
comodule algebra. Assume that Assumption 3.4.1 is fulfilled. Then A is a right H-
comodule algebra with the right H-comodule structure given by

ρA =
A

PP

A H

:=

A

PP

Sh
A H.

Proof. First let us prove that ρA endows A with a right H-comodule structure. We
compute

A

PP

PP

ShSh
A H H

=

A

PP��
ShSh

A H H

coc.
=

A

PP��
ShSh

A H H

=

A

PP

Sh��
A H H.

For the compatibility of the multiplication and the right H-comodule structure of A we
compute

A A


	
PP

Sh
A H

=

A A

PP PP


	
	
Sh

A H

=

A A

PP PP


	ShSh

	

A H

nat.
=

A A

PP PP


	ShSh

	

A H

A. 3.4.1
=

A A

PP PP


	ShSh

	

A H

A. 3.4.1
nat.
=

A A

PP PP

Sh Sh

	
	

A H.

Notice that H is an H-Galois object since H is flat (Proposition 3.2.5) and we apply
Assumption 3.4.1. The compatibility of the unit and the right H-comodule structure of
A is fulfilled as well, since S preserves the unit.

Proposition 3.4.4 Let H be a flat and cocommutative Hopf algebra in C and suppose
that Assumption 3.4.1 is fulfilled. If A is an H-Galois object, then so is A, with the above
H-comodule structure.
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Proof. As A is faithfully flat so is A. Let us prove that canA is an isomorphism. Compute
the following composition:

Γ :=

A H

PP


	
can−1

A

canA

PP

Sh

	

A H

=

A H

PP


	
PP

Sh

	

A H

=

A H

PP��
Sh
	

	

A H

=

A H

PP��
Sh


	
	
A H

=

A H

PP��
Sh

	

	

A H

=

A H

PP r r
	
A H

=

A H

A H.

On the other hand, for the lower half of the diagram Γ we have

A A

PP
	
PP

Sh

	

A H

=

A A

PP

PP PP


	
	
Sh

	

A H

com.
S:antih.

=

A A

PP

PP ��
	ShSh

	

	

A H

nat.
=

A A

PP PP


	Sh��

Sh
	
	
A H

ass.
=

A A

PP PP


	Sh��

Sh
	
	
A H

nat.
=

A A

PP PP


	Sh��
Sh
	

	

A H

coc.
antip.

=

A A

PP


	Sh
A H

nat.
=

A A

PP

Sh
	
A H

A. 3.4.1
=

A A

canA

A H

where in the last equation we applied Assumption 3.4.1 to the H-Galois object A to obtain
the multiplication in A. This makes Γ equal to:

Γ = idA⊗H =

A H

PP


	
can−1

A

canA

A H

, which implies that

A H

PP


	
can−1

A

A H

is a right inverse for canA.

Now we will show that canA is a monomorphism. This together with canA being a
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retraction will imply that canA is an isomorphism. We have:

Λ :=

A A

canA

PP


	
A H

=

A A

PP

Sh
	
PP


	
A H

=

A A

PP

Sh
PP PP


	
	

	

A H

=

A A

PP

PP PP

Sh


	
	

	

A H

A. 3.4.1
=

A A

PP

PP PP

Sh

	
	

	

A H

com.
=

A A

PP

PP ��
Sh
	
	

	

A H

nat.
=

A A

PP

PP ��
Sh
	

	
	

A H

coc.
ass.
=

A A

PP

PP ��
Sh

	

	
	

A H

nat.
antip.

=

A A

PP


	
A H

nat.
=

A A

canA

A H.

Now, the latter morphism is a monomorphism, hence so is the first morphism in Λ, that
is canA.

Let us now compare our bicomodule structures of A and those from [122, Theorem
6.6], which we recall here.

Proposition 3.4.5 Let L and H be flat Hopf algebras with invertible antipodes. For an
L-H-biGalois object A in C, let A denote the opposite algebra of A with H-L-bicomodule
structure given by

λH
A

=

A

PP

−h
H A

and ρL
A

=

A

��

−h
A L

where the sign minus stands for S−1. Then A is an H-L-biGalois object and there are L-
and H-bicomodule algebra isomorphisms A2HA ∼= L and A2LA ∼= H respectively.

Remark 3.4.6 In the equalizer (A2HB, eA,B) note that we do not turn right H-comodule
B into a left one by

B

PP

−h
H B

as Schauenburg does in (2.1) and uses in his Lemma 2.4. Rather, knowing that A2HB is
a subalgebra [122, Theorem 4.3] and a right H-subcomodule of A⊗ B, we consider it as
A2HB and we use the left H-comodule structure of B coming from the right H-comodule
structure of B – as explained in [122, Proposition 6.2]. On the other hand, this approach
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then coincides also with our strategy of turning right H-comodule B into a left one by
composing ρH

B
with the inverse of the braiding,

λH
B

= Φ−1

B,H
◦ ρH

B
=

B

PP

H B

=

B

PP

−h
H B

=

B

PP

−h
H B.

Similarly, our right H-comodule structure of B from Lemma 3.4.3 coincides with the
Schauenburg’s one from Proposition 3.4.5,

ρB =

B

PP

Sh
B H

A. 3.4.1
=

B

PP

Sh
B H

=

B

��

Sh
B H.

Although in the proof of Proposition 3.4.4 we used [28, Theorem 10.5.2], we noted
that in the latter proof it is not proved that the constructed isomorphism between A2HA
and H is an H-comodule algebra one. It is not obvious that this morphism is a morphism
of algebras, unless A is commutative. This problem is well resolved in [122, Theorems 5.2
and 6.6]. For further purposes, we comment below how this isomorphism is induced.

In [122, Remark 3.5] Schauenburg proves that when the antipode of H is invertible,
the morphism γr := can−1

r (ηA ⊗ H) : H −→ A ⊗ A, where canr denotes the canonical
isomorphism of a right H-Galois object A, induces an H-bicomodule algebra morphism
γr : H −→ coH(A ⊗ A). Analogously, for a left H-Galois object A we have that the
morphism γl := can−1

l (H⊗ηA) : H −→ A⊗A induces an H-bicomodule algebra morphism
γl : H −→ (A⊗ A)coH . From the definition of γr is immediate that

H

γr

PP
	
A H

=

Hr
A H.

(3.4.9)

Furthermore, in (3.2) Schauenburg proves that canr and γr are related as follows

(∇A ⊗ A)(A⊗ γr) = can−1
r . (3.4.10)

From this follows easily

A

PP
γr
	

A A

=

Ar
A A

(3.4.11)

which is Schauenburg’s (3.3). From the left version of [122, Lemma 2.4] we know that
there is an isomorphism of H-bicomodule algebras ν : A2HA −→ coH(A⊗ A) induced by
the identity idA⊗A. Let

γ̃r : H −→ A2HA (3.4.12)
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be the (H-bicomodule algebra) morphism ν−1γr. In other words, it is the unique mor-
phism satisfying eγ̃r = γr.

Analogously, if the antipode of H is invertible and A is a left H-Galois object, there
is an H-bicomodule algebra isomorphism γ̃l : H −→ A2HA.

A flat Hopf algebra H is an H-biGalois object. This follows from the left version of
Theorem 3.2.3 and Proposition 3.2.5. Then Proposition 3.4.5 with H = L yields:

Corollary 3.4.7 If H is a flat Hopf algebra with invertible antipode in C, then the set
BiGal(C;H) of isomorphism classes of H-biGalois objects is a group.

This is Schauenburg’s group of biGalois objects. In the next section we compare it
with our group of (right) Galois objects.

3.5 The group of Galois and biGalois objects

As we will show below, if we suppose that Assumption 3.4.1 is fulfilled, then right H-Galois
objects are biGalois objects, whose isomorphism classes form a subgroup of BiGal(C;H).

Theorem 3.5.1 If H is a flat and cocommutative Hopf algebra in a braided monoidal
category C and the Assumption 3.4.1 is fulfilled, then the set Gal(C;H) of isomorphism
classes of (right) H-Galois objects is an abelian subgroup of BiGal(C;H).

Proof. Since H is cocommutative, the square of its antipode is identity so by Corol-
lary 3.4.7 BiGal(C;H) is a group (with unit [H]).

We have seen in Lemma 3.3.2 that λ′A = Φ−1
A,H ◦ ρA makes a right H-comodule into a

left H-comodule and a bicomodule when H is cocommutative. With the Assumption 3.4.1
from Lemma 3.4.2 we have that a right H-comodule algebra will be a also left H-comodule
algebra.

Morphism canlA : A⊗A −→ H⊗A can be represented as a composition of isomorphisms:

canlA =

A A

��
	
H A

=

A A

PP


	
H A

nat.
=

A A

PP


	
H A

S2=1
nat.
=

A A

PP

Sh
	
Sh
H A

A. 3.4.1
= (S ⊗ A) ◦ Φ−1

A,H ◦ can
r
A
◦ ΦA,A.

In Proposition 3.4.4 we showed that canr
A

is an isomorphism. Since the antipode and the

braiding are isomorphisms, so becomes canlA.
So far we have proved that if [A] ∈ Gal(C;H), then [A] ∈ BiGal(C;H). For A as in

Lemma 3.4.3, the right Galois objects A2HA and A2HA are then biGalois objects. Due
to Proposition 3.4.5, as well as Remark 3.4.6, we then have that the inverse of [A] in
Gal(C;H) and in BiGal(C;H) is given by the isomorphism class of the same object A.
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That the product in Gal(C;H) – induced by the cotensor product over H – is associa-
tive we know from Corollary 3.3.9.

To make sure that the embedding Gal(C;H) ↪→ BiGal(C;H) is a group one let us
compare the H-bicomodule structures of the product of two right H-Galois objects A and
B before and after embedding. Considering A2HB as an object that determines a product
in Gal(C;H) and in BiGal(C;H), we clearly have that in both cases its right H-comodule
structure is induced by the one of B. Its two left H-comodule structures, however, could
differ. In the case of Gal(C;H) we have that the left H-comodule structure of A2HB is
induced by Φ−1

A⊗B,H(A⊗ ρB). In the case of BiGal(C;H) it is induced by λA ⊗B, though
we have

A2HB

eA,B

��

H A B

=

A2HB

eA,B

PP

H A B

eA,B
=

A2HB

eA,B

��

H A B

=

A2HB

eA,B

PP

H A B

that is, the morphisms inducing the two left structures coincide. Hence also the two
left H-comodule structures of A2HB are the same, meaning that it determines the same
object in Gal(C;H) as in BiGal(C;H).

To check that the group Gal(C;H) is abelian we consider the morphism Ψ : A2HB
−→ B2HA induced by the braiding. It will be well defined if we prove that in the diagram

A2HB A⊗B-
eA,B

B2HA B ⊗ A-
eB,A

?
Ψ

?

ΦA,B

-ρB ⊗ A
B ⊗H ⊗ A-

A⊗ λB
(3.5.13)

it is (ρB ⊗ A)ΦA,BeA,B = (A⊗ λB)ΦA,BeA,B. We have:

A2HB

eA,B

PP

B H A

nat.
=

A2HB

eA,B

PP

B H A

=

A2HB

eA,B

PP

B H A

=

A2HB

eA,B

��

B H A

eA,B
=

A2HB

eA,B

PP

B H A

nat.
=

A2HB

eA,B

PP

B H A

A. 3.4.1
=

A2HB

eA,B

��

B H A.

Note that Φ−1
B,A induces a morphism in the other direction B2HA −→ A2HB in a good way

– changing the sign of the braiding in the upper diagrams gives analogous computation.
This induced morphism will be the inverse of Ψ since the inducing morphisms ΦA,B and
Φ−1
B,A are inverses of each other and eA,B and eB,A are monomorphisms.

We will now prove that Ψ is an algebra morphism. By the comment on page 53 and
Lemma 3.4.2 we know that eA,B and eB,A are algebra morphisms. Then by 1.2.4 (iii), Ψ
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will be an algebra morphism if we show that so is ΦA,B. This is true since we have

A B A B


	
	
A B

=

A B A B


	
	
A B

nat.
=

A B A B


	
	
A B

A. 3.4.1
=

A B A B


	
	
A B.

We can not apply the same reasoning to prove that Ψ is right H-colinear, since the
braiding is not such, unless H is commutative. We proceed as follows. Consider the
diagram

(A2HB)⊗H
ρA2HB

��
��
��
��

��
���1

?

eA,B ⊗H

A2HB A⊗B-
eA,B

?
Ψ

B2HA B ⊗ A-
eB,A

?

ΦA,B

A⊗B ⊗H-ρA⊗B

B ⊗ A⊗H-ρB⊗A
?

ΦA,B ⊗H

(B2HA)⊗H.
ρB2HA

PPPPPPPPPPPPq

6
eB,A ⊗H

1 2

3

4

We have that diagram 〈2〉 commutes when composed with eA,B,

A2HB

eA,B

PP

B A H

nat.
=

A2HB

eA,B

PP

B A H

eA,B
=

A2HB

eA,B

��

B A H

=

A2HB

eA,B

PP

B A H

=

A2HB

eA,B

PP

B A H

Diagram 〈1〉 commutes by the definition of Ψ. Diagrams 〈3〉 and 〈4〉 commute by the
definitions of ρA2HB and ρB2HA respectively. Then the outer diagram in the above picture
commutes, yielding

(ΦA,B ⊗H)(eA,B ⊗H)ρA2HB = (eB,A ⊗H)ρB2HAΨ.

On the other hand, tensoring 〈1〉 from the right with H, one obtains

(ΦA,B ⊗H)(eA,B ⊗H) = (eB,A ⊗H)(Ψ⊗H).

Substituting this in the preceding equation, one gets

(eB,A ⊗H)(Ψ⊗H)ρA2HB = (eB,A ⊗H)ρB2HAΨ.

Since H is flat, eB,A ⊗H is a monomorphism, so the last equation yields that Ψ is right
H-colinear.
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We can make the following observation. When proving that Gal(C;H) forms a group,
we needed H to be cocommutative in order that a right H-comodule becomes a left one
and an H-bicomodule. Furthermore, we needed Assumption 3.4.1. As we saw in Corol-
lary 3.4.7 neither the cocommutativity hypothesis on H, nor the mentioned assumption
is needed in order to obtain the group of biGalois objects BiGal(C;H). Indeed, for two
different Hopf algebras L and H Schauenburg constructed the groupoid of biGalois ob-
jects BiGal(C;L,H) assuming that the antipodes of L and H are invertible. Dealing with
bicomodules (where the left and right comodule structures are not necessarily related)
gives a freedom when manipulating with biGalois objects, which we do not have when
dealing with only one sided comodule structure. In the latter case one is conditioned in
order that the compatibility conditions be fulfilled.

From the above theorem it is obvious:

Corollary 3.5.2 In a symmetric category C with a flat and cocommutative Hopf algebra
H the set Gal(C;H) is a group.

In a braided non-symmetric category Assumption 3.4.1 is satisfied, though, on a sub-
class of H-Galois objects. We define them here.

Definition 3.5.3 An H-Galois object which is isomorphic to H as a right H-comodule
we call an H-Galois object with a normal basis.

There is an important observation of Schauenburg in [119, Corollary 5] that will be
fundamental in our work with Hopf algebras in braided monoidal categories. It allows us
to define the group of Galois objects with a normal basis and to make other constructions
without requiring that the whole base category be symmetric. We quote it here:

Theorem 3.5.4 If a Hopf algebra H ∈ C is cocommutative (or commutative), then

H H

H H

=
H H

H H

i.e., Φ2
H,H = idH⊗H .

Theorem 3.5.5 In a braided category C with a cocommutative (or commutative) Hopf
algebra H Assumption 3.4.1 is fulfilled on H-Galois objects with a normal basis.

Proof. We have that an H-Galois object with normal basis is isomorphic to H (as an
object). Then the statement follows by Theorem 3.5.4 and naturality of the braiding.

Corollary 3.5.6 In a braided monoidal category C with a flat and cocommutative Hopf al-
gebra H the set of isomorphism classes of H-Galois objects with a normal basis Galnb(C;H)
is a group.
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Proposition 3.5.7 Let H be a flat Hopf algebra in C and suppose that the braiding Φ is
H-linear. If A is an H-Galois object with a normal basis, then we have

A X

X A

=
A X

X A

for any X ∈ C.

Proof. By Proposition 2.2.5 we have ΦH,X = Φ−1
H,X . By the definition of A we have A ∼= H

(as objects), then analogously like in the proof of Theorem 3.5.5 we obtain the claim.



Chapter 4

A short exact sequence for the group
of Galois objects

In this chapter we construct a short exact sequence that relates Sweedler’s second coho-
mology group, the group of Galois objects and the Picard group of invertible (co)modules.
The original idea for such construction was accomplished in 1976 in [102] for a commu-
tative ring R and a finitely generated and projective Hopf algebra H with a bijective
antipode, where the morphism from the group of Galois objects to the Picard group of
invertible H-modules generalized that of [67, Theorem 2] for a group ring RG. A slightly
more general construction was carried out in [46] in 1986. Following the latter, the cor-
responding morphism from the group of Galois objects to the Picard group of invertible
modules was defined in a closed symmetric category in [4] in 2000. There was shown
that the kernel of the morphism is isomorphic to the subgroup of Galois objects with a
normal basis. Taking into account that this subgroup was proved to be isomorphic to
Sweedler’s second cohomology group in [2], generalizing the Normal Basis Theorem [126,
Theorem 8.6], one gets the aforementioned short exact sequence. Harrison cohomology
appearing in [102] is here replaced by Sweedler cohomology. This is consistent, since
the Hopf algebra H in the first construction becomes a Hopf algebra H∗ in the second
one, and Harrison cohomology for H is isomorphic to Sweedler cohomology for H∗, [28,
Proposition 9.2.3]. K-theoretical background for these exact sequences can be found in
[28, (C.8), p. 470]. A version of the short exact sequence for commutative rings is [28,
(10.25), p. 267] and how it emerges from the K-theoretical origin one can comprehend
from the steps [28, (10.19)–(10.23), p. 265]. Our short exact sequence in this chapter
lives in a braided monoidal category whose braiding Φ satisfies Assumption 3.4.1 and it is
a generalization of the sequence of Álvarez and Vilaboa. Whereas in the latter sequence
the Hopf algebra should be finite and the category symmetric, the first restriction is not
present in our case, and the second one is weakened by requiring Assumption 3.4.1. Our
construction can be seen as a categorification of [28, (10.25), p. 267].

In this chapter C will denote a braided monoidal category.

63
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4.1 Sweedler’s second cohomology group

Sweedler defined a cohomology in [126], where among other he studies its relation to other
cohomologies and also the relation with cleft extensions and smash products twisted
by a cocycle. We recommend also [28, Section 9.1] as a further reference on Sweedler
cohomology. We present in this section a categorification of Sweedler cohomology.

Let C be a coalgebra and A an algebra in C. The set S := C(C,A) of morphisms
from C to A in C is a monoid with the convolution product f ∗ g = ∇A(f ⊗ g)∆H for
f, g ∈ S, and unit 1S = ηAεH . If C is cocommutative and A commutative, then C(C,A)
is commutative,

C

f∗g

A

=

C� �
f g� 


A

C:coc.
A:comm.

=

C��
f g


	
A

nat.
=

C� �
g f� 

A

=

C

g∗f

A.

We denote by Reg(C,A) the group of morphisms from C to A in C invertible with respect
to the convolution product.

Let H be a cocommutative Hopf algebra and A a commutative H-module algebra in
C. We denote by H⊗n the n-th tensor power of H. Then Reg(H⊗n, A) is commutative.
For i = 1, . . . , n + 2 and f ∈ Reg(H⊗n, A) we define morphisms ∂i : Reg(H⊗n, A) −→
Reg(H⊗(n+1), A) by:

∂1(f) = µ ◦ (H ⊗ f),

∂i(f) = f ◦ (H ⊗ · · · ⊗H︸ ︷︷ ︸
i−2

⊗∇H ⊗H · · · ⊗H), i = 2, . . . , n+ 1,

∂n+2(f) = f ⊗ εH ,
where µ : H ⊗ A −→ A denotes the H-module structure morphism of A. The morphisms
∂i’s, i = 1, . . . , n+ 2, are invertible with respect to the convolution product. It is easy to
see that ∂−1

i (f) = ∂i(f
−1). Moreover, ∂i’s are group morphisms. We further define

dn := ∂1 ∗ ∂−1
2 ∗ · · · ∗ ∂

(−1)n+1

n+2 : Reg(H⊗n, A) −→ Reg(H⊗(n+1), A),

where (∂i ∗ ∂j)(f) := ∂i(f) ∗ ∂j(f) in Reg(H⊗(n+1), A). One then has that di’s are group
morphisms and didi−1 = 1Reg(H⊗(i+1),A), for i ≥ 1, which makes

Reg(I, A) Reg(H,A)-d0 · · ·-d1 Reg(H⊗n, A)-dn−1
Reg(H⊗n+1, A)-dn · · ·-dn+1

into a complex. Then Im(dn−1) is a subgroup of Ker(dn).

Definition 4.1.1 Morphisms from Zn(C;H,A) := Ker(dn) are called n-cocycles and those
from Bn(C;H,A) := Im(dn−1) n-coboundaries. The quotient group

Hn(C;H,A) = Zn(C;H,A)/Bn(C;H,A)

is called Sweedler’s n-th cohomology group.
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Two n-cocycles f and g are called cohomologous, denoted by f ∼ g, if they are in the
same class in Hn(C;H,A). That is, f ∗ g−1 ∈ Bn(C;H,A), or, equivalently, f = dn−1h ∗ g,
for some h ∈ Reg(H⊗(n−1), A).

Let us consider Sweedler’s second cohomology group for A = I. The left H-action on I
is then given by ε : H ∼= H ⊗ I −→ I. The unit of the category I is trivially commutative,
and hence R2 := Reg(H ⊗H, I) is abelian.

A 2-cocycle is then a morphism σ ∈ Reg(H ⊗H, I) for which it holds

d2σ = (∂1 ∗ ∂−1
2 ∗ ∂3 ∗ ∂−1

4 )(σ) = 1R3 .

A 2-coboundary is a morphism τ ∈ Reg(H⊗H, I) for which there exists κ ∈ Reg(H, I) so
that τ = d1(κ) = (∂1 ∗ ∂−1

2 ∗ ∂3)(κ). We use the same notation for ∂i’s defining d1 and d2,
the difference will be clear from the context. In braided diagrams the 2-cocycle and the
2-coboundary conditions rewritten as (∂2∗∂4)(σ) = (∂1∗∂3)(σ) and τ ∗∂2(κ) = (∂1∗∂3)(κ)
respectively take the form:

H H H����

	

σ σ

=

H H H����

	

σ σ

(4.1.1)

H H����
τ 
	

κ

=

H H

κ κ

.

(4.1.2)

Definition 4.1.2 A 2-cocycle σ that satisfies

H r
σ

=
Hr = Hr

σ

is called normalized.

It can be proved that every 2-cocycle is cohomologous to a normalized one.

Applying the 2-cocycle condition (∂1 ∗ ∂−1
2 ∗ ∂3 ∗ ∂−1

4 )(σ) = 1R3 to H ⊗ ηH ⊗ ηH and
ηH ⊗ ηH ⊗H, one obtains respectively

H

r =

Hr r r
σ−1 σ

(4.1.3)

H

r =

Hr r r
σ−1 σ

.

(4.1.4)

In future computations we will need the explicit form of the 2-coboundary condition
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d1(κ) = (∂1 ∗ ∂−1
2 ∗ ∂3)(κ),

H H��
��

κ
	
κ κ−1

.

(4.1.5)

In various algebraic invariants there was observed that their structure is twisted by
2-cocycles. The 2-cocycle condition appears to be equivalent to the (co)associativity
of the (co)algebra (co)product. We will now prove that the same phenomenon occurs
at the categorical level. In particular, this will permit us to define an injective group
homomorphism from the group of 2-cocycles to the group of Galois objects with normal
basis in the next section. We start the computation by noting that from Diagram (4.1.1)
one obtains

H H H��
����

	

σ σ

H

=

H H H��
����

	

σ σ

H .

By cocommutativity of H, coassociativity and naturality we have

H��
��

H H H

=

H��
��
H H H.

We apply this to the first tensor factor in the left hand-side diagram and simultaneously
cocommutativity of H to the second tensor factor and we get

H H H��
����

	

σ σ

H

=

H H H��
����

	

σ σ

H .

Then it is also true that
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H H H���� ��
���� 
	

	

σ σ� 

H

=

H H H���� ��

	����

	

σ σ� 

H.

Denote the left hand-side by Σ and the right one by Ω. By naturality (and left and right
unity constraints) we have that Σ further equals to

Σ =

H H H�� ����
�� 
	

σ ��

	

σ� 

H

nat.
=

H H H�� ����
�� 
	

σ ��

	 
	

σ

H

T. 3.5.4
ass.
=

H H H�� ����
��

σ ��

	 
	

σ 
	
H

coass.
nat.
=

H H H����
σ ����

	
	��

σ 
	
H

bialg.
=

H H H����
σ 
	����

σ 
	
H.

Similarly, Ω equals to

Ω
nat.
=

H H H�� ��
���� ��

	
	

σ

� 

σ

H

T. 3.5.4
coass.

=

H H H�� ��
�� �� ��

	
	

σ

� 

σ

H

2×nat.
bialg.
=

H H H����
σ 
	����

σ 
	
H.
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Thus the equation Σ = Ω finally yields

H H H����
σ 
	����

σ 
	
H

=

H H H����
σ 
	����

σ 
	
H.

(4.1.6)

Lemma 4.1.3 Let σ ∈ Reg(H ⊗H, I) for a cocommutative Hopf algebra H. We define
Hσ := H as H-comodule with multiplication and unit on Hσ given by:

HσHσ
	
Hσ

=

H H����
σ 
	

H

and
r

Hσ

=
r r
σ−1r
H

(4.1.7)

respectively, where σ−1 is the inverse in the group Reg(H ⊗ H, I). If σ is a 2-cocycle,
then Hσ is a right H-comodule algebra. Moreover, if σ is normalized, then the unit on
Hσ coincides with ηH .

Proof. If σ is a 2-cocycle, we have from (4.1.6) that the multiplication of Hσ is associative.
For the unit property we find

Hσ r
	
Hσ

=

H r r
σ−1r����

σ 
	
H

=

H r r
σ−1��r

σ

H

coc.
=

H r r��
σ−1r

σ

H

nat.
=

H�� r rr σ−1

σ

H

(4.1.3)
=

H��r
H

=

H

H

Hσr
	
Hσ

=

Hr r
σ−1r����
σ 
	

H

=

Hr r
σ−1r ��

σ

H

(4.1.4)
=

H��r
H

=

H

H.

Thus Hσ is an algebra. For the compatibility of the H-comodule structure and multipli-
cation of Hσ we have

Hσ Hσ� 

PP

Hσ H

=

H H����
σ 
	��

H H

bialg.
=

H H����
σ ����

	
	
H H

2×
coass.
nat.
=

H H�� ��
�� ��
σ 
	
	

H H

nat.
=

H H� �� �
� 
����

σ 
	
H H

=

Hσ Hσ

PP PP


	
	
Hσ H.
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The compatibility with unit of Hσ is also satisfied,

r
PP

Hσ H

=

r r
σ−1r��
H H

=

r r
σ−1r r
H H

=
r r

Hσ H

so Hσ is a right H-comodule algebra. Note that if σ is normalized, then so is σ−1. We
then have

r
Hσ

=
r r
σ−1r
H

=
rrr
H

=
r
H.

Lemma 4.1.4 Let Σ denote the left hand-side and Ω the right hand-side of (4.1.6). It is

εHΣ = (∂2 ∗ ∂4)(σ) and εHΩ = (∂1 ∗ ∂3)(σ). (4.1.8)

Proof. The identity for Ω is easy:

εHΩ =

H H H����
σ 
	����

σ 
	r
counit

=

H H H����
σ 
	
σ

nat.
= (∂1 ∗ ∂3)(σ).

For Σ we have

εHΣ =

H H H����
σ 
	����

σ 
	r
counit

=

H H H����
σ 
	

σ

2xcoc.
=

H H H����
σ 
	

σ

T. 3.5.4
=

H H H����
σ 
	

σ

nat.
= (∂2 ∗ ∂4)(σ).

Corollary 4.1.5 The morphism σ ∈ Reg(H ⊗ H, I) for a cocommutative Hopf algebra
H is a 2-cocycle if and only if Hσ from (4.1.7) has an associative multiplication, i.e.,
relation (4.1.6) holds for σ.

Proof. The sufficient condition is clear from relation (4.1.6). Applying εH on the same
relation the necessary condition follows from the above lemma.



70 4. A short exact sequence for the group of Galois objects

4.2 Cocycles and Galois objects with a normal basis

We will now use the cocycle twisting presented in the previous section to define an in-
jective group morphism into the group of H-Galois objects with a normal basis from
Corollary 3.5.6.

Proposition 4.2.1 Let H be a flat cocommutative Hopf algebra in a braided monoidal
category C. The map

ζ : H2(C;H, I) −→ Galnb(C;H)

[σ] 7→ [Hσ]

is a group monomorphism, where Hσ is that from (4.1.7).

Proof. We have that Galnb(C;H) is a group due to Corollary 3.5.6. By Lemma 4.1.3 we
know that Hσ is a right H-comodule algebra. We are going to prove here that Hσ is
an H-Galois object, clearly, it will have a normal basis. Then we will prove that ζ does
not depend on the choice of a representative of the class of σ, that it is compatible with
product and that it is injective.

Let us prove that Hσ is an H-Galois object. In Proposition 3.2.5 we have seen that
H itself is an H-Galois object. Thus Hσ is faithfully flat, since Hσ = H as objects. Let
us prove that the inverse of canHσ is given by

γ :=

H H��
������

Sh Sh
	
σ−1� 

H H.

We first prove several identities to be used in the proof of γcanHσ = idHσ⊗Hσ . It is

H� ���
Sh

H H H

nat.
coass.

=

H� ���
Sh
H H H

coc.
=

H� ���
Sh
H H H

coass.
=

H� ���
Sh
H H H

(4.2.9)

H H� �� �

	��

Sh
	
H H H

coass.
ass.
=

H H� �� �
Sh ��
	

	
H H H

coass.
=

H H� �
��
Sh
	

	 ��
H H H

antip.
counit
unit
=

H H��
H H H

(4.2.10)
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and

H� ���
H H H

nat.
coass.

=

H� ���
H H H

coc.
=

H� ���
H H H.

(4.2.11)

We denote

ω :=

H H��
Sh
	
σ−1

.

Then we have

HσHσ

canHσ

γ

HσHσ

=

H H������ ��
σ 
	������

Sh Sh
	
σ� 

H H

bialg.
=

H H� �����
σ ������

	
	 ��

ω

Sh� 

H H

coass.
nat.
=

H H� ��� � �� �
σ

� ��� ��
Sh
	
	

� 
ω

H H

(4.2.9)
=

H H� ��� � �� �
σ

� ��� ��
Sh
	
	

� 
ω

H H

nat.
=

H H� ��� � �� �
σ

� ��� ��
Sh
	

� 

	
ω

H H

(4.2.9)
=

H H� ��� � �� �
σ

� ���
Sh ��
	 
	
	 ω

H H

coass.
ass.
=

H H� ��� � ���
σ
����

Sh ��

	
	
	 ω

H H

nat.
antip.

=

H H��� �� �
σ r ���� ��r 
	
	 ω

H H

=

H H��� ���
σ �� ��
	

ω

H H
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ω
=

H H��� �� �
σ
� ��� ��
	Sh
	

σ−1

H H

(4.2.10)
=

H H��� �
σ ����

σ−1

H H

nat.
=

H H� ����� ��
σ−1

σ

H H

(4.2.11)
coass.

=

H H� ����� ��
σ−1

σ

H H

nat.
=

H H�� ��
����
σ σ−1

H H

σ∗σ−1

=

H H����
r r

H H

=

H H

H H.

As before we next prove a few identities that we will need in the proof that canHσγ =
idHσ⊗H . We have

H H

Sh
	��
H H

bialg.
=

H H

Sh����

	
	
H H

S:coalg.
antih.

=

H H����
ShSh

	
	
H H

coc.
=

H H����
ShSh

	
	
H H.

(4.2.12)

From here, by naturality

H H

Sh
	��
H H

=

H H����
ShSh

	
	
H H.

(4.2.13)

On the other hand, we also have

H H� �
Sh ��
	� 

H H

coass.
ass.
=

H H����
Sh
	
	
H H

antip.
=

H H��rr
	
H H

=

H H

H H.

(4.2.14)

Applying coassociativity (and cocommutativity) in appropriate way one obtains the fol-
lowing equations:

H� �
��� ���
H H H H H

=

H� �� �����
H H H H H

(4.2.15)

H� �� ���
H H H H

=

H� �����
H H H H

(4.2.16)
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H� �����
H H H H

=

H� �� ���
H H H H

(4.2.17)
H� ���

H H H

=

H� �
��

H H H.

(4.2.18)

Now we compute

Hσ H

γ

canHσ

HσHσ

=

H H��
������

Sh Sh
	
σ−1� 
� �����
σ 
	

H H

(4.2.12)
coc.
=

H H��
����� �

Sh
	
σ−1� �� � ��
Sh Sh��� 
� 


σ 
	
H H

(4.2.17)
nat.
=

H H��
����� �

Sh � �
	 ��
σ−1 ShSh� �
� 
� 
��� 


σ

H H

(4.2.14)
=

H H��
����� �

Sh Sh
	 ��
σ−1� �
� 


σ

H H

(4.2.18)

(4.2.15)
=

H H� �� �� �������
Sh Sh
	
σ−1

� 

σ

H H

nat.
=

H H� �� ��� � ���
ShSh��
	
σ−1� 


σ

H H

nat.
=

H H� �� ��� � ���
ShSh��

	
	

σ−1

σ

H H

(4.2.13)
=

H H��� �
Sh� �
	����
σ−1

σ

H H

nat.
=

H H��� �
Sh ��
	����
σ σ−1

H H

coc.
=

H H��� �
Sh ��
	����
σ σ−1

H H

σ∗σ−1

=

H H����
Sh
	r

H H

ε:alg.m.
S:coalg.m.

=

H H����r r
H H

=

H H

H H.

This proves that canHσ is an isomorphism and that Hσ is an H-Galois object.

We next prove that ζ : H2(C;H, I) −→ Galnb(C;H) does not depend on the choice of
the representative. Assume σ ∼ τ in H2(C;H, I), i.e., that for some κ ∈ Reg(H, I) we
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have the identity σ = d1κ ∗ τ . We are going to prove that ϕ := (κ ⊗H)∆H : Hσ −→ Hτ

is an isomorphism of right H-comodule algebras. Knowing that Hσ and Hτ are H-Galois
objects, due to Proposition 3.2.6 it suffices to check that ϕ is a right H-comodule algebra
morphism. From the definition of ϕ, colinearity is immediate using coassociativity. It
remains to prove its compatibility with the algebra structure. For this we record some
necessary equalities. Applying three times coassociativity and once cocommutativity in
an appropriate way we obtain

H� �� ���
H H H H

=

H� �� ���
H H H H

(4.2.19)

H� �� ��� ��
H H H H H

=

H� �� ���
��

H H HH H.

(4.2.20)

Now we may check the multiplicativity of ϕ : Hσ −→ Hτ . We have,

HσHσ
	
ϕ

Hτ

=

H H����
σ 
	��

κ

H

σ=d1κ∗τ
bialg.
=

H H� �� �
���������� 
	
	��

τ κ

κ
	
κ κ−1

H

coass.
=

H H�� � �� ������� ��
��

τ 
	
	
κ κ
	

κ κ−1

H

nat.
=

H H� �� �
�� ���� ���� 
	
	��

τ κ

κ
	
κ κ−1

H

2×nat.
(4.2.19)

=

H H� �� �
� �� ���� � ���� 
	

κ κ 
	� 
 τ κ

κ−1

H

(4.2.20)
=

H H� �� �� �� � 
	� �
κ
� ��� ��

κ

� 
 τ 
	
κ−1 κ

H
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nat.
=

H H� �� �� �� � 
	� �
κ
� ��� ��

κ τ� 
 
	
κ−1 κ

H

2×nat.
=

H H� �������
	
κ����

κ τ��� �

	� 

κ−1 κ

H

bialg.
nat.
coass.

=

H H��� �
κ
� ���

����� 

κ τ� 
� �

κ−1 κ

H

κ−1∗κ
ε:alg.m.

=

H H� ���
κ
� �

��
κ τ � 


H

coass.
=

H H�� ��
κ κ����

τ 
	
H

=

HσHσ

ϕ ϕ
	
Hτ .

This proves that ϕ : Hσ −→ Hτ is compatible with multiplication. From the condition
σ = d1κ ∗ τ we have σ−1 = τ−1 ∗ d1κ

−1. Then ϕ is also compatible with unit, since

r
ϕ

Hτ

=

r r
σ−1r��
κ

Hτ

(4.1.5)
=

r��rr r
τ−1
��r r κ−1

κ 
	
κ−1 κ

Hτ

ηH=

rr r r ��r
τ−1 κ κ−1 κ κ−1r

Hτ

κ−1∗κ
κ∗κ−1

=

r r r r
τ−1 r rr

Hτ

=

r r
τ−1r

Hτ

=
r

Hτ .

This finishes the proof that ϕ : Hσ −→ Hτ is an isomorphism of right H-Galois objects.

We next show that ζ is a group morphism. It is necessary to prove that Hσ∗τ ∼=
Hσ2HHτ as right H-comodule algebras. We know from Lemma 3.3.6 that the morphism
∆H : H −→ H ⊗H factors through the (bi)comodule isomorphism ∆H : H −→ H2HH ∼=
H, so that eH,H∆H = ∆H . Furthermore, Hσ∗τ = H and Hσ2HHτ

∼= H2HH as right
H-comodules. It remains to prove that ∆H : Hσ∗τ −→ Hσ2HHτ is a morphism of algebras.
By 1.2.2 (i) it suffices to prove that ∆H : Hσ∗τ −→ Hσ ⊗Hτ is an algebra morphism. We
have

Hσ∗τ Hσ∗τ� 

∆H

HσHτ

=

H H����
σ∗τ 
	��

H H

=

H H� �� �
��������
σ τ 
	
	

H H

2×coass.
3×nat.

=

H H� �� �
��� �

σ τ ����

	
	
H H

coc.
=

H H� �� �
��� �

σ τ ����

	
	
H H
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nat.
=

H H� �� �
����

τ

σ
����

	
	
H H

nat.
(4.2.17)

=

H H� �� �� �
σ
����

τ��

	
	
H H

(4.2.16)
=

H H� �� �� �� �� �
σ
��

τ

� 
� 

H H

nat.
=

H H� �� �� �� �� �
σ 
	��

τ� 

H H

2×nat.
=

H H� �� �
� �������

σ 
	
τ 
	

H H

coc.
=

H H� �� �
��������
σ 
	 τ 
	

H H

=

Hσ∗τ Hσ∗τ

∆H ∆H

∇Hσ⊗Hτ
Hσ⊗Hτ

showing that ∆H : Hσ∗τ −→ Hσ⊗Hτ is multiplicative. It also preserves the unit. We have
(σ ∗ τ)−1 = σ−1 ∗ τ−1 and thus

r r
σ−1∗τ−1r� �
Hσ Hτ

=

r r����
σ−1 τ−1r r
H H

=

r r r r
σ−1 τ−1r r
H H

=
r r

HσHτ

=
r

Hσ⊗Hτ .

Thus ∆H : Hσ∗τ −→ Hσ2HHτ is an isomorphism of H-comodule algebras.

We finally prove that ζ is injective, that is, if Hσ
∼= Hτ as H-comodule algebras, then

σ ∼ τ in H2(C;H, I). Let ψ : Hσ −→ Hτ be the given H-comodule algebra isomorphism.
We define κ := εHψ : Hσ −→ I. It is convolution invertible with inverse κ−1 = κS = εHψS.
Indeed,

Hσ

κ−1∗κ
=

Hσ� �hS
ψ ψr r

ε:alg.m.
=

Hσ� �hS
ψ ψ� 
r

ψ:alg.m.
=

Hσ� �hS� 

ψr

=

Hσrr
ψr

ψ:alg.m.
=

Hσrrr
=

Hσ

r = 1R1.

We claim that σ = d1κ ∗ τ (then σ ∼ τ). Note that we can express ψ in terms of κ as
ψ = (κ⊗H)∆H : H −→ H, since

H��
κ

H

=

H��
ψr

H

ψ:colin.
=

H

ψ��r
H

=

H

ψ

H.
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Then ψ : Hσ −→ Hτ is the same one we have dealt with when we proved that ζ : H2(C;H, I)
−→ Galnb(C;H) did not depend on a representative of the class in H2(C;H, I). When we
proved that ϕ : Hσ −→ Hτ was an algebra morphism in the diagram computation after
(4.2.20), we have proved the following. Starting from the end of this computation on
page 75 and viewing diagrams toward left until the third diagram from the start we see
that ∇Hτ (ϕ ⊗ ϕ) = ϕ∇d1κ∗τ – taking into account the bialgebra compatibility written
out there. The same holds for ψ, because in the mentioned computation we have used
only the definition of ϕ = ψ. Now, we know that ψ is an algebra morphism, so we have
∇Hτ (ψ ⊗ ψ) = ψ∇Hσ . However, we also know that ψ is an isomorphism, hence the two
equations for ψ yield ∇Hσ = ∇d1κ∗τ . Applying εH to this we obtain

H H����
σ 
	r =

H H����
d1κ∗τ 
	r i.e.

H H

σ
=

H H

d1κ∗τ

proving that σ = d1κ ∗ τ , as desired.

4.3 More on Galois objects with a normal basis

The aim of this section is to prove that the group monomorphism ζ from Proposition 4.2.1
is surjective, i.e. that Galnb(C;H) ∼= H2(C;H, I). Thus we will obtain a generalization to
a braided monoidal category of the original result [126, Theorem 8.6]. This is the Normal
Basis Theorem for braided monoidal categories.

The proof for the following claim in a braided monoidal category can be found in the
first part of the proof of [2, Proposition 9], where the claim is formulated for symmetric
categories. We show that the symmetricity hypothesis is not necessary.

Lemma 4.3.1 Let A be an H-Galois object with a normal basis. There is a convolution
invertible right H-colinear morphism ν : H −→ A satisfying νηH = ηA.

Proof. Denote by ψ : H −→ A the right H-comodule isomorphism. We define the
morphism ν : H −→ A as ν := κ ⊗ ψ, where κ := εHψ

−1ηA : I −→ I is a commuting
factor (because of the left and right unity constraints). We first prove hat νηH = ηA.
Indeed,

νηH = (ψηH)⊗ κ = (ψSηH)⊗ (εHψ
−1ηA)

= (ψS)(∇H(S ⊗H)∆H)(ψ−1ηA)
= ψS∇H(S ⊗H)(ψ−1 ⊗H)ρAηA
= ψS∇H(Sψ−1 ⊗H)(ηA ⊗ ηH)
= ψSSψ−1ηA
= ψψ−1ηA = ηA.

Starting from the second equality we applied: antipode-unit compatibility and the defi-
nition of κ, the antipode rule, ψ is right H-colinear, A is a comodule algebra, the rule of
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the unit on H, S2 = idH since H is cocommutative. We will write

κ⊗ (ψηH) = ηA. (4.3.21)

We have that ν is right H-colinear, as so are κ and ψ. Let us prove that the convolution
inverse of ν is given by ν ′ := ∇A(A⊗(εHψ

−1)⊗A)(γr⊗(ψηH)) where γr = can−1(ηA⊗H) is
the right H-colinear morphism we introduced in Section 3.5 before (3.4.9). In the following
diagrams ψ′ will stand for ψ−1. We have:

ν ∗ ν ′ =

H� �r
κ ψ γr ψ

ψ′r� 
� 

A

(4.3.21)
=

H� �
ψ γr
	ψ′r
A

(3.4.10)
=

H��
ψ

can−1

ψ′r
A

ψ:right
H-colin.

=

H

ψ

PP

can−1

ψ′r
A

=

Hr ψ
can

can−1

ψ′r
A

=

Hr ψ
ψ′r

A

=

Hrr
A.

Note that ρA = can(ηA ⊗A). This we applied in the fourth equality. On the other hand,
it is

ν ′ ∗ ν =

H� �
γr r ψ

ψ′ ψ κr� 
� 

A

(4.3.21)
=

H��
γr ψ

ψ′r� 

A

γr:right
H-colin.

=

H

γr

PP

ψ′ ψr� 

A

ψ′:right
H-colin.

=

H

γr

ψ′��r ψ� 

A

εH=

H

γr
	
A

(3.4.9)
=

Hrr
A.

A right H-comodule algebra A for which there exists a right H-colinear convolution
invertible morphism ν : H −→ A is called H-cleft, and the morphism ν is called a cleaving
morphism. One may always assume that νηH = ηA, because otherwise one may take
ν ′ := ∇A[(ν−1ηH)⊗ ν]. Thus with the above lemma we have proved:

Corollary 4.3.2 An H-Galois object with a normal basis is H-cleft.

Due to [5, Proposition 1.2 c)], which can be seen as a categorification of [126, Lemma
8.4], for an H-cleft comodule algebra A one has A ∼= AcoH#σνH as H-comodule algebras,
where σν ∈ H2(C;H,AcoH) is obtained as a factorization through AcoH of the morphism
σν = ∇A(ν ⊗ ν) ∗ (ν−1∇H) : H ⊗ H −→ A, where ν is a cleaving morphism (from
Lemma 4.3.1). The cocycle twisted smash product turns out to be isomorphic to Hσν

from (4.1.7), since AcoH ∼= I, due to Proposition 3.2.2. We know from Proposition 4.2.1
that Hσν is an H-Galois object. Thus we have proved that A ∼= Hσν as H-Galois objects
with normal basis, and we may state:

Proposition 4.3.3 The group monomorphism ζ from Proposition 4.2.1 is an isomor-
phism, i.e. Galnb(C;H) ∼= H2(C;H, I).
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4.4 The Picard group of invertible comodules

Dually to the Morita theory which studies equivalences between categories of modules,
Takeuchi proposed in [129] a theory that describes equivalences of categories of comodules
for coalgebras over a field. This theory is called Morita-Takeuchi theory. Torrecillas and
Zhang defined in [135] the Picard group of a coalgebra over a field as the set of isomorphism
classes of comodules that give a Morita-Takeuchi equivalence. For a further reference see
[28]. Morita-Takeuchi theory for coalgebras over commutative rings was handled by Al-
Takhman in [1], see also [27]. In this section we define the Picard group of a coalgebra in a
(braided) monoidal category following [28]. As observed by Al-Takhman, the associativity
of the cotensor product proved in [28, Lemma 10.4.1] is not well established, because
the proof overlooks flatness of one object. To overcome this problem we rely on our
Lemma 3.3.8.

A functor F : DC −→ CC is called a C-functor if for all M ∈ DC and N ∈ C we have
F(M ⊗N) = F(M)⊗N .

Theorem 4.4.1 Let C and D be flat coalgebras in a monoidal category C. The following
are equivalent:

1. The functors F : DC CC : G-� establish a C-equivalence;

2. There is M ∈ CCD flat and coflat in CD such that F(−) ∼= M2D−, and M ′ ∈ DCC
flat and coflat in CC such that G(−) ∼= M ′2C−, satisfying M2DM

′ ∼= C and
M ′2CM ∼= D by isomorphisms f in CCC and g in DCD respectively, and so that

M2D(M ′2CM) ∼= (M2DM
′)2CM -f2CM

C2CM

M
?

λCM

M2DD
?

M2Dg

-
ρDM

(4.4.22)

and

M ′2C(M2DM
′) ∼= (M ′2CM)2DM

′ -g2DM
′
D2DM

′

M ′
?

λDM ′

M ′2CC
?

M ′2Cf

-
ρCM ′

(4.4.23)

commute. Isomorphisms λ’s and ρ’s are those from Lemma 3.3.6.

Proof. 1) ⇒ 2) Coalgebras C and D from C become algebras in the opposite category
Cop. Let us denote these algebras by C and D respectively. The condition 1) read in the
category Cop then means that there are Cop-equivalence functors F : D(Cop) −→ C(Cop) and
G : C(Cop) −→ D(Cop). By Morita Theorem 1.6.5, F ∼= M ⊗D− for some M ∈ C(Cop)D and
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G ∼= M
′ ⊗C − for some M

′ ∈ DCC . Moreover, we have that M is coflat in (Cop)D and M
′

is coflat in (Cop)C , as well as that there are isomorphisms f : M ⊗D M
′ −→ C in C(Cop)C

and g : M
′ ⊗C M −→ D in D(Cop)D so that there are two commutative diagrams, which

read in C give Diagrams (4.4.22) and (4.4.23). Back in C we have thus objects M ∈ CCD
coflat in CD and M ′ ∈ DCC coflat in CC such that F ∼= M ⊗D − and G ∼= M ′ ⊗C −, and
we have isomorphisms f : M2DM

′ −→ C in CCC and g : M ′2CM −→ D in DCD so that
the desired two diagrams commute.

Let us prove that M is flat, then similarly M ′ will be flat too. Let

E A-
e -k

B-
l

be an equalizer in C. Since D is flat,

D ⊗ E D ⊗ A-D ⊗ e -D ⊗ k
D ⊗B-

D ⊗ l

is an equalizer in C, which by 1.2.3 (i) becomes an equalizer in DC. We now apply that
M2D− : DC −→ CC is a C-equivalence to conclude that

M2D(D ⊗ E) M2D(D ⊗ A)-
M2D(D ⊗ e) -

M2D(D ⊗ k)
M2D(D ⊗B)-

M2D(D ⊗ l)

i.e.

(M2DD)⊗ E (M2DD)⊗ A-
(M2DD)⊗ e -

(M2DD)⊗ k
(M2DD)⊗B-

(M2DD)⊗ l

is an equalizer in CC. Applying the isomorphism M2DD ∼= M and the fact that the
forgetful functor U : CC −→ C preserves equalizers since C is flat, we finally obtain that

M ⊗ E M ⊗ A-M ⊗ e -M ⊗ k
M ⊗B-

M ⊗ l

is an equalizer in C. This proves that M is flat.

2)⇒ 1). Note that we have the associativity laws in the two diagrams by Lemma 3.3.8.
Likewise, by part 2) of the mentioned lemma, we haveM2D(M ′2CX) ∼= (M2DM

′)2CX ∼=
C2CX ∼= X for every X ∈ CC. Similarly, M ′2C(M2DY ) ∼= (M ′2CM)2DY ∼= D2DY ∼=
Y for every Y ∈ DC. In other words, putting F := M2D− : DC −→ CC and G := M ′2C− :
CC −→ DC, we have FG ∼= IdCC and GF ∼= IdDC. The functors F and G are C-equivalences
because M and M ′ are coflat in CD and CC , respectively.

Definition 4.4.2 Let H ∈ C be a flat and cocommutative Hopf algebra and let C be
braided. An invertible H-comodule is a flat right H-comodule M coflat in CH for which
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there exists a further flat right H-comodule M ′ coflat in CH so that M2HM
′ ∼= H and

M ′2HM ∼= H by H-bicomodule isomorphisms f and g, respectively, so that

M2H(M ′2HM) ∼= (M2HM
′)2HM -f2HM

H2HM

M
?

λHM

M2HH
?

M2Hg

-
ρHM

(4.4.24)

and

M ′2H(M2HM
′) ∼= (M ′2HM)2HM

′ -g2HM
′
H2HM

′

M ′
?

λHM ′

M ′2HH
?

M ′2Hf

-
ρHM ′

(4.4.25)

commute. We turned right H-comodules into left ones via the braiding.

From what we have seen so far the following assertion is clear.

Proposition and Definition 4.4.3 The set of isomorphism classes of invertible H-
comodules in C is a group under multiplication induced by the cotensor product over H,
with unit the class of H and the inverse for a class of M is the class of that M ′ for which
M2HM

′ ∼= H ∼= M ′2HM . We call this group the Picard group of invertible H-comodules
and denote it by Picco(C;H).

Recall that in the proof of Theorem 3.5.1 on page 59 we constructed a morphism
Ψ : A2HB −→ B2HA. As we have seen, it is a well defined isomorphism of H-bicomodules
if C is symmetric, or if A and B are H-Galois objects and Assumption 3.4.1 holds, or A
and B have a normal basis. If one of these conditions is satisfied, then in the definition of
an invertible H-comodule the second isomorphism (that we denoted as g) is superfluous.
In this case the group Picco(C;H) is abelian.

In the notation of the Picard group of invertible comodules we write “co” as there
exists a Picard group of invertible modules. Which relation between these two groups
exists we will investigate in Section 4.5.

The following proposition reveals the relation between Galois objects and invertible
comodules.

Proposition 4.4.4 Let H be a flat and cocommutative Hopf algebra. A right H-Galois
object A is an invertible H-comodule.

Proof. As a right H-Galois object, A is a flat right H-comodule and so is its opposite
algebra A. Furthermore, there are H-bicomodule isomorphisms

γ̃r : H −→ A2HA and γ̃l : H −→ A2HA



82 4. A short exact sequence for the group of Galois objects

see (3.4.12) and γ̃l below it. We are going to prove that A, and then analogously A, is coflat
in CH and that Diagrams (4.4.24) and (4.4.25) commute with M = A,M ′ = A, f = γ̃l
and g = γ̃r.

To prove coflatness of A we need to prove that the associativity constraint induces an
isomorphism (A2HX) ⊗ Y ∼= A2H(X ⊗ Y ) in HCD for arbitrary X ∈ HC and Y ∈ CD.
In view of Remark 3.3.4 it suffices to prove that the mentioned will be an isomorphism in
C. For this purpose we consider the diagram

A
A
A
A
A
AAK

eA⊗H,X ⊗ Y

(A⊗H)⊗X ⊗ Y

[(A⊗H)2HX]⊗ Y

HHH
HHHHj A⊗X ⊗ Y

A⊗ εH ⊗X ⊗ Y

��
�
��
��*

A⊗ λX ⊗ Y

A⊗H ⊗X ⊗ Y

��
��
��*δ−1

A,X ⊗ Y

(can2HX )⊗ Y

�
�
�
�
�
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�


can−1 ⊗ X ⊗ Y

HH
HHHHj

δA,X⊗Y

�
�
�
�
�
�
��

eA⊗H,X⊗Y

(A⊗H)2H(X ⊗ Y )

(A⊗ A)2H(X ⊗ Y )

B
B
B
B
B
BBN

can−12H (X ⊗ Y )

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BN

can−1 ⊗ X ⊗ Y

���
���

���

eA⊗A,X ⊗ Y

(A⊗ A)⊗X ⊗ Y

A⊗ eA,X ⊗ Y
�

�
�
�

��	

A⊗ eA,X⊗Y

@
@
@
@
@@R

[(A⊗ A)2HX]⊗ Y

κA,A,X ⊗ Y

@
@
@

@
@@I

κ−1
A,A,X⊗Y

�
�

�
�
�
�	

A⊗ (A2HX)⊗ Y A⊗ [A2H(X ⊗ Y )]-β

eA⊗A,X⊗Y
H
HHH

HHHHj

αA,A,X⊗Y

�
�
�

�
�
�
�	

(A⊗ A)⊗ (X ⊗ Y )

αA,A,X ⊗ Y

@
@
@
@
@
@
@@R

A⊗ (A⊗X)⊗ Y A⊗ [A⊗ (X ⊗ Y )].-
A⊗ αA,X,Y

2

3

4 5

6

7

8

1

Here the morphisms κ are natural transformations from Lemma 3.3.3, which in this case
are isomorphisms since A is flat. Note that the natural isomorphism δA,Z : A ⊗ Z −→
(A ⊗ H)2HZ, for Z ∈ HC, is a left and dual version of the isomorphism γ from 1.4.4.
We have that its inverse is given by δ−1

A,Z = (A⊗ εH ⊗Z)eA⊗H,Z . As usual, the α’s denote
the associativity constraint and let β be equal to the composition of the six isomorphisms
lying on the remaining edges of diagram 〈8〉. Clearly, β is an isomorphism. The diagrams
〈2〉 – 〈7〉 commute by definitions of the morphisms along diagram 〈8〉. Using the equalizer
property of ((A⊗H)2HX, eA⊗H,X), which appears in diagram 〈4〉, we find

(A⊗H)2HX Y

eA⊗H,Xr
��

A H X Y

e
=

(A⊗H)2HX Y

eA⊗H,X��r
A H X Y

=

(A⊗H)2HX Y

eA⊗H,X

A H X Y.

(4.4.26)

We now have
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(A⊗ e A,X⊗Y )β(κ−1
A,A,X ⊗ Y )((can−12HX )⊗ Y ) =

β
= (A⊗ eA,X⊗Y )κ−1

A,A,X⊗Y (can−12H (X ⊗ Y ))δA,X⊗Y (δ−1A,X ⊗ Y )
〈4〉−〈7〉

= αA,A,X⊗Y (can−1 ⊗ X ⊗ Y )(A⊗ λX ⊗ Y )(A⊗ εH ⊗ X ⊗ Y )(eA⊗H ,X ⊗ Y )
(4.4.26)

= (A⊗ αA,X,Y )(αA,A,X ⊗ Y )(can−1 ⊗ X ⊗ Y )(eA⊗H ,X ⊗ Y )
〈2〉−〈3〉

= (A⊗ αA,X,Y )(A⊗ eA,X ⊗ Y )(κ−1
A,A,X ⊗ Y )((can−12HX )⊗ Y ).

In the penultimate equality we have omitted few associativity constraints. Canceling out
the two isomorphisms on right hand-sides we get

(A⊗ eA,X⊗Y )β = (A⊗ αA,X,Y )(A⊗ eA,X ⊗ Y )
(3.3.7)

= (A⊗ eA,X⊗Y )(A⊗ θA,X,Y ).

Since A is flat, A⊗eA,X⊗Y is a monomorphism. Thus we obtain β = A⊗θA,X,Y . Recalling
that β is an isomorphism and that A is faithfully flat we conclude finally that θA,X,Y :
(A2HX)⊗ Y −→ A2H(X ⊗ Y ) is an isomorphism.

We next show that Diagram (4.4.24) commutes, the other one then commutes by
symmetry. Galois objects are in particular faithfully flat, then due to Lemma 3.3.8 we
have the associativity laws in the two diagrams. Let λ : A −→ H2HA and ρ : A −→ A2HH
denote the isomorphisms from Lemma 3.3.6 induced by the left and right H-comodule
structure morphisms of A, respectively. In order to prove that

-ρ
A2HH

(A2HA)2HA ∼= A2H(A2HA)
?

A2H γ̃r

A

H2HA
?

λ

-
γ̃l2HA

(4.4.27)

commutes we compute:

A

ρ

A2H γ̃r
eA,A2HA

A⊗eA,A
A⊗(A⊗A)

=

A

ρ

eA,H

A⊗γ̃r
A⊗eA,A

A⊗(A⊗A)

=

A

PP
γr

A A⊗A

=: Σ

and

A

λ

γ̃l2HA

eA,A2HA

eA⊗A,A

(A⊗A)⊗A

=

A

λ

γl2HA
eA⊗A,A

(A⊗A)⊗A

=

A

λ
eH,A

γl⊗A

(A⊗A)⊗A

=

A

PP

γr

A⊗A A

=: Ω.
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We compose Σ by canl ⊗ A and obtain

(canl ⊗ A)Σ =

A

PP
γr

PP


	
H A A

com.
=

A

PP��
γr
	

H A A

coc.
=

A

PP��
γr
	

H A A

com.
nat .
=

A

PP

PP
γr
	

H A A

(3 .4 .11 )
=

A

PPr
H A A.

On the other hand, it is

(canl ⊗ A)Ω =

A

PP

r
can−1

l

canl

H A A

=

A

PP

r
H A A

= (canl ⊗ A)Σ .

However, canl is an isomorphism, then so is canl ⊗ A. Thus we obtain Σ = Ω up to
associativity constraint, or

(A⊗ eA,A)eA,A2HA(A2H γ̃r)ρ = αA,A,AeA⊗A,A(eA,A2HA)(γ̃l2HA)λ. (4.4.28)

In the diagram

(A2HA)2HA (A⊗ A)2HA-
eA,A2HA

(A⊗ A)⊗ A-
eA⊗A,A

A2H(A2HA) A⊗ (A2HA)-
eA,A2HA

A⊗ (A⊗ A)-
A⊗ eA,A?

ω−1

A,A,A

?

κ−1

A,A,A

?

αA,A,A

the left rectangular is diagram 〈1〉 from the proof of Lemma 3.3.8 and the right one is
the Diagram (3.3.8) from the proof of Lemma 3.3.3. Thus the outer diagram commutes,
yielding αA,A,AeA⊗A,A(eA,A2HA) = (A⊗ eA,A)eA,A2HAω

−1

A,A,A
. With this equation (4.4.28)

becomes

(A⊗ eA,A)eA,A2HA(A2H γ̃r)ρ = (A⊗ eA,A)eA,A2HAω
−1

A,A,A
(γ̃l2HA)λ.

We have that A is flat, then A⊗ eA,A is a monomorphism, as so is eA,A2HA. This finally

implies (A2H γ̃r)ρ = ω−1

A,A,A
(γ̃l2HA)λ, proving that Diagram (4.4.27) commutes.

4.5 Sweedler cohomology versus Galois objects

In this section we prove that there is a short exact sequence connecting Sweedler’s second
cohomology group, the group of Galois objects and the Picard group. We will also examine
the relation between this sequence and that of Álvarez and Vilaboa, as well as the relation
between the Picard groups of invertible modules and comodules.
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Theorem 4.5.1 Suppose Assumption 3.4.1 is fulfilled. There is a short exact sequence
of abelian groups:

1 H2(C;H, I)- Gal(C;H)-ιζ Picco(C;H).-ξ

The map ζ is from Proposition 4.2.1, ι : Galnb(C;H) −→ Gal(C;H) is the embedding,
whereas ξ([A]) = [A], for [A] ∈ Gal(C;H).

Proof. In Theorem 3.5.1 we proved that since Assumption 3.4.1 is fulfilled, Gal(C;H)
is a group. By Proposition 4.2.1 we know that ζ is injective, hence clearly so is ιζ as
well. Proposition 4.4.4 tells us that ξ is well defined. The group structures in Gal(C;H)
and Picco(C;H) are the same – both are induced by the cotensor product over H. Then
clearly ξ is a group map. From the definition of H-Galois objects with a normal basis is
evident that the kernel of ξ is precisely Galnb(C;H). Exactness of the above sequence at
Gal(C;H) is proved in Proposition 4.3.3.

There is a similar short exact sequence to the above one. Next we are going to
present the other sequence and to compare it with the former. In [2, Theorem 11] and [4,
Proposition 0.3] the authors proved that there was a short exact sequence

1 H2(C;H, I)- Gal(C;H)- Pic(C;H∗),-ξ (4.5.29)

where C denotes a closed symmetric monoidal category with equalizers and coequalizers
and H a finite and cocommutative Hopf algebra. The group Pic(C;H∗) consists of isomor-
phism classes of invertible left H∗-modules. These are those modules M for which there
exists another left H∗-module M ′ so that M ⊗H∗ M ′ ∼= H∗ and M ′ ⊗H∗ M ∼= H∗ (when
the category is braided, but not symmetric). As we convert right H-comodules into left
ones via the braiding since H is cocommutative so we convert left H∗-modules into right
ones via the braiding since H∗ is commutative. The product in Pic(C;H∗) is induced by
the tensor product over H∗, unit is given by the class of H∗ and inverse of the class of
M is obviously given by the class of the mentioned module M ′. The map ξ : Gal(C;H)
−→ Pic(C;H∗) is given by ξ([A]) = [A∗].

In our short exact sequence from Theorem 4.5.1 we have used the group of invertible
H-comodules Picco(C;H) rather than the group of invertible H∗-modules Pic(C;H∗). We
are going to establish a relation between these two exact sequences.

Assume first that C is a closed braided monoidal category. A morphism between two
finite objects f : M −→ N induces a morphism f ∗ : N∗ −→M∗ via

N∗ M

f∗

hev =

N∗ M

f

hev
.

(4.5.30)

Let M be a finite right comodule over a finite coalgebra H with a structure morphism ρ
and let δM,H : M∗ ⊗ H∗ −→ (M ⊗ H)∗ be the natural isomorphism induced by (1.5.12).



86 4. A short exact sequence for the group of Galois objects

There is a structure of a right H∗-module on M∗ given via the universal property of
([M, I], ev : [M , I ]⊗M −→ I ) by

M∗ H∗M

��

hev :=

M∗⊗H∗ M
δM,H

ρ∗

hev
ρ∗
=

M∗⊗H∗ M
δM,H ρ

hev δ
=

M∗ H∗M

PP


	
	.
(4.5.31)

For completeness we add that a reverse process is possible. Namely, if N is a finite right
module over a finite algebra A, then N∗ becomes a right A∗-comodule with the structure
morphism

N∗

PP

N∗A∗

:=

N∗ r r
db−1 db−1

��
	
N∗A∗.

(4.5.32)

Adding the condition ΦM,H = Φ−1
M,H for every finite M ∈ CH the two above described

processes induce a duality of categories. If moreover H is cocommutative, the equivalence
holds for the respective categories of bi(co)modules.

Note that each H-comodule in the isomorphism class of a finite invertible H-comodule
M is finite and since the product of two finite (invertible H-comodules) is finite, we have a
subgroup of finite invertible H-comodules Piccof (C;H) ⊆ Picco(C;H) . Let β : Piccof (C;H)
−→ Pic(C;H∗) denote a morphism given by β([M ]) := [M∗], with the structure given by
(4.5.31).

Proposition 4.5.2 Assume that C is a closed symmetric monoidal category with equal-
izers and coequalizers and that H is a finite and cocommutative Hopf algebra. If ξ :
Gal(C;H) −→ Picco(C;H) is the morphism from Theorem 4.5.1, then βξ : Gal(C;H)
−→ Pic(C;H∗) is the group morphism ξ from the sequence (4.5.29).

Proof. First of all, note that H is flat by Lemma 1.5.4. In Proposition 5.2.5 we proved that
each H-Galois object is faithfully projective, hence it is finite. Thus Im(ξ) ⊆ Piccof (C;H)

and then clearly βξ = ξ. In order to show that βξ is a group morphism we prove that
for two H-Galois objects A and B it is (A2HB)∗ ∼= A∗ ⊗H∗ B∗ in CH∗ . Set C for the

monoidal subcategory of finite objects in C and denote by F := (−)∗ : CH −→ CH∗ the
functor defined via (4.5.31) and (4.5.30). It is contravariant, since (−)∗ = [−, I]. Consider
the equalizer in C

A2HB A⊗B-e -ρA ⊗B
A⊗H ⊗B.-

A⊗ λB

By 1.2.3 (i) it is an equalizer in CH and then also in CH – as an H-Galois object A2HB

is finite. Note that CH is monoidal, so we may apply functor F to the above equalizer to
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obtain the sequence

(A⊗B)∗ (A2HB)∗.-e∗-
(ρA ⊗B)∗

(A⊗H ⊗B)∗ -
(A⊗ λB)∗

(4.5.33)

Let µM∗ := (ρM)∗δM,H and νN∗ := (λN)∗δH,N . By naturality of δ and definitions of µM∗
and νN∗ in the diagram

e∗

@
@
@
@
@
@R

-
(ρA ⊗B)∗

(A⊗H ⊗B)∗ (A⊗B)∗-
(A⊗ λB)∗

(δ−1
M,H ⊗N∗)δ

−1
M⊗H,N =

?

(M∗ ⊗ δ−1
H,N)δ−1

M,H⊗N
?

δ−1
M⊗N

A∗ ⊗B∗ (A2HB)∗-
e∗δA,B-µA∗ ⊗B∗

A∗ ⊗H∗ ⊗B∗ -
A∗ ⊗ νB∗

the left rectangular commutes both with upper and lower lines. The right triangle obvi-
ously commutes, thus the sequence (4.5.33) will be a coequalizer in CH∗ if and only if so
is the bottom row in the above picture. On the other hand, we know that the coequal-
izer in CH∗ of the bottom row is given by (A∗ ⊗H∗ B∗,ΠA∗,B∗). We are going to prove
that (4.5.33) is a coequalizer in CH∗ , then from uniqueness of coequalizers we will have
(A2HB)∗ ∼= A∗ ⊗H∗ B∗ in CH∗ .

Let t : (A⊗B)∗ −→ T be a morphism in CH∗ so that t(ρA⊗B)∗ = t(A⊗ λB)∗. Acting

on this by F−1 we obtain (ρA⊗B)t∗ = (A⊗λB)t∗ in CH . Since (A2HB, e) is an equalizer,

there exists a unique morphism h : T ∗ −→ A2HB in CH such that eh = t∗. Then the
action of F on this gives further that the morphism h∗ : (A2HB)∗ −→ T is a unique
morphism such that t = h∗e∗. This proves the claim.

The relation between the groups Picco(C;H) of invertible Picard H-comodules and
Pic(C;H∗), the group of invertible Picard H∗-modules, is revealed by the following propo-
sition. For this, observe that in a closed category C the modules determining the group
Pic(C;H∗) can be viewed as C-autoequivalences of H∗C, dually to Theorem 4.4.1. Note that
the dual conditions to the flatness and coflatness conditions appearing in Theorem 4.4.1,
2) are omitted, because C is closed (Lemma 1.4.5 and 1.4.8).

Proposition 4.5.3 Assume that C is a closed braided monoidal category with equalizers
and coequalizers and that H is a finite and cocommutative Hopf algebra. There is a group
isomorphism Picco(C;H) ∼= Pic(C;H∗).

Proof. As we saw in the previous lemma we have that H is flat. Let A : CH H∗C : B-�

denote the isomorphism of categories from 1.5.8 and E : CH HC : H-� the isomor-
phism of categories by which coactions change sides via the braiding. Take [M ] ∈
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Picco(C;H). Then FM := M2H− : HC −→ HC is a C-autoequivalence. Consider the
composition of functors

H∗C
B−→ CH E−→ HC FM−→ HC H−→ CH A−→ H∗C

and denote A′ := AH and B′ := EB. Since FM is an equivalence and A,B, E and H are
isomorphisms, then GM := A′FMB′ is an autoequivalence of H∗C. Due to Theorem 1.6.5
we have GM ∼= M † ⊗H∗ − with M † ∼= GM(H∗) = A′FMB′(H∗) = A′(M2HB′(H∗)). We
define a map

Λ : Picco(C;H) −→ Pic(C;H∗)

by
Λ([M ]) := [M †].

This will be a group map. We have

Λ([M ][N ]) = Λ([M2HN ]) = [(M2HN)†],

with (M2HN)† ∼= GM2HN(H∗) and, on the other hand

Λ([M ])Λ([N ]) = [M †][N †] = [M † ⊗H∗ N †],

with M † ⊗H∗ N † ∼= M † ⊗H∗ (N † ⊗H∗ H∗) ∼= GMGN(H∗). Note that

FMFN(X) = M2H(N2HX) ∼= (M2HN)2HX = FM2HN(X)

for any X ∈ HC. With this we get further GMGN = A′FMB′A′FNB′ = A′FMFNB′ =
A′FM2HNB′ = GM2HN . Then we obtain in particular, M † ⊗H∗ N † ∼= GMGN(H∗) =
GM2HN(H∗) ∼= (M2HN)† as left H∗-modules, hence Λ is a group map.

Assume Λ([M ]) = [H∗], i.e. M † ∼= H∗ in H∗C. Then for any X ∈ H∗C we have
GM(X) ∼= M † ⊗H∗ X ∼= H∗ ⊗H∗ X ∼= X, i.e. GM = Id

H∗C. Then FM = B′GMA′ =
IdHC = M2H−. This means that M ∼= H in CH and Λ is injective. To prove surjectivity
of Λ take [L] ∈ Pic(C;H∗). If G(L)

∼= L ⊗H∗ − denotes the induced autoequivalence of

H∗C, then F(L) = B′G(L)A′ is its corresponding autoequivalence of HC. By Theorem 1.6.5
F(L)

∼= M2H− for some M ∈ CH . This implies G(L)
∼= M † ⊗H∗ −. After evaluating G(L)

at H∗ we obtain L ∼= M † in H∗C. Then clearly Λ([M ]) = [L].



Chapter 5

Beattie’s sequence in a braided
monoidal category

In [86] Long has proved that the Brauer group of H-module algebras for a cocommutative
Hopf algebra H over a field K decomposes into the direct product of the Brauer group of
K and Sweedler’s second cohomology group of H with values in K. This was obtained as
a consequence of a split exact sequence connecting the three groups. Over a commutative
ring R in [112] a similar split exact sequence was constructed, where the Hopf algebra is the
group ring RG and the cohomology group is replaced by the group of RG-Galois objects.
Accordingly, the Brauer group of G-graded algebras, that are R-Azumaya, was handled.
When R is a field, Long’s sequence is recovered. Picco-Platzeck’s exact sequence was
generalized by Beattie in [12], where now a finitely generated and projective commutative
and cocommutative Hopf algebra H generalizes RG. In 1985 using techniques of tapestry
diagrams Beattie’s sequence was constructed in [64] in a closed symmetric category that
has equalizers and coequalizers and for a finite, commutative and cocommutative Hopf
algebra H. In this chapter we will construct this split exact sequence for a finite and
commutative Hopf algebra H in a braided, not necessarily symmetric, monoidal category
that is closed, has equalizers and coequalizers, and such that the braiding is H-linear and
satisfies ΦA,X = Φ−1

A,X for any H-Galois object A and any X ∈ C. The cocommutativity of
H appears as a consequence of this latter fact. Our proof, as so was the case throughout
this work in previous chapters, is done by using braided diagrams which are nowadays
wider established than tapestry diagrams in the mathematical community.

In this chapter C will denote a closed braided monoidal category with equalizers and
coequalizers; H ∈ C a flat Hopf algebra and the braiding in C will be H-linear. Though,
for some results not all of the assumptions will be necessary.

89
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5.1 The map Π assigning an H-Galois object to an

H-Azumaya algebra

We are going to define a morphism that assigns to any H-Azumaya algebra (with inner ac-
tion) an H-Galois object (with normal basis). We start by recalling from [95, Proposition
2.3] the defining the smash product in a braided monoidal category.

Lemma and Definition 5.1.1 Let H be a Hopf algebra in C. For a left H-module
algebra A in C the smash product algebra A#H is defined as follows: as an object
A#H = A⊗H, the multiplication and unit are given by

A#H A#H� 

A#H

:=

A H A H��
PP 
	� 

A H

and
r

A#H

:=
r r
A H.

This algebra becomes an H-comodule algebra with the structure of a right H-comodule
given by A⊗∆H . It is easily proved that A#H admits a structure of a left A⊗A-module
via:

A⊗A A#H

PP

A#H

:=

A A A Hr r
A#H A#H A#H� 
� 


A#H.

(5.1.1)

From this structure in view of (2.1.3) is clear that the left and the right A-module
structure of A#H are given by

AµA#H =
A A#H� 


A H

and µAA#H =

A#H A��
PP


	
A H

(5.1.2)

respectively.

The first goal in this section is to prove that if A is an H-Azumaya algebra in C, then
(A#H)A is an H-Galois object. The proof will be completed once we prove each of the
following statements:

1. (A#H)A is an H-comodule algebra;

2. (A#H)A is faithfully flat and

3. can(A#H)A is an isomorphism.
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We proceed to prove 1). For this part algebra A does not have to be Azumaya.

Lemma 5.1.2 Let A be an H-module algebra in C. Then (A#H)A is a subalgebra of
A#H (i.e., the equalizer morphism j : (A#H)A −→ A#H is an algebra morphism).

Proof. We will show that the multiplication ∇A#H on A#H induces a multiplication
on (A#H)A. In view of Remark 2.1.11 we are going to prove that the morphism f :=
∇A#H(j⊗ j) : (A#H)A⊗ (A#H)A −→ A#H satisfies the identity from Diagram (2.1.10),
with Q = (A#H)A ⊗ (A#H)A, M = A#H and j = jM .

Bear in mind the A ⊗ A-module structure of A#H (Diagram (5.1.1)) and consider
it as an A-bimodule. Recall from (5.1.2) that its left A-module structure is given by
restriction through A ⊗ ηA, while the right one is given through ηA ⊗ A. According to
(2.1.7), (A#H)A then satisfies

A (A#H)Ar j
A#H� 

A#H

=

A(A#H)A

j r
A#H� 


A#H.

(5.1.3)

On the other hand, Diagram (2.1.10) converts for the upper choice of Q,M and f to

A (A#H)A(A#H)Ar j j

A#H � 
� 

A#H

=

A(A#H)A(A#H)A

j j� 
r
A#H� 


A#H.

Denote the left hand-side diagram by Σ and the right one by Ω. We prove this equality
by successive application of the associativity of A#H and equation (5.1.3).

Σ
ass.
=

A (A#H)A (A#H)Ar j j

A#H� 
� 

A#H

(5.1.3)
=

A(A#H)A(A#H)A

j jr
A#H� 
� 

A#H

ass.
=

A (A#H)A(A#H)A

j jr
A#H� 
� 


A#H

(5.1.3)
=

A (A#H)A(A#H)A

j j

r
A#H� 
� 


A#H

ass.
=

A(A#H)A (A#H)A

j j

r
A#H
	� 


A#H

nat.
= Ω.

Thus the multiplication on A#H induces a morphism ∇ : (A#H)A ⊗ (A#H)A −→
(A#H)A such that the following diagram

(A#H)A ⊗ (A#H)A A#H ⊗ A#H-j ⊗ j

(A#H)A A#H-j?
∇

?

∇A#H
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is commutative. We further prove that ηA#H = ηA#ηH : I −→ A#H induces a unit on
(A#H)A. We have

A r r r
A#H A#H� 


A#H

=

A r r r��
PP 
	� 

A H

=

A r r r r
PP 
	� 

A H

=

A r r r r
PP 
	� 

A H

=

A r r
	
A H

= A⊗ ηH

and
A r r
A#H

r
A#H A#H� 


A#H

=

Ar r r
A#H A#H� 


A#H

=

Ar r r��
PP 
	� 

A H

=

Ar r
PP

A H

= A⊗ ηH .

Then there is a morphism η : I −→ (A#H)A such that j ◦ η = ηA#H . As it was done in
1.2.2, ((A#H)A,∇, η) is proved to be an algebra and j : (A#H)A −→ A#H an algebra
morphism.

We will now prove that (A#H)A is an H-subcomodule of A#H.

Lemma 5.1.3 Let H ∈ C be a flat Hopf algebra, A ∈ C an algebra and M ∈ CH with
structure morphism ρM : M −→M ⊗H. Assume that M is a left A⊗A-module and that
ρM is left A⊗ A-linear, that is,

A⊗AM

PP
PP

M H

=

A⊗AM

PP
PP

M H.

Then MA is a right H-comodule via ρ := t−1
M,H ◦ ρAM : MA −→ (M ⊗H)A ∼= MA ⊗H and

jM : MA −→M is an H-comodule morphism (here tM,H is that from Diagram (2.1.15)).

Proof. Since ρM : M −→ M ⊗ H is left A ⊗ A-linear, we have a morphism ρAM : MA

−→ (M ⊗H)A so that the square in the diagram

MA M-
jM

(M ⊗H)A M ⊗H-jM⊗H
?

ρAM
?

ρM

MA ⊗H
?

t−1
M,H jM ⊗H

��
�
��
�*

commutes. The triangle below commutes due to Proposition 2.1.15. As in the proof of
1.2.2, (ii), one may show that ρ = t−1

M,H ◦ ρAM makes MA into an H-comodule and that jM
is right H-colinear.
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In view of the preceding lemma we will have that (A#H)A is an H-subcomodule of
A#H and j : (A#H)A −→ A#H is an H-comodule morphism if ρA#H = A ⊗ ∆H is
A⊗ A-linear. This holds if ΦH,A = Φ−1

H,A:

A⊗A A#H

PP
PP

A#H H

=

A A A H��
��
PP


	� 

A HH

nat.
=

A A A H

� ���
PP


	� 

A H H

coass.
=

A A A H

� ���
PP

� 
� 

A H H

cond.Φ
nat.
=

A A A H

��
PP


	� 
��
A H H

=

A⊗A A#H

PP
PP

A#H H.

As a subalgebra and a subcomodule of the H-comodule algebra A#H, the object (A#H)A

is itself an H-comodule algebra ( 1.2.2). We record this fact in the following result.

Corollary 5.1.4 Let A be an H-module algebra, where H is flat, and suppose that the
braiding satisfies ΦH,A = Φ−1

H,A. Then (A#H)A is a right H-comodule algebra and j :

(A#H)A −→ A#H is an H-comodule algebra morphism.

In the context of our work the above condition on Φ is satisfied by Proposition 2.2.5
because the braiding is H-linear.

This corollary proves 1). We now proceed to prove 2), that is, that (A#H)A is
faithfully flat.

Observe that A⊗(A#H)A ∼= A#H = A⊗H in C. The first isomorphism holds because
A is Azumaya and hence we have an equivalence of categories A⊗− : C −→ A⊗AC : (−)A.
Recall from page 38 that due to our assumption that the braiding is H-linear, A is
Azumaya in C because it is so in HC. As an Azumaya algebra A is faithfully projective
and hence faithfully flat (Lemma 1.7.1). From Proposition 3.1.6 we know that H is
faithfully flat. Then we have by 1.2.1, (ii) that A ⊗H, and hence also A ⊗ (A#H)A is
faithfully flat.

Let f, g : M −→ N and e : E −→M be morphisms in C. Assume that

A⊗ E A⊗M-A⊗ e -A⊗ f
A⊗N-

A⊗ g
is an equalizer in C. It is also an equalizer in A⊗AC due to 1.2.3, (ii). Being an equivalence,
A⊗− : C −→ A⊗AC reflects equalizers. Thus (E, e) is an equalizer in C and A⊗− reflects
equalizers in C. Now we may apply 1.2.1 (iii) to conclude that (A#H)A is faithfully flat.

We finally prove 3), that is, that can(A#H )A is an isomorphism.
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An Azumaya algebra in HC is in particular an Azumaya algebra in C. Thus we have
that A ⊗ − : C −→ A⊗AC is an equivalence of categories. Our strategy will be to prove
that A⊗ can(A#H )A is an isomorphism, then by the equivalence so will be can(A#H )A .

Recall from Remark 2.1.13 that the counit β : A⊗(A#H)A −→ A#H of the adjunction
(A⊗−, (−)A) is given by the morphism β = AµA#H(A⊗ j), where AµA#H : A⊗ (A#H)
−→ A#H is the structure morphism. Since A is an Azumaya algebra, we know that β is
an isomorphism in ACA.

Let δ : (A#H) ⊗A A −→ A#H denote the corresponding isomorphism in ACA from
1.4.3 and ω : [(A#H) ⊗A A] ⊗ (A#H)A −→ (A#H) ⊗A [A ⊗ (A#H)A] the isomorphism
in ACA from 1.4.4. Consider the chain of isomorphisms:

A⊗ (A#H)A ⊗ (A#H)A
β⊗id∼= (A#H)⊗ (A#H)A

δ−1⊗id∼= [(A#H)⊗A A]⊗ (A#H)A
ω∼= (A#H)⊗A [A⊗ (A#H)A]

id⊗Aβ∼= (A#H)⊗A (A#H).

We denote this composition in ACA by σ : A⊗(A#H)A⊗(A#H)A −→ (A#H)⊗A (A#H).
We further set τ := β⊗H : A⊗ (A#H)A⊗H −→ (A#H)⊗H. Now we define a morphism
ξ : (A#H)⊗A (A#H) −→ (A#H)⊗H as ξ := τ ◦ (A⊗ can(A#H)A) ◦ σ−1. If we show that
ξ is an isomorphism, then so will be A⊗ can(A#H)A and we will be done.

We define the morphism

Λ := (∇A#H ⊗H) ◦ λ ◦ ((A#H)⊗A ρA#H) : (A#H)⊗A (A#H) −→ (A#H)⊗H,

where each morphism in this composition is induced like the following diagram indicates
– Λ is the composition on the right hand-side edge:

-Π (A#H)⊗A (A#H)

(A#H)⊗A [(A#H)⊗H]
?

(A#H)⊗A ρA#H

(A#H)⊗ (A#H)

?

(A#H)⊗ ρA#H

(A#H)⊗ [(A#H)⊗H] -
Π′

[(A#H)⊗ (A#H)]⊗H
?

∼=

[(A#H)⊗A (A#H)]⊗H-Π⊗H ?

λ

(A#H)⊗H
?

∇A#H ⊗H

PPPPPPPPPPPPPq
∇A#H ⊗H

where Π := ΠA#H,A#H and Π′ := ΠA#H,(A#H)⊗H . Observe that λ is an isomorphism
because the third row of the diagram is a part of a coequalizer, since C is closed. From
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the diagram it is clear that
Λ ◦ Π = canA#H .

We are going to prove first that ξ = Λ and then we will find the inverse for Λ. So ξ will
be an isomorphism as desired.

For that purpose we consider the following complex diagram. The composition of
morphisms on the right hand-side edge represents ξ = τ ◦ (A⊗ can(A#H)A) ◦ σ−1 whereas
on the left hand-side edge are mostly the morphisms that induce the latter ones:

-Π (A#H)⊗A (A#H)

(A#H)⊗A [A⊗ (A#H)A]
?

id⊗A β−1

(A#H)⊗ (A#H)

?

id⊗ β−1

(A#H)⊗ [A⊗ (A#H)A] -Π′′

?

∼=

[(A#H)⊗ A]⊗ (A#H)A [(A#H)⊗A A]⊗ (A#H)A-Π1 ⊗ id ?

ω−1

(A#H)⊗ (A#H)A
?

δ ⊗ id

PPPPPPPPPPPPPq

µAA#H ⊗ id

A⊗ (A#H)A ⊗ A⊗ (A#H)A
?

β−1 ⊗ A⊗ id

PPPPPPPPPPPPPq

µAA⊗(A#H)A ⊗ id

?

β−1 ⊗ id

[A⊗ (A#H)A]⊗ (A#H)A

1

2

3

4

A⊗ A⊗ (A#H)A ⊗ (A#H)A
?

A⊗ Φ−1 ⊗ id

∇A ⊗ id⊗ id
?

∼=
PPPPPPPPPPPPPq

A⊗ (A#H)⊗ (A#H) A⊗ [(A#H)A ⊗ (A#H)A]� A⊗ j ⊗ j

?

A⊗ canA#H

A⊗ (A#H)⊗H �A⊗ j ⊗H
A⊗ [(A#H)A ⊗H]

?

A⊗ can(A#H)A

[A⊗ (A#H)A]⊗H]
?

∼=

?
β ⊗H

(A#H)⊗H.

HH
HHH

HHH
HHH

HHHHj

∇A ⊗H ⊗H

(A#H)⊗ (A#H)
?

∇A ⊗H ⊗ (A#H)

-
canA#H

5

6

7

8

Here Π′′ := ΠA#H,A⊗(A#H)A and Π1 := ΠA#H,A. Note that the diagrams 〈1〉, 〈2〉, 〈3〉, 〈6〉
and 〈7〉 commute as they define morphisms on their right hand-side edges. Diagram 〈4〉
commutes since β as counit (and hence also β−1) is a morphism in ACA, in particular it is
right A-linear. Diagram 〈5〉 commutes by the right A-module structure of A⊗ (A#H)A,
see (2.1.4). The object A⊗ (A#H)A has a structure of an A-bimodule inherited from the
one of its left tensor factor A. Finally, 〈8〉 commutes since can is left A-linear. So the
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whole big diagram commutes.

Applying associativity in A, the equalizer property of (A#H)A and naturality respec-
tively, we have:

(∇A ⊗H) ◦ (∇A ⊗ j) ◦ (A⊗ Φ−1
(A#H)A,A

) =

= (∇A ⊗H) ◦ (A⊗∇A ⊗H) ◦ (A⊗ A⊗ j) ◦ (A⊗ Φ−1
(A#H)A,A

)

= (∇A ⊗H) ◦ (A⊗ µAA#H) ◦ (A⊗ ΦA,A#H) ◦ (A⊗ A⊗ j) ◦ (A⊗ Φ−1
(A#H)A,A

)

= (∇A ⊗H) ◦ (A⊗ µAA#H) ◦ (A⊗ j ⊗ A).

Tensoring this equality with j on the right, we get that the composition of morphisms
from the edges of diagrams 〈5〉, 〈6〉 and 〈8〉

(∇A ⊗H ⊗ (A#H)) ◦ (A⊗ j ⊗ j) ◦ (∇A ⊗ id ⊗ id) ◦ (A⊗ Φ−1 ⊗ id)

becomes

(∇A ⊗H ⊗ id) ◦ (A⊗ µA
A#H ⊗ id) ◦ (A⊗ j ⊗ A⊗ j ).

We substitute this and from the outer edges of the big diagram we get the following
situation where the outer diagram commutes:

(A#H)⊗ (A#H)

A⊗ (A#H)A ⊗ A⊗ (A#H)A
?

β−1 ⊗ β−1

(A#H)⊗A (A#H)-Π

?

A⊗ j ⊗ A⊗ j

A⊗ (A#H)⊗ A⊗ (A#H)

(A#H)⊗ (A#H)-β ⊗ β

A⊗ (A#H)⊗ (A#H)-
A⊗ id ⊗ AµA#H

[A⊗ (A#H)]⊗A (A#H)
?

Π2

A⊗ (A#H)⊗ (A#H)
?

-Π2

µAA⊗(A#H) ⊗ id

(A#H)⊗ (A#H)
?

AµA#H ⊗ id

(A#H)⊗H
?

ξ

(A#H)⊗A (A#H)-Π -Λ

AµA#H ⊗A id
@
@
@
@@R

AµA#H ⊗ id

�
�
�
���

?

Π

910

11 12

12

where Π2 := ΠA⊗(A#H),A#H . Here diagram 〈10〉 commutes by the definition of β. Diagram
〈11〉 commutes by the coequalizer property of [A ⊗ (A#H)] ⊗A (A#H). Diagram 〈12〉
commutes by the definition of AµA#H ⊗A idA#H . Since also the outer diagram commutes,
diagram 〈9〉 commutes as well, yielding ξΠ = ΛΠ. But Π is an epimorphism, so ξ = Λ.

The next step is to find the inverse of Λ. For that purpose we define the morphism
θ : (A#H)⊗H −→ (A#H)⊗ (A#H) by:
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θ :=

A#H H� �
Sh
	r

A #H A#H

and let θ := Π ◦ θ : (A#H)⊗H −→ (A#H)⊗A (A#H). Let us prove that θ is the inverse
of Λ. We have:

θ ◦ Λ ◦ Π = θ ◦ canA#H =

A H A H�� ��
PP 
	� 
 ��

Sh
	r
Π

(A#H)⊗A(A#H)

coass.
ass.
=

A H A H�� ����
PP Sh� 

	
	r

Π

(A#H)⊗A(A#H)

antip.
counit
unit
=

A H A H��
PP� 
r

Π

(A#H)⊗A(A#H)

=

A#H A H

�� r
Π

(A#H)⊗A(A#H)

Π
=

A#HA Hr
	
Π

(A#H)⊗A(A#H)

= Π.

Since Π is an epimorphism, we get θ ◦ Λ = id(A#H )⊗A(A#H ). Finally:

Λ ◦ θ = Λ ◦ Π ◦ θ = canA#H ◦ θ =

A H H� �
Sh
	��r ��
PP 
	� 

A H H

mod .-alg.
=

A H H� �
Sh
	��r ��r 
	
	

A H H

counit
unit
=

A H H� �
Sh ��
	� 


A H H

coass.
ass.
=

A#H H����
Sh
	� 


A H H

antip.
counit
unit
= id(A#H )⊗H .

This finishes the proof of 3). Thus we have established:

Proposition 5.1.5 Let C be a closed braided monoidal category with equalizers and co-
equalizers. Let H be a flat Hopf algebra in C and suppose that the braiding is H-linear. If
A is an H-Azumaya algebra in C, then (A#H)A is an H-Galois object in C.
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We are going to show that the assignment

Π : BM(C;H) −→ Gal(C;H), [A] 7→ [(A#H)A]

just established is a group morphism. The proof will be long and technical. We will need:

Assumption 5.1.6 For any H-Galois object A and X ∈ C it holds

A X

X A

=
A X

X A

i.e., ΦX,AΦA,X = idA⊗X .

Note that Assumption 5.1.6 implies Assumption 3.4.1.

Proposition 5.1.7 Assumptions are like in the previous proposition together with As-
sumption 5.1.6. If A and B are H-Azumaya algebras in C, then there is an isomorphism
of H-Galois objects

[(A⊗B)#H]A⊗B ∼= (A#H)A2H(B#H)B.

Proof. As the braiding is H-linear, H is cocommutative by Proposition 2.2.5. That the
above two objects are H-Galois we know from Proposition 5.1.5 and from the comment on
page 53, because Assumption 3.4.1 holds. In order to prove that they are isomorphic as
H-Galois objects, it suffices to find an H-comodule algebra morphism between them, in
virtue of Proposition 3.2.6. Now we explain the idea of the proof. Observe the following
diagram

?

α2

[(A⊗B)#H]A⊗B

?

α1

(A⊗B)#H-j

[(A#H)⊗ (B#H)]A⊗B (A#H)⊗ (B#H)-j̃
?

α

(A#H)A ⊗ (B#H)B

6

jA′ ⊗ jB′
PPPPPPPPPPPPPq

ζ−1
A′,B′

(A#H)A2H(B#H)B -e (A#H)A ⊗H ⊗ (B#H)B-ρ′ ⊗ id
-

id ⊗ λ′

(A#H)⊗ (B#H)
?

jA′ ⊗ jB′

(A#H)⊗H ⊗ (B#H),-ρ⊗ idB ′
-

idA′ ⊗ λ

?

jA′ ⊗H ⊗ jB′

1

2

3

4

(5.1.4)
where the notation we enlighten here:

A′ := A#H, B′ := B#H, e := e(A#H)A,(B#H)B ,

j := j(A⊗B)#H , j̃ := j(A#H)⊗(B#H),
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ρ′ := ρ(A#H)A , λ′ := λ(B#H)B ,

ρ := ρA#H , λ := λB#H .

Since (B#H)B is an H-Galois object, the condition Φ(B#H)B ,A = Φ−1
(B#H)B ,A

is fulfilled by
Assumption 5.1.6. We can use then the natural transformation ζ from Proposition 2.1.16.
We are going to define a morphism α : (A ⊗ B)#H −→ (A#H) ⊗ (B#H) which will
induce α1. Then ζ−1

A′,B′α1 will induce α2 and it will be an H-comodule algebra morphism,
which would finish the proof.

We define the morphism α : (A ⊗ B)#H −→ (A#H) ⊗ (B#H) as α := (A ⊗ ΦB,H ⊗
B)(A ⊗ B ⊗∆H). We first show that α induces α1 and that they are comodule algebra
morphisms. In view of Remark 2.1.11 we should prove that the morphism f := α ◦ j :
[(A⊗B)#H]A⊗B −→ (A#H)⊗ (B#H) satisfies the equality

A⊗B [(A⊗B)#H]A⊗B

j

(A⊗B)#H��
(A#H)⊗(B#H)

PP

(A#H)⊗(B#H)

=

A⊗B [(A⊗B)#H]A⊗B

j

(A⊗B)#H��
(A#H)⊗(B#H)

��

(A#H)⊗(B#H).

Denote the left hand-side by Σ and the right one by Ω. Recalling the A ⊗ B-bimodule
structure of (A#H)⊗ (B#H) from Diagram (2.1.16), we compute

Ω =

A B [(A⊗B)#H]A⊗B

j

(A⊗B)#H��
(A#H)⊗(B#H)

A#H

B#H

�� ��

A#H B#H

nat.
(5.1.2)

=

A B [(A⊗B)#H]A⊗B

j

(A⊗B)#H

��
����
PP

PP 
	
	
A H B H

2×nat.
=

A B [(A⊗B)#H]A⊗B

j

(A⊗B)#H

������
PP

PP


	 � 

A H B H

coass.
coc.
nat.
=

A B [(A⊗B)#H]A⊗B

j

(A⊗B)#H

��
����

PP
PP

� 

	
A H B H
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nat.
P. 2.2.5

=

A B [(A⊗B)#H]A⊗B

j

(A⊗B)#H

��
��
PP PP ��� 
� 


A H B H

j
=

A B [(A⊗B)#H]A⊗B

j

(A⊗B)#H


	
	��
A H B H

nat.
=

A B [(A⊗B)#H]A⊗B

j

(A⊗B)#H��

	 
	
A H B H

(5.1.2)
= Σ.

We will show that α is an algebra and a right H-comodule morphism. For multiplica-
tivity it is to prove that the diagrams Λ and Γ below are equal:

Λ :=

(A⊗B)#H (A⊗B)#H� 

α

(A#H)⊗(B#H)

=

A B H A B H��
�� 
	
PP PP ��� 
� 


A H B H

; Γ :=

(A⊗B)#H (A⊗B)#H

α α� 

(A#H)⊗(B#H)

=

A B H A B H�� ��
��
PP 
	 ��� 


PP 
	� 

A H B H.

We develop Γ as follows

Γ
3×nat.

=

A B H A B H� ����� ��

PP 
	
PP 
	� 
� 

A H B H

coass.
coc.
=

A B H A B H� ����� ��

PP 
	
PP 
	� 
� 

A H B H

nat.
=

A B H A B H� ����� ��

PP 
	PP 
	
� 
 � 

A H B H

nat.
=

A B H A B H��
PP ������

	
	PP
	 � 


A H B H

coass.
nat.
=

A B H A B H��
PP �� ����

	 
	
	 PP� 


A H B H

P. 2.2.5
nat.
=

A B H A B H��
PP �� ����

	
	


	 PP� 

A H B H

bialg.
=

A B H A B H��
PP ��� 
� �

	 PP� 

A H B H

=: Γ′
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Using naturality of the braiding, one easily proves:

H H B
	��
H B H

=

H H B


	��
H B H.

Note that the left hand-side diagram appears in Γ′. We substitute the right hand-side
diagram in Γ′ and obtain

Γ′ =

A B H A B H��
PP ��

	
	 ��

PP� 

A H B H

P. 2.2.5
nat.
=

A B H A B H��
PP ��

	
	 PP ��� 


A H B H

nat.
coass.

=

A B H A B H��
�� 
	
PP PP ��� 
� 


A H B H

P. 2.2.5
= Λ.

This proves that α is compatible with multiplication. The compatibility with unit is
obvious.

We view (A⊗B)#H as a right H-comodule by the structure morphism (A⊗B)#∆H

and (A#H) ⊗ (B#H) by (A#H) ⊗ (B#∆H). That α is right H-colinear is true by the
coassociativity of H.

In Corollary 5.1.4 we have proved that ([(A⊗B)#H]A⊗B, j(A⊗B)#H) is an H-comodule
algebra pair. Furthermore, analogously as in Lemma 5.1.2 one may prove that (((A#H)⊗
(B#H))A⊗B, j(A#H)⊗(B#H)) is an algebra pair. On the other hand, it is immediate
that the right H-comodule structure morphism (A#H) ⊗ ρB#H of (A#H) ⊗ (B#H)
is (A ⊗ B)e-linear. Thus by Lemma 5.1.3, (((A#H) ⊗ (B#H))A⊗B, j(A#H)⊗(B#H)) is
an H-comodule pair. As a subcomodule and a subalgebra of an H-comodule algebra,
((A#H) ⊗ (B#H))A⊗B is such as well (see 1.2.2). Having that α is an H-comodule
algebra morphism, we obtain from 1.2.4 that α1 is such too.

We now prove that ζ−1
A′,B′α1 induces α2 and that they are comodule algebra mor-

phisms. Note that triangle 〈2〉 in Diagram (5.1.4) is the one from Proposition 2.1.16.
From Proposition 5.1.5 we know that (B#H)B is an H-Galois object. Then because of
Assumption 5.1.6 the conditions of Proposition 2.1.16 are fulfilled and we have that 〈2〉
commutes. Further, square 〈3〉 commutes by the way ρ′ and λ′ are induced. Now, observe
that (A#H)A and (B#H)B are equalizers and that both are (faithfully) flat. Therefore we
have that ((A#H)A⊗ (B#H)B, id(A#H )A⊗ jB ′) and ((A#H)A⊗ (B#H)B, jA′⊗ id(B#H )B )
are equalizers. By flatness of H we get further that (A#H)A ⊗ (B#H)B ⊗ H and con-
sequently (A#H)A ⊗ H ⊗ (B#H)B are equalizers with the respective morphisms. This
gives us in particular that jA′⊗H⊗jB′ is a monomorphism, as a composition of the latter
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two equalizer morphisms.
We furthermore have ((A#H)⊗ λB#H)α = (ρA#H ⊗ (B#H))α. Indeed,

A B H��
��

A H H B H

coc.
=

A B H��
��

A H H B H

coass.
=

A B H����

A H H B H

P. 2.2.5
nat.
=

A B H��
��

A H B H.

We now compute looking at Diagram (5.1.4):

(jA′ ⊗H ⊗ jB′)(ρ′ ⊗ id(B#H )B )ζ−1A′,B ′α1 =
〈3〉
= (ρ⊗ idB ′)(jA′ ⊗ jB ′)ζ

−1
A′,B ′α1

〈2〉
= (ρ⊗ idB ′ )̃jα1
〈1〉
= (ρ⊗ idB ′)αj
= (idA′ ⊗ λB#H )αj
〈1〉
= (idA′ ⊗ λB#H )̃jα1
〈2〉
= (idA′ ⊗ λB#H )(jA′ ⊗ jB ′)ζ

−1
A′,B ′α1

〈3〉
= (jA′ ⊗H ⊗ jB′)(id(A#H )A ⊗ λ′)ζ−1A′,B ′α1 .

Since jA′ ⊗ H ⊗ jB′ is a monomorphism, we obtain that ζ−1
A′,B′α1 induces α2 so that the

diagram 〈4〉 commutes.
It remains to prove that α2 is an H-comodule algebra morphism. From Corollary 5.1.4

we know that ((A#H)A, jA#H) and ((B#H)B, jB#H) are H-comodule algebra pairs.
Viewing (A#H)⊗ (B#H) and (A#H)A⊗ (B#H)B as H-comodules via (A#H)⊗ ρB#H

and (A#H)A⊗ρ(B#H)B respectively, we have that they are H-comodule algebras. We have
commented before that (((A#H)⊗(B#H))A⊗B, j(A#H)⊗(B#H)) is an H-comodule algebra
pair. Now 1.2.4 applies to triangle 〈2〉, giving us that ζ−1

A′,B′ is an H-comodule algebra

morphism. That α1 is such we have seen above. The morphism e : (A#H)A2H(B#H)B

−→ (A#H)A ⊗ (B#H)B is an H-comodule algebra one, since (A#H)A and (B#H)B are
H-comodule algebras – we commented this on page 53. (Recall that (A#H)A2H(B#H)B

has the H-comodule structure via (A#H)A2Hρ(B#H)B .) This time 1.2.4 applies to dia-
gram 〈4〉 and we obtain the claim on α2.

Proposition 5.1.8 Let C be a closed braided monoidal category with equalizers and co-
equalizers. Let Assumption 5.1.6 hold. Let H be a flat and commutative Hopf algebra.
Suppose that the braiding is H-linear. The map

Π : BM(C;H) −→ Gal(C;H), [A] 7→ [(A#H)A]

is a group morphism.
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Proof. Recall from Proposition 2.2.5 that since the braiding is H-linear we have that H
is cocommutative. Due to Theorem 3.5.1, Gal(C;H) is then a group. The map Π is now
defined in virtue of Proposition 5.1.5. It is now to prove that Π does not depend on the
representative of a class in BM(C;H) and that it is compatible with multiplication.

We are first going to prove that for any faithfully projective H-module M in C one
has ([M,M ]#H)[M,M ] ∼= H in Gal(C, H). For this purpose we will define a morphism
σ : H −→ ([M,M ]#H)[M,M ]. By Proposition 3.2.6 it will be an isomorphism of H-Galois
objects if we show that it is an H-comodule algebra morphism.

Let θ : H −→ [M,M ] be the algebra morphism induced by the H-module structure of
M as in Lemma 2.2.1, 1). The morphism σ will be induced by σ′ := (θS⊗H)∆H . We check
that it factors through ([M,M ]#H)[M,M ]. Due to Remark 2.1.11 and Diagram (2.1.10)
this will hold if we prove that

[M,M ] H

σ′

PP

[M,M ]#H

=

[M,M ] H

σ′

��

[M,M ]#H.

Applying the structure of an [M,M ]-bimodule on [M,M ]#H described in (5.1.2), we get
that the above question is equivalent to

[M,M ] H

σ′

[M,M ]#H� 

[M,M ] H

=

[M,M ] H

σ′

[M,M ]#H

��
PP


	
[M,M ] H.

The left hand-side we denote by Θ and the right one by Υ. We develop Υ as below,
where in the third equation we apply the H-module structure of [M,M ] described in
Lemma 2.2.1, 2),

Υ
nat.
=

[M,M ] H

σ′

[M,M ]#H��
PP


	
[M,M ] H

σ′
=

[M,M ] H

��
Sh
θ

[M,M ]#H��
PP


	
[M,M ] H

=

[M,M ] H

� �� �
Sh��
θ θ Sh

θ
	� 
� 

[M,M ] H

coass.
ass.
=

[M,M ] H

� �����
Sh Sh
θ θ θ


	
	� 

[M,M ] H
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θ
alg.m.

=

[M,M ] H

� �����
Sh Sh
	θ
θ 
	� 

[M,M ] H

antip.
=

[M,M ] H

� �r ��
Shr θ

θ 
	� 

[M,M ] H

θ
alg.m.

=

[M,M ] H

��
Sh
θ


	
[M,M ] H

P. 2.2.5
nat.
=

[M,M ] H��
Sh
θ� 


[M,M ] H

σ′
= Θ.

This proves that σ′ induces the morphism σ : H −→ ([M,M ]#H)[M,M ] such that σ′ =
j[M,M ]#H ◦ σ.

We have that j[M,M ]#H and, since H is flat, also j[M,M ]#H ⊗ H are monomorphisms.
From Corollary 5.1.4 we know that j[M,M ]#H is an H-comodule algebra morphism. Then
by 1.2.4 we have that σ will be an H-comodule algebra morphism if so is σ′.

That σ′ is H-colinear is clear by the coassociativity of H. The multiplicativity of σ′

follows from

H H� 
� �hS
θ

[M,M ] H

bialg.
=

H H����

	
	hS
θ

[M,M ] H

S
antih.

=

H H����
hS hS 
	

	
θ

[M,M ] H

comm.
=

H H����
hS hS 
	
	
θ

[M,M ] H

θ
alg.m.

=

H H����
hS hS 
	
θ θ
	

[M,M ] H

=

H H����hS hS
θ θ


	
	
[M,M ] H.

It is clear that σ′ is also compatible with unit. This finishes the proof that ([M,M ]#H)[M,M ]

∼= H as H-Galois objects.

We now prove that Π does not depend on a representative of the class in BM(C;H).
Take two H-Azumaya algebras A and B such that [A] = [B] in BM(C;H). Then there are
faithfully projective H-modules P and Q such that A⊗ [P, P ] ∼= B⊗ [Q,Q] as H-module
algebras. Using the result established in the previous paragraph and Proposition 5.1.7,
we have

((A⊗ [P, P ])#H)A⊗[P,P ] ∼= (A#H)A2H([P, P ]#H)[P,P ]

∼= (A#H)A2HH
∼= (A#H)A

and analogously

((B ⊗ [Q,Q])#H)B⊗[Q,Q] ∼= (B#H)B2H([Q,Q]#H)[Q,Q]

∼= (B#H)B2HH
∼= (B#H)B.

The two expressions on the left hand-sides are isomorphic because of the assumption
A⊗ [P, P ] ∼= B⊗ [Q,Q]. The isomorphism of the expressions on the right hand-sides then
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means that Π([A]) = Π([B]) in Gal(C;H). Thus Π is well defined. From Proposition 5.1.7
it follows that Π is a group morphism.

Similarly as in the above proposition we may define a group morphism Π′ : BMinn(C;H)
−→ Galnb(C;H), where BMinn(C;H) is the group from Lemma 2.2.8. The establishment
of this morphism is supported by the following proposition, which generalizes [3, Proposi-
tion 3.4] for symmetric monoidal categories to braided monoidal not necessarily symmetric
ones.

Proposition 5.1.9 Let C be a closed braided monoidal category with equalizers and co-
equalizers. Suppose H is flat and that the braiding is H-linear. The action on an H-
Azumaya algebra A is inner if and only if (A#H)A is a Galois object with a normal
basis.

Moreover, if H is commutative, we have a group morphism

Π′ : BMinn(C;H) −→ Galnb(C;H), [A] 7→ [(A#H)A].

Proof. Suppose A is an H-Azumaya algebra with inner action and the corresponding
morphism f : H −→ A. Since A is an Azumaya algebra, the adjunction (A⊗−, (−)A) is
an equivalence of categories, hence AA ∼= (A ⊗ I)A ∼= I and we have that the equalizer
(AA, jA) from Definition 2.1.10 is isomorphic to the equalizer

I A-
ηA [A,A⊗ A]-αA -

[A,∇]
[A,A⊗ A].-

[A,∇Φ]

Having that H is flat, we obtain that

H A⊗H-ηA ⊗H [A,A⊗ A]⊗H-αA ⊗H -
[A,∇]⊗H

[A,A⊗ A]⊗H-
[A,∇Φ]⊗H

is an equalizer, too. Define δ : A⊗H −→ A⊗H as δ := (∇A⊗H)(A⊗f⊗H)(A⊗∆H). Let
us prove that δjA#H : (A#H)A −→ A⊗H induces δ : (A#H)A −→ H using the equalizer
property of (H, ηA ⊗H). For this we will need the following identities:

A (A#H)A

jA#H
	
A H

jA#H
=

A (A#H)A

jA#H

��
PP� 

A H

P. 2.2.5
=

A (A#H)A

jA#H

��
PP� 

A H

nat.
=

A (A#H)A

jA#H��
PP� 

A H

(5.1.5)

A A A A A
	
	� 
� 

A

=

A A A A A
	 
	
	� 

A

(5.1.6)
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We compute:

A (A#H)A

jA#H

δ
	
A H

=

A (A#H)A

jA#H��
f
	� 


A H

ass.
=

A (A#H)A

jA#H��
	 f� 

A H

(5.1.5)
=

A (A#H)A

jA#H��
��

PP f� 
� 

A H

µA
inner
=

A (A#H)A

jA#H� �
����
f

f f−1


	� 
� 
� 

A H

P. 2.2.5
=

A (A#H)A

jA#H� �
����
f

f f−1


	� 
� 
� 

A H

nat.
coass.

=

A (A#H)A

jA#H� �� �
f f−1
	� �
	 f� 
� 


A H

P. 2.2.5
nat.
=

A (A#H)A

jA#H� �
f
� �
f−1
	� �
	 f� 
� 


A H

(5.1.6)
coass.

=

A (A#H)A

jA#H� �
f
� �� �

f−1 f
	 � 
� 
� 

A H

f−1∗f
nat.
=

A (A#H)A

jA#H��
f
	

	
A H

=

A (A#H)A

jA#H

δ


	
A H.

This proves that δjA#H : (A#H)A −→ A ⊗ H induces δ : (A#H)A −→ H such that
δjA#H = (ηA⊗H)δ. Clearly, δ and ηA⊗H are right H-colinear and by Corollary 5.1.4 and
Proposition 2.2.5 we know that jA#H is such as well. Then by 1.2.4, δ is right H-colinear,
too. In order to find the inverse of δ we prove that the morphism ζ := (f−1 ⊗H)∆H : H
−→ A⊗H factors through (A#H)A. We need the following equalities:

H� �� �� �
H H H H

=

H� �� ���
H H H H

(5.1.7)

A A A A
	
	� 

A

=

A A A A
	 
	� 

A.

(5.1.8)

We now have

A H� �
f−1
	

A H

unit
counit
nat.
=

A H� �
��r f−1r 
	� 


A H

f−1∗f
P. 2.2.5

=

A H� �
� �� �

f−1

f−1 f� 
 
	
� 


A H

nat.
(5.1.7)

(5.1.8)
=

A H� �� �
� �
f f−1

f−1 
	� 
� 

A H
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nat.
µA
inner
=

A H� �
f−1 � �
PP� 

A H

nat.
=

A (A#H)A� �
f−1

��
PP� 

A H

P. 2.2.5
=

A (A#H)A� �
f−1

��
PP� 

A H

so ζ : H −→ A ⊗H induces ζ : H −→ (A#H)A so that jA#Hζ = ζ. We now prove that ζ
and δ are inverses of each other. It is

A H��
f
	� �
f−1
	

A H

coass.
ass.
=

A H� ���
f f−1
	� 


H H

f∗f−1

=

A H��rr
	
A H

= idA⊗H

i.e.
(∇A ⊗H)(A⊗ ζ)δ = idA#H .

We tensor this from the right by jA#H and we obtain applying δjA#H = (ηA ⊗H)δ:

jA#H = (∇A ⊗H)(A⊗ ζ)(ηA ⊗H)δ = (∇A(ηA ⊗ A)⊗H)ζδ = ζδ = jA#Hζ ◦ δ.

Since jA#H is a monomorphism, we get ζ ◦ δ = id(A#H)A . Similarly, we have

H� �
f−1��

f
	
A H

coass.
=

H� �� �
f−1 f� 

H H

antip.
=

H��rr
A H

= ηA ⊗H

that is,
ηA ⊗H = δζ = δjA#Hζ = (ηA ⊗H)δ ◦ ζ.

Having that ηA⊗H is a monomorphism, we obtain δ◦ζ = idH . This proves that (A#H)A

is a Galois object with a normal basis.

Conversely, suppose there is a right H-comodule isomorphism ζ : H −→ (A#H)A. The
unit β = (∇A⊗H)(A⊗ jA#H) : A⊗ (A#H)A −→ A⊗H of the adjunction (A⊗−, (−)A)
is an isomorphism, because A is an Azumaya algebra, Remark 2.1.13. Let us prove that

v :=

Hr
β−1

ζ−1r
A

and u :=

H

ζ

jA#Hr
A

are convolution inverses of each other. Being jA#H right H-colinear, then so are clearly
β and β−1 Moreover, ζ−1 is such as well, so
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v ∗ u =

Hr � �
β−1 ζ

ζ−1 jA#Hr r� 

A

=

Hr
β−1

ζ−1� �r ζ

jA#H� 
r
A

=

Hr
β−1

jA#H
	r
A

β
=

H

rr
A.

Since β is left A-linear, then so is β−1, hence

u ∗ v =

H� �
ζ r
jA#H β−1r ζ−1� 
r

A

=

H� �
ζ

jA#H rr� 

β−1

ζ−1r
A

unit
=

H� �
ζ

jA#H rr

	
β−1

ζ−1r
A

nat.
β
=

Hr ��
ζ

β r
β−1

ζ−1r
A

=

Hr ζ
β��r
β−1

ζ−1r
A

=

Hr ζ
ζ−1r

A

=

H

rr
A

where in the equation between the fourth and the fifth diagram we applied that ζ and β
are right H-colinear. We finally have

H A

PP

A

=

H A� �� �PP
v u� 
� 


A

coass.
u
=

H A� �
v
� �
ζ PP
jA#H
	r� 


A

ζ,j
H-colin.

=

H A� �
v ζ

jA#H� 
��r PP� 

A

nat.
ass.
counit

=

H A� �
v

ζ

jA#H��
PP� 
r� 


A

P. 2.2.5
(5.1.5)

=

H A� �
v

ζ

jA#H
	r
	
A

u
=

H A� �
v

u
	� 

A

i.e. the H-action on A is inner.

We finally show that Π′ : BMinn(C;H) −→ Galnb(C;H), [A] 7→ [(A#H)A] is a group
morphism. By Corollary 3.5.6 we know that Galnb(C;H) is a group. Observe that Assump-
tion 5.1.6 in Proposition 5.1.7 was only used for Galois objects of the form (A#H)A for an
H-Azumaya algebra A. In the setting of Proposition 5.1.9 H-Azumaya algebras have in-
ner actions, so (A#H)A is an H-Galois object with a normal basis and Assumption 5.1.6
is satisfied in virtue of Proposition 3.5.7. If in Proposition 5.1.7 we take H-Azumaya
algebras A and B with inner actions, then the obtained isomorphism will be of H-Galois
objects with a normal basis. Now, as in the proof of Proposition 5.1.8 one proves that
Π′ : BMinn(C;H) −→ Galnb(C;H) is a group map.
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5.2 From an H-Galois object to an Azumaya algebra

In this section we will prove that every H-Galois object gives rise to an Azumaya algebra.
This will make possible for us to prove in the next section that the maps Π : BM(C;H)
−→ Gal(C;H) and Π′ : BMinn(C;H) −→ Galnb(C;H) are surjective.

We first prove a lemma that will be needed in the proof of the final result of this
section. A part from the smash product defined in Lemma 5.1.1 there is a right-left
version of it. Let A be a right H-comodule algebra and B a left H-module algebra.
Suppose ΦH,A = Φ−1

H,A and ΦH,B = Φ−1
H,B. The smash product A♦B in this case is defined

as follows: A♦B = A⊗B as an object in C, the multiplication is given by

A♦B A♦B� 

A♦B

=

A B A B

PP
PP
	 
	

A B

(5.2.9)

and the unit is ηA⊗ ηB. Suppose H ∈ C is a finite Hopf algebra. Then H∗ is a coalgebra,
by 1.5.6. We have that H∗ is a left H-module by

H H∗

PP

H∗

=

H H∗��

	

H∗

nat.
=

H H∗

��
	
H∗ .

(5.2.10)

If ΦH,H∗ = Φ−1
H,H∗ , with the above structure H∗ becomes a left H-module algebra. Assum-

ing that in addition ΦH,A = Φ−1
H,A is fulfilled, we may consider the smash product A♦H∗

from (5.2.9).

Lemma 5.2.1 Let A be a right H-comodule algebra. Suppose H is finite and ΦH,H∗ =
Φ−1
H,H∗ and ΦH,A = Φ−1

H,A. There is an isomorphism of categories F : CHA −→ A♦H∗C.

Proof. An object M ∈ CHA is proved to be a left A♦H∗-module via

A♦H∗M
PP

M

:=

A H∗M

PP


	
��

M .

Take N ∈ A♦H∗C. Then N becomes an object in CHA by the left H∗-action and right
A-action

H∗ N

PP

N

=

H∗ Nr
A♦H∗

PP

N

and

N A

��

N

=

N A

r
A♦H∗

PP

N
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- we view N as a right H-comodule by 1.5.8 (ii). With the above defined structures F is
an isomorphism of categories.

Lemma 5.2.2 Let T be an algebra and H a finite object in C. There is an isomorphism
θH : T ⊗H∗ −→ [T ⊗H,T ]T satisfying:

T⊗H∗ T⊗H
θH

ι

hev
T

=

T H∗ T H


	
	
T .

(5.2.11)

Proof. The codomain of θH is the right version of what we defined in 1.3.2. It is the
equalizer

[T ⊗H,T ]T [T ⊗H,T ]-ι -u [T ⊗H ⊗ T, T ],-
v

where u and v are given by the commutative diagrams

[T ⊗H,T ]⊗ T ⊗H ⊗ T -ev ⊗ T

?
u⊗ T ⊗H ⊗ T

T ⊗ T

?
∇

[T ⊗H ⊗ T, T ]⊗ T ⊗H ⊗ T T-ev
(5.2.12)

and

[T ⊗H,T ]⊗ T ⊗H ⊗ T -
[T ⊗H,T ]⊗ µTT⊗H

?
v ⊗ T ⊗H ⊗ T

[T ⊗H,T ]⊗ T ⊗H

?

ev

[T ⊗H ⊗ T, T ]⊗ T ⊗H ⊗ T T-ev
(5.2.13)

and µTT⊗H : T ⊗ H ⊗ T −→ T ⊗ H is the right T -module structure morphism of T ⊗ H
given by

µTT⊗H =

T H T


	
T H.

Observe that in this right module structure we use the braiding of the opposite sign
to that which appears in the structure (3.1.3) and (2.1.4), which we used repeatedly so
far. The structure that appears above we will use only in this section. The results of this
section hold independently from what we have proved so far. This difference of structures
will not present an obstacle in our further work, as in the next two sections, where we
will apply the results of this one, the braiding will be H-linear by the assumption. Thus
we will have in particular ΦH,T = Φ−1

H,T , so the two a priori different structures will be the
same.
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By the universal property of ([T ⊗H,T ], ev : [T ⊗H ,T ]⊗T ⊗H −→ T ) the morphism
on the right hand-side of the expression (5.2.11) determines a morphism θ′ : T ⊗ H∗

−→ [T ⊗H,T ] so that

T⊗H∗ T⊗H

θ′

hev
T

=

T H∗ T H


	
	
T .

(5.2.14)

Then θ′ : T ⊗H∗ −→ [T ⊗H,T ] will induce θH : T ⊗H∗ −→ [T ⊗H,T ]T so that ιθH = θ′

(which is (5.2.11)) if we are able to show that uθ′ = vθ′. This is true because of the
universal property of ([T ⊗H ⊗ T, T ], ev : [T ⊗ H ⊗ T ,T ]⊗ T ⊗ H ⊗ T −→ T ) and the
computation:

T⊗H∗T⊗H⊗T

θ′

u

hev
T

(5.2.12)
=

T⊗H∗ T⊗H T

θ′

hev� 

T

θ′
=

T H∗ T H T


	
	� 

T

nat.
ass.
=

T H∗ T H T


	

	
	
T

θ′
=

T⊗H∗ T H T

θ′ 
	
T⊗H

hev
T

(5.2.13)
=

T⊗H∗T⊗H⊗T

θ′

v

hev
T

Before defining the inverse for θH , we observe that the equalizer property of ([T⊗H,T ]T , ι)
after evaluation of u and v at T ⊗H means:

[T⊗H,T ]T T⊗H T

ι

hev� 

T

=

[T⊗H,T ]T T H T

ι 
	
T⊗H

hev
T.

(5.2.15)

Consider the morphism ξ : [T ⊗H,T ]T −→ T ⊗H∗ defined by

ξ :=

[T⊗H,T ]T r
ι r db−1

T⊗H

hev
T H∗.

Then we have

ξ ◦ θH =

T⊗H∗

θH r
ι r db−1

T⊗H

hev
T H∗

(5.2.14)
=

T H∗ rr db−1


	
	
T H∗

(1.5.11)
= idT⊗H ∗.

On the other hand, it is
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[T⊗H,T ]T T⊗H
ξ

θH

ι

hev
T

(5.2.14)
=

[T⊗H,T ]T T H

ξ


	
	
T

=

[T⊗H,T ]T T Hr
ι r db−1

T⊗H

hev
� 

	
T

(5.2.15)
=

[T⊗H,T ]T T Hr
ι r db−1


	
	
T⊗H

hev
T

(1.5.10)
=

[T⊗H,T ]T T⊗H
ι

hev
T,

which by the universal property of ([T ⊗ H,T ], ev : [T ⊗ H ,T ] ⊗ T ⊗ H −→ T ) means
that ι ◦ θH ◦ ξ = ι. But ι is a monomorphism, so θH ◦ ξ = id[T⊗H ,T ]T .

Lemma 5.2.3 Let H be a finite Hopf algebra and T a right H-comodule algebra in C.
Then T is a left T#H∗-module via:

T#H∗T

PP

T

=

T H∗ T

PP


	
	
T .

Proof. As a right H-comodule algebra, T is a left H∗-module algebra, since the categories
CH and H∗C are monoidally isomorphic, 1.5.8. The left H∗-module structure on T is
given by (1.5.18). This we apply in the first equality in our proof of the T#H∗-module
axiom for T ,

T#H∗ T#H∗ T� 

PP

T

=

T#H∗ T#H∗ T��
PP 
	� 
 PP

� 

	
T

=

T#H∗ T#H∗ T��
PP
	

PP
	
	 
	� 

T

(1.5.13)
nat.
=

T#H∗ T#H∗ T�� PP

PP ��

	
	 
	
	� 


T

(1.5.15)
nat.
=

T#H∗ T H∗ T

PP PP


	 ��

	 
	
	
	
T

comod.
nat.
ass.
=

T#H∗ T H∗ T

PP PP

PP
	

	
	

	
	
T

nat.
comod.-alg.

=

T#H∗ T H∗ T

PP

� 

	
PP

� 

	
T

=

T#H∗ T#H∗ T

PP

PP

T

so the first module axiom is satisfied. For the second one we have

Tr r PP

	
	
T

(1.5.14)
=

T

PP r
T

= idT .
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The following two propositions are inspired by [42, Theorem 9.3], where the result
was done for a commutative Hopf algebra H over a commutative ring and commutative
H-Galois objects.

Proposition 5.2.4 Let H be a finite Hopf algebra and T a finite right H-comodule algebra
in C. View T as a left T#H∗-module as in Lemma 5.2.3. Denote by ϕ : T#H∗ −→ [T, T ]
the algebra morphism induced by this module structure (Lemma 2.2.1, 1)), i.e.:

T⊗H∗ T

ϕ

hev
T

=
T#H∗ T

PP

T

=

T H∗ T

PP


	
	
T .

Define a morphism Ψ : T ⊗H∗ −→ T ⊗ T ∗ given by the commutative diagram:

T ⊗H∗ T ⊗ T ∗-Ψ

[T ⊗H,T ]T
?

θH
6

θ−1
T

[T ⊗ T, T ]T .-
[canT , T ]T

where θH and θT are the isomorphisms from Lemma 5.2.2. If we denote by db : T ⊗ T ∗

−→ [T ,T ] the dual basis morphism for T , then ϕ = db ◦Ψ.

Proof. Consider the contravariant functor [−, T ] : C −→ C which acting on an object gives
the usual inner-hom object. If f : X −→ Y is a morphism, then [f, T ] : [Y, T ] −→ [X,T ] is
a morphism defined via the universal property of ([X,T ], ev : [X ,T ]⊗ X −→ T ) by

[Y,T ] X

[f,T ]

hev
T

=

[Y,T ] X

f

hev
T.

Now, [canT , T ]T is the corresponding right version of the morphism A[M, f ] defined in
1.3.2.

Since T and H are finite we have from Lemma 5.2.2 that θH and θT are isomorphisms,
thus Ψ is well defined. We have

T#H∗ T T

Ψ


	
	
T

(5.2.11)
=

T#H∗ T⊗T
Ψ

θT
ιT

hev
T

Ψ
=

T#H∗ T⊗T
θH

[can,T ]T
ιT

hev
T

[can,T ]T
=

T#H∗ T⊗T
θH
ιH

[can,T ]

hev
T

[can,T ]
=

T#H∗ T⊗T
θH
ιH can

hev
T

(5.2.11)
=

T#H∗ T⊗T
PP
	


	
	
T .

Applying this to T#H∗ ⊗ ηT ⊗ T , we obtain

T#H∗ T

Ψ

db

hev
T

db
unit
=

T#H∗ T

Ψ r

	
	
T

=

T#H∗ Tr PP
	

	
	
T

unit
=

T#H∗ T

PP


	
	
T

=

T#H∗ T

ϕ

hev
T,
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which by the universal property of ([T, T ], ev : [T ,T ]⊗T −→ T ) implies db ◦Ψ = ϕ.

Proposition 5.2.5 Let C be a closed braided monoidal category, H a finite Hopf algebra
and T an H-Galois object. Assume either of the following two conditions is fulfilled:

1. ΦH,H∗ = Φ−1
H,H∗ and ΦH,T = Φ−1

H,T ;

2. T has a normal basis.

Then T is faithfully projective. Consequently, ϕ : T#H∗ −→ [T, T ] (from Proposi-
tion 5.2.4) is an algebra isomorphism in C.

Proof. Let us first prove that T is faithfully projective.
1) Assume ΦH,H∗ = Φ−1

H,H∗ and ΦH,T = Φ−1
H,T . By Theorem 3.2.3 we have that the

functors (−⊗ T, (−)coH) establish a C-equivalence between the categories C and CHT . Due
to Lemma 5.2.1, F : CHT −→ T♦H∗C is an isomorphism of categories, let G : T♦H∗C −→ CHT
denote its inverse functor. Observe that they are C-functors. Then we get that F(−⊗T ) :
C −→ T♦H∗C is a C-equivalence of categories. This means by Theorem 1.6.5 that we have a

strict Morita context (I, B, P,Q, f, g) with B := T♦H∗, P := (G(B))coH , Q := F(T ) and
f and g are isomorphisms. Since the category is closed, P and Q are bicoflat, see 1.4.8.
Now by Theorem 1.6.8 in particular Q is right faithfully projective (over I).

2) Assume T has a normal basis. Then T ∼= H, as objects. Furthermore, due to
Proposition 3.1.7 we know that H, and hence T , is faithfully projective.

We now proceed to prove that the morphism ϕ : T#H∗ −→ [T, T ] from Proposi-
tion 5.2.4 is an algebra isomorphism. Having that T is faithfully projective, we get in
particular that it is finite. Hence the morphisms db : T ⊗ T ∗ −→ [T ,T ] and θT : T ⊗ T ∗
−→ [T ⊗ T, T ]T from Lemma 5.2.2, are isomorphisms. On the other hand, since T is an
H-Galois object we have that can : T ⊗ T −→ T ⊗ H is an isomorphism. Then so is
[canT , T ]T and consequently Ψ : T ⊗ H∗ −→ T ⊗ T ∗ from Proposition 5.2.4. The claim
now follows from the above proposition.

If T is an H-Galois object and the conditions of Proposition 5.2.5 are satisfied, we
then have that T is faithfully projective. By Proposition 2.1.3 then [T, T ] is an Azumaya
algebra. The isomorphism of algebras T#H∗ ∼= [T, T ] makes now T#H∗ into an Azumaya
algebra.

5.3 Surjectivity of Π

In what follows we will equip T#H∗ with an H-module structure so that it becomes
an H-module algebra. This will make it an H-Azumaya algebra in view of the above
paragraph. Our goal then will be to prove that [T#H∗] is a preimage in BM(C;H) of
[T ] ∈ Gal(C;H) through Π. Thus the map Π : BM(C;H) −→ Gal(C;H) will be surjective.
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Lemma 5.3.1 Let H ∈ C be a finite commutative Hopf algebra and T ∈ C a right H-
comodule algebra. The object T#H∗ is a left H-module with the structure:

H T#H∗

PP

T#H∗

=

H T H∗��

	

T H∗.

If furthermore Φ is H-linear, then the above makes T#H∗ into a left H-module algebra.

Proof. We first have to check that the diagrams

L :=

H H T#H∗
	
PP

T#H∗

=

H H T H∗
	 ��

	

T H∗

and

H H T H∗��
��
	

	 T H∗

=

H H T#H∗

PP

PP

T#H∗

=: R

are equal. Starting by applying commutativity of H and naturality, we develop L as
follows

L =

H H T H∗��


	
	 T H∗

(1.5.15)
=

H H T H∗��

��

	
	

T H∗

2×nat.
=

H H T H∗��
��


	
	
T H∗

nat.
=

H H T H∗��
��

	

	

T H∗

nat.
coass.

= R.

The compatibility with unit is also satisfied,

T#H∗r
PP

T#H∗

=

T H∗r ��

	

T H∗

(1.5.16)
=

T H∗��
r
T H∗

=

T#H∗

T#H∗.

This H-module structure will be compatible with the algebra structure of T#H∗. To
prove this we should show first that

H T#H∗ T#H∗� 

PP

T#H∗

=

H T#H∗ T#H∗��
PP PP� 

T#H∗.

Note that the multiplication in T#H∗ – the one from Lemma 5.1.1 – involves an H∗-
module structure on T . As a right H-comodule, T is a left H∗-module with the structure
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given in (1.5.18). Together with the above proved H-module structure on T#H∗ the
preceding question transforms to

H T H∗ T H∗��
PP 
	
	
	� �

	

T H∗

=

H T H∗T H∗�� ��
��
	��

	 PP 
	
	
	

T H∗.

Let Σ and Ω denote the left and right hand-side diagrams, respectively. We develop Σ as
follows:

Σ
bialg.
=

H T H∗ T H∗��
PP ����
	
	
	
	

	

T H∗

nat.
(1.5.13)

=

H T H∗ T H∗��
PP ����
	
	�� 
	


	
	
T H∗

nat.
coass.

=

H T H∗ T H∗�� ���� ��
PP 
	

	
	


	 
	
T H∗

T. 3.5.4:
ΦH∗,H∗ ,

P. 2.2.5:
ΦH,H∗

=

H T H∗ T H∗�� ���� ��
PP 
	

	
	


	 
	
T H∗

nat.
=

H T H∗T H∗� � ��
��
	��
� 


PP


	
	

	

T H∗

nat.
=

H T H∗T H∗� � ��
��
	��
� 

PP
	
	
	

T H∗

H∗
coc.
=

H T H∗T H∗� � ��
��
	��
PP
	 
	
	
	

T H∗

coass.
= Ω.

We have applied 1.5.7 in the penultimate equation which assures that H∗ is cocommu-
tative, since H is finite and commutative by the assumption.

Finally, the H-module structure of T#H∗ is compatible with the unit,



5.3. Surjective assignment 117

H r
PP

T#H∗

=

H r r��

	

T H∗

=

H r r r

	

T H∗

(1.5.14)
=

H r rr
T H∗

=

Hrr
T#H∗.

Let us remark that in [12] the author uses a slightly different left H-module structure
on T#H∗:

H T⊗H∗

PP

T⊗H∗

=

H T H∗��

	

T H∗ .

However, when H is commutative and the braiding is H-linear, as we will suppose in our
main theorem, this structure coincides with that from Lemma 5.3.1.

As announced we now prove that Π is surjective if in addition the Hopf algebra H is
finite and the braiding is H-linear. We do this by showing that Π([T#H∗]) = [T ]. Let
γ : [(T#H∗)#H]T#H∗ −→ T be the morphism given by γ := (T ⊗ εH∗ ⊗ εH) ◦ j. We prove
that γ is an isomorphism of H-Galois objects by proving that it is an H-comodule algebra
morphism. Before this let us deduce several identities that hold on [(T#H∗)#H]T#H∗ .
To its equalizer property, expressed in Diagram (5.1.3) with A := T#H∗, we will apply
σ := T ⊗ εH∗ ⊗ εH . Recalling the algebra structure of A = T#H∗ (taking into account
the left H∗-module structure of the right H-comodule T ), we obtain

T H∗ [(T#H∗)#H]T#H∗��
j

PP
	

	 r r� 

T

=

T H∗[(T#H∗)#H]T#H∗

j

��
��

	��
PP� 


	� 
r r
T .
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By the corresponding properties of ε’s this simplifies to

T H∗ [(T#H∗)#H]T#H∗

j

PP r r
	� 

T

=

T H∗ [(T#H∗)#H]T#H∗

j

PP
	

	� 

T.

(5.3.16)

Neutralizing the braiding ΦT#H∗,[(T#H∗)#H]T#H∗ on the right hand-side, we compose the

whole equation from above (in the braided diagrams orientation) with Φ−1
T#H∗,[(T#H∗)#H]T#H∗ .

Then the above expression takes the form

[(T#H∗)#H]T#H∗
T H∗

jr r
PP


	� 

T

=

[(T#H∗)#H]T#H∗
T H∗

j

PP
	

	� 

T.

(5.3.17)

On the other hand, from (5.3.16) we can obtain further equations,

T [(T#H∗)#H]T#H∗

j
	r r
T

=

T [(T#H∗)#H]T#H∗r j

PP r r
	� 

T

(5.3.16)
=

T [(T#H∗)#H]T#H∗r j

PP
	

	� 

T

(1.5.14)
=

T [(T#H∗)#H]T#H∗

j r
PP


	� 

T

(5.3.18)
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and similarly

H∗[(T#H∗)#H]T#H∗r j

PP r r
	� 

T

(5.3.16)
=

H∗[(T#H∗)#H]T#H∗r j

PP
	

	� 

T

which is equivalent to

H∗[(T#H∗)#H]T#H∗

j

PP r r
	
T

=

H∗[(T#H∗)#H]T#H∗

jr


	
T

nat.
=

H∗[(T#H∗)#H]T#H∗

jr

	

T .

(5.3.19)

Now we are going to prove that γ : [(T#H∗)#H]T#H∗ −→ T is an algebra morphism.
With the same notation as above, σ = T ⊗ εH∗ ⊗ εH and A = T#H∗, we have that γ will
be multiplicative if

(A#H)A (A#H)A� 

j

σ

T

=

(A#H)A (A#H)A

j j

σ σ� 

T.

Since j is an algebra morphism (Lemma 5.1.2), this amounts to

(A#H)A (A#H)A

j j� 

σ

T

=

(A#H)A (A#H)A

j j

σ σ� 

T.

It would be satisfied if σ were multiplicative. However, this does not seem to be the case.
This is why we make a more elaborate computation. We substitute back A = T#H∗,
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then the last equation that is to prove becomes

[(T#H∗)#H]T#H∗[(T#H∗)#H]T#H∗

j j� �
��
	�� r

	
PP� 
r
	� 


T

=

[(T#H∗)#H]T#H∗[(T#H∗)#H]T#H∗

j jr r r r
� 


T.

We denote the left hand-side by Σ and the right one by Ω. Knowing that ε’s are multi-
plicative and because of their compatibilities with comultiplications, we can rewrite and
further develop Σ as follows

Σ =

[(T#H∗)#H]T#H∗[(T#H∗)#H]T#H∗

j j

PP r
	

	� 

T

(5.3.17)
=

[(T#H∗)#H]T#H∗[(T#H∗)#H]T#H∗

j jr r r
PP


	� 

T

(5.3.18)
A. 5.1.6

= Ω.

In the last equation we applied Assumption 5.1.6 referring to ΦT,T and ΦT,H∗ .

Similarly, γ will be compatible with unit if γ ◦ η(A#H)A = σ ◦ j ◦ η(A#H)A = ηT . But
from Lemma 5.1.2 we know that j ◦ η(A#H)A = ηA#H . With M = (T#H∗)#H it is clear
that σ ◦ ηM = ηT . With this we have proved that γ is an algebra morphism.

We prove that γ is right H-colinear by proving that it is left H∗-linear (recall 1.5.8).
We consider T as a left H∗-module by (1.5.18). Recall that A#H is a right H-comodule
via A⊗∆H (put A = T#H∗). Then by 1.5.8 we have that A#H is a left H∗-module with
the structure given by (1.5.18). Analogously as in Lemma 5.1.3, then (A#H)A inherits
its left H∗-module structure from A#H, which satisfies

H∗ (A#H)A

PP
j

A#H

=

H∗ (A#H)A

j��

	

A H.

(5.3.20)
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If we now put back A = T#H∗ and use σ = T ⊗ εH∗ ⊗ εH , then γ will be left H∗-linear
if we show

H∗[(T#H∗)#H]T#H∗

PP
j

σ

T

=

H∗[(T#H∗)#H]T#H∗

j

σ

PP

T.

Again, σ is not left H∗-linear, that is why we make the more elaborate computation.
Applying Diagram (5.3.20), the definition of σ and the H∗-module structure of T , we get
that the above question becomes

H∗[(T#H∗)#H]T#H∗

j ��


	 r r
T

=

H∗[(T#H∗)#H]T#H∗

jr r
PP


	
T.

But this is fulfilled because of (5.3.19). Hence γ : [(T#H∗)#H]T#H∗ −→ T is right
H-colinear and summing up it is an isomorphism of H-Galois objects. Recall from
Lemma 1.5.4 that since H is finite, it is also flat. Then we have established:

Proposition 5.3.2 Let C be a closed braided monoidal category with equalizers and co-
equalizers with Assumption 5.1.6 fulfilled. Let H be a finite and commutative Hopf algebra.
Suppose that the braiding is H-linear. Then the map Π : BM(C;H) −→ Gal(C;H) is sur-
jective.

Corollary 5.3.3 Let C be a closed braided monoidal category with equalizers and co-
equalizers. Let H be a finite and commutative Hopf algebra. Suppose that the braiding is
H-linear. Then the map Π′ : BMinn(C;H) −→ Galnb(C;H) is surjective.

Proof. Let T be an H-Galois object with a normal basis. Due to Proposition 5.2.5, 2)
we have that T#H∗ is an Azumaya algebra. By the same Lemma 5.3.1 the latter is
an H-Azumaya algebra. In the above proof that Π([T#H∗]) = [T ] for [T ] ∈ Gal(C;H)
we used on page 120 that ΦT,T and ΦT,H∗ are symmetric. If we now assume that T is
an H-Galois object with a normal basis, then these two symmetricities are fulfilled by
Proposition 3.5.7 and we get Π([T#H∗]) ∈ Galnb(C;H). By the sufficient condition of
Proposition 5.1.9 we get that [T#H∗] ∈ BMinn(C;H), thus Π′ is surjective.

5.4 The split exact sequence

Consider the sequence

1 Br(C)- BM(C;H)-q
�
p

Gal(C;H)-Π 1.-
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The map q is an embedding sending a class [A] ∈ Br(C) to the equivalence class of
A in BM(C;H), where A is equipped with the trivial H-module structure. The map
p : BM(C;H) −→ Br(C), induced by forgetting the H-module structure of an H-Azumaya
algebra, is obviously a group morphism and clearly it is p◦q = IdBr(C). Thus the sequence
is split and we know from the previous section that Π is surjective. We prove exactness
at BM(C;H).

We easily conclude that Im(q) ⊆ Ker(Π). For an Azumaya algebra A ∈ C with
a trivial H-module structure it is A#H = A ⊗ H as algebras. By the equivalence of
categories given by the pair of functors (A ⊗ −, (−)A) we get that (A ⊗ H)A ∼= H as
objects in C. In order to prove that this is an isomorphism of H-Galois objects we
prove that it is a right H-comodule algebra morphism. Observe the Diagram (2.1.12)
of Lemma 2.1.14, defining the unit ζ : H −→ (A ⊗ H)A of the above adjunction, with
M = H. The morphism ηA⊗H is clearly a right H-comodule algebra one, as so is jA⊗H ,
by Corollary 5.1.4. Now by the triangle transmission 1.2.4, ζ is such a morphism as well.
Thus Π([A]) = [(A#H)A] = [(A⊗H)A] = [H], so [A] ∈ Ker(Π).

Suppose that Im(q) ( Ker(Π). Since p(Ker(Π)) ⊆ Br(C), there exists an H-Azumaya
algebra A which determines two different classes [A1] and [A2] in Ker(Π). This algebra
has two different H-module structures in BM(C;H), a non-trivial one and a trivial one.
As the underlying Azumaya algebra is the same, it is p([A1]) = p([A2]).

We will show that p is injective when restricted to Ker(Π). Then we will reach a
contradiction with [A1] 6= [A2] in Ker(Π). This will prove that Ker(Π) can not be larger
than Im(q), and so q(Br(C)) = Ker(Π).

We proceed to prove that the morphism p : BM(C;H) −→ Br(C) restricted to Ker(Π)
is injective. Suppose that p([A]) is trivial in Br(C), for [A] ∈ Ker(Π). Then there is an
algebra isomorphism δ : A −→ [P, P ], for some faithfully projective object P ∈ C. On the
other hand, we have an H-comodule algebra isomorphism ω : H −→ (A#H)A. Consider
the equalizer algebra morphism j : (A#H)A −→ A#H. The composition (A#εH) ◦ j :
(A#H)A −→ A#H −→ A is denoted by ε. Then we have that ε ◦ ω : H −→ A is an algebra
morphism. We are going to define an H-module structure on P . This will induce an
H-module algebra structure on [P, P ] (by Remark 2.2.4). Then we will prove that δ : A
−→ [P, P ] is a morphism of H-module algebras, thus A will become trivial in BM(C;H)
and we will have the claim.

Lemma 5.4.1 Let ξ := δ ◦ ε ◦ ω : H −→ [P, P ]. Then the following morphism defines a
left H-module structure on P :

H P

PP

P

:=

H PhS
ξ

hev
P.
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Proof. For the compatibility with the multiplication in H we find

H H P� 
hS
ξ

hev
P

S:antih.
=

H H P

hS hS
	
ξ

hev
P

nat.
Hcomm.
ξ:alg.m.

=

H H PhS hS
ξ ξ� 

hev
P

mult.
in

[P,P ]
=

H H PhS hS
ξ ξ

hev
hev
P

=

H H P

PP

PP

P

using the algebra structure of [P, P ] introduced in 1.3.1. For the compatibility with the
unit

PrhS
ξ

hev
P

S,ξ
alg.m.

=

Pr
hev
P

1.3.1
= idP .

Let ϕ : H −→ [P, P ] denote the algebra morphism θ from Lemma 2.2.1, 1) correspond-
ing to the left H-module structure of P from the above lemma. Since our Hopf algebra
H is (co)commutative we have that S2 = idH . This implies further

H PhS
ϕ

hev
P

L. 2.2.1
=

H PhS
PP

P

=

H PhShS
ξ

hev
P

=

H P

ξ

hev
P.

By the universal property of ([P, P ], ev : [P ,P ]⊗ P −→ P) this implies

ϕ ◦ S = ξ. (5.4.21)

Recall from Lemma 2.2.1, 2) that the H-module structure on P induces an H-module
structure on [P, P ] making it into an H-module algebra. This structure was given by:

H [P,P ]

PP

[P,P ]

=

H [P,P ]��hS
ϕ ϕ
	� 

[P,P ].

Lemma 5.4.2 Assume the braiding is H-linear. With the above H-module structure on
[P, P ], the morphism δ : A −→ [P, P ] is left H-linear.
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Proof. We know from Corollary 5.1.4 that the morphism j : (A#H)A −→ A#H is right
H-colinear. Using the equalizer property of ((A#H)A, j) and writing out ε = (A#εH)◦ j,
we deduce

A H

ω

j� 
r
A

=

A H

ω

j

��
PP r� 

A

counit
=

A H

ω

j

��r PP� 

A

ω,j
H-colin.

=

A H� �
ω

j r
PP� 


A

=

A H� �
ε◦ω

PP� 

A.

(5.4.22)

We now have:

H A

δ

PP

[P,P ]

L. 2.2.1
=

H A��
δhS

ϕ ϕ
	� 

[P,P ]

nat.
(5.4.21)

=

H A��
ε◦ω

δ δ

ϕ 
	� 

[P,P ]

δ
alg.m.

=

H A��
ε◦ω

ϕ 
	
δ
	

[P,P ]

(5.4.22)
=

H A� �
� �
ε◦ω

PP� 

ϕ δ� 


[P,P ]

S2=id
(5.4.21);δ

alg.m.
=

H A� �
� �
ε◦ω

hS PP

δ δ

ξ � 
� 

[P,P ]

P. 2.2.5
nat.
=

H A� �� �hS PP
ξ ξ
	 δ� 


[P,P ]

coass.
ξ

alg.m.
=

H A� ��� PPhS
	 δ
ξ� 

[P,P ]

antip.
=

H A��r PPr
ξ δ� 

[P,P ]

ξ
alg.m.

=

H A

PP

δ

[P,P ].

We have done half of the work to prove the main theorem of the first part of the
dissertation:

Theorem 5.4.3 Let C be a closed braided monoidal category with equalizers and coequal-
izers. Consider that Assumption 5.1.6 is fulfilled. Let H be a finite and commutative
Hopf algebra. Suppose that the braiding is H-linear. Then there is a split exact sequence

1 Br(C)- BM(C;H)-q
�
p

Gal(C;H)-Π 1.-

Furthermore,
BM(C;H) ∼= Br(C)×Gal(C;H).
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Proof. It just remains to prove the last statement. By the definition of the morphism
q : Br(C) −→ BM(C;H) and surjectivity of Π : BM(C;H) −→ Gal(C;H) we have the
following situation

Br(C) BM(C;H)-q

[A] [A]-

Gal(C;H)-Π

[T#H∗] [T ].�

We are going to prove that [A] and [T#H∗] commute in BM(C;H). This will be done
by showing that the braiding acting between T#H∗ and A is a left H-module algebra
morphism. Since Φ is left H-linear, Φ is right H-colinear, by Proposition 2.2.5, 3). In view
of 1.5.8 this means that Φ is left H∗-linear, since H is finite. In particular, ΦH∗,A = Φ−1

H∗,A,
because of Proposition 2.2.5. On the other hand, T is an H-Galois object, then by
Assumption 5.1.6 we have ΦT,A = Φ−1

T,A. We will show that ΦT#H∗,A is a left H-module
algebra morphism.

Consider (T#H∗)⊗A and A⊗(T#H∗) as left H-modules by the codiagonal structures.
However, since [A] ∈ Br(C), we have that A is a trivial H-module, so the above two
respective H-module structures will be induced by the one of T#H∗. Recalling the left
H-module structure of T#H∗ from Lemma 5.3.1 we find

H T⊗H∗ A

PP

A T⊗H∗

=

H T H∗ A��

	

A T H∗

nat.
=

H T H∗A

��

	

A T H∗

=

H T⊗H∗A

PP

A T⊗H∗.

This proves that ΦT#H∗,A is left H-linear. That ΦT#H∗,A is compatible with multiplication
follows by naturality,

T#H∗A T#H∗A

A⊗(T#H∗) A⊗(T#H∗)� 

A⊗(T#H∗)

=

T H∗ A T H∗ A


	 ��
PP 
	� 


A T H∗

nat.
=

T H∗ A T H∗ A��
PP 
	
	� 


A T H∗

cond.
ΦT,A

ΦH∗,A
=

T H∗ A T H∗ A��
PP 
	
	� 


A T H∗

=

(T#H∗)⊗A (T#H∗)⊗A� 

(T#H∗)⊗A

A T#H∗

Obviously ΦT#H∗,A is compatible with unit, so it is an algebra morphism. Thus we have
proved that BM(C;H) ∼= Br(C)×Gal(C;H).

Theorem 5.4.4 Let C be a closed braided monoidal category with equalizers and coequal-
izers. Let H be a finite and commutative Hopf algebra. Suppose that the braiding is
H-linear. Then there is a split exact sequence

1 Br(C)- BMinn(C;H)-q
�
p

Galnb(C;H)-Π′ 1.-
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Furthermore,
BMinn(C;H) ∼= Br(C)×Galnb(C;H).

Proof. As in the proof of the above theorem we get that

1 Br(C)- BMinn(C;H)-q
�
j

Galnb(C;H)-Π 1-

is a split exact sequence. In the proof on page 125 that q([A]) and [T#H∗] ∈ Π−1([T ])
commute in BM(C;H), for [A] ∈ BM(C;H) and [T ] ∈ Gal(C;H), we used that ΦH∗,A

and ΦT,A are symmetric. Now assume [A] ∈ BMinn(C;H) and [T ] ∈ Galnb(C;H). The
argument for ΦH∗,A is the same - it does not have to be changed. In the case of ΦT,A our
H-Galois object T has a normal basis, hence the assumption on symmetricity is correct
by Proposition 3.5.7. With this we prove following the old proof that

BMinn(C;H) ∼= Br(C)×Galnb(C;H).

Corollary 5.4.5 Let C be a closed braided monoidal category with equalizers and coequal-
izers. Let H ∈ C be a finite and commutative Hopf algebra. Assume that the braiding is
H-linear. If Gal(C;H) = Galnb(C;H), then BM(C;H) = BMinn(C;H).

Proof. Take [A] ∈ BM(C;H). Then Π([A]) ∈ Gal(C;H) = Galnb(C;H). Now by the
sufficient condition of Proposition 5.1.9 we obtain that [A] ∈ BMinn(C;H).

If the assumption from this corollary is fulfilled, the decomposition from Theorem 5.4.4
obviously implies that the decomposition from Theorem 5.4.3 holds as well.

Corollary 5.4.6 Assume Gal(C;H) = Galnb(C;H) and that the conditions of Theo-
rem 5.4.4 are fulfilled. Then BM(C;H) ∼= Br(C)×Gal(C;H).

We can now derive the results of Álvarez and Vilaboa [3, Proposition 4.2 and Theo-
rem 4.5] for the decomposition of BM(C;H) and BMinn(C;H) in case C is a symmetric
monoidal category and H ∈ C a finite commutative and cocommutative Hopf algebra.
In this situation, the braiding is automatically H-linear, Proposition 2.2.5. They require
that an H-Galois object is faithfully projective (in their terminology, a progenerator), [3,
Definition 2.3], instead of faithfully flat as we do. In their framework the two definitions
coincide. Namely, from Proposition 5.2.5 we have that an H-Galois object is faithfully
projective, and conversely, a faithfully projective object is faithfully flat, Lemma 1.7.1.
In view of Proposition 4.3.3 we may write:

Corollary 5.4.7 Let C be a symmetric monoidal category with equalizers and coequalizers
and H ∈ C a finite commutative and cocommutative Hopf algebra. Then BM(C;H) ∼=
Br(C)×Gal(C;H) and BMinn(C;H) ∼= Br(C)× H2(C;H, I).
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Open problem. Observe that for a Hopf algebra H in any closed braided monoidal
category C such that the braiding is H-linear we have a split exact sequence

1 Br(C)- BM(C;H)-q
�
p

Coker(q)-Π 1.-

Under the additional hypothesis that C has equalizers and coequalizers, that H is finite
and commutative, and that Assumption 5.1.6 is fulfilled we have managed to prove that
Coker(q) ∼= Gal(C;H). Would it be possible to describe Coker(q) without the symmetric-
ity assumption on the braiding? A group that could be useful in this task is the group of
H-biGalois objects BiGal(C;H), since it always exists and contains Gal(C;H) as a sub-
group in the case we studied. Would it be possible to establish a morphism from BM(C;H)
to BiGal(C;H) and identify Coker(q) as a subgroup of BiGal(C;H) as it happens in our
case?





Chapter 6

Applications of Beattie’s sequence

In the recent years several computations of Brauer groups of quasitriangular Hopf alge-
bras were made, [141], [38], [39], [40]. All these Hopf algebras are noncommutative and
noncocommutative and they are Radford biproducts. In this chapter we reveal that the
computations in the first three papers are a consequence of Beattie’s sequence and give
a direction to prove the same for the fourth computation, making use of Theorem 4.5.1.
In the first section of this chapter we compute the group of Galois objects over the Hopf
algebra K[x]/(x2) in the category of Z2ν-graded vector spaces, for an odd natural number
ν. Section 6.2 recollects some properties of Radford biproducts and we discuss quasitri-
angular structures in them. In the last section we show how the Hopf algebras in the
cited articles are Radford biproducts of a certain type, as well as how this makes possible
to carry out the announced deduction from Beattie’s sequence.

6.1 Computation of a group of Galois objects

In this section the braided monoidal category, which we denoted by C in previous chapters,
will be the category Gr2ν of Z2ν-graded vector spaces over a field K with char(K) 6= 2.
For M,N ∈ GrZ2ν the braiding in GrZ2ν is given by Φω,s(m ⊗ n) = ωdeg(m)deg(n)sn ⊗ m,
for an odd integer 1 6 s < 2ν and homogeneous elements m ∈ M,n ∈ N , where ω is a
primitive 2ν-th root of unity. We consider the Hopf algebra H = K[x]/(x2) in GrZ2ν . Our
goal here is to compute the group of H-Galois objects in GrZ2ν .

The Z2ν-grading of K[x]/(x2) is

H0 = K1, Hν = Kx,

i.e., all but the components H0 and Hν of H are zero. Then clearly this Z2ν-grading
is indeed a Z2-grading. The coalgebra structure and antipode on K[x]/(x2) are given as
follows:

∆(1) = 1⊗ 1, ∆(x) = 1⊗ x+ x⊗ 1,

ε(1) = 1, ε(x) = 0,

S(1) = 1 and S(x) = −x.

129
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Note that K[x]/(x2) is not an ordinary bialgebra, the compatibility condition for multi-
plication and comultiplication fails. Rather, it is a braided bialgebra, i.e., a bialgebra in
GrZ2ν (the bialgebra compatibility is fulfilled when we apply the braiding given above).

We define the algebra C(α) := K〈y|y2 = α〉 for α ∈ K. It is Z2ν-graded by C(α)0 = K
and C(α)ν = Ky and the rest of homogeneous components are zero. Furthermore, C(α) is
a right H-comodule algebra with the comodule structure morphism ρ : C(α) −→ C(α)⊗H,
given by

ρ(1) = 1⊗ 1 and ρ(y) = 1⊗ x+ y ⊗ 1.

Proposition 6.1.1 There is a group isomorphism

Ψ : (K,+) −→ Galnb(GrZ2ν ;K[x]/(x2)), α 7→ [C(α)]

and we have the identity Galnb(GrZ2ν ;K[x]/(x2)) = Gal(GrZ2ν ;K[x]/(x2)).

Proof. Note that the category GrZ2ν with the braiding Φω,s is not symmetric, hence we do
not know if Gal(GrZ2ν ;K[x]/(x2)) is a group. Nevertheless, we may consider the group
Galnb(GrZ2ν ;K[x]/(x2)), Corollary 3.5.6. As above, let H = K[x]/(x2). It is easy to see
that

can : C(α)⊗ C(α) −→ C(α)⊗H

1⊗ 1 7→ 1⊗ 1

y ⊗ y 7→ α⊗ 1 + y ⊗ x

1⊗ y 7→ y ⊗ 1 + 1⊗ x

y ⊗ 1 7→ y ⊗ 1

is a Z2ν-graded isomorphism. Thus C(α) is indeed an H-Galois object in GrZ2ν . It has a
normal basis, a Z2ν-graded H-comodule isomorphism ξ : C(α) −→ H is given by ξ(1) = 1
and ξ(y) = x.

Let

C(α) = K〈y|y2 = α〉, C(β) = K〈z|z2 = β〉 and C(α + β) = K〈w|w2 = α + β〉.

We prove that Ψ is a group morphism by giving a right H-comodule algebra morphism θ :
C(α+β) −→ C(α)2HC(β) (recall Proposition 3.2.6). Define θ : C(α+β) −→ C(α)⊗C(β)
by θ(1) = 1 ⊗ 1 and θ(w) = 1 ⊗ z + y ⊗ 1. It is obviously Z2ν-graded. Let ρα and ρβ
denote the right H-comodule structure morphisms of C(α) and C(β), respectively. We
turn C(β) into a left H-comodule via the braiding given at the beginning. If λβ denotes
the left H-comodule structure morphism, then λβ(1) = 1⊗ 1 and λβ(z) = 1⊗ z + x⊗ 1.
Then we have

ρα(1)⊗ 1 = 1⊗ 1⊗ 1 = 1⊗ λβ(1)

and

ρα(1)⊗ z + ρα(y)⊗ 1 = 1⊗ 1⊗ z + y ⊗ 1⊗ 1 + 1⊗ x⊗ 1 = 1⊗ λβ(z) + y ⊗ λβ(1).
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Thus θ induces θ : C(α + β) −→ C(α)2HC(β), so that eC(α),C(β)θ = θ. Recall that we
consider C(α)⊗ C(β) as a right H-comodule via C(α)⊗ ρβ. One shows that θ is a right
H-comodule algebra morphism. Due to 1.2.4 then so is θ, too.

We prove now that Ψ is injective. Let ω : C(α) −→ C(β) be a Z2ν-graded right H-
comodule algebra isomorphism. Then ω(1) = 1 and ω(y) = κz, for some κ ∈ K. Since ω
is right H-colinear, we have that

(ω ⊗H)ρα(y) = (ω ⊗H)(1⊗ x+ y ⊗ 1) = 1⊗ x+ κz ⊗ 1

equals

ρβω(y) = ρβ(κz) = κ⊗ x+ κz ⊗ 1.

Hence κ = 1. On the other hand, from the algebra compatibility of ω we get α = ω(α) =
ω(y2) = ω(y)2 = κ2z2 = β.

We finally prove that Ψ is surjective and that all H-Galois objects in GrZ2ν have a
normal basis. Let A be an H-Galois object in GrZ2ν . From the isomorphism can : A⊗A
−→ A ⊗ H we obtain dim(A)2 = dim(A)dim(H), which implies dim(A) = dim(H) = 2.
Then we may take a K-basis {1, u} of A such that u2 = γ ∈ K, for some 0 6= u ∈ A. Since
K1 ⊆ A0, it follows dim(A0) ≥ 1. If dim(A0) = 2, then A = A0 and since the structure
morphism ρ is Z2ν-graded, ρ(A) ⊆ A⊗K1, implying A ⊆ AcoH = K, a contradiction. If
dim(A0) = 1, there is 1 ≤ ε < 2ν such that Aε = Ku. Since AεAε ⊆ A2ε ⊆ A0, this forces
ε = ν. Thus we may write A = A0 ⊕ Aν where A0 = K1 and Aν = Ku.

Denote by ρA : A −→ A⊗H the right H-comodule structure morphism for A. Knowing
that ρA is a morphism in Gr2ν , we obtain

ρA(u) = a⊗ x+ bu⊗ 1,

for some a, b ∈ K. We claim that a 6= 0. If a = 0, then can(1⊗u) = bu⊗1 = can(bu⊗1),
contradiction. Take v = 1

a
u. Then ρA(v) = 1 ⊗ x + bv ⊗ 1. Since (A ⊗ ε)ρA(v) = v,

we get b = 1. Note that v2 = α, for some α ∈ K. It is easy to check that ϕ : A
−→ C(α), defined by ϕ(1) = 1 and ϕ(v) = y, is an H-comodule algebra isomorphism. This
proves that any H-Galois object in GrZ2ν has a normal basis, Galnb(GrZ2ν ;K[x]/(x2)) =
Gal(GrZ2ν ;K[x]/(x2)), and that Ψ is surjective.

6.2 Radford biproducts and Majid’s bosonization

In this section the braided monoidal category C will be the category of vector spaces over
a field K, which we denote here by KM. Here we mainly recollect known facts on the
Radford biproduct, with the exception of Proposition 6.2.9 and Corollary 6.2.10.

Definition 6.2.1 A quasitriangular bialgebra (respectively Hopf algebra) is a pair (H,R),
where H is a bialgebra (respectively a Hopf algebra) and the element R = R(1) ⊗R(2) ∈
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H ⊗H is invertible and such that

(QT1) ∆(R(1))⊗R(2) = R13R23;
(QT2) R(1) ⊗∆(R(2)) = R13R12;
(QT3) (τ∆(h))R = R∆(h), for all h ∈ H.

Here τ denotes the usual twist map and

R12 = R(1) ⊗R(2) ⊗ 1, R23 = 1⊗R(1) ⊗R(2) and R13 = R(1) ⊗ 1⊗R(2).

A quasitriangular Hopf algebra (H,R) is called triangular if R−1 = τ(R).

One has the following, [96, Lemma 2.1.2 and Proposition 2.1.8].

Lemma 6.2.2 If (H,R) is a quasitriangular bialgebra, then

ε(R(1))R(2) = 1 = R(1)ε(R(2)).

If (H,R) is a quasitriangular Hopf algebra, then the antipode of H is invertible and one
has

S(R(1))⊗R(2) = R−1 = R(1) ⊗ S−1(R(2)).

An important relation between the (quasi)triangular structures and braided monoidal
categories is recorded in the proposition below, see [100, Theorem 10.4.2]. A slightly
different proof can be found in [96, Theorem 9.2.4].

Proposition 6.2.3 A bialgebra B admits

1. A quasitriangular structure if and only if there is a braided structure in the monoidal
category (BM,⊗).

2. A triangular structure if and only if (BM,⊗) has a structure of a symmetric monoidal
category.

If (B,R) is a quasitriangular structure, then a braiding for the category BM is given by
ΦR := τR. Conversely, if (BM,Φ) is a braided monoidal category, thenR := τΦ(1B⊗1B)
defines a quasitriangular structure on B.

Concretely, if R = R(1) ⊗R(2) is a quasitriangular structure for a Hopf algebra H, a
braiding ΦR and its inverse in the category of left H-modules are given by

ΦR(m⊗ n) = R(2) ·
H
n⊗R(1) ·

H
m (6.2.1)

Φ−1
R (n⊗m) = R(1) ·

H
m⊗ S−1(R(2))·

H
n,

for m ∈ M,n ∈ N and M,N ∈ HM, where ·
H

denotes the action of the elements of H
on those of H-modules.

Let H be a bialgebra and B an algebra in HM and a coalgebra in HM. We denote by
B×H the space B⊗H and the element b⊗h in B×H we will write as b×h. The action
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of elements of H on those of B we denote by the symbol .. Employing the Sweedler
notation, we equip B ×H with the following operations:

smash product: (b× h)(b′ × h′) = b(h(1). b
′)× h(2)h

′

smash coproduct: ∆(b× h) = (b(1) × b(2)[−1]
h(1))⊗ (b(2)[0]

× h(2))

unit: 1B×H = 1B × 1H
counit: εB×H(b× h) = εB(b)⊗ εH(h)

for b, b′ ∈ B and h, h′ ∈ H. Radford’s biproduct Theorem [113, Theorem 2.1 and Propo-
sition 2] characterizes when B ⊗ H is a bialgebra and a Hopf algebra with the above
operations.

Theorem 6.2.4 Let H be a bialgebra and B an algebra in HM and a coalgebra in HM.
Let µ : H ⊗ B −→ B and λ : B −→ H ⊗ B be the module and comodule structure,
respectively. Then the following are equivalent:

1. The biproduct B ×H is a bialgebra.

2. B is an algebra in HM, a coalgebra in HM, εB is an algebra map, ∆B(1B) = 1B⊗1B,
and the following identities hold:

(a) ∆B(ab) = a(1)(a(2)[−1]
. b(1))⊗ a(2)[0]

b(2);

(b) h(1)b[−1] ⊗ (h(2). b[0]) = (h(1). b)[−1]h(2) ⊗ (h(1). b)[0]

for a, b ∈ B and h ∈ H.

3. λ and εB are algebra maps, µ is a coalgebra map, ∆B(1B) = 1B ⊗ 1B, and the
identities (a) and (b) of 2) hold.

In [113, Proposition 2. b)] is revealed that the upper biproduct is a Hopf algebra if
furthermore B has a convolution inverse SB of idB and H is a Hopf algebra with antipode
SH . Then B×H is a Hopf algebra with antipode S(b×h) = (1B ×SH(b[−1]h))(SB(b[0])×
1H).

We have that B and H are embedded as algebras into B ×H via

ιB : B ↪→ B ×H, b 7→ b× 1H

ιH : H ↪→ B ×H, h 7→ 1B × h.

Majid observed that Radford’s biproduct can be put in the framework of a braided
monoidal category. Concretely, B in Radford’s biproduct B ×H is a braided bialgebra,
i.e., a bialgebra in the braided monoidal category of Yetter-Drinfel’d H-modules. We
define them here.
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Definition 6.2.5 Let H be a bialgebra over a field K. A left Yetter-Drinfel’d module is
a left H-module and a left H-comodule M satisfying the compatibility condition

h(1)m[−1] ⊗ h(2) ·Hm[0] = (h(1) ·Hm)[−1]h(2) ⊗ (h(1) ·Hm)[0],

for h ∈ H,m ∈ M . The category of left Yetter-Drinfel’d modules and left H-linear and
H-colinear morphisms is denoted by H

HYD.

The category H
HYD is a braided monoidal one provided Hcop is a Hopf algebra ([146]),

which is fulfilled when H has a bijective antipode, with braiding Ψ : M ⊗N −→ N ⊗M
given by

Ψ(m⊗ n) = m[−1] ·Hn⊗m[0],

for m ∈M,n ∈ N and M,N ∈ H
HYD. The inverse of Ψ is given by

Ψ−1(n⊗m) = m[0] ⊗ S−1(m[−1])·Hn.

Condition b) of Theorem 6.2.4, 2) is the compatibility condition of H
HYD. Assuming

that H
HYD is a braided monoidal category, we realize that the condition a) of the theorem

is nothing but the compatibility condition of the algebra and coalgebra structure of B in
H
HYD. If B is a bialgebra in H

HYD, then it is an algebra and a coalgebra in HM and in
HM. Thus we obtain:

Corollary 6.2.6 Consider a Hopf algebra H with a bijective antipode and let B be a
bialgebra in H

HYD. Then the biproduct B ×H is a bialgebra. If also B is a Hopf algebra
in H

HYD, then B ×H is a Hopf algebra.

For a quasitriangular bialgebra (H,R) every left H-module M belongs to H
HYD with

coaction λ : M −→ H ⊗M given by

λ(m) := R(2) ⊗R(1) ·
H
m (6.2.2)

for m ∈ M . Let us prove this. We write R = R(1) ⊗R(2) = r(1) ⊗ r(2). This coaction is
compatible with the comultiplication of H, since

(H ⊗ λ)λ(m) = R(2) ⊗ λ(R(1) ·
H
m) = R(2) ⊗ r(2) ⊗ r(1) ·

H
(R(1) ·

H
m)

= R(2) ⊗ r(2) ⊗ (r(1)R(1))·
H
m

(QT2)
= ∆(R(2))⊗R(1) ·

H
m = (∆⊗M)λ(m).

Furthermore, it is (ε ⊗ M)λ(m) = ε(R(2))R(1) ·
H
m

(L. 6.2.2)
= m. The Yetter-Drinfel’d

compatibility expressed in terms of R is precisely the condition (QT3).

With the so far established structures we have that (HM,ΦR) is a braided monoidal
subcategory of ( H

HYD,Ψ), as

Ψ(m⊗ n) = m[−1] ·Hn⊗m[0] = R(2) ·
H
n⊗R(1) ·

H
m = ΦR(m⊗ n)

for m ∈M,n ∈ N and M,N ∈ HM. In view of Corollary 6.2.6 then we may write:
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Corollary 6.2.7 If B is a Hopf algebra in HM, where (H,R) is a quasitriangular Hopf
algebra, and B is viewed as a left H-comodule via (6.2.2), then B ×H is a Hopf algebra.

The process of obtaining an ordinary Hopf algebra B ×H out of a Hopf algebra B in

HM as above is called bosonization by Majid. The following proposition is a simplified
version of [95, Theorem 4.2].

Proposition 6.2.8 Let H be a quasitriangular Hopf algebra and B a Hopf algebra in

HM. Consider the category B(HM) of B-modules in HM. Given M ∈ HM the compat-
ibility condition is

h·
H

(b·
B
m) = (h(1). b)·B(h(2) ·Hm)

for h ∈ H, b ∈ B and m ∈ M . Then there is an isomorphism of monoidal categories

B(HM) ∼= B×HM.

Proof. We give the corresponding structures, the proof is straightforward. A module L
in B(HM) is made into a B ×H-module via

(b× h) · l := b·
B

(h·
H
l)

for l ∈ L. Conversely, on a B ×H-module M we define a B- and an H-action via

b·
H
m := (b× 1H) ·m and h·

H
m := (1B × h) ·m

respectively, for b ∈ B, h ∈ H and m ∈M .

We now prove our observation on the extension of a quasitriangular structure in a
Radford biproduct. Hopf algebras that will be treated in Section 6.3, whose decompo-
sitions of Brauer groups we named in the introduction of this chapter, will all be of the
type expressed in the proposition.

Proposition 6.2.9 Let (H,R) be a quasitriangular Hopf algebra and B a Hopf algebra
in HM. Consider the Radford biproduct Hopf algebra B ×H. Then R := (ιH ⊗ ιH)(R)
is a quasitriangular structure on B × H if and only if the braiding ΦR induced by the
quasitriangular structure (H,R) is B-linear in HM.

Proof. Assume that R is a quasitriangular structure for B×H. Then by Proposition 6.2.3
the category (B×HM,ΦR) is a braided monoidal category. In particular, ΦR is B × H-
linear. Then due to Proposition 6.2.8 its corresponding map ΦR is B-linear in HM.
Indeed, for M,N ∈ B(HM) one has that the maps ΦR : M ⊗N −→ N ⊗M in B×HM and
ΦR : M⊗N −→ N⊗M in B(HM) are equal. For, observe thatR = (1B×R(1))⊗(1B×R(2)),
we find that

ΦR(m⊗ n) = (1B ×R(2))n⊗ (1B ×R(1))m = R(2)n⊗R(1)m = ΦR(m⊗ n)

for m ∈M and n ∈ N .
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Conversely, in the braided monoidal category (HM,ΦR) assume ΦR is B-linear. Sim-
ilarly as above, by Proposition 6.2.8, ΦR is an isomorphism in B×HM. Moreover, ΦR
satisfies the two hexagon axioms for a braided monoidal category in HM and it is B-
linear. By the latter lemma then ΦR satisfies the two hexagon axioms in B×HM. Thus
(B×HM,ΦR) is a braided monoidal category and by Proposition 6.2.3, R is a quasitrian-
gular structure on B ×H.

Corollary 6.2.10 Let (H,R) be a quasitriangular bialgebra so that R extends to a quasi-
triangular structure of the Radford biproduct B×H. Then the braided monoidal categories
(B(HM),ΦR) and (B×HM,ΦR) are isomorphic.

Proof. The monoidal category (B×HM,ΦR) is braided due to Proposition 6.2.3. The
other one is braided because of Proposition 6.2.9 and Proposition 2.2.3. That the two
braidings are equal we saw in the previous proposition.

In the next section we will deal with Radford biproducts H ×L where the quasitrian-
gular structure of L extends to a quasitriangular structure of the total Hopf algebra. An
example of a Radford biproduct where this is not the case is the Taft algebra

Hn2 = K〈g, x|gn = 1, xn = 0, gx = ωxg〉

where n > 2 is a natural number such that char(K) is coprime to n, and ω is an n-th
primitive root of unity. The structure of a Hopf algebra on Hn2 is given by

∆(g) = g ⊗ g, ε(g) = 1

∆(x) = 1⊗ x+ x⊗ g, ε(x) = 0

S(g) = g−1, S(x) = −xg−1.

When n = 2 note that we recover Sweedler’s Hopf algebra H4. Taft algebra is isomorphic
to a Radford biproduct

Hn2 = K[x]/(xn)×KZn
where L = KZn is quasitriangular, but Hn2 is not. That the quasitriangular structure of
KZn, given by

Rn,s =
1

n
(
n−1∑
i,l=0

ω−ilgi ⊗ gsl),

with 1 6 s < n, does not extend to Hn2 , we prove by showing that the braiding in GrZn
is not K[x]/(xn)-linear. The Zn-gradation of K[x]/(xn) is such that its i-th component is
Kxi. The structure of a Hopf algebra of K[x]/(xn) in GrZn is given by

∆(x) = 1⊗ x+ x⊗ 1, ε(x) = 0 and S(x) = −x.

We first notice that the braiding induced by Rn,s is equal to the braiding given by

Φω,s(m⊗ q) = ωdeg(m)deg(q)sq ⊗m (6.2.3)
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for homogeneous elements m ∈M, q ∈ Q and M,Q ∈ GrZn . Indeed,

ΦRn,s(m⊗ n) = 1
n(

n−1∑
i,l=0

ω−ilgsl ·
L
n⊗ gi ·

L
m)

=
1

n
(
n−1∑
i,l=0

ω−ilωdeg(n)slωdeg(m)i)n⊗m

=
1

n
(
n−1∑
l=0

ωdeg(n)sl[
n−1∑
i=0

(ωdeg(m)−l)i])n⊗m

= 1
n(nωdeg(m)deg(n)s)n⊗m

= ωdeg(m)deg(n)sn⊗m

= Φω,s(m⊗ n)

for M,N ∈ GrZn and homogeneous m ∈ M,n ∈ N . In the fourth equality we applied
that the sum in the bracket is different from zero only for l = deg(m), when it equals n.

Let now M and Q be K[x]/(xn)-modules in GrZn . Take m ∈ M, q ∈ Q homogeneous
elements. The Zn-grading on H = K[x]/(xn) is determined by deg(xi) = i. We now
compute

Φ(x · (m⊗ q)) = Φ(ωdeg(x(2))deg(m)x(1)m⊗ x(2)q)
= Φ(ωdeg(m)m⊗ xq + xm⊗ q)
= ωdeg(m)ωdeg(m)deg(xq)xq ⊗m+ ωdeg(xm)deg(q)q ⊗ xm
= ωdeg(m)(2+deg(q))xq ⊗m+ ωdeg(q)(1+deg(m))q ⊗ xm

and
x · Φ(m⊗ q) = ωdeg(m)deg(q)x · q ⊗m

= ωdeg(q)(deg(m)+deg(x(2))x(1)q ⊗ x(2)m
= ωdeg(q)(deg(m)+1)q ⊗ xm+ ωdeg(q)deg(m)xq ⊗m.

Since ωdeg(m)(2+deg(q)) 6= ωdeg(q)deg(m) in general for n > 2, the braiding is not K[x]/(xn)-
linear.

6.3 Beattie’s sequence as the root of the known com-

putations

In this section we deal with Sweedler’s Hopf algebra H4, Radford’s Hopf algebra Hν ,
Nichols’ Hopf algebra E(n) and modified supergroup algebras KG × Λ(V ) and show
that the decompositions of their Brauer groups can be deduced from Beattie’s sequence
constructed in Chapter 5. Here K denotes a field and KM the category of K-vector
spaces.
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We will apply Theorems 5.4.3 and 5.4.4 to the particular case of a braided Hopf
algebra B in the category HM, where (H,R) is a quasitriangular Hopf algebra whose
quasitriangular structure extends to a quasitriangular structure on B ×H.

Theorem 6.3.1 Let (H,R) be a quasitriangular Hopf algebra and B ∈ HM a finite and
commutative Hopf algebra. Suppose that ι(R) is a quasitriangular structure on B × H.
Assume that for each B-Galois object A and each X in HM the braiding ΦR is symmetric
on A⊗X. Then

BM(K,B ×H, ι(R)) ∼= BM(K,H,R)×Gal(HM;B).

Proof. From Theorem 5.4.3 we obtain BM(HM;B) ∼= Br(HM) × Gal(HM;B). Because
of Proposition 6.2.9 and Corollary 6.2.10 we have BM(HM;B) ∼= Br(B×HM). Finally by
Section 2.2 it is Br(B×HM) = BM(K,B ×H, ι(R)) and Br(HM) = BM(K,H,R).

Similarly, applying Theorem 5.4.4 and Proposition 4.3.3 we obtain:

Theorem 6.3.2 Let (H,R) be a quasitriangular Hopf algebra and B ∈ HM a finite and
commutative Hopf algebra. Suppose that ι(R) is a quasitriangular structure on B × H.
Then BM(K,H,R)× H2(HM;B,K) is a subgroup of BM(K,B ×H, ι(R)).

The computations of the Brauer group of the above-mentioned Hopf algebras led to
the conjecture that the group of lazy 2-cocycles embeds in the Brauer group. In view of
the preceding result, there is an embedding of the second braided cohomology group of
the braided Hopf algebra into the Brauer group of the corresponding Radford biproduct.
This cohomology group coincides with the lazy cohomology group for the above Hopf
algebras. For more details on lazy cohomology we refer to [16, 40, 51].

Sweedler’s Hopf algebra is the algebra

H4 = K〈g, x|g2 = 1, x2 = 0, gx = −xg〉.

It is the smallest noncommutative and noncocommutative Hopf algebra. The element
g ∈ H4 is group-like, whereas x is a (g, 1)-primitive element, that is ∆(x) = 1⊗x+x⊗g and
ε(x) = 0. The antipode is given by S(g) = g and S(x) = gx. A family of quasitriangular
structures on H4 was proved in [114] to be

Rt =
1

2
(1⊗ 1 + g ⊗ 1 + 1⊗ g − g ⊗ g) +

t

2
(x⊗ x+ x⊗ gx+ gx⊗ gx− gx⊗ x)

for t ∈ K. As it was proved in [37], the Brauer groups of H4-module algebras with
respect to Rt are all isomorphic to the Brauer group with respect to R0. The latter is
simultaneously a quasitriangular structure for KZ2. In [141] it was shown that there is a
direct sum decomposition

BM(K,H4,R0) ∼= BW(K)× (K,+) (6.3.4)
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where BW(K) denotes the Brauer-Wall group of K and BM(K,H4,R0) the Brauer group
of H4-module algebras with respect to R0.

Radford constructed in [115] a family of Hopf algebras generalizing Sweedler’s Hopf
algebra. They are

Hν = K〈g, x|g2ν = 1, x2 = 0, gx = −xg〉

where ν is an odd natural number. The element g ∈ Hν is group-like, whereas x is a
(gν , 1)-primitive element, that is ∆(x) = 1 ⊗ x + x ⊗ gν and ε(x) = 0. The antipode is
given by S(g) = g−1 and S(x) = gνx. The family of quasitriangular structures on Hν is
given by

Rs,β =
1

2ν
(
2ν−1∑
i,l=0

ω−ilgi ⊗ gsl) +
β

2ν
(
2ν−1∑
i,l=0

ω−ilgix⊗ gsl+νx) (6.3.5)

for an odd 1 6 s < 2ν, β ∈ K and ω a 2ν-th primitive root of unity. For ν = 1 and
s = 0 one gets Sweedler’s Hopf algebra with the triangular structure R0. As in the case
of Sweedler’s Hopf algebra, it was proved in [38] that the Brauer groups of Hν-module
algebras with respect to Rs,β are all isomorphic to the Brauer group with respect to Rs,0.
Furthermore, the authors proved that

BM(K;Hν ,Rs,0) ∼= Br(K;Z2ν , θs)× (K,+). (6.3.6)

Here Br(K;Z2ν , θs) is the Brauer group of Z2ν-graded algebras with respect to the bichar-
acter θs. As we saw for Taft algebra, the braiding given in terms of θs, that is, the one
we saw in Section 6.1, is the same one as that induced by Rs,0 via (6.2.1), that is,

Φω,s(m⊗ n) = ωdeg(m)deg(n)sn⊗m

for homogeneous elements m ∈M,n ∈ N and M,N ∈ GrZ2ν . The group BM(K;Hν ,Rs,0)
is the Brauer group of Hν-module algebras with respect to Rs,0. One has that Rs,0 is
simultaneously a quasitriangular structure for KZ2ν .

We will explain how these two decompositions come out from Beattie’s sequence.

Let us study Radford’s Hopf algebra Hν and prove first that it is a Radford biproduct
of K[x]/(x2) and KZ2ν . Thus we will cover also Sweedler’s Hopf algebra and understand
that it is a Radford biproduct of K[x]/(x2) and KZ2.

The structure of the Hopf algebra on L := KZ2ν = K〈g|g2ν = 1〉 is the usual one
for a group algebra, namely, g is group-like and S(g) = g−1. In Section 6.1 we saw that
H := K[x]/(x2) is a Hopf algebra in GrZ2ν , the category of Z2ν-graded vector spaces.
Since the group algebra KZ2ν is a self-dual Hopf algebra (provided that K contains a
primitive 2ν-th root of unity), we identify GrZ2ν with the category LM. The L-module
structure on a Z2ν-graded vector space M is given by g ·m = ωdeg(m)sm for homogeneous
m ∈ M . Furthermore, we have that (6.3.5) determines the quasitriangular structure on
L (and R0 the one on KZ2).
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Having established that (L,Rs,0) is a quasitriangular Hopf algebra and that H is a
Hopf algebra in the category (LM,ΦRs,0), we now may consider the Hopf algebra H × L
obtained by Majid’s bosonization with the bialgebra structure from the Radford biproduct
on page 133, where H is a left L-comodule by (6.2.2). Note that for any quasitriangular
structure R,

λ(1H) = R(2) ⊗R(1)1H = R(2) ⊗ εL(R(1))1H
(L. 6.2.2)

= 1L ⊗ 1H . (6.3.7)

Let us show that

λ(x) = gν ⊗ x. (6.3.8)

First, we note that for each primitive 2ν-root of unity ζ, since s is odd, putting s = 2k+1
for a natural number k, we get

ζsν = ζ2kν+ν = ζν . (6.3.9)

Recall from page 129 that deg(1) = 0 and deg(x) = ν. Then we have that the L-action
on H is determined by g · 1 = ωdeg(1)s1 = 1 and g · x = ωdeg(x)sx = ωνsx = ωνx = −x,
because (ων)2 = 1 and ων 6= 1. We now compute

λ(x) = R(2)
s,0 ⊗R

(1)
s,0x =

1

2ν
(
2ν−1∑
i,l=0

ω−ilgsl ⊗ gix)

=
1

2ν
(
2ν−1∑
i,l=0

ω−ilgsl ⊗ (−1)ix)

=
1

2ν
(
2ν−1∑
i,l=0

(−1)iω−ilgsl)⊗ x

=
1

2ν
(
2ν−1∑
l=0

[
2ν−1∑
i=0

(−ω−l)i]gsl)⊗ x

=
1

2ν
(2νgsν)⊗ x

(6.3.9)
= gν ⊗ x.

Note that the sum in the bracket in the fourth line is different from 0 only for l = ν, when
it equals 2ν, because ων = ω−ν = −1, as we saw before.

We now establish the Hopf algebra isomorphism Hν
∼= K[x]/(x2) × KZ2ν . For this

purpose let us denote the generators of Hν by G and X instead of g and x. Let

Ψ : Hν −→ K[x]/(x2)×KZ2ν

be the algebra morphism defined on generators by

Ψ(G) = 1⊗ g and Ψ(X) = x⊗ gν .
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Note that for any natural number k:

(1⊗ g)k = 1⊗ gk. (6.3.10)

The morphism Ψ respects the defining relations,

Ψ(XG) = (x⊗ gν)(1⊗ g) = x(gν · 1)⊗ gν+1 = x⊗ gν+1

= −gx⊗ gν+1 = −(1⊗ g)(x⊗ gν) = Ψ(−GX);

Ψ(X2) = (x⊗ gν)(x⊗ gν) = x(gνx)⊗ g2ν = (−1)νx2 ⊗ 1 = 0;

Ψ(G2ν) = (1⊗ g)2ν (6.3.10)
= 1⊗ g2ν = 1⊗ 1

hence it is well defined. We check that it is compatible with the comultiplication. Indeed,

∆B×H(Ψ(X)) = ∆B×H(x⊗ gν) = (x(1) ⊗ x(2)[−1]
gν)⊗ (x(2)[0] ⊗ gν)

(6.3.7)
= (1⊗ x[−1]g

ν)⊗ (x[0] ⊗ gν) + x⊗ gν ⊗ 1⊗ gν
(6.3.8)

= (1⊗ gνgν)⊗ (x⊗ gν) + x⊗ gν ⊗ 1⊗ gν

= 1⊗ 1⊗ x⊗ gν + x⊗ gν ⊗ 1⊗ gν
(6.3.10)

= 1⊗ 1⊗ x⊗ gν + x⊗ gν ⊗ (1⊗ g)ν

= (Ψ⊗Ψ)(1⊗X +X ⊗Gν)

= (Ψ⊗Ψ)∆Hν (X)

and

∆B×H(Ψ(G)) = ∆B×H(1⊗ g) = (1⊗ 1[−1]g)⊗ (1[0] ⊗ g)
(6.3.7)

= 1⊗ g ⊗ 1⊗ g
= (Ψ⊗Ψ)(G⊗G) = (Ψ⊗Ψ)∆Hν (G).

Being a bialgebra morphism, Ψ is a morphism of Hopf algebras. Moreover, it is an
isomorphism. Its inverse is given by

Ψ−1(1⊗ gk) = Gk and Ψ−1(x⊗ gk) = XGk+ν

for k = 0, . . . , 2ν − 1.

The fact that Rs,0 is a quasitriangular structure both on KZ2ν and Hν means that
Rs,0 as a quasitriangular structure on KZ2ν extends to the quasitriangular structure of
Hν . (The extension Rs,0 = (ιL ⊗ ιL)(Rs,0) lying in (H × L) ⊗ (H × L) corresponds to
(Ψ−1 ⊗ Ψ−1)(ιL ⊗ ιL)(Rs,0) = Rs,0 in Hν ⊗Hν by the Hopf algebra isomorphism Ψ : Hν

−→ H×L). This, by Proposition 6.2.9, is equivalent to the fact that the braiding in GrZ2ν

is K[x]/(x2)-linear.

Having this, due to Proposition 2.2.3, the category of K[x]/(x2)-modules in GrZ2ν

is a braided monoidal one and we may consider its Brauer group. On the other hand,
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by Corollary 6.2.10 we obtain that this category is isomorphic to that of Hν-modules as
braided monoidal category. This has as a consequence that the Brauer groups of the
two categories are isomorphic, BM(K;Hν ,Rs,0) ∼= Br(K;K[x]/(x2)(KZ2νM),Rs,0), where
we identified the categories GrZ2ν and KZ2νM. Recalling from Section 2.2 that the latter
group is BM(GrZ2ν ;K[x]/(x2)), we may write

BM(K;Hν ,Rs,0) ∼= BM(GrZ2ν ;K[x]/(x2)). (6.3.11)

The category GrZ2ν is a closed monoidal category. The inner hom-object [M,N ] for
M,N ∈ GrZ2ν , denoted by hom(M,N), has the following gradation

hom(M,N)i = {f ∈ Hom(M,N)|f |Mj
: Mj −→ Nj+i, j = 0, · · · , 2ν − 1}

for i = 0, · · · , 2ν − 1. Furthermore, KZ2νM ∼= GrZ2ν has equalizers and coequalizers and
clearly, K[x]/(x2) is finite and commutative. Then all the assumptions of Theorem 5.4.4
are satisfied. Now by Proposition 6.1.1 and Corollary 5.4.6 we obtain the direct sum
decomposition

BM(GrZ2ν ;K[x]/(x2)) ∼= Br(GrZ2ν )×Gal(GrZ2ν ;K[x]/(x2))

where the braiding on GrZ2ν is given by Rs,0. Applying (6.3.11) and Proposition 6.1.1 we
get

BM(K;Hν ,Rs,0) ∼= Br(GrZ2ν )× (K,+).

In the notation of [38] the Brauer group of GrZ2ν is Br(K;Z2ν , θs). For ν = 1 we obtain
the Brauer group of Sweedler’s Hopf algebra with respect to R0.

There are some other decompositions of Brauer groups of Hopf algebras which are
Radford biproducts, where the quasitriangular structure of the ordinary Hopf algebra
extends to a quasitriangular structure of the Radford biproduct. In [39] a direct sum
decomposition for the Brauer group was proved for Nichols’ Hopf algebra

E(n) = K〈g, xi, i, j ∈ {1 · · ·n}|g2 = 1, x2
i = 0, gxi = −xig, xixj = −xjxi, 〉

and the triangular structure R0, the same one as for H4. The element g ∈ E(n) is group-
like, whereas xi ∈ E(n) for i = 1, . . . , n are (g, 1)-primitive elements, that is ∆(xi) =
1⊗ xi + xi⊗ g and ε(xi) = 0. The antipode is given by S(g) = g−1 and S(xi) = gxi. The
decomposition of the Brauer group has the form

BM(K,E(n),R0) ∼= BW(K)× (K,+)n(n+1)/2 (6.3.12)

where BM(K,E(n),R0) denotes the Brauer group of E(n)-module algebras with respect
to R0 and BW(K) the Brauer-Wall group of K. More precisely, the same decomposition
is proved for quasitriangular structures RA given in terms of any symmetric n×n matrix
A over K. Let us prove that E(n) is isomorphic to the Radford biproduct K[xn]/(x2

n)×
E(n− 1), where K[xn]/(x2

n) is the exterior algebra generated by xn. When a symmetric
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matrix A is a zero matrix, the (quasi)triangular structure R0 extends from E(n − 1) to
E(n). This is why we consider here the case A = 0.

We are already familiar with the Hopf algebra structure of L := E(n−1). The algebra
H := K[xn]/(x2

n) is an L-module via g · xn = −xn and xi · xn = 0, i = 1, · · · , n− 1. The
Hopf algebra structure of H in the category LM is similar to that of K[x]/(x2):

∆(xn) = 1⊗ xn + xn ⊗ 1, ε(xn) = 0 and S(xn) = −xn.

As it was the case for K[x]/(x2), the algebra H is not an ordinary bialgebra, but it is a
bialgebra in E(n−1)M.

Applying Majid’s bosonization we obtain the Radford biproduct Hopf algebra H ×L.
The left L-comodule structure of H is induced similarly as in (6.3.8) by λ(xn) = g ⊗ xn
and one has (6.3.7).

Similarly as in the case of the Hopf algebra isomorphism on page 140 it is proved that
the algebra morphism

Ψ1 : E(n) −→ K[xn]/(x2
n)× E(n− 1)

defined on generators by

Ψ1(G) = 1⊗ g, Ψ1(Xi) = 1⊗ xi and Ψ1(Xn) = xn ⊗ g

for i = 1, . . . , n − 1, respects the defining relations and that it is a Hopf algebra isomor-
phism. Its inverse is given on generators by

Ψ−1
1 (1⊗ g) = G, Ψ−1

1 (1⊗ xi) = Xi,

Ψ−1
1 (xn ⊗ g) = Xn and Ψ−1

1 (xn ⊗ xi) = GXiXn

for i = 1, . . . , n − 1. Here we denote the generators of E(n) by G and Xi, i = 1, · · · , n
instead of g and xi, i = 1, · · · , n.

Having that the triangular structure R0 of E(n − 1) extends to the one of E(n),
i.e., that the braiding in E(n−1)M is K[xn]/(x2

n)-linear, by Proposition 2.2.3 the category
of K[xn]/(x2

n)-modules in E(n−1)M is a braided monoidal one and we may consider its
Brauer group. As before, by Corollary 6.2.10 we know that this category is isomorphic to
the category of E(n)-modules as braided monoidal category. Hence the Brauer groups of
these categories are isomorphic, BM(K;E(n),R0) ∼= Br(K;K[xn]/(x2n)(E(n−1)M),R0). The
latter group is, due to Section 2.2, BM(E(n−1)M;K[xn]/(x2

n)) and we may write

BM(K;E(n),R0) ∼= BM(E(n−1)M;K[xn]/(x2
n)). (6.3.13)

The category (E(n−1)M,R0) is a closed symmetric monoidal category and it has equal-
izers and coequalizers. Furthermore, K[xn]/(x2

n) is finite and commutative and we may
apply Theorem 5.4.3 to obtain the direct sum decomposition

BM(E(n−1)M;K[xn]/(x2
n)) ∼= Br(E(n−1)M)×Gal(E(n−1)M;K[xn]/(x2

n))
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where the braiding on E(n−1)M is given by R0. In view of (6.3.13), we get

BM(K;E(n),R0) ∼= BM(K,E(n− 1),R0)×Gal(E(n−1)M;K[xn]/(x2
n)).

Similarly as in Proposition 6.1.1 we have the group isomorphism

(K,+)n ∼= Gal(E(n−1)M;K[xn]/(x2
n))

given by
(α, α1, · · · , αn−1) 7→M(α, α1, · · · , αn−1) = K〈y|y2 = α〉

where M(α, α1, · · · , αn−1) has a structure of an E(n − 1)-module by g · y = −y and
xi · y = αi, for i, j ∈ {1, · · · , n − 1}, and of a right K[xn]/(x2

n)-comodule by ρ(1) =
1⊗ 1, ρ(y) = 1⊗ xn + y ⊗ 1. Thus we may write

BM(K;E(n),R0) ∼= BM(K,E(n− 1),R0)× (K,+)n.

Applying this result iteratively we finally get (6.3.12).

Notice that in the previous example

Galnb(E(n−1)M;K[xn]/(x2
n)) ∼= H2(E(n−1)M;K[xn]/(x2

n), K) ∼= (K,+).

Its elements are represented byM(α, 0, · · · , 0) with α ∈ K. Observe thatM(α, 0, · · · , 0) =
Bσα with B = K[xn]/(x2

n) and σα : B ⊗B −→ K is the 2-cocycle

σα 1 xn
1 1 0
xn 0 α

Here we have an example where the morphism ιζ : H2(E(n−1)M;K[xn]/(x2
n), K) −→

Gal(E(n−1)M;K[xn]/(x2
n)) from Theorem 4.5.1 is not surjective. The K[xn]/(x2

n)-como-
dules M(α, α1, · · · , αn−1) where some αi 6= 0 give non-trivial elements in the group
Picco(E(n−1)M;K[xn]/(x2

n)).

The decomposition of the Brauer group of a finite dimensional triangular Hopf algebra
over an algebraically closed field of characteristic 0 was resolved by the work of Carnovale,
[40], where the Brauer group of a modified supergroup algebra was studied. Namely, in
[62] Etingof and Gelaki proved that every triangular Hopf algebra of the above type is
the Drinfeld twist of a modified supergroup algebra. The categories of modules over the
two respective Hopf algebras are equivalent as braided monoidal categories. The Brauer
group is invariant under the braided monoidal equivalence of categories, hence the two
respective Brauer groups are isomorphic.

A modified supergroup algebra is constructed from the following data:

1. A finite group G;
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2. A central element u ∈ G with u2 = 1;

3. A linear representation of G on a finite-dimensional vector space V on which u acts
as −1.

The action of G on V makes the exterior algebra Λ(V ) into a KG-module algebra and
we can construct the smash product Λ(V )#KG. The element of KG⊗KG

Ru =
1

2
(1⊗ 1 + u⊗ 1 + 1⊗ u− u⊗ u)

is a triangular structure on KG and Λ(V ) is a Hopf algebra in KGM by defining

∆(v) = 1⊗ v + v ⊗ 1, ε(v) = 0 and S(v) = −v.

We can construct the Radford biproduct Λ(V )×KG, where the elements of G are group-
like, whereas the elements of V are (u, 1)-primitive, that is ∆Λ(V )×KG(v) = v⊗1+u⊗v, v ∈
V, ε(v) = 0, S(v) = uv. The triangular structure Ru extends to the triangular structure
of Λ(V )×KG. For the left KG-coaction on Λ(V ) we find

λ(v) = R(2)
u ⊗R(1)

u v =
1

2
(1⊗ v + 1⊗ u · v + u⊗ v − u⊗ u · v)

=
1

2
(1⊗ v − 1⊗ v + u⊗ v + u⊗ v)

= u⊗ v.

The Hopf subalgebra of the Radford biproduct Λ(V ) ×KG which is generated by u
and by the (u, 1)-primitive elements of V is isomorphic, as a triangular Hopf algebra,
to Nichols’ Hopf algebra E(n) ∼= Λ(n) × KZ2, where n = dim(V ), with the triangular
structure R0.

In [40] the author proved the direct sum decomposition

BM(K; Λ(V )×KG,Ru) ∼= BM(K;KG,Ru)× S2(V ∗)G. (6.3.14)

Here BM(K; Λ(V )×KG) is the Brauer group of the modified supergroup algebra Λ(V )×
KG with respect to Ru, BM(K;KG,Ru) is the Brauer group of G-graded vector spaces
with respect to the braiding induced by Ru, and S2(V ∗)G is the group of symmetric
matrices over V ∗ invariant under the conjugation by elements of G. Taking into account
that the category of G-graded vector spaces is symmetric, Proposition 6.2.3, as in the
previously discussed examples, from Beattie’s sequence in Theorem 5.4.3 we obtain the
direct sum decomposition

BM(K; Λ(V )×KG,Ru) ∼= BM(K;KG,Ru)×Gal(GrG; Λ(V )).

The decomposition (6.3.14) will be a consequence of Beattie’s sequence if we prove that
there is a group isomorphism

S2(V ∗)G ∼= Gal(GrG; Λ(V )). (6.3.15)

This is a subject of current research.





Chapter 7

Cohomological interpretation of the
Brauer group of a commutative ring

The Brauer group Br(K) of a field K has a nice cohomological interpretation: it is
isomorphic to the second Galois cohomology group with respect to the separable closure
of the field. In the root of this description lies the Crossed Product Theorem relating the
relative Brauer group Br(L/K) with the second Galois cohomology group with respect to
the Galois field extension L/K. This cohomological interpretation is possible to transmit
from the relative to the full Brauer group because every central simple algebra can be split
by a Galois field extension. However, this is not the case if we consider Galois extensions
of commutative rings, not every Azumaya algebra (over a ring) can be split by a Galois
(ring) extension. Moreover, instead of the Crossed Product Theorem for the relative
Brauer group we now have a long exact sequence, known as Chase-Rosenberg sequence,
[41, Theorem 7.6]. In this chapter we recall Amitsur cohomology employed in the latter
sequence as well as the basics of the Brauer group of a commutative ring. We present how
the Brauer group is related to the Amitsur cohomology group. As commented above, this
will not lead to the cohomological description of the total Brauer group. Though, in the
next chapter we propose the Brauer group of Azumaya corings which will be isomorphic to
the full second flat Amitsur cohomology group. For this purpose we recall in this chapter
the basics of corings and develop some tool we will use in our construction.

In this chapter R will denote a commutative ring.

7.1 Amitsur cohomology

Amitsur cohomology over a field was first introduced in [6]. We present here the version
of it over a commutative ring R. Let S be an R-algebra. Tensor products over R we
write without index R: M ⊗N = M ⊗R N , for R-modules M and N . The n-fold tensor
product S ⊗ · · · ⊗ S we will denote by S⊗n. For i ∈ {1, · · · , n + 2}, we have an algebra
map

ηi : S⊗(n+1) −→ S⊗(n+2),

147
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given by
ηi(s1 ⊗ · · · ⊗ sn+1) = s1 ⊗ · · · ⊗ si−1 ⊗ 1⊗ si ⊗ · · · ⊗ sn+1.

Let P be a covariant functor from a full subcategory of the category of commutative
R-algebras that contains all tensor powers S⊗n of S to abelian groups. Then we consider

δn =
n+2∑
i=1

(−1)i−1P (ηi) : P (S⊗(n+1)) −→ P (S⊗(n+2)).

It is straightforward to show that δn+1 ◦ δn = 0, so we obtain a complex

0 P (S)- P (S⊗2)-δ0 P (S⊗3)-δ1 · · · ,-δ2

called the Amitsur complex C(S/R). We write

Zn(S/R, P ) = Ker δn ; Bn(S/R, P ) = Im δn−1;

Hn(S/R, P ) = Zn(S/R, P )/Bn(S/R, P ).

Hn(S/R, P ) will be called the n-th Amitsur cohomology group of S/R with values in P .
Elements in Zn(S/R, P ) are called n-cocycles, and elements in Bn(S/R, P ) are called n-
coboundaries. Two n-cocycles u and v in Hn(S/R, P ) are said to be cohomologous if there
exists w ∈ P (S⊗n) such that uv−1 = δn−1(w).

In this and the next chapter we will mainly look at the following two examples: P =
Pic, where Pic(S) is the Picard group of S, consisting of isomorphism classes of invertible
S-modules (we will say more about them further below), and P = Gm, where Gm(S) is
the group consisting of all invertible elements of S.

If u ∈ S⊗n, then we will write ui = ηi(u). Observe that u ∈ Gm(S⊗3) is then a cocycle
in Z2(S/R,Gm) if and only if

u1u
−1
2 u3u

−1
4 = 1.

Denote by u = u1 ⊗ u2 ⊗ u3 = U1 ⊗ U2 ⊗ U3. Writing out the form of the 2-cocycle
condition u2u4 = u1u3, we obtain

(u1 ⊗ 1⊗ u2 ⊗ u3)(U1 ⊗ U2 ⊗ U3 ⊗ 1) = (1⊗ u1 ⊗ u2 ⊗ u3)(U1 ⊗ U2 ⊗ 1⊗ U3)

which gives

u1U1 ⊗ U2 ⊗ u2U3 ⊗ u3 = U1 ⊗ u1U2 ⊗ u2 ⊗ u3U3. (7.1.1)

We now present some elementary properties of Amitsur cohomology groups. We will
adopt the following notation: an element u ∈ S⊗n will be written formally as u = u1 ⊗
u2 ⊗ · · · ⊗ un, where the summation is understood implicitly.

Proposition 7.1.1 Let R be a commutative ring, and f : S −→ T a morphism of
commutative R-algebras. The map f induces maps f∗ : Hn(S/R, P ) −→ Hn(T/R, P ). If
g : S −→ T is a second algebra map, then f∗ = g∗ (for n ≥ 1).
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Proof. The first statement is obvious. For the proof of the second one, we refer to [80,
Prop. 5.1.7].

The following result is obvious.

Lemma 7.1.2 If u, v ∈ Zn(S/R,Gm), then

u⊗ v = (u1 ⊗ v1)⊗ (u2 ⊗ v2)⊗ · · · ⊗ (un ⊗ vn) ∈ Zn(S ⊗ S/R,Gm).

If u, v ∈ Bn(S/R,Gm), then u⊗ v ∈ Bn(S ⊗ S/R,Gm).

Corollary 7.1.3 If u ∈ Zn(S/R,Gm), then [u ⊗ 1] = [1 ⊗ u], and [u ⊗ u−1] = 1 in
Hn(S ⊗ S/R,Gm).

Proof. Apply Proposition 7.1.1 to the algebra maps η1, η2 : S −→ S ⊗R S, η1(s) = 1⊗ s,
η2(s) = s⊗ 1.

Lemma and Definition 7.1.4 Take a cocycle u = u1 ⊗ u2 ⊗ u3 ∈ Z2(S/R,Gm). |u| :=
u1u2u3 ∈ Gm(S) is called the norm of u, and

u1 ⊗ |u|−1u2u3 = 1⊗ 1 = |u|−1u1u2 ⊗ u3.

Proof. Denote by v = u−1 = v1⊗v2⊗v3 = V 1⊗V 2⊗V 3. The 2-cocycle condition (7.1.1)
then becomes

u1U1V 1 ⊗ U2v1V 2 ⊗ u2U3v2 ⊗ u3v3V 3 = 1⊗ 1⊗ 1⊗ 1. (7.1.2)

Multiplying the second, third and fourth tensor factors above we get

u1U1V 1 ⊗ |v|U2V 2u2U3V 3u3 = u1 ⊗ |u|−1u2u3 = 1⊗ 1

which is the first equality that was to prove. The second one is obtained similarly, after
multiplying the first three tensor factors in (7.1.2).

A 2-cocycle u is called normalized if |u| = 1. As we had in Section 4.1, in the case of
Amitsur cohomology over a commutative ring we have:

Lemma 7.1.5 Every cocycle u is cohomologous to a normalized cocycle.

Proof. First observe that δ1(|u|−1 ⊗ 1) = 1 ⊗ |u|−1 ⊗ 1. The cocycle uδ1(|u|−1 ⊗ 1) =
u1 ⊗ |u|−1u2 ⊗ u3 is obviously normalized and cohomologous to u.

Now we consider the Amitsur complex C(S⊗S/R⊗S). We have a natural isomorphism

(S ⊗ S)⊗R⊗Sn
∼=−→ S⊗(n+1), (s1 ⊗ t1)⊗R⊗S · · · ⊗R⊗S (sn ⊗ tn) 7→ s1 ⊗ · · · ⊗ sn ⊗ t1 · · · tn.
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The augmentation maps (i = 1, 2, 3)

ηi : (S ⊗ S)⊗R⊗S2 −→ (S ⊗ S)⊗R⊗S3

can then be viewed as maps

ηi : S⊗3 −→ S⊗4,

and we find, for u ∈ Z2(S/R,Gm) and i = 1, 2, 3 that ηi(u) = ui. Consequently, u⊗ 1 =
u4 = u1u

−1
2 u3 = δ1(u) ∈ B2(S ⊗ S/R⊗ S,Gm).

Lemma 7.1.6 If u ∈ Z2(S/R,Gm), then u⊗ 1 ∈ B2(S ⊗ S/R⊗ S,Gm).

In the sequel we study Amitsur cohomology with values in Pic, i.e. in the category of
invertible modules, first constructed in [143]. We start by the definition of an invertible
module. The proof of the following lemma can be found in [80, Lemma 6.4].

Lemma and Definition 7.1.7 Let I be an R-module. The following statements are
equivalent.

1. I is finitely generated and projective of rank one;

2. the evaluation map evI : I ⊗R I ∗ −→ R, evI (x ⊗ x ∗) = 〈x ∗, x 〉 is bijective;

3. there exists an R-module J such that I ⊗R J ∼= R.

If one of the above conditions is fulfilled we say that I is an invertible R-module.

The category of invertible R-modules and R-module isomorphisms is denoted by
Pic(R). It is a symmetric monoidal category (Pic(R), R,⊗R). The set Pic(R) of iso-
morphism classes in Pic(R) is an abelian group under the operation induced by the
tensor product ⊗R, and is called the Picard group of R. In other words, Pic(R) is
the Grothendieck group K0Pic(R). The inverse of [I] ∈ Pic(R) is represented by I∗ =
HomR(I, R). If I ∈ Pic(R), then the evaluation map evI : I ⊗I ∗ −→ R is an isomorphism,
with inverse the coevaluation map coevI : R −→ I ⊗ I∗. If coevI(1) =

∑
i ei ⊗ e∗i , then

{(ei, e∗i ) | i = 1, · · · , n} is a finite dual basis for I.
Let S be a commutative R-algebra. For every positive integer n, we have a functor

δn−1 : Pic(S⊗n) −→ Pic(S⊗(n+1)),

given on I ∈ Pic(S⊗n), and an isomorphism f of S⊗n-modules by

δn−1(I) = I1 ⊗S⊗(n+1) I∗2 ⊗S⊗(n+1) · · · ⊗S⊗(n+1) Jn+1

and

δn−1(f) = f1 ⊗S⊗(n+1) (f ∗2 )−1 ⊗S⊗(n+1) · · · ⊗S⊗(n+1) (gn+1)±1,
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respectively, with J = I or I∗, g = f or f ∗ depending on whether n is even or odd.
Here Ii = I ⊗S⊗n S⊗n+1, where S⊗n+1 is a left S⊗n-module via ηi : S⊗n −→ S⊗n+1 (see
Section 7.1). We easily compute that

δnδn−1(I) =
n+2⊗
j=1

j−1⊗
i=1

(Iij ⊗S⊗(n+2) I∗ij),

so we have a natural isomorphism

λI =
n+2⊗
j=1

j−1⊗
i=1

evIij : δnδn−1(I) −→ S⊗(n+2).

Let Zn−1(S/R,Pic) denote the category with objects (I, α), where I ∈ Pic(S⊗n), and

α : δn−1(I) −→ S⊗(n+1) is an isomorphism of S⊗(n+1)-modules such that δn(α) = λI .
A morphism (I, α) −→ (J, β) is an isomorphism of S⊗n-modules f : I −→ J such that
β ◦ δn−1(f) = α. We have that Zn−1(S/R,Pic) is a symmetric monoidal category, with

tensor product (I, α) ⊗ (J, β) = (I ⊗S⊗n J, α ⊗S⊗(n+1) β) and unit object (S⊗n, S⊗(n+1)).
Every object in this category is invertible in the obvious way, and we can consider

K0Z
n−1(S/R,Pic) = Zn−1(S/R,Pic).

We have a strongly monoidal functor

dn−2 : Pic(S⊗(n−1)) −→ Zn−1(S/R,Pic),

given on J ∈ Pic(S⊗(n−1)) and an isomorphism f of S⊗(n−1)-modules by dn−2(J) =
(δn−2(J), λJ) and dn−2(f) = δn−2(f), respectively. Consider the subgroup Bn−1(S/R,Pic)
of Zn−1(S/R,Pic), consisting of elements represented by dn−2(J), with J ∈ Pic(S⊗n−1).
We then define

Hn−1(S/R,Pic) = Zn−1(S/R,Pic)/Bn−1(S/R,Pic).

This definition is such that we have a long exact sequence (see [143]):

0 −→ H1(S/R,Gm) −→ Pic(R) −→ H0(S/R,Pic) (7.1.3)

−→ H2(S/R,Gm) −→ H1(S/R,Pic) −→ H1(S/R,Pic)

−→ · · ·
−→ Hp+1(S/R,Gm) −→ Hp(S/R,Pic) −→ Hp(S/R,Pic)

−→ · · · .

The following result can be viewed as an analog of Lemma 7.1.6.

Lemma 7.1.8 Let (I, α) ∈ Z1(S/R,Pic). Then

(I ⊗ S, α⊗ S) ∼= d0(I) in Z1(S ⊗ S/R⊗ S,Pic),

and consequently [(I ⊗ S, α⊗ S)] = 1 in H1(S ⊗ S/R⊗ S,Pic).
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Proof. The isomorphism α : I1 ⊗S⊗3 I∗2 ⊗S⊗3 I3 −→ S⊗3 induces an isomorphism

β : I3 = I ⊗ S −→ I∗1 ⊗S⊗3 I2 = (S ⊗ I)∗ ⊗(S⊗S)⊗R⊗S(S⊗S) (S ⊗ I).

The fact that δ2(α) = λI implies that β is an isomorphism in Z1(S ⊗ S/R⊗ S,Pic).

We next prove a version of Proposition 7.1.1, where a covariant functor P ending in
the category of abelian groups is now replaced by Pic.

Proposition 7.1.9 Let f : S −→ T be a morphism of commutative faithfully flat R-
algebras. f induces group morphisms f∗ : Hn(S/R,Pic) −→ Hn(T/R,Pic). If g : S −→ T
is a second algebra morphism, then f∗ = g∗.

Proof. The morphism f : S −→ T induces a functor f : Zn(S/R,Pic) −→ Zn(T/R,Pic),
given by

f(I, α) = (I ⊗S⊗n+1 T⊗n+1, α⊗S⊗n+2 T⊗n+2)

for (I, α) ∈ Zn(S/R,Pic). On the cohomology groups f induces maps f∗ : Hn(S/R,Pic)
−→ Hn(T/R,Pic).

Morphisms f and g induce maps f∗ and g∗ between the exact sequence (7.1.3) and its
analog with S replaced by T . We have seen in Proposition 7.1.1 that these maps coincide
on Hn(S/R,Gm) and Hn(S/R,Pic). Now from the five lemma we obtain that they also
coincide on Hn(T/R,Pic).

It follows from Proposition 7.1.9 that we have a functor

H1(•/R,Pic) : R-Alg −→ Ab

from the category of R-algebras to that of abelian groups.

7.2 The Brauer group of a commutative ring and co-

homology

The Brauer group of a field was introduced by Richard Brauer in 1929. It is related to
the classification of finite dimensional division algebras. In order to have a proper group
structure in the Brauer group, the problem of classification of finite dimensional division
algebras is shifted to that of classification of finite dimensional central simple algebras over
a field K. A K-algebra of this type is isomorphic to a matrix ring over a finite dimensional
division algebra with center K, due to the Wedderburn theorem. Hence considering the
equivalence relation on finite dimensional central simple algebras “A ∼ B if and only if
A ∼= Mn(D1) and B ∼ Mm(D2) and D1

∼= D2” assures that each equivalence class is
determined by a unique finite dimensional central division algebra and subsequently that
classifying finite dimensional central simple algebras up to isomorphism we would resolve
the original task. This reformulation of the problem was necessary, because the tensor
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product of two division algebras is not in general a division algebra, whereas this is always
the case for central simple algebras. The above equivalence classes form an abelian group,
the Brauer group, with the product induced by the tensor product over the field K, unit
element is given by the class of K and the inverse for the class of an algebra A is given by
the class of its opposite algebra Aop. As we saw in Example 2.1.5, the Brauer group of a
field K is the Brauer group of the symmetric monoidal category of vector spaces over K.

The Brauer group of a field was generalized by Auslander and Goldman in 1960 to the
Brauer group of a commutative ring R. Central simple algebras are replaced by central
separable algebras, also called Azumaya algebras. An algebra A is termed separable if it is
projective over A⊗R Aop. That A is an Azumaya algebra then means that it is faithfully
projective over R and that the morphism A ⊗ Aop −→ EndR(A), a ⊗ b 7→ (c 7→ acb) is
an isomorphism. (Note that Definition 2.1.1 generalizes this definition to a categorical
setting and that, by the paragraph below that definition, we mention only one morphism
in the case of Azumaya R-algebras, since the category of R-modules is symmetric). New
equivalence relation on central simple algebras over rings now takes the form “A ∼ B if and
only if there exist faithfully projective R-modules P and Q such that A ⊗R EndR(P ) ∼=
B ⊗R EndR(Q) as algebras”. These equivalence classes form a group with the group
structure as in the case of the Brauer group of a field, K is now replaced by R. If R is
a field, then a central separable algebra is central and simple and EndR(P ) ∼= Mn(R) for
some n. In this sense the Brauer group of a commutative ring generalizes the one of a
field. Further equivalent formulation for the equivalence relation of Azumaya algebras is
that “A ∼ B if and only if for the unique simple A-module M and for the unique simple
B-module N it is EndA(M) ∼= EndB(N) as algebras”. In particular one has that the
Brauer and the Morita equivalence relations coincide. For further reference on Azumaya
algebras we refer to [28, 54, 80].

If i : R −→ S is a morphism of commutative rings, then we have an associated abelian
group map

Br(i) : Br(R) −→ Br(S), i[A] = [A⊗ S].

The kernel Ker(Br(i)) =: Br(S/R) is called the part of the Brauer group of R split by S,
and the Azumaya algebras in this kernel are called Azumaya algebras split by S.

We will now present the known cohomological interpretations of the Brauer group
of a field and a commutative ring. By the Crossed Product Theorem for a Galois field
extension L/K with the Galois group G we have an isomorphism

Br(L/K) ∼= H2(G,L∗).

As every central simple algebra can be split by a Galois field extension this implies for
the full Brauer group

Br(K) ∼= H2(Gal(Ksep/K), Ksep∗),

where Ksep is the separable closure of K. Amitsur in [6] introduces Amitsur cohomology
(with values in units, i.e., invertible elements) and proves the isomorphism

Br(L/K) ∼= H2(L/K,Gm),
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the right hand-side denoting Amitsur cohomology. Considering Amitsur cohomology over
commutative rings in [117] was proved that the above isomorphism holds when S/R is a
commutative faithfully projective ring extension and Pic(S) = Pic(S ⊗ S) = 0. This was
also studied in [80, Proposition 2.1] and [79, 7.5] using descent theory. These additional
conditions on S can be weakened putting the morphism H2(S/R,Gm) −→ Br(S/R) into
the seven-term exact sequence

0 H1(S/R,Gm)- Pic(R)- -H0(S/R,Pic) - (7.2.4)

- H2(S/R,Gm) - Br(S/R) H1(S/R,Pic)- H3(S/R,Gm).-

This was proved by Chase and Rosenberg in [41, Theorem 7.6]. Still, S has to be faithfully
projective. Not every Azumaya algebra can be split by a faithfully projective extension
of R, so we do not have that the full group Br(R) is the colimit of the groups Br(S/R)
where S/R is faithfully projective. When Pic(S) = Pic(S⊗S) = 0, the above 0th and first
cohomology group with values in Pic vanish, recovering the Crossed Product Theorem.
When Pic(R) is trivial, then one recovers Hilbert’s Theorem 90, namely H1(S/R,Gm) is
trivial.

In [143] Villamayor and Zelinsky provided a more general picture. For any commuta-
tive ring extension S/R they introduced the group H1(S/R,Pic) (in their notation H2(J))
which replaces Br(S/R) in the above exact sequence, and furthermore, they define higher
order groups Hn(S/R,Pic) so that these fit into the infinite exact sequence (7.1.3), we
presented in the previous section. As the authors prove in [143, Theorem 5.2], if S/R is
faithfully flat, then we have an embedding Br(S/R) ↪→ H1(S/R,Pic). This embedding
is an isomorphism if S is faithfully projective as an R-module. Moreover, from [143,
Theorem 6.14] we know that

H1(S/R,Pic) ∼= Ker(H2(Rfl,Gm) −→ H2(Sfl,Gm)) (7.2.5)

and
Ȟ1(Rfl,Pic) := colimH1(•/R,Pic) ∼= H2(Rfl,Gm). (7.2.6)

Here H2(Rfl,Gm) denotes the second right derived functor of the global section functor.
Consequently, for S/R faithfully flat, composing the above embedding with (7.2.6) we get
an embedding

Br(S/R) ↪→ H2(Rfl,Gm).

Since every R-Azumaya algebra can be split by a faithfully flat extension of R, we may
consider the full Brauer group Br(R) and we have an embedding

Br(R) ↪→ H2(Rfl,Gm).

In particular, everyR-Azumaya algebra can be split by an étale covering, henceH2(Rfl,Gm)
can be replaced by H2(Ret,Gm) in the two formulas above. If R is a field, or, more gen-
erally, if R is a regular ring, then we have an isomorphism

Br(R) ∼= H2(Ret,Gm).
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In general, we do not have such an isomorphism, because the Brauer group is torsion, and
the second cohomology group is not (see [68]). Gabber ([66], see also [81]) showed that

Br(R) ∼= H2(Ret,Gm)tors,

for every commutative ring R. Taylor [134] introduced a Brauer group Br′(R) consisting
of classes of algebras that not necessarily have a unit, but satisfy a weaker property.
Br′(R) contains Br(R) as a subgroup, and we have an isomorphism [116]

Br′(R) ∼= H2(Ret,Gm).

The proof is technical, and relies on Artin’s refinement Theorem [9]. It provides no explicit
description of the Taylor-Azumaya algebra that corresponds to a given cocycle.

7.3 Corings

Corings appeared in the literature for the first time in [128]. It was not until 25 years later
that they gained again and increasingly in interest with the appearance of [25], followed
by new applications of the concept.

Corings extend the notion of a coalgebra over a commutative ring to a bimodule over
a noncommutative base ring. Let S be a ring. An S-coring is a coalgebra in the monoidal
category (SMS, S,⊗S) of S-bimodules. This means that C is an S-bimodule, together
with two S-bimodule maps ∆C : C −→ C ⊗S C and εC : C −→ S, satisfying the usual
coassociativity and counit conditions:

-∆ C⊗ C

C⊗ C⊗ C
?

∆⊗ C

C

C⊗ C
?

∆

-
C⊗∆

and

-∆ C⊗ C

S ⊗ C ∼= C ∼= C⊗ S.
?

C⊗ εC

HHH
HHH

HHHj

C

C⊗ C
?

∆

-
ε⊗ C

∆2 will be a shorter notation for (∆ ⊗R C) ◦ ∆ = (C ⊗R ∆) ◦ ∆. For c ∈ C, we use the
following version of the Sweedler-Heyneman notation:

∆C(c) = c(1) ⊗S c(2), ∆2
C(c) = c(1) ⊗S c(2) ⊗S c(3).

Summation is understood implicitly. The counit property can then be expressed as follows:

ε(c(1))c(2) = c(1)ε(c(2)) = c,

for all c ∈ C.
A morphism between two S-corings C and D is an S-bilinear map f : C −→ D such

that
∆D ◦ f = (f ⊗S f) ◦∆C and εD ◦ f = εC.
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A right C-comodule M is a right S-module together with a right S-linear map ρ : M
−→M ⊗S C such that the following diagrams commute:

-ρ
M ⊗S C

M ⊗S C⊗S C
?

M ⊗S ∆

M

M ⊗S C
?

ρ

-
ρ⊗S C

and

M M ⊗S C-ρ

M ⊗S S.
?

M ⊗S ε
HHH

HHH
HHj

∼=

We say that C coacts on M , and call ρ a right C-coaction on M . ρ2 is a shorter notation
for (M ⊗R ∆) ◦ ρ = (ρ⊗R C) ◦ ρ. For m ∈M , we use the notation

ρ(m) = m[0] ⊗R m[1], ρ
2(m) = m[0] ⊗R m[1] ⊗R m[2].

A morphism between two right C-comodules M and N is a right S-linear map f : M
−→ N satisfying

ρN ◦ f = (f ⊗S C) ◦ ρM .

We then say that f is right C-colinear. The category of right C-comodules will be denoted
by MC. Left C-comodules can be introduced in a similar way. The category of left
C-comodules is denoted by CM.

Consider two S-corings C and D. A (C,D)-bicomodule is a triple (M,λ, ρ), where M
is an S-bimodule with a left C-coaction λ and a right D-coaction ρ, such that the following
compatibility relation is satisfied:

(λ⊗S D) ◦ ρ = (C⊗S ρ) ◦ λ.

For m ∈M , we write

((λ⊗S D) ◦ ρ)(m) = m[−1] ⊗S m[0] ⊗S m[1].

If C is an S-coring, then its left dual S Hom(C, S) is an S-ring. This means that

S Hom(C, S) is a ring, and that we have a ring morphism j : S −→ S Hom(C, S). The
multiplication on S Hom(C, S) is given by the formula

(g#f)(c) = f(c(1)g(c(2))). (7.3.7)

The unit is εC, and j(s)(c) = εC(c)s, for all s ∈ S and c ∈ C. In a similar way, HomS(C, S),
the right dual of C, is an S-ring. The multiplication is now given by the formula

(f#g)(c) = f(g(c(1))c(2)). (7.3.8)

For a detailed discussion of corings and their applications, we refer to [27].

Let S be a commutative R-algebra. Consider the functor G : MS⊗2 −→ SMS that
makes M ∈ MS⊗2 an S-bimodule by s ·m · t := m · (s ⊗ t) with m ∈ M, s, t ∈ S. From
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sr ⊗R t = s⊗R rt for any r ∈ R we get with s = t = 1 that an S-bimodule M lies in the
image of G if MR = M , that is, rm = mr, for all m ∈M and r ∈ R.

We can view MS⊗2 as a monoidal category with tensor product ⊗S and unit object
S. A coalgebra in this category will be called an S/R-coring. Thus an S/R-coring C is
an S-coring, with the additional condition that CR = C.

Example 7.3.1 A coalgebra over a commutative ring R is an R-coring, but the converse
is not true, for the left and right actions of R on the coring may be different.

Example 7.3.2 Take an invertible S-module I. Then I is finitely projective as an S-
module, and we have a finite dual basis {(ei, fi) ∈ I × I∗ | i = 1, · · · , n} of I. Then∑

i ei ⊗S fi = 1 ∈ I ⊗S I∗ ∼= S. We have an S/R-coring

CanR(I;S) = I∗ ⊗R I,

with structure maps

∆ : I∗ ⊗R I −→ (I∗ ⊗R I)⊗S (I∗ ⊗R I) ∼= I∗ ⊗R S ⊗R I

ε : I∗ ⊗R I −→ S

given by

∆(f ⊗ x) =
∑
i

f ⊗ ei ⊗S fi ⊗ x = f ⊗ 1⊗ x and ε(f ⊗ x) = f(x).

We call I∗ ⊗R I an elementary coring. If I = S, then we obtain Sweedler’s canonical
coring, introduced in [128]; in general, I∗ ⊗R I is an example of a comatrix coring, as
introduced in [61]. We also compute

S Hom(I∗ ⊗R I, S) ∼= R Hom(I, I) = R End(I),

where the isomorphism comes from the adjunction

I∗ ⊗R − : RM SM : S Hom(I∗,−).-�

It is given by ϕ 7→ (x 7→ eiϕ(fi ⊗ x)) for ϕ ∈ S Hom(I∗ ⊗R I, S), x ∈ I with the inverse
θ 7→ (f ⊗ x 7→ f(θ(x))) for θ ∈ R End(I, I) and f ∈ I∗. This defines also an S-ring
isomorphism

S Hom(I∗ ⊗R I, S) ∼= R End(I)op (7.3.9)

where R End(I) is an R-algebra (under composition) and an S-ring.

Lemma 7.3.3 Let S and T be commutative R-algebras. Then we have a strongly monoidal
functor

H = −⊗R T : MS⊗RS −→M(S⊗RT )⊗T (S⊗RT ) =MS⊗RS⊗RT .

Consequently, if C is an S/R-coring, then H(C) = C ⊗R T is an S ⊗R T/T -coring. We
say that C⊗R T occurs as a base extension of C by T .
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Proof. H(M) = M⊗RT is an S⊗RT -bimodule, via (s⊗t) ·(m⊗t′′) ·(s′⊗t′) = sms′⊗tt′′t′
and T acts on it the same way from both left and right. The functorH is strongly monoidal
since H(S) = S ⊗R T and

H(M ⊗S N) = (M ⊗S N)⊗R T
∼= (M ⊗R T )⊗S⊗RT (N ⊗R T ) = H(M)⊗S⊗RT H(N).

Example 7.3.4 Let I be an invertible S-module. Then

H(CanR(I;S)) = (I∗ ⊗R I)⊗R T ∼= (I∗ ⊗R T )⊗R⊗RT (I ⊗R T )
∼= (I ⊗R T )∗ ⊗R⊗RT (I ⊗R T ) ∼= CanT (I ⊗R T ;S ⊗R T ).

7.4 Some adjointness properties on bimodules

In this section we will develop some tool that will show up to be very useful in the
construction of Azumaya corings. We start with the following elementary observation.
For any morphism η : R −→ S of rings, we have an adjoint pair of functors

F = −⊗R S :MR MS : G.-�

F is called the induction functor, and G is the restriction of scalars functor. For every
M ∈MR, N ∈MS, we have a natural isomorphism

HomR(M,G(N)) ∼= HomS(M ⊗R S,N).

f : M −→ G(N) and the corresponding f̃ : M ⊗R S −→ N are related by the following
formula:

f̃(m⊗R s) = f(m)s. (7.4.10)

Now assume that R and S are commutative rings, and consider the ring morphisms
ηi : S ⊗R S −→ S ⊗R S ⊗R S (i = 1, 2, 3) introduced at the beginning of Section 7.1.
The corresponding adjoint pairs of functors between MS⊗2 and MS⊗3 will be written as
(Fi,Gi). An object M ∈MS⊗2 will also be regarded as an S-bimodule, and we will denote
Mi = Fi(M). For m ∈M , we write

mi = (M ⊗S⊗2 ηiS
⊗3)(m).

In particular, m3 = m⊗ 1 and m1 = 1⊗m.

Lemma 7.4.1 Let M ∈MS⊗2. Then we have an S-bimodule isomorphism

G2(M3 ⊗S⊗3 M1) ∼= M ⊗S M,

and an isomorphism

S HomS(M,M ⊗S M) ∼= HomS⊗3(M2,M3 ⊗S⊗3 M1).
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Proof. The map

α : M3 ⊗M1 −→M ⊗S M, α((m⊗ s)⊗ (t⊗ n)) = tm⊗S ns

with s, t ∈ S,m, n ∈M induces a well-defined map

α : M3 ⊗S⊗3 M1 −→M ⊗S M.

Indeed, for all m,n ∈M and s, t, u, v, w ∈ S, we easily compute that

α
(
(m⊗ s)(u⊗ v ⊗ w)⊗ (t⊗ n)

)
= α

(
(umv ⊗ sw)⊗ (t⊗ n)

)
= tumv ⊗S nsw = utm⊗S vnws
= α

(
(m⊗ s)⊗ (ut⊗ vnw)

)
= α

(
(m⊗ s)⊗ (u⊗ v ⊗ w)(t⊗ n)

)
.

The map
β : M ⊗M −→M3 ⊗S⊗3 M1, β(m⊗ n) = m3 ⊗S⊗3 n1

for m,n ∈M induces a well-defined map

β : M ⊗S M −→M3 ⊗S⊗3 M1.

Indeed, for all m,n ∈M and s ∈ S we have

β(ms⊗ n) = (ms⊗ 1)⊗S⊗3 (1⊗ n)
= (m⊗ 1)(1⊗ s⊗ 1)⊗S⊗3 (1⊗ n)
= (m⊗ 1)⊗S⊗3 (1⊗ s⊗ 1)(1⊗ n)
= (m⊗ 1)⊗S⊗3 (1⊗ sn) = β(m⊗ sn).

It is clear that α and β are inverse S-bimodule maps. Finally, the adjunction cited above
tells us that

S HomS(M,M ⊗S M) ∼= HomS⊗2(M,G2(M3 ⊗S⊗3 M1)) ∼= HomS⊗3(M2,M3 ⊗S⊗3 M1).

Analogously as in (7.4.10), we can write an explicit formula for the map f̃ : M2

−→M3⊗S⊗3 M1 corresponding to f : M −→M ⊗SM . To this end, we first introduce the
following Sweedler-type notation:

f(m) = m(1) ⊗S m(2),

where summation is understood implicitly. Then we have

f̃(m2) = β(f(m)) = m(1)3 ⊗S⊗3 m(2)1. (7.4.11)

For i = 1, 2, 3, 4 and j = 1, 2, 3, we now consider the ring morphisms

ηij = ηi ◦ ηj : S ⊗R S −→ S ⊗R S ⊗R S ⊗R S

and the corresponding pairs of adjoint functors (Fij,Gij) between the categories MS⊗2

and MS⊗4 .
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Lemma 7.4.2 Let M ∈MS⊗2. Then we have a natural isomorphism of S-bimodules

G23(M34 ⊗S⊗4 M14 ⊗S⊗4 M12) ∼= M ⊗S M ⊗S M,

and an isomorphism

S HomS(M,M ⊗S M ⊗S M) ∼= HomS⊗4(M23,M34 ⊗S⊗4 M14 ⊗S⊗4 M12).

The map f̃ corresponding to f ∈ S HomS(M,M⊗SM⊗SM), with f(m) = m(1)⊗Sm(2)⊗S
m(3) is given by the formula

f̃(m23) = m(1)34 ⊗S⊗4 m(2)14 ⊗S⊗4 m(3)12. (7.4.12)

Proof. The map

α : M34 ⊗S⊗4 M14 ⊗S⊗4 M12 −→M ⊗S M ⊗S M

and
β : M ⊗S M ⊗S M −→M34 ⊗S⊗4 M14 ⊗S⊗4 M12

given by the formulas

α
(

(m⊗ s⊗ t)⊗S⊗4 (s′ ⊗ n⊗ t′)⊗S⊗4 (s′′ ⊗ t′′ ⊗ p)
)

= s′′s′m⊗S t′′ns⊗S ptt′

and
β(m⊗S n⊗S p) = m34 ⊗S⊗4 n14 ⊗S⊗4 p12

are well-defined inverse S-bimodule maps. Verification of the details goes precisely as in
the proof of Lemma 7.4.1. Then, using the adjunction from the beginning of this section,
we find

S HomS(M,M ⊗S M ⊗S M) ∼= HomS⊗2(M,G23(M34 ⊗S⊗4 M14 ⊗S⊗4 M12)
∼= HomS⊗4(M23,M34 ⊗S⊗4 M14 ⊗S⊗4 M12).

Again, analogously as in (7.4.10), we find that f̃(m23) = β(f(m)), and (7.4.12) then
follows easily.

Let S be a commutative R-algebra. We have an algebra morphism m : S⊗n −→
S, m(s1 ⊗ · · · ⊗ sn) = s1 · · · sn. Between monoidal categories (MS⊗n , S

⊗n,⊗S⊗n) and
(MS, S,⊗S) it induces the functor

−⊗S⊗n S = | − | : MS⊗n −→MS,

which is strongly monoidal since |S⊗n| = S, and

|M ⊗S⊗n N | = (M ⊗S⊗n N)⊗S⊗n S ∼= (M ⊗S⊗n S)⊗S⊗n⊗S⊗nS (N ⊗S⊗n S)

= (M ⊗S⊗n S)⊗S (N ⊗S⊗n S) = |M | ⊗S |N |.
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Recall from [11, IX.4.6] that an R-module M is faithfully projective if and only if there
exists an R-module N such that M ⊗N ∼= Rm for some natural number m.

We then have that |−| sends faithfully projective S⊗n-modules to faithfully projective
S-modules, for if M ⊗S⊗n N ∼= (S⊗n)m, then

(M ⊗S⊗n S)⊗S (N ⊗S⊗n S) ∼= (M ⊗S⊗n S)⊗S⊗n⊗S⊗nS (N ⊗S⊗n S)

∼= (M ⊗S⊗n N)⊗S⊗n S ∼= (S⊗n)m ⊗S⊗n S ∼= Sm.

Similarly, | − | sends invertible S⊗n-modules to invertible S-modules.

Lemma 7.4.3 Let M1, · · · ,Mn ∈MS. Then

|M1 ⊗ · · · ⊗Mn| ∼= M1 ⊗S · · · ⊗S Mn.

Proof. The natural epimorphism π : M1 ⊗ · · · ⊗Mn −→ |M1 ⊗ · · · ⊗Mn| factors through
M1 ⊗S · · · ⊗S Mn since

π(m1 ⊗ · · · ⊗ smi ⊗ · · · ⊗mn) = (m1 ⊗ · · · ⊗ smi ⊗ · · · ⊗mn)⊗S⊗n 1
= (m1 ⊗ · · · ⊗mi ⊗ · · · ⊗mn)⊗S⊗n s
= (m1 ⊗ · · · ⊗ smj ⊗ · · · ⊗mn)⊗S⊗n 1
= π(m1 ⊗ · · · ⊗ smj ⊗ · · · ⊗mn),

for all i, j, so we have a map

α : M1 ⊗S · · · ⊗S Mn −→ |M1 ⊗ · · · ⊗Mn|.

In a similar way, the quotient map M1 ⊗ · · · ⊗Mn −→ M1 ⊗S · · · ⊗S Mn factors through
|M1 ⊗ · · · ⊗Mn|, so we have a map

β : |M1 ⊗ · · · ⊗Mn| −→M1 ⊗S · · · ⊗S Mn,

which is inverse to α.





Chapter 8

The Brauer group of Azumaya
corings

As we discussed in Section 7.2 every Azumaya algebra over a ring R can be split by a
faithfully flat extension of R. This enables one to consider the full Brauer group Br(R),
which is the colimit of the groups Br(S/R) where S/R is faithfully flat. In this chapter
we construct the Brauer group Brc(S/R) for faithfully flat extensions S of R. It will be
certain quotient of the set of isomorphism classes of Azumaya corings, which we define
in the first section below. The definition is such that, in the case where S/R is faithfully
projective, the left or right dual of an Azumaya coring with respect to S is an Azumaya
algebra split by S. We will then construct the full Brauer group, Brc(R), which will be the
colimit of the groups Brc(S/R), as it happens in the case of Br(R). The above-mentioned
splitting property for Azumaya algebras provided by faithfully flat extensions was the
motivation to define the Brauer group Brc(S/R) of Azumaya corings, taking extensions
of R that are faithfully flat. The full group Brc(R) will be isomorphic to the full second
flat Amitsur cohomology group and the isomorphism is given explicitly.

8.1 Azumaya corings and the relative Brauer group

In this section we introduce Azumaya corings and define the relative Brauer group of
Azumaya corings. The lemma that we prove now will be crucial in the characterization
of Azumaya corings.

Lemma 8.1.1 Let S be a commutative R-algebra, and I ∈ Pic(S ⊗ S). Consider an S-

bimodule map ∆ : I −→ I⊗SI, and assume that its corresponding map ∆̃ : I2 −→ I3⊗S⊗3I1

(cf. Lemma 7.4.1) in MS⊗3 is an isomorphism. Then we have an isomorphism of S⊗3-
modules

α−1 = (∆̃⊗S⊗3 I∗2 ) ◦ coevI2 : S⊗3 −→ I2 ⊗S⊗3 I∗2 −→ I3 ⊗S⊗3 I1 ⊗S⊗3 I∗2 . (8.1.1)

∆ is coassociative if and only if (I, α) ∈ Z1(S/R,Pic).

163
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Proof. We have the following isomorphisms of S⊗4-modules:

∆̃1 : I21 = I13 −→ I31 ⊗S⊗4 I11 = I14 ⊗S⊗4 I12;

∆̃2 : I22 = I23 −→ I32 ⊗S⊗4 I12 = I24 ⊗S⊗4 I12;

∆̃3 : I23 −→ I33 ⊗S⊗4 I13 = I34 ⊗S⊗4 I13;

∆̃4 : I24 −→ I34 ⊗S⊗4 I14.

(I, α) ∈ Z1(S/R,Pic) if and only if the composition

I23 I23 ⊗S⊗4 I∗13 ⊗S⊗4 I13
-

I23 ⊗ coevI∗13

I34 ⊗S⊗4 I13 ⊗S⊗4 I∗13 ⊗S⊗4 I14 ⊗S⊗4 I12
-

∆̃3 ⊗ I∗13 ⊗ ∆̃1

I34 ⊗S⊗4 I14 ⊗S⊗4 I12
-

I34 ⊗ evI13 ⊗ I14 ⊗ I12

equals the composition

I23 I24 ⊗S⊗4 I∗24 ⊗S⊗4 I23
-

coevI24 ⊗ I23

I34 ⊗S⊗4 I14 ⊗S⊗4 I∗24 ⊗S⊗4 I24 ⊗S⊗4 I12
-

∆̃4 ⊗ I∗24 ⊗ ∆̃2

I34 ⊗S⊗4 I14 ⊗S⊗4 I12.-
I34 ⊗ I14 ⊗ evI ∗24 ⊗ I12

Let {(ei, e∗i ) | i = 1, · · · , n} be a finite dual basis of I. For all c ∈ I, we compute((
I34 ⊗ evI13 ⊗ I14 ⊗ I12

)
◦
(

∆̃3 ⊗ I∗13 ⊗ ∆̃1

)
◦
(
I23 ⊗ coevI∗13

))
(c23)

=
((
I34 ⊗ evI13 ⊗ I14 ⊗ I12

)
◦
(

∆̃3 ⊗ I∗13 ⊗ ∆̃1

))(∑
i

c23 ⊗ e∗i13 ⊗ ei13

)
=

(
I34 ⊗ evI13 ⊗ I14 ⊗ I12

)(∑
i

c(1)34 ⊗ c(2)13 ⊗ e∗i13 ⊗ ∆̃1(ei13)
)

=
∑
i

c(1)34 ⊗ ∆̃1((〈c(2), e
∗
i 〉ei)13) = c(1)34 ⊗ ∆̃1(c(2)13)

= c(1)34 ⊗ c(2)(1)14 ⊗ c(2)(2)12,

and ((
I34 ⊗ I14 ⊗ evI ∗24 ⊗ I12

)
◦
(

∆̃4 ⊗ I ∗24 ⊗ ∆̃2

)
◦
(

coevI24 ⊗ I23

))
(c23 )

=
((
I34 ⊗ I14 ⊗ evI ∗24 ⊗ I12

)
◦
(

∆̃4 ⊗ I ∗24 ⊗ ∆̃2

))(∑
i

ei24 ⊗ e∗i24 ⊗ c23
)

=
(
I34 ⊗ I14 ⊗ evI ∗24 ⊗ I12

)(∑
i

∆̃4 (ei24 )⊗ e∗i24 ⊗ c(1 )24 ⊗ c(2 )12

)
= ∆̃4(c(1)24)⊗ c(2)12 = c(1)(1)34 ⊗ c(1)(2)14 ⊗ c(2)12.
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From Lemma 7.4.2, it follows that (I, α) ∈ Z1(S/R,Pic) if and only if the maps in
HomS⊗4(I23, I34 ⊗S⊗4 I14 ⊗S⊗4 I12) associated to (∆ ⊗S I) ◦ ∆ and (I ⊗S ∆) ◦ ∆ in

S HomS(I, I ⊗S I ⊗S I) are equal. This is equivalent to the coassociativity of ∆.

Observe that the map ∆̃ can be recovered from α : I3 ⊗S⊗3 I1 ⊗S⊗3 I∗2 −→ S⊗3 using
the following formula

∆̃ = (I3 ⊗S⊗3 I1 ⊗S⊗3 evI2 ) ◦ (α−1 ⊗S⊗3 I2 ). (8.1.2)

Remark 8.1.2 Let J ∈ Pic(S). Then δ0(J) = J1⊗S⊗2J∗2 = J∗⊗J = CanR(J ;S) with the
coassociative comultiplication we presented in Section 7.3. Observe that the isomorphism

(J∗ ⊗ J)3 ⊗S⊗3 (J∗ ⊗ J)1 = (J∗ ⊗ J ⊗ S)⊗S⊗3 (S ⊗ J∗ ⊗ J) ∼= J∗ ⊗ S ⊗ J = (J∗ ⊗ J)2

involves evJ and that ∆̃ : (J∗⊗J)2 −→ (J∗⊗J)3⊗S⊗3 (J∗⊗J)1
∼= (J∗⊗J)2 is the identity.

Furthermore, it is

δ1δ0(J) = δ0(J)1 ⊗S⊗3 δ0(J)3 ⊗S⊗3 δ0(J∗)2

= J11 ⊗S⊗3 J∗21 ⊗S⊗3 J13 ⊗S⊗3 J∗23 ⊗S⊗3 J∗12 ⊗S⊗3 J22

= J12 ⊗S⊗3 J∗13 ⊗S⊗3 J13 ⊗S⊗3 J∗23 ⊗S⊗3 J∗12 ⊗S⊗3 J23

and λJ = evJ12 ⊗S⊗3 evJ∗13 ⊗S⊗3 evJ∗23 . Putting ∆̃ in the formula (8.1.1), we realise that
α : δ1δ0(J) −→ S⊗3 is nothing but λJ .

Elementary corings can be characterized by the next lemma.

Lemma 8.1.3 Let I,∆, ∆̃, α be as in Lemma 8.1.1, and take J ∈ Pic(S). Then we have
an isomorphism of bimodules with coassociative comultiplication I ∼= CanR(J ;S) if and
only if (I, α) ∼= d0(J) in Z1(S/R,Pic).

Proof. Set ∆′, ∆̃′ and α′ for the corresponding morphisms for CanR(J ;S) = δ0(J). By
Remark 8.1.2 we know that α′ = λJ . There is an isomorphism ϕ : I −→ δ0(J) of bimodules
with coassociative comultiplication if and only if ϕ is S-bilinear and the following diagram
commutes:

I I ⊗S I-∆

δ0(J) δ0(J)⊗S δ0(J).-∆′
?

ϕ

?

ϕ⊗S ϕ

(8.1.3)

By the adjunction isomorphism from Lemma 7.4.1 this is equivalent to commutativity of
the diagram

I2 I3 ⊗S⊗3 I1
-∆̃

δ0(J)2 δ0(J)3 ⊗S⊗3 δ0(J)1
-∆̃′

?

ϕ2

?

ϕ3 ⊗S⊗3 ϕ1

(8.1.4)
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where ϕ is S-bilinear. This, in turn, is equivalent to commutativity of the right square in
the next diagram

S⊗3 I∗2 ⊗S⊗3 I2
-

coevI2

S⊗3 δ0(J)∗2 ⊗S⊗3 δ0(J)2
-

coevδ0(J)2
?

=

?

(ϕ∗2)−1 ⊗S⊗3 ϕ2

I∗2 ⊗S⊗3 I3 ⊗S⊗3 I1
-

I∗2 ⊗S⊗3 ∆̃

δ0(J)∗2 ⊗S⊗3 δ0(J)3 ⊗S⊗3 δ0(J)1.-
δ0(J)∗2 ⊗S⊗3 ∆̃′ ?

(ϕ∗2)−1 ⊗S⊗3 ϕ3 ⊗S⊗3 ϕ1

(8.1.5)

The left square is automatically commutative. Commutativity of the full diagram is
equivalent to α′ ◦ δ1(ϕ) = α, meaning that (I, α) ∼= (δ0(J), λJ) = d0(J). Note that
by Remark 8.1.2, ∆̃′ is an isomorphism, then so becomes ∆̃ and we may consider the
isomorphism α.

Theorem 8.1.4 Let S/R be faithfully flat, C a faithfully projective S ⊗ S-module, and
∆ : C −→ C ⊗S C an S-bimodule map. We consider the corresponding map ∆̃ : C2

−→ C3⊗S⊗3 C1 in MS⊗3 (cf. Lemma 7.4.1). Then the following assertions are equivalent.

1. ∆ is coassociative and ∆̃ is an isomorphism in MS⊗3;

2. C ∈ Pic(S⊗2) and (C, α) ∈ Z1(S/R,Pic), with α defined by (8.1.1);

3. C ∈ Pic(S⊗2) and C ⊗ S is isomorphic to CanR⊗S(C;S ⊗ S) as bimodules with
coassociative comultiplication;

4. there exists a faithfully flat commutative R-algebra T such that (C ⊗R T,∆ ⊗R T )
is isomorphic to CanT (I;S ⊗ T ), for some I ∈ Pic(S ⊗ T ), as a bimodule with a
coassociative comultiplication;

5. (C,∆) is a coring and ∆̃ is an isomorphism in MS⊗3.

Proof. 1)⇒ 2). From the fact that ∆̃ is an isomorphism, it follows that C2
∼= C3⊗S⊗3 C1.

Applying the functor |− | : MS⊗3 −→MS, we find that |C| ∼= |C|⊗S |C|. By the comment
before Lemma 7.4.3, since C is a faithfully projective S ⊗ S-module, |C| is a faithfully
projective S-module. Its rank is an idempotent, so it is equal to one, and |C| ∈ Pic(S).

Now switch the second and third tensor factor in C2
∼= C3⊗S⊗3 C1, and then apply |− |

to the first and second factor. We find that |C| ⊗ S ∼= C⊗S⊗2 τ(C) as S-bimodules, with
τ(C) equal to C as an R-module, with newly defined S ⊗ S-action c / (s ⊗ t) = c(t ⊗ s)
with c ∈ C and s, t ∈ S. Since |C| ∈ Pic(S), then |C| ⊗ S ∈ Pic(S ⊗ S), and by the
above isomorphism C ⊗S⊗2 τ(C) ∈ Pic(S ⊗ S). This implies that also C is an invertible

S ⊗ S-module, C ∈ Pic(S ⊗ S). Now by Lemma 8.1.1 we obtain (C, α) ∈ Z1(S/R,Pic).

2)⇒ 3). It follows from Lemma 7.1.8 that (C ⊗ S, α ⊗ S) ∼= d0(C) in Z1(S ⊗ S/R ⊗
S,Pic). From Lemma 8.1.3, it follows that C⊗ S ∼= CanR⊗S(C;S ⊗ S) as bimodules with
coassociative comultiplication.

3)⇒ 4) is obvious.
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4)⇒ 1). After faithfully flat base extension (by T ) ∆ becomes coassociative, and ∆̃
becomes an isomorphism, by Remark 8.1.2. Since C is faithfully projective over S, it is
faithfully flat over S, and so is C⊗S3 = C ⊗S C ⊗S C. Being S faithfully flat over R, we
then get that C⊗S3 is faithfully flat over R. The injective ring map i : R −→ T leads now
to the injective map κ := C⊗S3⊗R i : C⊗S3⊗RR −→ C⊗S3⊗R T . Coassociativity of ∆⊗R T
yields in particular ((c(1))(1)⊗S (c(1))(2)⊗S c(2))⊗R 1T = (c(1)⊗S (c(2))(1)⊗S (c(2))(2))⊗R 1T
for every c ∈ C, which is κ((∆⊗S C)∆(c)) = κ((C⊗S ∆)∆(c)), hence the coassociativity
of ∆. By faithful flatness of T we have that ∆̃ itself is an isomorphism.

1)⇒ 5). We have an isomorphism of S⊗3-modules α : C∗2 ⊗S⊗3 C1 ⊗S⊗3 C3 −→ S⊗3

from (8.1.1). Applying the functor | − |, we find an isomorphism of S-modules |α| : |C|
−→ S. Now we consider the composition ε = |α| ◦ π : C −→ S. In the situation where
C = CanR(I;S), we have by Remark 8.1.2 that α = λI , hence |α| : |δ0(CanR(I;S))| −→ S
acts as evI∗ : I∗ ⊗S I −→ S and ε(

∑
i fi ⊗ xi) =

∑
i fi(xi). Consequently, ((I∗ ⊗T I) ⊗S

ε)∆(
∑

i fi ⊗T xi) =
∑

i,j(fi ⊗T ej)ε(e∗j ⊗T xi) =
∑

i fi ⊗T (
∑

j eje
∗
j(xi)) =

∑
i fi ⊗T xi

and similarly the counit property from the other side is fulfilled. For general C, by
4) there is an S ⊗ T -bimodule isomorphism ϕ : C ⊗ T −→ CanR(I;S ⊗ T ) for some
faithfully flat commutative R-algebra T . Then from the proof of Lemma 8.1.3 we know
that λI ◦ δ1(ϕ) = α⊗ T , hence |λI | ◦ |ϕ| = |α| ⊗ T . Now all the diagrams in

C⊗ T |C| ⊗ T-Π⊗ T
S ⊗ T-

|α| ⊗ T

|I∗ ⊗T I|
?
|ϕ|

I∗ ⊗T I -
εI∗⊗T I

HH
HHHHj

|λI |
��

��
��*Π′

S ⊗ T
?

=

?

ϕ

commute, yielding εI∗⊗T I ◦ ϕ = εC⊗T = εC ⊗ T . The counit property of εI∗⊗T I transmits
now to the counit property of εC ⊗ T , since ϕ is an isomorphism. Since ∆C⊗T = ∆C ⊗ T
and T is faithfully flat, it follows that εC has the counit property, too. Thus (C,∆, ε) is a
coring.

5)⇒ 1) is obvious.

If (C,∆, ε) satisfies the equivalent conditions of Theorem 8.1.4, then we call C an Azu-
maya S/R-coring. Note that for an Azumaya S/R-coring C the counit is given implicitly
once we know that its codiagonal is coassociative and that the correpsonding map ∆̃ is
an isomorphism.

Example 8.1.5 From the definition is clear that elemenatry corings CanR(I;S) = I∗⊗RI
are Azumaya corings, with J ∈ Pic(S).

The connection to Azumaya algebras we will discuss in the following section. We next
characterize isomorphisms of corings.
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Theorem 8.1.6 Let (C,∆) and (C′,∆′) be Azumaya S/R-corings, and consider the cor-
responding (C, α), (C′, α′) ∈ Z1(S/R,Pic). Let f : C −→ C′ be an isomorphism in
Pic(S ⊗ S). Then f is an isomorphism of corings if and only if f defines an isomor-

phism in Z1(S/R,Pic).

Proof. The proof is analogous to that of Lemma 8.1.3 with I = C, δ0(J) = C′ and ϕ = f .
Note that at the end of the proof the isomorphisms α and α′ are well established, because
∆̃ and ∆̃′ are isomorphisms, since they are so after the faithfully flat base extension, being
C and C′ Azumaya corings.

Let Azc(S/R) be the category of Azumaya S/R-corings and isomorphisms of corings.

Proposition 8.1.7 (Azc(S/R),⊗S⊗2 ,CanR(S;S)) is a symmetric monoidal category.

Proof. Take two Azumaya S/R-corings (C,∆) and (C′,∆′). The corresponding maps ∆̃
and ∆̃′ are then isomorphisms. Let D̃ be the following composition

(C⊗S⊗2 C′)2 = C2 ⊗S⊗3 C′2 C3 ⊗S⊗3 C1 ⊗S⊗3 C′3 ⊗S⊗3 C′1-∆̃⊗ ∆̃′

C3 ⊗S⊗3 C′3 ⊗S⊗3 C1 ⊗S⊗3 C′1-
C3 ⊗ τ ⊗ C′1

(C⊗S⊗2 C′)3 ⊗S⊗3 (C⊗S⊗2 C′)1.-=

Clearly, D̃ is an isomorphism. The comultiplication on C ⊗S⊗2 C′ is the corresponding
map

D : C⊗S⊗2 C′ −→ (C⊗S⊗2 C′)⊗S (C⊗S⊗2 C′).

Observe that the S-bimodule structure on C⊗S⊗2 C′ is given by the formulas

s(c⊗S⊗2 c′) = sc⊗S⊗2 c′ = c⊗S⊗2 sc′ and (c⊗S⊗2 c′)t = c⊗S⊗2 c′t = ct⊗S⊗2 c′

for s, s′ ∈ S and c ∈ C, c′ ∈ C′. Applying (7.4.11) to ∆̃ and ∆̃′ we find

D̃(c⊗S⊗2 c′)2 = (c(1) ⊗S⊗2 c′(1))3 ⊗S(3) (c(2) ⊗S⊗2 c′(2))1.

Now applying (7.4.11) to D̃ we get

D(c⊗S⊗2 c′) = (c(1) ⊗S⊗2 c′(1))⊗S (c(2) ⊗S⊗2 c′(2)).

It is then easy to see that D is coassociative, and that

C⊗S⊗2 CanR(S;S) ∼= C ∼= CanR(S;S)⊗S⊗2 C.

We clearly have C ⊗S⊗2 C′ ∼= C′ ⊗S⊗2 C as S-bimodules, so Azc(S/R) is a symmetric
monoidal category.

From all the above we can now claim:



8.1. Azumaya corings and the relative Brauer group 169

Corollary 8.1.8 We have a monoidal isomorphism of categories

A : Azc(S/R) −→ Z1(S/R,Pic)

determined by
(C,∆) 7→ (C, α(∆̃))

and
f 7→ f

with α(∆̃) from (8.1.1).

Consider the subgroup Canc(S/R) of the Grothendieck group K0Azc(S/R) consisting
of isomorphism classes represented by an elementary coring CanR(I;S) for some I ∈
Pic(S). The quotient

Brc(S/R) = K0Azc(S/R)/Canc(S/R)

is called the relative Brauer group of Azumaya S/R-corings. In view of Lemma 8.1.3 and
(7.1.3) we now get:

Corollary 8.1.9 We have an isomorphism of abelian groups

Brc(S/R) ∼= H1(S/R,Pic), [C]
γ7→ [(C, α(∆̃))].

Consequently, we have an exact sequence

0 −→ H1(S/R,Gm) −→ Pic(R) −→ H0(S/R,Pic) (8.1.6)

−→ H2(S/R,Gm)
ξ−→ Brc(S/R) −→ H1(S/R,Pic)

−→ H3(S/R,Gm) . . .

Let f : S −→ T be a morphism of faithfully flat commutative R-algebras. Then we
have a functor f̃ : Azc(S/R) −→ Azc(T/R) such that the following diagram commutes

Azc(S/R) -A

?
f̃

Z1(S/R,Pic)

?
f

Azc(T/R) Z1(T/R,Pic).-A

Here f̃(C) = C ⊗S⊗2 (T ⊗ T ), with comultiplication ∆C ⊗S⊗2 ∆, where ∆ is the comulti-
plication on the canonical coring CanR(T ;T ). This induces a commutative diagram

Brc(S/R) -
∼=

?
f̂

H1(S/R,Pic)

?
f∗

Brc(T/R) H1(T/R,Pic).-
∼=
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In other words, the isomorphisms in Corollary 8.1.9 define an isomorphism of functors

Brc(•/R) ∼= H1(•/R,Pic) : R-Alg −→ Ab.

Consequently, applying (7.2.6), we have

colim Brc(•/R) ∼= Ȟ1(Rfl,Pic) ∼= H2(Rfl,Gm). (8.1.7)

8.2 Azumaya corings versus Azumaya algebras

In the previous section we have established Azumaya S/R-corings and we have constructed
the relative Brauer group Brc(S/R) of Azumaya S/R-corings. We now investigate which
relation exists between Azumaya S/R-corings and Azumaya algebras. For this we recall
[80, Lemma 4.1].

Lemma 8.2.1 Let A and B be R-algebras, M,M ′ modules over A and N,N ′ modules
over B. The canonical morphism

HomA(M,M ′)⊗ HomB(N,N ′) −→ HomA⊗B(M ⊗N,M ′ ⊗N ′)

induced by the R-bilinear application (f, g) 7→ f ⊗ g, is an isomorphism in the following
cases:

1. M (resp. N) is finitely generated and projective over A (resp. B);

2. M and M ′ are finitely generated and projective over A, A is flat over R and N is
of finite presentation over B.

Proposition 8.2.2 Let S be a faithfully projective commutative R-algebra, and C an
Azumaya S/R-coring. Then S Hom(C, S) and HomS(C, S) are Azumaya R-algebras split
by S.

Proof. Using the above lemma, Theorem 8.1.4 and (7.3.9), we find the following isomor-
phisms of S-algebras:

S Hom(C, S)⊗ S = S Hom(C, S)⊗ S Hom(S, S) ∼= S⊗S Hom(C⊗ S, S ⊗ S)
∼= S⊗S Hom(CanR⊗S(C;S ⊗ S), S ⊗ S) ∼= R⊗S End(C)op.

Let us describe the map ξ : H2(S/R,Gm) −→ Brc(S/R) from the sequence (8.1.6).
It will provide us with further examples of Azumaya corings. Take a 2-cocycle u ∈
Z2(S/R,Gm) and consider the coring

(S ⊗ S)u = CanR(S;S)u,
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which is equal to S ⊗ S as an S-bimodule, with comultiplication

∆u : S ⊗ S −→ (S ⊗ S)⊗S (S ⊗ S) ∼= S ⊗ S ⊗ S, ∆u(s⊗ t) = su1 ⊗ u2 ⊗ u3t. (8.2.8)

The coassociativity is equivalent to the 2-cocycle condition:

(∆u ⊗S (S ⊗ S)u)∆u(s⊗ t) = (∆u ⊗S (S ⊗ S)u)((su
1 ⊗ u2)⊗S (1⊗ u3t))

= (su1U1 ⊗ U2)⊗S (1⊗ U3u2)⊗S (1⊗ u3t)
≡ su1U1 ⊗ U2 ⊗ U3u2 ⊗ u3t

(7.1.1)
= su1 ⊗ u2U1 ⊗ U2 ⊗ u3U3t
≡ (su1 ⊗ u2)⊗S (U1 ⊗ U2)⊗S (1⊗ U3u3t)
= ((S ⊗ S)u ⊗S ∆u)∆u(s⊗ t).

Recall from Lemma 7.1.4 the norm |u| of a 2-cocycle u. The counit ε of (S ⊗S)u is given
by the formula

εu(s⊗ t) = |u|−1st. (8.2.9)

The counit property follows from Lemma 7.1.4:

((S ⊗ S)u ⊗S εu)(∆u(s⊗ t)) = ((S ⊗ S)u ⊗S εu)((su1 ⊗ u2)⊗S (1⊗ u3t))
= su1 ⊗ u2|u|−1u3t

L. 7.1.4
= s⊗ t;

(εu ⊗S (S ⊗ S)u)(∆u(s⊗ t)) = (εu ⊗S (S ⊗ S)u)((su
1 ⊗ u2)⊗S (1⊗ u3t))

= |u|−1su1u2 ⊗ u3t
L. 7.1.4

= s⊗ t.
Note that if u is normalized, then the counit of (S ⊗ S)u coincides with the counit in
CanR(S;S).

In virtue of Lemma 7.1.6 we have (S ⊗ S)u ⊗ S = (S ⊗ S ⊗ S)u⊗1
∼= S⊗3, so (S ⊗ S)u

is an Azumaya coring.

Example 8.2.3 Analogoulsy as in the above construction we may twist the coring struc-
ture of an elementary coring CanR(I;S) = I∗⊗R I by a 2-cocycle u to obtain an Azumaya
coring (I∗ ⊗R I)u.

Lemma 8.2.4 The map ξ : H2(S/R,Gm) −→ Brc(S/R), [u] 7→ [(S ⊗ S)u], is a well-
defined group map.

Proof. Let u and v be two cohomologous 2-cocycles with uv−1 = δ1(z) = z1z
−1
2 z3 for

some z ∈ Gm(S ⊗ S). We define an S-bilinear morphism ϕ : (S ⊗ S)u −→ (S ⊗ S)v by
ϕ(1⊗ 1) = z−1 = w1 ⊗ w2 = W 1 ⊗W 2. Now we find for s, t ∈ S

(ϕ⊗ ϕ)∆u(s⊗ t) = (ϕ⊗ ϕ)((su1 ⊗ u2)⊗S (1⊗ u3t))
= (su1w1 ⊗ w2u2)⊗S (W 1 ⊗W 2u3t)
≡ suz−1

1 z−1
3 t

= sz−1
2 vt

≡ (sw1v1 ⊗ v2)⊗S (1⊗ v3w2t)
= ∆v(sw

1 ⊗ w2t)
= ∆vϕ(s⊗ t).



172 8. The Brauer group of Azumaya corings

This proves that ϕ is an isomorphism in Brc(S/R) and that ξ([u]) = ξ([v]).

We prove that ξ is a group map by proving that for [u], [v] ∈ H2(S/R,Gm) the
comultiplications ∆uv and ∆u;v of the S-bimodules ξ([uv]) = (S ⊗ S)uv and ξ([u]) ⊗S⊗2

ξ([v]) = (S ⊗ S)u ⊗S⊗2 (S ⊗ S)v, respectively, are equal. For s, t ∈ S we find

∆uv(s⊗ t) = (su1v1 ⊗ u2v2)⊗S (1⊗ u3v3).

Observe that

∆u;v : (S ⊗ S)u ⊗S⊗2 (S ⊗ S)v −→ [(S ⊗ S)u ⊗S⊗2 (S ⊗ S)v]⊗S⊗2 [(S ⊗ S)u ⊗S⊗2 (S ⊗ S)v].

The codomain of ∆u;v is isomorphic to [(S ⊗ S)u ⊗S (S ⊗ S)u]⊗ [(S ⊗ S)v ⊗S (S ⊗ S)v],
which is the tensor product of the codomains of ∆u and ∆v. Then is clear that we have

∆u;v((s⊗ 1) ⊗S⊗2(1⊗ t))
= [(su1 ⊗ u2)⊗S⊗2 (v1 ⊗ v2)]⊗S⊗2 [(1⊗ u3)⊗S⊗2 (1⊗ v3t)]
≡ (su1v1 ⊗ u2v2)⊗S (1⊗ u3v3t)
= ∆uv(s⊗ t)
≡ ∆uv((s⊗ 1)⊗S⊗2 (1⊗ t)).

Let us compute now the right dual HomS((S ⊗ S)u, S). As an R-module, it is
HomS((S ⊗ S)u, S) = HomS(S ⊗ S, S) ∼= EndR(S). We transport the multiplication
from HomS((S⊗S)u, S) to EndR(S) using the right version of the isomorphism in (7.3.9)
with I = S. We obtain that for ϕ, ψ ∈ EndR(S) the corresponding morphisms f, g ∈
HomS(S ⊗ S, S) are given by

f(s⊗ t) = ϕ(s)t and g(s⊗ t) = ψ(s)t.

Applying the definition of the right version of the isomorphism in (7.3.9) with I = S, and
then (7.3.8), we find for the multiplication in (EndR(S)u)

op:

(ψ ∗ ϕ)(s) = (f#g)(s⊗ 1) = f(ψ(su1)u2 ⊗ u3) = ϕ(ψ(su1)u2)u3.

Then in EndR(S)u we have:

ϕ ∗ ψ = u3ϕu2ψu1. (8.2.10)

In a similar way, we find for the left dual that S Hom(S ⊗ S, S) ∼= R End(S), with twisted
multiplication

ϕ ∗ ψ = u1ψu2ϕu3.

If S is faithfully projective as an R-module, then it is well-known that there exists a
morphism

ξ̃ : H2(S/R,Gm) −→ Br(S/R).
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More precisely, to any 2-cocycle u ∈ Z2(S/R,Gm) we can associate an Azumaya algebra
A(u). The construction of A(u) was given first in [117, Theorem 2]. It is explained in [80,
Proposition 2.1] and [79, 7.5] using descent theory. Let us summarize the construction
of A(u), following [80]. Take a cocycle u = u1 ⊗ u2 ⊗ u3 = U1 ⊗ U2 ⊗ U3 with inverse
u−1 = v1 ⊗ v2 ⊗ v3, and consider the map

Φ : S ⊗ S ⊗ EndR(S) −→ S ⊗ EndR(S)⊗ S

given by
Φ(s⊗ t⊗ ϕ) = su1v1 ⊗ u3ϕv3 ⊗ tu2v2

for s, t ∈ S, ϕ ∈ EndR(S). Then

A(u) = {x ∈ S ⊗ EndR(S) | x⊗ 1 = Φ(1⊗ x)}.

It will be convenient to use the canonical identification EndR(S) ∼= S∗ ⊗ S, given by
ϕ 7→ fi ⊗ ϕ(ei), for ϕ ∈ EndR(S) and the dual basis {(ei, fi) | i = 1, · · · , n} of S, with
the inverse f ⊗ x 7→ (s 7→ xf(s)), for f ∈ S∗, x, s ∈ S. This isomorphism is S-bilinear
with the S-bimodule structures of EndR(S) and S∗ ⊗ S given respectively by

(sϕt)(x) = sϕ(tx) and s(f ⊗ x)t = ft⊗ sx

for s, t ∈ S. Then x =
∑

i si ⊗ t∗i ⊗ ti ∈ S ⊗ S∗ ⊗ S lies in A(u) if and only if∑
i

si ⊗ t∗i ⊗ ti ⊗ 1 =
∑
i

u1v1 ⊗ t∗i v3 ⊗ u3ti ⊗ u2v2si,

or ∑
i

si ⊗ 1⊗ t∗i ⊗ ti =
∑
i

u1v1 ⊗ u2v2si ⊗ t∗i v3 ⊗ u3ti,

or
x2 = x1u3u

−1
4 or x2u4 = x1u3. (8.2.11)

Let EndR(S)u be equal to EndR(S), with twisted multiplication given by (8.2.10). We
know from Proposition 8.2.2 that EndR(S)u is an Azumaya algebra split by S.

Theorem 8.2.5 Let S be a faithfully projective commutative R-algebra, and take u ∈
Z2(S/R,Gm). Then we have an isomorphism of R-algebras EndR(S)u ∼= A(u).

Proof. We define γ : EndR(S)u −→ A(u) by the following formula:

γ(ϕ) = u1 ⊗ u3ϕu2,

or
γ(t∗ ⊗ t) = u1 ⊗ t∗u2 ⊗ u3t.

We have to show that x = γ(t∗ ⊗ t) satisfies (8.2.11). Indeed,

x2u4 = (1⊗ 1⊗ t∗ ⊗ t)u2u4 = (1⊗ 1⊗ t∗ ⊗ t)u1u3 = x1u3.
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Let us next show that γ is multiplicative. We want to show that

γ(ψ) ? γ(ϕ) = γ(ψ ∗ ϕ)

or
u1U1 ⊗ u3ψu2U3ϕU2 = U1 ⊗ U3u3ψu2ϕu1U2.

It suffices that
u1U1 ⊗ u3 ⊗ u2U3 ⊗ U2 = U1 ⊗ U3u3 ⊗ u2 ⊗ u1U2,

or, after permuting the tensor factors,

u1U1 ⊗ U2 ⊗ u2U3 ⊗ u3 = U1 ⊗ u1U2 ⊗ u2 ⊗ U3u3.

This is precisely the 2-cocycle condition (7.1.1).
The inverse of γ is given by

γ−1(
∑
i

si ⊗ t∗i ⊗ ti) =
∑
i

t∗i v
2 ⊗ v1v3siti,

for all x =
∑

i si ⊗ t∗i ⊗ ti ∈ A(u) and u−1 = v1 ⊗ v2 ⊗ v3. We compute that

γ(γ−1(x)) = γ(
∑
i

t∗i v
2 ⊗ v1v3siti) = u1 ⊗ t∗i v2u2 ⊗ u3v1v3siti.

It follows from (8.2.11) and the 2-cocycle condition that

x2 = x1u3u
−1
4 = x1u2u

−1
1 = u1 ⊗ siv1 ⊗ t∗iu2v2 ⊗ tiu3v3.

Multiplying the second and the fourth tensor factor, we obtain that

γ(γ−1(x)) = u1 ⊗ t∗i v2u2 ⊗ u3v1v3siti = x.

Finally

γ−1(γ(t∗ ⊗ t)) = γ−1(u1 ⊗ t∗u2 ⊗ u3t) = t∗u2v2 ⊗ v1v3u1u3t = t∗ ⊗ t.

8.3 The normal basis property on bimodules

Let S be a faithfully flat commutative R-algebra. We say that an S ⊗ S-module with
coassociative comultiplication has a normal basis if it is isomorphic to S ⊗ S as an S-
bimodule. Examples are the Azumaya S/R-corings CanR(S;S)u, with u ∈ Z2(S/R,Gm),
as considered above. Assume S is faithfully flat. The category of S/R-corings (resp.
S ⊗ S-modules with coassociative comultiplication) with normal basis will be denoted
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by Cornb(S/R) (resp. BiModnb(S/R)). Categories (Cornb(S/R),⊗S⊗2 ,CanR(S;S)) and

(BiModnb(S/R),⊗S⊗2 ,CanR(S;S)) are monoidal categories, and the corresponding sets

of isomorphism classes Cornb(S/R) and BiModnb(S/R) are monoids. Let Aznb(S/R) be
the subgroup of Cornb(S/R) consisting of isomorphism classes of S/R-Azumaya corings
with normal basis. We have inclusions

Aznb(S/R) ⊂ Cornb(S/R) ⊂ BiModnb(S/R).

We will give a cohomological description of these monoids.

Take u = u1⊗u2⊗u3 ∈ S⊗3. As usual, summation is implicitly understood. We do not
assume that u is invertible. We call u a 2-cosickle if u1u3 = u2u4. If, in addition, u1u2⊗u3

and u1 ⊗ u2u3 are invertible in S⊗2, then we call u an almost invertible 2-cosickle. This
implies in particular that |u| = u1u2u3 is invertible in S. Almost invertible 2-cosickles
have been introduced and studied in [70]. Let Sick2(S/R) be the set of 2-cosickles and
Sick2

ainv(S/R) the set of almost invertible 2-cosickles. Sick2(S/R) and Sick2
ainv(S/R) are

multiplicative monoids, and we have the following inclusions of monoids:

B2(S/R,Gm) ⊂ Z2(S/R,Gm) ⊂ Sick2
ainv(S/R) ⊂ Sick2(S/R) ⊂ S⊗3.

We consider the quotient monoids

M ′2(S/R) := Sick2(S/R)/B2(S/R,Gm)

and

M2(S/R) := Sick2
ainv(S/R)/B2(S/R,Gm).

M2(S/R) is called the second (Hebrew) Amitsur cohomology monoid. The subgroup con-
sisting of invertible classes is the usual (French) Amitsur cohomology group H2(S/R,Gm)
(the Hebrew-French dictionary is explained in detail in [70]). We obviously have the fol-
lowing inclusions:

H2(S/R,Gm) ⊂M2(S/R) ⊂M ′2(S/R).

Theorem 8.3.1 Let S be a commutative faithfully flat R-algebra. An S⊗S-module with
coassociative comultiplication and normal basis is an Azumaya S/R-coring if and only if
it represents an invertible element of BiModnb(S/R). Furthermore

BiModnb(S/R) ∼= M ′2(S/R), Cornb(S/R) ∼= M2(S/R)

and

Aznb(S/R) ∼= H2(S/R,Gm).

Proof. We define a map β′ : Sick2(S/R) −→ BiModnb(S/R) as follows: β′(u) = [(S⊗S)u],
for u ∈ Sick2(S/R), with comultiplication given by (8.2.8). The proof that β′ is a map
of monoids is the same as in Lemma 8.2.4.



176 8. The Brauer group of Azumaya corings

To prove that β′ is surjective take [C] ∈ BiModnb(S/R). We identify C = S ⊗ S,
because C has a normal basis. Let ∆C be a coassociative comultiplication and take

u = u1 ⊗ u2 ⊗ u3 := ∆C(1⊗ 1) ∈ (S ⊗ S)⊗S (S ⊗ S) ∼= S⊗3.

(If ζ : S ⊗ S −→ C denotes an S-bimodule isomorphism, then ∆C(1 ⊗ 1) = (ζ−1 ⊗S
ζ−1)∆Cζ(1 ⊗ 1).) From the coassociativity of ∆C, it follows that u1u3 = u2u4, by the
computation preceding (8.2.9). Hence u ∈ Sick2(S/R), and clearly we have β′(u) = [C].

Take u ∈ Ker β′. We then have a comultiplication preserving S-bimodule isomorphism
ϕ : S ⊗ S −→ (S ⊗ S)u. Put ϕ(1 ⊗ 1) = v = v1 ⊗ v2 ∈ S⊗2. From the fact that ϕ is an
automorphism of S⊗2 as an S-bimodule, we have 1⊗ 1 = ϕ−1(v1 ⊗ v2) = v1ϕ−1(1⊗ 1)v2,
so v−1 = ϕ−1(1 ⊗ 1). Let ∆1 denote the comultiplication of S ⊗ S. Since ϕ preserves
comultiplication, it follows that

v1v3 = (ϕ⊗S ϕ)(∆1(1⊗ 1)) = ∆u(ϕ(1⊗ 1)) = ∆u(v) = v1u1 ⊗ u2 ⊗ u3v2 = v2u,

hence u = δ1(v) ∈ B2(S/R,Gm). From the surjectivity of the map β′ the isomorphism
BiModnb(S/R) ∼= M ′2(S/R) will follow if we show that B2(S/R,Gm) ⊂ Ker(β′). Take
u ∈ B2(S/R,Gm). Then for some v ∈ Gm(S ⊗ S) it is u = δ1(v) = v1v

−1
2 v3. This means

that u is cohomologous to 1. From the fact that the map ξ from Lemma 8.2.4 is well-
defined it follows [(S ⊗ S)u] = [S ⊗ S] in BiModnb(S/R), hence u ∈ Ker(β′). With this
we have proved that BiModnb(S/R) ∼= M ′2(S/R) as monoids.

Let us now consider u ∈ Sick2
ainv(S/R). As we commented above, |u| is then invertible

and we have β′(u) = [(S⊗S)u], where (S⊗S)u has a counit given by (8.2.9). Conversely,
let [C] ∈ Cornb(S/R), and take u = β′−1([C]), as defined above. We know then that
u1u3 = u2u4. Identifying C = S ⊗ S as above, put v = εC(1 ⊗ 1). Using the counit
property and the fact that εC is a bimodule map, we then compute that

1⊗ 1 = εC(u1 ⊗ u2)⊗ u3 = u1vu2 ⊗ u3;

1⊗ 1 = u1 ⊗ εC(u2 ⊗ u3) = u1 ⊗ u2vu3.

It follows that u1u2⊗u3 and u1⊗u2u3 are invertible, and that v = |u|−1, by Lemma 7.1.4.
Hence u ∈ Sick2

ainv(S/R), and it follows that β′ restricts to an epimorphism of monoids

β : Sick2
ainv(S/R) −→ Cornb(S/R).

As above, B2(S/R,Gm) = Ker β and it follows that M2(S/R) ∼= Cornb(S/R).

If u ∈ Z2(S/R,Gm), then β′(u) = [(S ⊗ S)u], where (S ⊗ S)u is an Azumaya S/R-
coring. Thus β restricts to a monoid map β′′ : Z2(S/R,Gm) −→ Aznb(S/R). Clearly,
Ker β′′ = B2(S/R,Gm), so we get a group morphism ξ : H2(S/R,Gm) −→ Aznb(S/R),
which is the factorization of the map ξ from Lemma 8.2.4 through Aznb(S/R). The
map ξ is injective. Indeed, assume ξ([u]) = ξ([v]) and let ψ : (S ⊗ S)u −→ (S ⊗ S)v
be an isomorphism of S/R-corings. As we saw above, the element z = ψ(1 ⊗ 1) is
then invertible. Applying the compatibility of ψ with comultiplications to 1 ⊗ 1, we



8.4. The full Brauer group of Azumaya corings 177

obtain z2v = z1z3u, i.e. vu−1 = δ1(z), so [u] = [v]. We now prove the surjectivity
of ξ. Let C be an Azumaya S/R-coring with normal basis, and u ∈ β′−1([C]). Take
v = β′−1([C∗]). Since C and C∗ have normal basis, we may identify them with (S ⊗ S)u
and (S ⊗ S)v respectively. Having that C and C∗ are inverses of each other in Brc(S/R),
we get (S ⊗ S)uv ∼= (S ⊗ S)u ⊗S⊗S (S ⊗ S)v ∼= S ⊗ S. By injectivity of ξ we conclude
that [u] = [v]−1 in M2(S/R), meaning that uv ∈ B2(S/R,Gm). Since every element in
B2(S/R,Gm) is invertible in S⊗3, it is uvw = 1⊗ 1⊗ 1 for some w ∈ Gm(S⊗3). Then in
particular, u ∈ Gm(S⊗3), and u ∈ Z2(S/R,Gm). Clearly, ξ([u]) = C and we have proved
that H2(S/R,Gm) ∼= Aznb(S/R).

8.4 The full Brauer group of Azumaya corings

In this section we construct the full Brauer group and prove that it is the colimit of the
relative Brauer groups Brc(S/R). Moreover, we will prove that the full group is isomorphic
to the full second flat Amitsur cohomology group.

An Azumaya coring over R is a pair (S,C), where S is a faithfully flat finitely pre-
sented commutative R-algebra, and C is an Azumaya S/R-coring. A morphism between
two Azumaya corings (S,C) and (T,D) over R is a pair (f, ϕ), with f : S −→ T an al-
gebra isomorphism, and ϕ : C −→ D an R-module isomorphism preserving the bimodule
structure and the comultiplication, that is

ϕ(scs′) = f(s)ϕ(c)f(s′) and ∆D(ϕ(c)) = ϕ(c(1))⊗T ϕ(c(2)),

for all s, s′ ∈ S and c ∈ C. The counit is then preserved automatically. Let Azc(R) be the
category of Azumaya corings over R.

Lemma 8.4.1 Suppose that S and T are commutative R-algebras. If M ∈ MS⊗RS and
N ∈MT⊗RT , then M ⊗R N ∈M(S⊗RT )⊗R(S⊗RT ).
If C is an (Azumaya) S/R-coring, and D is an (Azumaya) T/R-coring, then C ⊗R D is
an (Azumaya) S ⊗R T/R-coring.

Proof. It is easy to see that M ⊗R N ∈ M(S⊗RT )⊗R(S⊗RT ) with the structure given by
(m⊗ n) · (s⊗ t)⊗ (s′ ⊗ t′) = sms′ ⊗ tnt′, for s, s′ ∈ S, t, t′ ∈ T and m ∈M,n ∈ N .

Also, it is easy to verify that C⊗RD is an S⊗R T/R-coring with the comultiplication
and counit determined by

∆C⊗RD : C⊗R D −→ (C⊗R D)⊗S⊗RT (C⊗R D) ∼= (C⊗S C)⊗R (D⊗T D)

∆C⊗RD(c⊗ d) = (c(1) ⊗S c(2))⊗R (d(1) ⊗S d(2))

and
εC⊗RD : C⊗R D −→ S ⊗R T

ε(c⊗ d) = εC(c)⊗R εD(d).



178 8. The Brauer group of Azumaya corings

Let us show that C ⊗R D is an Azumaya S ⊗R T/R-coring if C is an Azumaya S/R-
coring, and D an Azumaya T/R-coring. We have

C⊗R D⊗R S ⊗R T ∼= C⊗R S ⊗R D⊗R T
∼= CanS(I;S ⊗R S)⊗ CanT (J ;T ⊗R T ) = (I∗ ⊗S I)⊗R (J∗ ⊗T J)
∼= (I∗ ⊗R J∗)⊗S⊗T (I ⊗R J) = CanS⊗T (I ⊗R J ;S ⊗R T ⊗R S ⊗R T ).

Let (C,∆) be an Azumaya S/R-coring, and consider the corresponding (C, α) ∈
Z1(S/R,Pic). Its inverse in Z1(S/R,Pic) is represented by (C∗, (α∗)−1), with C∗ =

HomS(C, S). The corresponding coring will be denoted by (C∗,∆).

Proposition 8.4.2 Let C be an Azumaya S/R-coring. Then C ⊗ C∗ is an elementary
coring.

Proof. Consider A(C) = (C, α) ∈ Z1(S/R,Pic), where A is the functor from Corol-
lary 8.1.8, and the maps η1, η2 : S −→ S ⊗ S. It follows from Proposition 7.1.9 that

[η1∗(C, α)] = [(S⊗2 ⊗ C, S⊗3 ⊗ α)] = [η2∗(C, α)] = [(C⊗ S⊗2, α⊗ S⊗3)]

in H1(S⊗S/R,Pic). Consequently, with A◦ denoting the group isomorphism from Corol-
lary 8.1.9, we get

[A−1
◦ (η1∗(C, α))] = [(S ⊗ S)⊗ C] = [A−1

◦ (η2∗(C, α))] = [C⊗ (S ⊗ S)]

in Brc(S ⊗ S/R). Note that because of

((S ⊗ S)⊗ C)⊗S⊗4 ((S ⊗ S)⊗ C∗) ∼= S ⊗ S ⊗ (C⊗S⊗2 C∗) ∼= S⊗4

the inverse of [(S⊗S)⊗C] in Brc(S⊗S/R) is represented by (S⊗S)⊗C∗. This together
with the above implies that

(C⊗ (S ⊗ S))⊗S⊗4 ((S ⊗ S)⊗ C∗) ∼= C⊗ C∗

is an elementary coring.

Let (S,C) and (T,D) be Azumaya corings over R. We say that C and D are Brauer
equivalent (in notation: C ∼ D) if there exist elementary corings E1 and E2 over R such
that C⊗ E1

∼= D⊗ E2 as Azumaya corings over R. This relation is trivially reflexive and
symmetric. For the transitivity suppose that C ∼ D and D ∼ F with C ⊗ E1

∼= D ⊗ E2

and D⊗ E3
∼= F⊗ E4, for some elementary corings E1, . . . ,E4. We then have

C⊗ E1 ⊗ E3
∼= D⊗ E3 ⊗ E2

∼= F⊗ E4 ⊗ E2.

Since the tensor product of two elementary corings is elementary, we have that ∼ is an
equivalence relation. Let Brc

fl(R) be the set of equivalence classes of isomorphism classes
of Azumaya corings over R.
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Proposition 8.4.3 Brc
fl(R) is an abelian group under the operation induced by the tensor

product ⊗R, with unit element [R].

Proof. That the product is well-defined is supported by Lemma 8.4.1. By Proposition 8.4.2
the inverse of [(C,∆)] is [(C∗,∆)].

The group Brc
fl(R) is called the Brauer group of Azumaya corings over R.

The Brauer equivalence relation on Azumaya corings over R leads to the Brauer equiv-
alence relation in the Brauer group of R on the dual algebras, and thus also to the Morita
equivalence relation. Let C be an Azumaya S/R-coring and D an Azumaya T/R-coring.
If C ∼ D, then there are elementary corings E1 = CanR(I;U) and E2 = CanR(J ;V ) for
some faithfully flat R-algebras U and V , so that C ⊗ E1

∼= D ⊗ E2. If we now take the
S ⊗ U -, i.e., T ⊗ V -dual of this isomorphism, using Lemma 8.2.1 we obtain

C∗ ⊗ CanR(I;U)∗ ∼= D∗ ⊗ CanR(J ;V )∗.

By (7.3.9) this gives
C∗ ⊗ EndR(I)op ∼= D∗ ⊗ EndR(J)op.

Knowing from Proposition 8.2.2 that C∗ and D∗ are Azumaya R-algebras, we obtain
C∗ ∼ D∗ in Br(R).

Lemma 8.4.4 Let C,E be Azumaya S/R-corings, and assume that E = CanR(J ;S) is
elementary. Then the Azumaya corings C⊗S⊗2 E and C are Brauer equivalent.

Proof. Let A(C) = (C, α). By Remark 8.1.2 we have A(E) = (J∗ ⊗ J, λJ). Since

C⊗S⊗2 E⊗S⊗2 C∗ ∼= C⊗S⊗2 C∗ ⊗S⊗2 E ∼= E = J∗ ⊗ J = δ0(J)

and
α⊗S⊗3 λJ ⊗S⊗3 (α∗)−1 = λJ ,

we have
[(C⊗S⊗2 E, α⊗S⊗3 λJ)] = [(C, α)]

in H1(S/R,Pic). From Proposition 7.1.9, it follows that

[η1∗(C, α)] = [((S ⊗ S)⊗ C, S⊗3 ⊗ α)] = [η2∗(C⊗S⊗2 E, α⊗S⊗3 λJ)]

= [(C⊗S⊗2 E)⊗ (S ⊗ S), (α⊗S⊗3 λJ)⊗ S⊗3)]

in H1(S ⊗ S/R,Pic). Applying A−1
◦ to both sides, we find that

[(S ⊗ S)⊗ C] = [(C⊗S⊗2 E)⊗ (S ⊗ S)]

in Brc(S ⊗ S/R). Since the inverse of [(S ⊗ S)⊗ C] in Brc(S ⊗ S/R) is [(S ⊗ S)⊗ C∗], we
obtain from the latter expression that

[((S ⊗ S)⊗ C∗)⊗S⊗4 ((C⊗S⊗2 E)⊗ (S ⊗ S))] = [(C⊗S⊗2 E)⊗ C∗] = 1
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in Brc(S ⊗ S/R). Consequently, (C⊗S⊗2 E)⊗ C∗ = F is an elementary coring, and

(C⊗S⊗2 E)⊗ C∗ ⊗ C = F⊗ C.

We have seen in Proposition 8.4.2 that C⊗C∗ is elementary. Then we conclude C⊗S⊗2E ∼
C.

Lemma 8.4.5 Let f : S −→ T be a morphism of faithfully flat commutative R-algebras.
If C is an Azumaya S/R-coring, then C ∼ f̃(C) = C ⊗S⊗2 (T ⊗ T ), where f̃ is the one
from page 169.

Proof. As before, let A(C) = (C, α). Consider the maps ϕ, ψ : S −→ S ⊗ T given by

ϕ(s) = 1⊗ f(s) ; ψ(s) = s⊗ 1.

Applying Proposition 7.1.9, we find that

[ϕ∗(C, α)] = [(C⊗S⊗2 (S ⊗ T )⊗2, α⊗S⊗3 (S ⊗ T )⊗3)]

= [(S⊗2 ⊗ (C⊗S⊗2 T⊗2), λS ⊗ (α⊗S⊗3 T⊗3))]

= [ψ∗(C, α)] = [(C⊗ T⊗2, α⊗ T⊗3)]

in H1(S ⊗ T/R,Pic). Consequently,

[A−1
◦ (ϕ∗(C, α))] = [(S ⊗ S)⊗ (C⊗S⊗2 (T ⊗ T ))] = [A−1

◦ (ψ∗(C, α))] = [C⊗ (T ⊗ T )]

in Brc(S⊗T/R,Pic). The inverse of [C⊗ (T ⊗T )] in Brc(S⊗T/R,Pic) is [C∗⊗ (T ⊗T )],
and it follows that

(C∗ ⊗ (T ⊗ T ))⊗S⊗S⊗T⊗T ((S ⊗ S)⊗ (C⊗S⊗2 (T ⊗ T ))) ∼= C∗ ⊗ (C⊗S⊗2 (T ⊗ T )) ∼= E

for some elementary S ⊗ T/R-coring E. We then have

C⊗ C∗ ⊗ (C⊗S⊗2 (T ⊗ T )) ∼= C⊗ E.

We know from Proposition 8.4.2 that C ⊗ C∗ is elementary, so we can conclude that
C ∼ f̃(C) = C⊗S⊗2 (T ⊗ T ).

Proposition 8.4.6 Let S be a commutative faithfully flat R-algebra. We have a well-
defined group monomorphism

iS : Brc(S/R) −→ Brc
fl(R), iS([C]) = [C].

If f : S −→ T is a morphism of commutative faithfully flat R-algebras, then we have a
commutative diagram

Brc(T/R).
?

f̂

Brc(S/R) Brcfl(R)-iS

�
��

��
��*

iT
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Proof. Let us first make sure that iS is well-defined. For that purpose take [C] = [D]
in Brc(S/R) = K0Azc(S/R)/Canc(S/R). That means that for an elementary S/R-coring
E we have C ⊗S⊗2 D∗ ∼= E. Multiplying this in the Brauer group Brc(S/R) by D, i.e.,
tensoring the equation over S ⊗ S by D, we obtain C ∼= D ⊗S⊗2 E. By Lemma 8.4.4
this is Brauer equivalent to D in Brcfl(R), thus iS is well-defined. Let us show now that
iS is a group homomorphism. Consider two Azumaya S/R-corings C and D as above.
Then by Proposition 8.4.2 the S ⊗ S/R-coring C∗ ⊗ C = E1, and clearly the S/R-coring
C⊗S⊗2 C∗ = E2, are both elementary. From Lemma 8.4.4, it follows that

C⊗D ∼ (C⊗D)⊗S⊗4 (C∗ ⊗ C)
∼= (C⊗S⊗2 C∗)⊗ (D⊗S⊗2 C)
∼= (S ⊗ S)⊗ (D⊗S⊗2 C)

∼ D⊗S⊗2 C ∼= C⊗S⊗2 D.

Consequently, in Brcfl(R) we have

iS([C⊗S⊗2 D]) = [C⊗D] = iS([C])iS([D])

proving that iS is a group map. It is clear that iS is injective.
Finally, it follows from Lemma 8.4.5 that iS([C]) = [C] = [C⊗S⊗2(T⊗T )] = (iT ◦f̂)([C]).

Theorem 8.4.7 Let R be a commutative ring. Then

Brcfl(R) ∼= colim Brc(•/R) ∼= H2(Rfl,Gm).

Proof. It follows from Proposition 8.4.6 and the definition of the colimit that there is a
unique map

i : colim Brc(•/R) −→ Brcfl(R).

Suppose that A is an abelian group, and suppose that we have a collection of maps
αS : Brc(S/R) −→ A such that

αT ◦ f̂ = αS,

for every morphism of faithfully flat commutative R-algebras f : S −→ T . Take x ∈
Brcfl(R). Then x is represented by an Azumaya S/R-coring C for some S. We claim that
the map

α : Brcfl(R) −→ A, α(x) = αS([C])

is well-defined. Take an Azumaya T/R-coring D that also represents x. Then

C⊗ (T ⊗ T ) ∼ C ∼ D ∼ D⊗ (S ⊗ S)

and from the injectivity of iS⊗T (see Proposition 8.4.6) we obtain that [C ⊗ (T ⊗ T )] =
[D⊗ (S ⊗ S)] in Brc(S ⊗ T/R), hence

αS([C]) = αS⊗T ([C⊗ (T ⊗ T )]) = αS⊗T ([D⊗ (S ⊗ S)]) = αT ([D]),
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as needed. We have constructed α in such a way that the diagrams

HH
HHH

HHj
αS

A
?

α

Brc(S/R) Brcfl(R)-iS

commute. To prove that α is unique with such a property, assume there exists β : Brcfl(R)
−→ A with βiS = αS for all faithfully flat commutative algebras S. Let x ∈ Brcfl(R). As
above, x is then represented by an Azumaya S/R-coring C for some S. We then have
β(x) = βiS([C]) = αS([C]) = αiS([C]) = α(x), hence β = α. This means that Brcfl(R)
satisfies the required universal property of a colimit. Finally, apply (8.1.7).

Corollary 8.4.8 Let S be a faithfully flat commutative R-algebra. Then

Ker(Brcfl(R) −→ Brcfl(S)) = Brc(S/R).

Proof. Applying Corollary 8.1.9, (7.2.5) and Theorem 8.4.7, we find

Brc(S/R) ∼= H1(S/R,Pic)

∼= Ker(H2(Rfl,Gm) −→ H2(Sfl,Gm))
∼= Ker(Brcfl(R) −→ Brcfl(S)).

All our results remain valid if we replace the condition that S is faithfully flat by
the condition that S is an étale covering, a faithfully projective extension or a Zarisky
covering of R (see e.g. [80] for precise definitions). It follows from Artin’s Refinement
Theorem [9] that the (injective) map

Ȟ2(Ret,Gm) −→ H2(Ret,Gm)

is an isomorphism, where Ȟ2(Ret,Gm) := colimH2(•/R,Gm) and H2(Rfl,Gm) is the
second right derived functor of the global section functor. We will now present an algebraic
interpretation of Ȟ2(Rfl,Gm) independent of Artin’s Theorem. Consider the subgroup
Brcnb

fl (R) of Brfl(R) consisting of classes of Azumaya corings represented by Azumaya
corings with normal basis.

Theorem 8.4.9 Let R be a commutative ring. Then

Brcnb
fl (R) ∼= Ȟ2(Rfl,Gm).
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Proof. Let S be a faithfully flat commutative R-algebra, and consider the diagram

Brc(S/R)

?

γ

H2(S/R,Gm) -β

?

H1(S/R,Pic)

?
Ȟ2(Rfl,Gm) H2(Rfl,Gm).↪→

The map γ is the one from Corollary 8.1.9, and β : H2(S/R,Gm) −→ H1(S/R,Pic) maps

the equivalence class of a 2-cocycle v into [(S⊗S,m(v))], where m(v) : S⊗
3 −→ S⊗

3
is the

multiplication by v. The other two vertical arrows are limit maps (recall (7.2.6)). Let C
be an Azumaya S/R-coring with normal basis. Identifying C = S⊗S, put u = ∆C(1⊗1).
Using (7.4.11) we realize that ∆̃C(s⊗1⊗t) = (su1⊗u2⊗1)⊗S⊗3 (1⊗1⊗u3t) = su1⊗u2⊗u3t.

Thus ∆̃C = α−1 = m(u), applying identification C = S ⊗ S in (8.1.1). This means that
γ([C]) = [(C, α)] = [(S ⊗ S,m(u−1))] and hence γ([C]) ∈ Im (β). So the image of Im(γ) in
H2(Rfl,Gm) lies in the subgroup Ȟ2(Rfl,Gm). It follows that we have a monomorphism
κ : Brcnb

fl (R) ↪→ Ȟ2(Rfl,Gm) such that the following diagram commutes:

Brcnb
fl (R) ↪→

?

κ

Brc
fl(R)

?

∼=

Ȟ2(Rfl,Gm) H2(Rfl,Gm).↪→

The map κ is surjective: for [u] ∈ Ȟ2(Rfl,Gm) there is a faithfully flat R-algebra S so
that [u] ∈ H2(S/R,Gm), then κ([(S ⊗ S)u]) = [u].





Chapter 9

Cohomology over commutative
bialgebroids

Bialgebroids generalize bialgebras, which are modules over a commutative ring, to bimod-
ules, in the similar way as corings generalize coalgebras. In our work we are interested
in commutative bialgebroids. The commutativity of the algebra structure of a bialge-
broid simplifies the structures involved in the definition of a bialgebroid (see [130]). Over
this simplified structure we introduce a cohomology in this chapter and call it Harrison
cohomology. In special cases of a commutative bialgebroid this cohomology reduces to
well-known cohomologies, as we will show. We prove that Harrison cohomology over a
commutative bialgebroid fits into an infinite exact sequence a la Villamayor–Zelinsky. In
the last section of this chapter we study the zero cohomology group with values in the cat-
egory of Picard modules. We start with a preliminary section with some useful properties
of localized rings and invertible modules.

9.1 Some properties of invertible modules

In the first section of the third part of the thesis we establish some basic tool we will use
throughout. In this and Section 10.2 we will make use of Zarisky topology and local rings.
For this purpose we first collect the basic properties from the topics. For more details
we refer to [80] and [54, Section 1.4]. In this section R will be a commutative ring if not
otherwise specified.

The collection of all prime ideals of R is denoted by Spec (R). On Spec (R) we have
Zariski topology, where closed sets are defined as V (L) = {p ∈ Spec (R)|L ⊂ p} for
every subset L of R. The open sets are then the complements, and their basis is given
by D(a) = {p ∈ Spec (R)|a /∈ p} for every a ∈ R. The topological space Spec (R) is
quasi-compact, so in particular every covering of it can be reduced to a finite one.

Let S ⊆ R be multiplicatively closed. On R×S the relation defined by “(r, s) ∼ (r′, s′)
if and only if there exists t ∈ S so that tsr′ = ts′r” is an equivalence relation. A
localization of R with respect to S is the quotient S−1R := R × S/ ∼ whose elements
are denoted by r/s := (r, s). It is a commutative unital ring where the addition and

185
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multiplication are defined by the usual formulas for fractions. If p is a prime ideal of R,
then R \ p is multiplicatively closed. The localization S−1R for S = R \ p we denote
by Rp. Analogously, for any R-module M one defines its localization Mp. It turns out
that Mp

∼= M ⊗R Rp as Rp-modules. For a further R-module N one can show that
(M ⊗R N)p ∼= Mp ⊗Rp Np.

One has that Rp is a local ring (meaning that it has a unique maximal ideal) and
flat as an R-module. A finite extension of a local ring is a semilocal ring, that is, it has
finitely many maximal ideals. Local rings have some properties similar to fields. The most
interesting one is that a finitely generated projective module over a local ring is free. The
same holds for semilocal ring. We will use this in the proofs of the claims to come, as well
as a local-global principle that we illustrate below. We first recall [54, Proposition 1.4.10]
and [80, Lemma 1.3.2]. For any a ∈ R we write R(a) for the localization of R determined
by the multiplicatively closed subset of R consisting of non-negative powers of a.

Lemma 9.1.1 Let M be a finitely generated projective R-module and p a prime ideal in
R. There exists f(p) ∈ R \ p with M ⊗R R(f(p))

∼= M(f(p)) free as an Rf(p)-module.

Lemma 9.1.2 A ring extension R −→ S is faithfully flat if and only if S is flat over R
and for every prime ideal p of R there is a prime ideal q of S such that q ∩ R = p, in
other words the induced map Spec (S) −→ Spec (R) is surjective.

Fixing a prime ideal p of R we have that R −→ Rp is a flat extension. It is now easy
to see that Spec (R) is covered by {D(f(q))|q ∈ Spec (R)}, where f(q) are chosen like
in Lemma 9.1.1. From this covering we can take a finite collection so that Spec (R) =
∪ki=1D(f(qi)). Put

S := R(f(q1)) × · · · ×R(f(qk)). (9.1.1)

In this situation the induced map Spec (S) −→ Spec (R) is surjective, so by Lemma 9.1.2
we have that R −→ S is faithfully flat.

Corollary 9.1.3 For every I ∈ Pic(R) there is a faithfully flat extension S of R so that
I ⊗R S ∼= S as S-modules.

Proof. Let S be like in (9.1.1). Then I ⊗R S ∼= (I ⊗R R(f(q1))) × · · · × (I ⊗R R(f(qk))) ∼=
I(f(q1))×· · ·×I(f(qk)), where each I(f(qi)) is free over R(f(qi)) for i = 1, . . . , k, by Lemma 9.1.1.
Since R(f(qi))’s are local rings and I ∈ Pic(R), we get that I(f(qi))’s are free of rank one
over R(f(qi))’s, hence I(f(qi))

∼= R(f(qi)) for all i = 1, . . . , k, and we get the claim.

Remark 9.1.4 Let M be any R-module. With S as in (9.1.1) it is M ⊗R S ∼= M(f(q1))×
· · · × M(f(qk)), where each M(f(qi)) is free over R(f(qi)) for i = 1, . . . , k, as in the above
proof. Take m,n ∈ M . If m ⊗R 1S = n ⊗R 1S in M ⊗R S, then in each free component
M(f(qi)) we have m⊗R 1i = n⊗R 1i, yielding m = n in M .

If we prove that m ⊗R 1 = n ⊗R 1 in M ⊗R Rp for any prime ideal p of R, then we
would clearly have m⊗R 1S = n⊗R 1S in M⊗RS with S as above, and hence it will follow
m = n in M . We will use this local-global principle in some of the forthcoming proofs.
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We now develop some tool we will use in the treatment of invertible modules over a
commutative ring R.

Recall from Section 7.1 that Pic(R) denotes the category of invertible R-modules
and R-module isomorphisms, and Pic(R) the corresponding Picard group of R. In the
sequel we will consider the right version of the evaluation map evI : I ∗ ⊗R I −→ R,
evI (x ∗ ⊗ x ) = 〈x ∗, x 〉. We have:

Lemma 9.1.5 Let I, J,K ∈ Pic(R), and f, g : I −→ J R-linear maps. Then f ⊗R K =
g ⊗R K : I ⊗R K −→ J ⊗R K if and only if f = g.

Lemma 9.1.6 Take x1, x2 ∈ I, with I ∈ Pic(R). Then x1 ⊗ x2 = x2 ⊗ x1 in I ⊗R I.

Proof. In view of Remark 9.1.4 it suffices to show that the formula holds after we localize
at an arbitrary prime ideal p of R. Since Rp is local and I ∈ Pic(R), we have that Ip is
free of rank one over Rp, so we can write Ip = Rpe for some e ∈ Ip. Localization of I ⊗R I
is (I ⊗R I)p ∼= Ip ⊗Rp Ip = Rpe⊗Rp Rpe and then the formula is obvious.

Let I, J ∈ Pic(R) and consider the invertible R-modules I⊗R I⊗R J and I⊗R J ⊗R I.
Permutation of the tensor factors yields two switch map isomorphisms

f1, f2 : I ⊗R I ⊗R J −→ I ⊗R J ⊗R I

given by

f1(x1 ⊗ x2 ⊗ y) = x1 ⊗ y ⊗ x2 and f2(x1 ⊗ x2 ⊗ y) = x2 ⊗ y ⊗ x1

for x1, x2 ∈ I and y ∈ J . It follows from Lemma 9.1.6 that f1 = f2. We will identify
I ⊗R I ⊗R J and I ⊗R J ⊗R I using f1 or f2, and we will refer to this identification as the
switch map identification. More generally, given I1, · · · , In ∈ Pic(R), and σ a permutation
of {1, · · · , n}, we will identify I1 ⊗R · · · ⊗R In and Iσ(1) ⊗R · · · ⊗R Iσ(n).

Lemma 9.1.7 Let I1, · · · , In ∈ Pic(R), and g : I1 −→ In, fi : Ii −→ Ii+1 R-linear maps,
for i = 1, · · · , n− 1. Then

f1(x1)⊗ f2(x2)⊗ · · · ⊗ fn−1(xn−1) = x2 ⊗ x3 ⊗ · · · ⊗ xn−1 ⊗ g(x1), (9.1.2)

for all x1 ∈ I1, · · · , xn−1 ∈ In−1 if and only if

g = fn−1 ◦ fn−2 ◦ · · · ◦ f1. (9.1.3)

Proof. We will prove the lemma in the case where n = 2, the generalization to the
arbitrary case is easy. Take I, J,K ∈ Pic(R) and f : I −→ J , g : J −→ K, h : I −→ K.
Suppose f(x)⊗ g(y) = y ⊗ h(x), for all x ∈ I and y ∈ J . Let {(ei, e∗i ) | i = 1, · · · , n} be
a finite dual basis for J . Then

h(x) =
∑
i

〈ei, e∗i 〉h(x) =
∑
i

〈f(x), e∗i 〉g(ei)

= g(
∑
i

〈f(x), e∗i 〉ei) = (g ◦ f)(x).
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Conversely, if (9.1.3) holds, then it suffices that (9.1.2) holds after we localize at an
arbitrary prime ideal p of R (Remark 9.1.4). As in the above proof we have that Ip,
Jp and Kp are free of rank one over Rp. It then suffices to show that the implication
(9.1.3) ⇒ (9.1.2) holds in the case where I = Ra, J = Rb and K = Rc are free. There
exist unique r, s ∈ R such that f(a) = rb and g(b) = sc, and we find that f(a) ⊗ g(b) =
rb⊗ sc = b⊗ rsc = b⊗ g(f(a)), as needed.

Remark 9.1.8 Equation (9.1.2) can be restated as follows: the maps f1⊗f2⊗· · ·⊗fn−1

and I2 ⊗ · · · ⊗ In−1 ⊗ g are equal, up to a permutation of the tensor factors. Up to the
switch map identification, we can rewrite this as

f1 ⊗ f2 ⊗ · · · ⊗ fn−1 = I2 ⊗ · · · ⊗ In−1 ⊗ g.

Lemma 9.1.9 Let I, J,K, L,M,N, P ∈ Pic(R), and consider isomorphisms f : J −→
K ⊗R L, g : I ⊗R K −→M ⊗R N , k : N ⊗R L −→ P , h : I ⊗R J −→M ⊗R P . Then

h = (M ⊗ k) ◦ (g ⊗ L) ◦ (I ⊗ f) (9.1.4)

if and only if

f ⊗ g ⊗ k = K ⊗ L⊗N ⊗ h, (9.1.5)

up to the switch map identification.

Proof. By Lemma 9.1.7, equation (9.1.4) is equivalent to

(I ⊗ f)(X1)⊗ (g ⊗ L)(X2)⊗ (M ⊗ k)(X3) = X2 ⊗X3 ⊗ h(X1)

for X1 ∈ I ⊗ J, X2 ∈ I ⊗ K ⊗ L and X3 ∈ M ⊗ N ⊗ L. Denote X1 =
∑

i x
1
i ⊗ yi,

X2 =
∑

j x
2
j ⊗ zj⊗u1

j , X3 =
∑

l vl⊗wl⊗u2
l . The above equation can then be rewritten as(∑

i

x1
i ⊗ f(yi)

)
⊗
(∑

j

g(x2
j ⊗ zj)⊗ u1

j

)
⊗
(∑

l

vl ⊗ k(wl ⊗ u2
l )
)

=
(∑

j

x2
j ⊗ zj ⊗ u1

j

)
⊗
(∑

l

vl ⊗ wl ⊗ u2
l

)
⊗
(∑

i

h(x1
i ⊗ yi)

)
.

Let τ17 and τ36 be the automorphisms of I⊗K⊗L⊗M⊗N⊗L⊗I⊗J switching the first
and the seventh tensor factor and the third and the six tensor factor, respectively. Apply
them both to the right hand-side in the above equation before the map h is applied. Then
apply h. By Lemma 9.1.6 the above expression is then equivalent to(∑

i

x1
i ⊗ f(yi)

)
⊗
(∑

j

g(x2
j ⊗ zj)⊗ u1

j

)
⊗
(∑

l

vl ⊗ k(wl ⊗ u2
l )
)

=
(∑
i,j,l

x1
i ⊗ zj ⊗ u2

l ⊗ vl ⊗ wl ⊗ u1
j ⊗ h(x2

j ⊗ yi).
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Now by Lemma 9.1.5 (“dropping” the first and sixth tensor factor) this is equivalent to

f(y)⊗
(∑

j

g(xj ⊗ zj)
)
⊗
(∑

l

vl ⊗ k(wl ⊗ ul)
)

=
∑
j,l

zj ⊗ ul ⊗ vl ⊗ wl ⊗ h(xj ⊗ y)

in K⊗L⊗M⊗N⊗M⊗P , where y ∈ J,
∑

j xj⊗zj ∈ I⊗K and
∑

l vl⊗wl⊗ul ∈M⊗N⊗L.
Let now τ35 denote the automorphism of K ⊗ L ⊗M ⊗N ⊗M ⊗ P switching the third
and the fifth tensor factor. By Lemma 9.1.6 the above expression is equivalent to

f(y)⊗
(∑

j

g(xj ⊗ zj)
)
⊗
(∑

l

vl ⊗ k(wl ⊗ ul)
)

= τ35 ◦
(∑
j,l

zj ⊗ ul ⊗ vl ⊗ wl ⊗ h(xj ⊗ y)
)

By Lemma 9.1.5 (“dropping” the fifth tensor factor), this is equivalent to (9.1.5) up to
the switch map identification.

Consider a morphism f : I −→ J in Pic(R). We can construct three other isomor-
phisms:

f ∗ = (I∗ ⊗R evJ∗) ◦ (I ∗ ⊗R f ⊗R J ∗) ◦ (coevI ⊗R J ∗) : J ∗ −→ I ∗;

g = evJ∗ ◦ (f ⊗R J ∗) : I ⊗R J ∗ −→ R;

h = (I∗ ⊗R f) ◦ coevI : R −→ I∗ ⊗ J.

Given one of these four maps, we can reconstruct the three other maps. We will use the
same notation f for all four maps. Basically, this comes down to identifying I∗⊗R I with
R using the evaluation and coevaluation maps. This second identification will be called
the duality identification.

We now set some basic notation we will use throughout. Let R and S be associative
rings with unit. MR (resp. RM, RMS) will denote the category of right R-modules
(resp. left R-modules, R-S-bimodules).

Lemma 9.1.10 Let i : R −→ S be an injective ring morphism. If M ∈ RM is finitely
generated and projective, then we have, for all m ∈M :

1S ⊗R m = 0 in S ⊗RM =⇒ m = 0.

Proof. Take m∗ ∈ R Hom(M,R). Applying S ⊗R m∗ to the identity 1S ⊗R m = 0, it
follows that 1S〈m∗,m〉 = i(〈m∗,m〉) = 0, hence 〈m∗,m〉 = 0 since i is injective. Take a
finite dual basis {(ei, e∗i ) | i = 1, · · · , n} of M ∈ RM. Then m =

∑
〈e∗i ,m〉ei = 0.

Let f : R −→ S and f ′ : R′ −→ S be morphisms of commutative rings, and M a right
S-module. fMf ′ will denote the (R,R′)-bimodule equal to M as an abelian group, with
action

r ·m · r′ = mf(r)f ′(r′).

If g : S −→ T is another morphism of commutative rings, and M ∈ TM, then we obviously
have the following isomorphism of left R-modules:

fS ⊗S gM ∼= g◦fM. (9.1.6)



190 9. Cohomology over commutative bialgebroids

9.2 Commutative bialgebroids and Hopf algebroids

Let S and A be commutative rings, and consider two ring homomorphisms σ, τ : S −→ A.
Then A is an S-bimodule, with left and right action given by the formula

s⇀a↼t = σ(s)τ(t)a, (9.2.7)

for all s, t ∈ S and a ∈ A. The maps σ and τ are called the source and target maps.
Assume that ∆ : A −→ A ⊗S A and ε : A −→ S are ring maps and S-bimodule maps
such that (A,∆, ε) is an S-coring. Then we call A = (A, S, σ, τ,∆, ε) a commutative
bialgebroid.

Now assume that S : A −→ A is an S-bimodule anti-homomorphism, that is,

S(s⇀a↼t) = t⇀S(a)↼s,

or
S(σ(s)τ(t)a) = σ(t)τ(s)S(a) (9.2.8)

for all s, t ∈ S and a ∈ A. It follows from (9.2.8) that we have well-defined maps
f, g : A ⊗S A −→ A, given by f(a ⊗S b) = S(a)b and to g(a ⊗S b) = aS(b) for a, b ∈ A.
Indeed, for all s ∈ S we have

f((a↼s)⊗S b) = f(aτ(s)⊗S b) = S(aτ(s))b = S(a)σ(s)b

= S(a)(s⇀b) = f(a⊗S (s⇀b))

and
g((a↼s)⊗S b) = aτ(s)S(b) = aS(σ(s)b) = aS(s⇀b) = g(a⊗S (s⇀b)).

We also assume that

S(a(1))a(2) = (τ ◦ ε)(a) and a(1)S(a(2)) = (σ ◦ ε)(a) (9.2.9)

for all a ∈ A. Then we call A = (A, S, σ, τ,∆, ε,S) a commutative Hopf algebroid. The
map S is called the antipode.

It is easy to see that a commutative bialgebroid is a left bialgebroid in the sense of
Lu [89], or, equivalently, a ×S-bialgebra in the sense of Takeuchi [130]. We refer to [26]
for a discussion of the equivalence of the various notions of bialgebroid that appear in the
literature.

A commutative Hopf algebroid is a special case of a Hopf algebroid in the sense of
Böhm [19] in the following way: let A = (A, S, σ, τ,∆, ε,S) be a commutative Hopf
algebroid. Then AL = (A, S, σ, τ,∆, ε) is a left bialgebroid, and AR = (A, S, τ, σ,∆, ε) is
a right bialgebroid. Then A = (AL,AR,S) is a Hopf algebroid in the sense of [19]. A nice
survey of the theory of Hopf algebroids is given in [20]. The following results are then
special cases of results in [19]; we give a short proof in our particular situation.

Proposition 9.2.1 Let A = (A, S, σ, τ,∆, ε,S) be a commutative Hopf algebroid. Then
the antipode S is a ring morphism.
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Proof. Since ∆(1) = 1⊗S 1, we have 1 = (σ ◦ ε)(1) = 1S(1) = S(1).

Note that a ∈ A can be written in the forms

a = a(1)↼ε(a(2)) = a(1)(τ ◦ ε)(a(2)) and a = ε(a(1))⇀a(2) = (σ ◦ ε)(a(1))a(2).(9.2.10)

We will use this repeatedly. We now compute

S(ab)
(9.2.10)

= S((σ ◦ ε)(a(1))a(2)(σ ◦ ε)(b(1))b(2))

= (τ ◦ ε)(a(1))(τ ◦ ε)(b(1))S(a(2)b(2))
(9.2.9)

= S(a(1))a(2)S(b(1))b(2)S(a(3)b(3))
(9.2.9)

= S(a(1))S(b(1))(σ ◦ ε)(a(2)b(2))

= S(a(1))S(b(1))(σ ◦ ε)(a(2))(σ ◦ ε)(b(2))

= S(a(1)(τ ◦ ε)(a(2)))S(b(1)(τ ◦ ε)(b(2)))
(9.2.10)

= S(a)S(b).

In the fourth equality we applied that ∆ is a ring morphism, while in the fifth one, that
so are σ and ε.

It follows from (9.2.8) that we have a well-defined map h : A ⊗S A −→ A ⊗S A,
h(a⊗S b) = S(b)⊗S S(a), for a, b ∈ A,

h((a↼s)⊗S b) = h(aτ(s)⊗S b) = S(b)⊗S S(aτ(s)) = S(b)⊗S σ(s)S(a)

= S(b)⊗S (s⇀S(a)) = (S(b)↼s)⊗S S(a) = S(b)τ(s)⊗S S(a)

= S(bσ(s))⊗S S(a) = h(a⊗S (s⇀b))

for s ∈ S.

Proposition 9.2.2 Let A = (A, S, σ, τ,∆, ε,S) be a commutative Hopf algebroid. For all
a ∈ A, we have

∆(S(a)) = S(a(2))⊗S S(a(1)), (9.2.11)

and

ε(S(a)) = ε(a). (9.2.12)
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Proof. Bearing in mind that ∆ is an S-bilinear ring morphism we find

∆(S(a)) = ∆(S((σ ◦ ε)(a(1))a(2)))
(9.2.8)

= ∆((τ ◦ ε)(a(1))S(a(2)))

= ∆(S(a(2))↼ε(a(1))) = ∆(S(a(2)))(1⊗S (τ ◦ ε)(a(1)))

= (1⊗S (τ ◦ ε)(a(1)))∆(S(a(2)))
(9.2.9)

= (1⊗S S(a(1))a(2))∆(S(a(3)))

= (1⊗S S(a(1))(σ ◦ ε)(a(2))a(3))∆(S(a(4)))

= (1⊗S ε(a(2))⇀S(a(1))a(3))∆(S(a(4)))

= (1↼ε(a(2))⊗S S(a(1))a(3))∆(S(a(4)))

= ((τ ◦ ε)(a(2))⊗S S(a(1))a(3))∆(S(a(4)))
(9.2.9)

= (S(a(2))a(3) ⊗S S(a(1))a(4))∆(S(a(5)))

= (S(a(2))⊗S S(a(1)))∆(a(3))∆(S(a(4)))

= (S(a(2))⊗S S(a(1)))∆((σ ◦ ε)(a(3)))

= (S(a(2))⊗S S(a(1)))∆(ε(a(3))⇀1)

= (σ ◦ ε)(a(3))S(a(2))⊗S S(a(1))
(9.2.8)

= S(a(2)(τ ◦ ε)(a(3)))S(a(1))
(9.2.10)

= S(a(2))⊗S S(a(1)).

Note that, since εA is S-bilinear, we have εA ◦ τ = εA ◦ σ = idS. Then applying that ε is
a ring morphism we obtain

ε(a) = (ε ◦ σ ◦ ε)(a)
(9.2.9)

= ε(a(1)S(a(2)))

= ε(S(a(2)))ε(a(1))

= ε(S(a(2)))(ε ◦ τ ◦ ε)(a(1))

= ε(S(a(2))(τ ◦ ε)(a(1)))
(9.2.8)

= ε(S((σ ◦ ε)(a(1))a(2)))
(9.2.10)

= ε(S(a)).

Proposition 9.2.3 Let A be a commutative Hopf algebroid. Then S2 = A.

Proof. From Proposition 9.2.1 and (9.2.9) we have

S2(a(1))S(a(2)) = S(S(a(1))a(2)) = S((τ ◦ ε)(a)) = (σ ◦ ε)(a) = a(1)S(a(2)),

hence
a(1)S(a(2))a(3) = a(1)(τ ◦ ε)(a(2)) = a

equals

S2(a(1))S(a(2))a(3) = S2(a(1))(τ ◦ ε)(a(2)) = S(S(a(1))(σ ◦ ε)(a(2)))

= S2(a(1)(τ ◦ ε)(a(2))) = S2(a).
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Proposition 9.2.4 Let A be a commutative Hopf bialgebroid, and let M be an S-module.
Since S is commutative, we can view M as a left or right S-module. Then A ⊗S M ∼=
M ⊗S A as abelian groups. Consequently, A is (faithfully) flat as a left S-module if and
only if A is (faithfully) flat as a right S-module.

Proof. The map f : A⊗SM −→M⊗SA given by f(a⊗Sm) = m⊗SS(a) for m ∈M,a ∈ A
is well defined, since f(aτ(s) ⊗S m) = m ⊗S S(aτ(s)) = m ⊗S σ(s)S(a) = ms ⊗S S(a) =
f(a⊗S sm) for s ∈ S. It is an isomorphism because S is bijective.

Example 9.2.5 A commutative R-bialgebra (resp. Hopf algebra) is a commutative bial-
gebroid (resp. Hopf algebroid) for which the source map σ : R −→ H, σ(r) = r1H and the
target map τ : R −→ H, τ(r) = 1Hr for r ∈ R, coincide.

Example 9.2.6 Let R −→ S be a morphism of commutative rings, A = S ⊗R S, σ(s) =
s ⊗ 1, τ(s) = 1 ⊗ s, ∆(s ⊗ t) = (s ⊗ 1) ⊗S (1 ⊗ t), ε(s ⊗ t) = st, S(s ⊗ t) = t ⊗ s.
Then (A, S, σ, τ,∆, ε,S) is a commutative Hopf algebroid. We show here that (9.2.8) and
(9.2.9) hold. For a = s⊗ t ∈ A, s′, t′ ∈ S we have

S(σ(s′)τ(t′)a) = S(s′s⊗ tt′) = t′t⊗ s′s = σ(t′)τ(s′)S(a);

S(a(1))a(2) = (1⊗ s)(1⊗ t) = 1⊗ st = τ(st) = (τ ◦ ε)(a).

The other equality is proved in a similar way.

Example 9.2.7 Let R be a commutative ring, and H a commutative Hopf algebra over
R, with comultiplication δ, counit ε and antipode s. Let S be a commutative right
H-comodule algebra, and A = S ⊗R H. We use the Sweedler notation for the right
H-coaction on S, namely

ρ(s) = s[0] ⊗ s[1].

Define σ, τ : S −→ A, ∆ : A −→ A⊗S A, ε : A −→ S and S : A −→ A as follows:

σ(s) = s⊗ 1 ; τ(s) = ρ(s) = s[0] ⊗ s[1];

∆(s⊗ h) = (s⊗ h(1))⊗S (1⊗ h(2));

ε(s⊗ h) = sε(h);

S(s⊗ h) = s[0] ⊗ s[1]s(h).

Then (A, S, σ, τ,∆, ε,S) is a commutative Hopf algebroid. (9.2.9) is shown as follows: for
a = s⊗ h ∈ A, we have

S(a(1))a(2) = (s[0] ⊗ s[1]s(h(1)))(1⊗ h(2)) = s[0] ⊗ s[1]s(h(1))h(2)

= s[0] ⊗ s[1]ε(h) = τ(s)τ(ε(h)) = τ(sε(h)) = (τ ◦ ε)(a);

a(1)S(a(2)) = (s⊗ h(1))(1⊗ s(h(2))) = s⊗ ε(h)1H = sε(h)⊗ 1H = (σ ◦ ε)(a).
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9.3 Harrison cohomology over commutative bialge-

broids

In this section we define a cohomology over a commutative bialgebroid A, which becomes
Harrison cohomology for A = S ⊗R H, as in Example 9.2.7.

Let A = (A, S, σ, τ,∆, ε) be a commutative bialgebroid. We adopt the notation

A⊗S A⊗S · · · ⊗S A = A(n).

For n = 0, let
A(0) = S.

For n ∈ N and i ∈ {0, · · · , n+ 1}, we define ring morphisms

eni : A(n) −→ A(n+1)

as follows:
en0 = τ ⊗S A(n) ; enn+1 = A(n) ⊗S σ;

eni = A(i−1) ⊗S ∆⊗S A(n−i),

for i = 1, · · · , n. In other words:

en0 (a1 ⊗S · · · ⊗S an) = 1A ⊗S a1 ⊗S · · · ⊗S an;

eni (a1 ⊗S · · · ⊗S an) = a1 ⊗S · · · ⊗S ∆(ai)⊗S · · · ⊗S an;

enn+1(a1 ⊗S · · · ⊗S an) = a1 ⊗S · · · ⊗S an ⊗S 1A.

We now have:

Lemma 9.3.1 For i ≥ j ∈ {0, 1, · · · , n+ 1} it is

en+1
j ◦ eni = en+1

i+1 ◦ enj . (9.3.13)

Proof. For i = j ∈ {1, · · · , n} the cliam is a consequence of the coassociativity of ∆. For
all other choices of i and j the proof is straightforward.

Let CS be the category with objects (T, σ, τ), with T a commutative ring, and σ, τ : S
−→ T ring homomorphisms. A morphism (T, σ, τ) −→ (T ′, σ′, τ ′) is a ring homomorphism
f : T −→ T ′ such that σ′ = f ◦σ and τ ′ = f ◦ τ . Let P : CS −→ Ab be a covariant functor
ending in the category of abelian groups. For each n ∈ N, we consider

δn : P (A(n)) −→ P (A(n+1)), δn =
n+1∑
i=0

(−1)iP (eni ).

Lemma 9.3.2 We have a complex

0 P (S)- P (A)-δ0
P (A(2))-δ1

P (A(3))-δ2 · · · .-δ3 (9.3.14)
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Proof. We have to show that δn+1 ◦ δn = 0. We find

δn+1 ◦ δn =
n+2∑
j=0

n+1∑
i=0

(−1)i+j(P (en+1
j ) ◦ P (eni )) =

n+2∑
j=0

n+1∑
i=0

(−1)i+jP (en+1
j ◦ eni )

=
n+2∑
j=0

j−1∑
i=0

(−1)i+jP (en+1
j ◦ eni ) +

n+2∑
j=0

n+1∑
i=j

(−1)i+jP (en+1
j ◦ eni )

(9.3.13)
=

n+2∑
j=1

j−1∑
i=0

(−1)i+jP (en+1
j ◦ eni ) +

n+1∑
j=0

n+1∑
i=j

(−1)i+jP (en+1
i+1 ◦ enj )

=
n+2∑
j=1

j−1∑
i=0

(−1)i+jP (en+1
j ◦ eni ) +

n+1∑
i=0

n+1∑
j=i

(−1)i+jP (en+1
j+1 ◦ eni )

=
n+2∑
j=1

j−1∑
i=0

(−1)i+jP (en+1
j ◦ eni ) +

n+1∑
j=0

j∑
i=0

(−1)i+jP (en+1
j+1 ◦ eni )

=
n+2∑
j=1

j−1∑
i=0

(−1)i+jP (en+1
j ◦ eni ) +

n+2∑
k=1

k−1∑
i=0

(−1)i+k−1P (en+1
k ◦ eni ) = 0.

We now define the Harrison cohomology groups of A with values in P as follows:

Ker δn = Zn(A, P ) ; Im δn−1 = Bn(A, P );

Hn(A, P ) = Zn(A, P )/Bn(A, P ).

As we commented in Section 7.1, as we did in the previous two chapters, in the sequel
we will mainly consider the case when P = Gm and P = Pic.

Note that if A = S ⊗R H as in Example 9.2.7, the above defined cohomology reduces
to Harrison cohomology, see [28, Section 9.2]. Indeed, we have

A(n) = (S ⊗H)⊗S (S ⊗H)⊗S · · · ⊗S (S ⊗H)︸ ︷︷ ︸
n

∼= S ⊗H⊗n

and for a1 ⊗S · · · ⊗S an = s1 ⊗ h1 ⊗ · · · ⊗ hn ∈ S ⊗H⊗n and i ∈ {0, · · · , n+ 1} we find

en0 (s1 ⊗ h1 ⊗ · · · ⊗ hn) = (τ ⊗S (S ⊗H⊗n))(s1 ⊗ h1 ⊗ · · · ⊗ hn)
= τ(s1)⊗ h1 ⊗ · · · ⊗ hn = ρ(s1)⊗ h1 ⊗ · · · ⊗ hn;

eni (s1 ⊗ h1 ⊗ · · · ⊗ hn) = s1 ⊗ h1 ⊗ · · · ⊗∆H(hi)⊗ · · · ⊗ hn;

enn+1(s1 ⊗ h1 ⊗ · · · ⊗ hn) = ((S ⊗H⊗n)⊗S σ)(s1 ⊗ h1 ⊗ · · · ⊗ hn)
= (s1 ⊗ h1 ⊗ · · · ⊗ hn)⊗S (1S ⊗ 1H)
= s1 ⊗ h1 ⊗ · · · ⊗ hn ⊗ 1H .
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This is why we call the above constructed cohomology over a commutative bialgebroid A
Harrison cohomology.

In the sequel we study Harrison cohomology with values in Pic, i.e. in the category of
invertible modules over tensor powers of the commutative ring A.

Let A = (A, S, σ, τ,∆, ε) be a commutative bialgebroid. Recall from the beginning
of Section 9.1 that for a left R-module M and a morphism of commutative rings f : R
−→ S the notation fM alludes to the left S-module structure of M . For i = 0, · · · , n+ 1,
consider the induction functors

En
i : Pic(A(n)) −→ Pic(A(n+1))

with En
i (I) = Ii = I ⊗A(n) eni

A(n+1) and En
i (f) = fi = f ⊗A(n) eni

A(n+1), for every object I

and morphism f in Pic(A(n)). Then we consider the functor

δn : Pic(A(n)) −→ Pic(A(n+1))

given by
δn(I) = I0 ⊗A(n+1) I∗1 ⊗A(n+1) · · · ⊗A(n+1) Jn+1

and
δn(f) = f0 ⊗A(n+1) (f1)−1 ⊗A(n+1) · · · ⊗A(n+1) (fn+1)±1

with Jn+1 = In+1 or I∗n+1 depending on whether n is odd or even. We used the duality
identification (see Section 9.1): the transposed map of f is also denoted by f .

Lemma 9.3.3 For i ≥ j ∈ {0, 1, · · · , n + 1} and I ∈ Pic(A(n)), we have a natural
isomorphism

Iij ∼= Ij(i+1). (9.3.15)

Proof.

Iij = (I ⊗A(n) eni
A(n+1))⊗A(n+1) en+1

j
A(n+2)

(9.1.6)∼= I ⊗A(n) (en+1
j ◦eni )A

(n+2)(9.3.13)
= I ⊗A(n) (en+1

i+1 ◦enj )A
(n+2)

(9.1.6)∼= (I ⊗A(n) enj
A(n+1))⊗A(n+1) en+1

i+1
A(n+2) = Ij(i+1).

Computations similar to the computations in the proof of Lemma 9.3.1 then show that

(δn+1 ◦ δn)(I) =
n+2⊗
j=1

j−1⊗
i=0

I∗ij ⊗A(n+1) Iij.

Therefore, we have a natural isomorphism

λI =
n+2⊗
j=1

j−1⊗
i=0

evIij : (δn+1 ◦ δn)(I ) −→ A(n+2 ). (9.3.16)
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Using the duality identification, this isomorphism can be identified with the identity. Let
Zn(A,Pic) be the category with objects (I, α), with I ∈ Pic(A(n)) and α : δn(I) −→ A(n+1)

an isomorphism of A(n+1)-modules such that δn+1(α) = λI . A morphism (I, α) −→ (J, β)
is an isomorphism of A(n)-modules f : I −→ J such that β ◦ δn(f) = α. We have that
Zn(A,Pic) is a symmetric monoidal category, with tensor product

(I, α)⊗ (J, β) = (I ⊗A(n) J, α⊗A(n+1) β)

and unit object (A(n),A(n+1)). Let Zn(A,Pic) be the Grothendieck group of Zn(A,Pic),
i.e., the group of isomorphism classes in Zn(A,Pic). For n ≥ 1, we have a strongly
monoidal functor

dn−1 : Pic(A(n−1)) −→ Zn(A,Pic),

given by dn−1(J) = (δn−1(J), λJ) and dn−1(f) = δn−1(f) for every object J and morphism
f in Pic(A(n−1)). Consider the subgroup Bn(A,Pic) of Zn(A,Pic) consisting of elements

represented by dn−1(J), with J ∈ Pic(A(n−1)), and define

Hn(A,Pic) = Zn(A,Pic)/Bn(A,Pic).

For n = 0, we define H0(A,Pic) = Z0(A,Pic).

Note that for A = S ⊗ S as in Example 9.2.6 we have

A(n) = (S ⊗ S)⊗S (S ⊗ S)⊗S · · · ⊗S (S ⊗ S)︸ ︷︷ ︸
n

∼= S⊗(n+1).

Accordingly, in the case of Amitsur cohomology from Section 7.1 we had that J ∈
Zn−1(S/R,Pic) is an object in Pic(S⊗n), whereas in the case of Harrison cohomology

over a commutative bialgebroid A if I ∈ Zn(A,Pic), then I ∈ Pic(A(n)).

We collect a few elementary properties that will be used in the proof of Theorem 9.3.5.

Lemma 9.3.4 For x ∈ Gm(A(n)), let m(x) be the isomorphism of A(n) given by multi-
plication by x. Put δ̃n(x) :=

∑n+1
i=0 (−1)iGm(eni ). Then

δn(m(x)) = m(δ̃n(x)). (9.3.17)

Proof. The claim is to expect, but we prove it here because the technicality of the
computation makes the proof not easy to imagine. Denote x = a1 ⊗ a2 ⊗ . . . ⊗ an. We
then have

m(δ̃n(x)) = m(1
(n+1)
A ⊗An x)⊗A(n+1) . . .⊗A(n+1) m((a1 ⊗ . . .∆(ai) . . .⊗ an)(−1)i)

⊗A(n+1) . . .⊗A(n+1) m((x⊗An 1
(n+1)
A )(−1)n+1

)

= (m(x)⊗An en0
A(n+1))⊗A(n+1) . . .⊗A(n+1) (m(x)⊗An eni

A(n+1))

⊗A(n+1) . . .⊗A(n+1) (m(x)⊗An enn+1
A(n+1))

= m(x)0 ⊗A(n+1) . . .⊗A(n+1) m(x)
(−1)i

i ⊗A(n+1) . . .⊗A(n+1) m(x)
(−1)n+1

n+1

= δn(m(x)).
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Similarly as in the above proof one shows for I ∈ Pic(A(n))

δn+2(λI) = λδn(I). (9.3.18)

Observe that if I ∈ Pic(R), and α : I −→ R is an isomorphism, then

((α∗)−1 ⊗ α)(m∗ ⊗m) = m∗(α−1(−))α(m) = m∗(α−1(α(m))) = evI (m∗ ⊗m)

for m∗ ∈ I∗ and m ∈ I, so evI = (α∗)−1 ⊗α. From this and (9.3.16) it follows that for an
isomorphism α : I −→ A(n) we have

λI = (δn+1 ◦ δn)(α). (9.3.19)

In particular, taking for α the identity map of A(n), we find

λA(n) = A(n+2). (9.3.20)

Theorem 9.3.5 Let A be a commutative bialgebroid. Then we have a long exact sequence

1 −→ H1(A,Gm)
α1−→ H0(A,Pic)

β1−→ H0(A,Pic) (9.3.21)

γ1−→ H2(A,Gm)
α2−→ H1(A,Pic)

β2−→ H1(A,Pic)
γ2−→ · · ·

Proof. Definition of αn. Take x ∈ Zn(A,Gm). Then (A(n−1),m(x)) ∈ Zn−1(A,Pic), since

δn(m(x))
(9.3.17)

= m(δ̃n(x)) = m(1) = A(n+1)(9.3.20)
= λA(n−1) .

If x = δ̃n−1(y) for some y ∈ Gm(A(n−1)), then

(A(n−1),m(δ̃n−1(y))) ∼= (A(n−1),A(n)).

Indeed, m(y) : A(n−1) −→ A(n−1) is an isomorphism between (A(n−1),m(δ̃n−1(y))) and
(A(n−1),A(n)), since we have a commutative diagram

-
δn−1(m(y))

A(n) = δn−1(A(n−1))
���������������)

=

A(n) = δn−1(A(n−1))

A(n)
?

m(δ̃n−1(y))

by (9.3.17). This shows that αn is well-defined, if we put

αn([x]) = [(A(n−1),m(x))].
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Definition of βn. We define βn[(I, α)] = [I].
Definition of γn. Take [I] ∈ Zn−1(A,Pic). Then there exists an isomorphism α : δn−1(I)

−→ A(n) of A(n)-modules. The composition λI ◦ δn(α)−1 : A(n+1) −→ A(n+1) is an isomor-
phism of A(n+1)-modules, so it is equal to m(x) for some x ∈ Gm(A(n+1)). We have

m(δ̃n+1(x)) = δn+1(m(x)) = δn+1(λI) ◦ ((δn+1 ◦ δn)(α))−1

(9.3.19,9.3.18)
= λδn−1(I) ◦ λ−1

δn−1(I) = A(n+2),

so δ̃n+1(x) = 1, and x ∈ Zn+1(A,Gm).
Let α′ : δn−1(I) −→ A(n) be another isomorphism of A(n)-modules, and let λI ◦

δn(α′)−1 = m(x′) for some x′ ∈ Gm(A(n+1)). Then α′◦α−1 is an A(n)-module isomorphism
of A(n), so α′ ◦ α−1 = m(z−1), for some z ∈ Gm(A(n)). Then

m(x′) = λI ◦ δn(α′)−1 = λI ◦ δn(α)−1 ◦ δn(m(z)) = m(xδ̃n(z)),

hence x′ = xδ̃n(z), and [x] = [x′] in Hn+1(A,Gm). This shows that we have a well-defined
map Zn−1(A,Pic) −→ Hn+1(A,Gm) mapping [I] to [x].

This map induces a map γn : Hn−1(A,Pic) −→ Hn+1(A,Gm). Indeed, let [I] ∈
Bn−1(A,Pic) with I = δn−2(J) for some [J ] ∈ Pic(A(n−2)). Then we have an isomorphism
of A(n)-modules λJ : δn−1(I) −→ A(n), and for some y ∈ Gm(A(n+1))

m(y) = λI ◦ δn(λJ)−1 = λI ◦ λ−1
δn−2(J) = m(1),

so y = 1.
Exactness at Hn−1(A,Pic). It is clear that βn ◦ αn = 1.

Take [(I, α)] ∈ Hn−1(A,Pic) such that βn[(I, α)] = [I] = 1 in Hn−1(A,Pic). Then we can

assume that I = δn−2(J) for some J ∈ Pic(A(n−2)). The composition

λ−1
J ◦ α : (δn−1 ◦ δn−2)(J) −→ (δn−1 ◦ δn−2)(J)

is an isomorphism of A(n)-modules, so it is given by multiplication by some x ∈ Gm(A(n)).
Then x is a cocycle, for

m(δ̃n(x)) = δn(λJ)−1 ◦ δn(α) = λ−1
δn−2(J) ◦ λI = A(n−1).

Since [(δn−2(J∗), λJ∗)] = 1 in Hn−1(A,Pic), we have

[(I, α)] = [(δn−2(J∗), λJ∗)][(I, α)]

= [(I∗ ⊗A(n−1) I, (λ∗J
−1 ⊗A(n) α)] = [(A(n−1),m(x))] = αn([x]),

where we used the fact that λJ∗ = (λ∗J)−1, and evI : I ∗ ⊗A(n−1) I −→ A(n−1 ) is an
isomorphism

(I∗ ⊗A(n−1) I, (λ∗J)−1 ⊗A(n) α) −→ (A(n−1),m(x)).
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Indeed, similarly as in (9.3.17) we have δn−1(evI) = evδn−1 (I ) and the diagram

-
evδn−1 (I )

A(n)

���������������)

m(x)

δn−1(I∗)⊗A(n) δn−1(I)

A(n)
?

(λ∗J)−1 ⊗A(n) α

commutes, since

((λ∗J)−1 ⊗A(n) α)(u∗ ⊗A(n) u) = 〈(λ∗J)−1(u∗), α(u)〉
= 〈u∗, (λ−1

J ◦ α)(u)〉 = 〈u∗, xu〉 = m(x)evδn−1 (I )(u∗ ⊗A(n) u)

for all u ∈ δn−1(I) and u∗ ∈ δn−1(I∗).
Exactness at Hn−1(A,Pic). Take [(I, α)] ∈ Hn−1(A,Pic). Then βn[(I, α)] = [I]. In

order to compute γn([I]), we choose the isomorphism α : δn−1(I) −→ A(n). Then

δn(α) ◦ λ−1
I = λI ◦ λ−1

I = m(1),

so (γn ◦ βn)[(I, α)] = γn([I]) = 1.
Take [I] ∈ Hn−1(A,Pic), and assume that γn([I]) = 1. There exists an isomorphism
α : δn−1(I) −→ A(n). Then δn(α) ◦ λ−1

I = m(x), with x ∈ Bn+1(A,Gm), so x = δ̃n(y),
with y ∈ Gm(A(n)). Then take the isomorphism

α′ = m(y−1) ◦ α : δn−1(I) −→ A(n).

Now
δn(α′) ◦ λ−1

I = δn(m(y−1)) ◦m(x) = m(δ̃n(y−1)) ◦m(x) = A(n+1),

hence (I, α′) ∈ Zn−1(A,Pic), and [I] = βn[(I, α′)].
Exactness at Hn+1(A,Gm). Take [I] ∈ Hn−1(A,Pic), and choose an isomorphism α :

δn−1(I) −→ A(n). Then γn([I]) = [x], with m(x) = λI ◦ δn(α)−1, and

(αn+1 ◦ γn)([I]) = [(A(n), λI ◦ δn(α)−1)].

We claim that α defines an isomorphism

(δn−1(I), λI) −→ (A(n), λI ◦ δn(α)−1).

Indeed, we have the commutative diagram

-
δn(α)

A(n+1)

��������������)
λI ◦ δn(α)−1

(δn ◦ δn−1)(I)

A(n+1)
?

λI
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It follows that (A(n), λI ◦ δn(α)−1) ∈ Bn(A,Pic), and αn+1 ◦ γn = 1.
Now take x ∈ Zn+1(A,Gm), and assume that

αn+1([x]) = [(A(n),m(x))] = 1,

that is,
(A(n),m(x)) ∼= dn−1(J) = (δn−1(J), λJ),

for some J ∈ Pic(A(n−1)). Then we have an isomorphism of A(n)-modules α : δn−1(J)

−→ A(n) such that the diagram

-
δn(α)

A(n+1)

��������������)

m(x)

(δn ◦ δn−1)(J)

A(n+1)
?

λJ

commutes. Then m(x) = λJ ◦ δn(α)−1, proving that [x] = γn([J ]).
α1 is injective. Take x ∈ Z1(A,Gm), and assume that α1([x]) = [(S,m(x))] =

[(S,m(1))]. Then there exists an automorphism α : S −→ S such thatm(x) = m(1)◦δ0(α).
α is given by multiplication by some y ∈ Gm(S), and it follows that x = δ̃0(y) ∈
B1(A,Gm).

9.4 The Picard group of invertible A-comodules and

the first Harrison cohomology group

In this section we study invertible A-comodules and provide an interpretation of the
middle term in the first level of Sequence (9.3.21). Troughout this section A will be a
commutative Hopf algebroid.

Since S is a commutative ring, a right S-module is also a left S-module, where the
two actions coincide, and (MS,⊗S, S) is a symmetric monoidal category.

A comodule over a bialgebroid A is a comodule over the underlying coring structure
of A. Let MA and AM be the categories of right, respectively left A-comodules.

Lemma 9.4.1 The categories MA and AM are isomorphic.

Proof. Note that an object M ∈ MA, being a right comodule over the underlying
coring A, is in particular a right S-module. We define the functor F : MA −→ AM by
F(M,ρ) = (M,λ), with s⇀m := m↼s and λ(m) = S(m[1])⊗Sm[0] for m ∈M and s ∈ S.
Let us check if λ is left S-linear. For m ∈M and s ∈ S we have:

sλ(m) = (s⇀m[−1])⊗S m[0] = σ(s)m[−1] ⊗S m[0] = σ(s)S(m[1])⊗S m[0]

= S(m[1]τ(s))⊗S m[0] = S(m[1]↼s)⊗S m[0] = S((ms)[1])⊗S (ms)[0]

= λ(ms) = λ(sm)
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since ρ is right S-linear. We now check the left A-comodule property,

(A⊗S λ)λ(m) = (A⊗S λ)(S(m[1])⊗S m[0]) = S(m[2] ⊗S S(m[1])⊗S m[0]

(9.2.11)
= ∆(S(m[1]))⊗S m[0]

and

(ε⊗S M)λ(m) = ε(S(m[1]))m[0]
(9.2.12)

= ε(m[1])m[0] = m[0]ε(m[1]) = m

by the definition of the left S-module structure on M ∈MA.
By Proposition 9.2.3 the functor F is an isomorphism of categories.

Lemma 9.4.2 (MA,⊗S, S) is a symmetric monoidal category.

Proof. Take M,N ∈MA, and define a right A-coaction on M ⊗S N as follows:

ρ(m⊗S n) = m[0] ⊗S n[0] ⊗S m[1]n[1] (9.4.22)

for m ∈M,n ∈ N . Right S-actions on M ⊗S N and M ⊗S N ⊗S A are induced by those
of N and A, respectively. Then ρ is well-defined and right S-linear since for every s ∈ S

ρ(ms⊗S n) = m[0] ⊗S n[0] ⊗S m[1]n[1]τ(s) = ρ(m⊗S ns) = ρ(m⊗S n)s.

The coassociativity and counit property can be proved in a straightforward way. They
work the same way as for vector spaces. On S, we have the following right A-coaction:

ρ : S −→ S ⊗S A, ρ(s) = 1⊗S τ(s), (9.4.23)

for s ∈ S, since

(ρ⊗S A)ρ(s) = 1⊗S 1⊗S τ(s) = 1⊗S 1⊗S (1↼s) = 1⊗S ∆(1)τ(s) = (S ⊗S ∆)ρ(s)

and ρ is clearly right S-linear.
The well-defined isomorphism f : M ⊗S N −→ N ⊗S M,m ⊗S n 7→ n ⊗S m, in MS

making this category symmetric is also a morphism in MA, since A is commutative,

(ρN⊗SM)f(m⊗S n) = n[0] ⊗S m[0] ⊗S n[1]m[1] = n[0] ⊗S m[0] ⊗S m[1]n[1]

= (f ⊗S A)ρM⊗SN(m⊗S n).

Let PicA(S) be the category with right A-comodules that are invertible as S-modules
as objects, and A-comodule isomorphisms as morphisms.

Theorem 9.4.3 Let (I, ρ) ∈ PicA(S). Then there exists a right A-coaction on I∗ such
that I ⊗S I∗ ∼= S as right A-comodules. In other words: a right A-comodule that is
invertible as an S-module is also invertible as an A-comodule.
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Proof. Let {(ei, e∗i ) | i = 1, · · · , n} be a finite dual basis of I as an S-module. Then for
all m ∈ I we have m =

∑
i ei〈e∗i ,m〉, hence

m[0] ⊗S m[1] =
∑
i

ei[0] ⊗S ei[1]τ(〈e∗i ,m〉). (9.4.24)

We define a right A-coaction on I∗ as follows:

ρ(m∗) =
∑
i

e∗i ⊗S S(ei[1])τ(〈m∗, ei[0]〉). (9.4.25)

Clearly, it is right S-linear. It is coassociative, since

((ρ⊗S A) ◦ ρ)(m∗) =
∑
i

ρ(e∗i )⊗S S(ei[1])τ(〈m∗, ei[0]〉)

=
∑
i,j

e∗j ⊗S S(ej[1])τ(〈e∗i , ej[0]〉)⊗S S(ei[1])τ(〈m∗, ei[0]〉)

=
∑
i,j

e∗j ⊗S S(ej[1])⊗S σ(〈e∗i , ej[0]〉)S(ei[1])τ(〈m∗, ei[0]〉)

=
∑
i,j

e∗j ⊗S S(ej[1])⊗S S(ei[1]τ(〈e∗i , ej[0]〉))τ(〈m∗, ei[0]〉)

(9.4.24)
=

∑
j

e∗j ⊗S S(ej[2])⊗S S(ej[1])τ(〈m∗, ej[0]〉)

(9.2.11)
=

∑
j

e∗j ⊗S ∆(S(ej[1]))τ(〈m∗, ej[0]〉)

= ((I∗ ⊗S ∆) ◦ ρ)(m∗).

The compatibility with the counit is satisfied as well, since

((I∗ ⊗S ε) ◦ ρ)(m∗) =
∑
i

e∗i ε(S(ei[1]))〈m∗, ei[0]〉
(9.2.12)

=
∑
i

e∗i ε(ei[1])〈m∗, ei[0]〉

=
∑
i

e∗i 〈m∗, ei[0]ε(ei[1])〉 =
∑
i

e∗i 〈m∗, ei〉 = m∗.

The formula (9.4.22) delivers a right A-coaction ρ′ on I∗ ⊗S I. Using the isomorphism
evI , we can transport this coaction to a coaction ρ′′ on S, by requiring that the diagram

-ρ′
(I∗ ⊗S I)⊗S A

S ⊗S A
?
evI ⊗S A

I∗ ⊗S I

S
?

evI

-
ρ′′
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commutes. We then have, for all m ∈ I and m∗ ∈ I∗:

ρ′′(〈m∗,m〉) = (evI ⊗S A)(m∗[0 ] ⊗S m[0 ] ⊗S m∗[1 ]m[1 ])

=
∑
i

〈e∗i ,m[0]〉 ⊗S S(ei[1])τ(〈m∗, ei[0]〉)m[1]

= 1⊗S (
∑
i

σ(〈e∗i ,m[0]〉)S(ei[1])τ(〈m∗, ei[0]〉))m[1]

= 1⊗S (
∑
i

S(ei[1]τ(〈e∗i ,m[0]〉))τ(〈m∗, ei[0]〉))m[1]

(9.4.24)
= 1⊗S S(m[1])τ(〈m∗,m[0]〉)m[2]

= 1⊗S (τ ◦ ε)(m[1])τ(〈m∗,m[0]〉) = 1⊗S τ(〈m∗,m〉),

so this coaction on S coincides with the coaction (9.4.23). This means that I ⊗S I∗ ∼= S
as right A-comodules.

Lemma 9.4.4 Let I ∈ Pic(S). Then we have an isomorphism

HomS(I, I ⊗S A) ∼= HomA(A⊗S I, I ⊗S A).

Proof. Take ρ ∈ HomS(I, I ⊗S A), and write ρ(m) = m[0] ⊗S m[1]. Then we define
ρ̃ : A⊗S I −→ I ⊗S A by

ρ̃(a⊗S m) = m[0] ⊗S am[1] = ρ(m)a

for a ∈ A and m ∈ I. This morphism is clearly A-linear and it is well-defined, since for
s ∈ S we have

ρ̃(as⊗S m) = m[0] ⊗S am[1]τ(s) = (ms)[0] ⊗S a(ms)[1] = ρ̃(a⊗S ms)

where we consider, as announced at the beginning of this section, that the left and right
S-actions on I are the same.

For ϕ ∈ HomA(A⊗S I, I ⊗S A), we define

ϕ̂ : I −→ I ⊗S A, ϕ̂(m) = ϕ(1⊗S m).

Then ϕ̂ is right S-linear, since

ϕ̂(ms) = ϕ(1⊗S ms) = ϕ(τ(s)⊗S m) = ϕ(1⊗S m)τ(s) = ϕ̂(m)↼s.

It is obvious that ̂̃ρ = ρ for ρ ∈ HomS(I, I ⊗S A). Furthermore, we have

˜̂ϕ(a⊗S m) = ϕ̂(m)a = ϕ(1⊗S m)a = ϕ(a⊗S m)

for ϕ ∈ HomA(A⊗S I, I ⊗S A).



9.4. Invertible A-comodules and the first Harrison cohomology group 205

Lemma 9.4.5 Assume that the map τ is injective. Let I ∈ Pic(S), and ρ : I −→ I ⊗S A
a coassociative right S-linear map. Then the following assertions are equivalent.

1. ρ satisfies the counit property;

2. ρ̃ is an isomorphism;

3. ρ̃ is a monomorphism.

Proof. 1)⇒ 2) Assume that (I, ρ) is a right A-comodule. We define λ̃ : I⊗SA −→ A⊗S I
as follows:

λ̃(m⊗S a) = S(m[1])a⊗S m[0]

for m ∈ I, a ∈ A. Then λ̃ is well-defined, since for all s ∈ S

λ̃(ms⊗S a) = S(m[1]τ(s))a⊗S m[0] = S(m[1])σ(s)a⊗S m[0] = λ̃(m⊗S σ(s)a).

Furthermore, it is λ̃ = ρ̃−1, since

(λ̃ ◦ ρ̃)(a⊗S m) = λ̃(m[0] ⊗S am[1]) = S(m[1])am[2] ⊗S m[0]
(9.2.9)

= (τ ◦ ε)(m[1])a⊗S m[0] = a⊗S ε(m[1])m[0] = a⊗S m;

(ρ̃ ◦ λ̃)(m⊗S a) = ρ̃(S(m[1])a⊗S m[0]) = m[0] ⊗S S(m[2])am[1]
(9.2.9)

= m[0] ⊗S (σ ◦ ε)(m[1])a = m[0]ε(m[1])⊗S a = m⊗S a.

The implication 2)⇒ 3) is obvious.
3)⇒ 1) Assume that ρ̃ is injective. Then

ρ̃(1⊗S m[0]ε(m[1])) = m[0] ⊗S m[1](τ ◦ ε)(m[2]) = m[0] ⊗S m[1] = ρ̃(1⊗S m)

implies 1 ⊗S m[0]ε(m[1]) = 1 ⊗S m. It follows from Lemma 9.1.10 and the fact that τ is
injective that m[0]ε(m[1]) = m.

We will now examine how the coassociativity of morphisms ρ ∈ HomS(I, I ⊗S A)
reflects on the behaviour of the corresponding morphisms ρ̃ ∈ HomA(A ⊗S I, I ⊗S A).
Recall that A(0) = S. Hence for I ∈ Pic(S) we have δ0(I) = I0 ⊗A I∗1 , where I0 = A⊗S I
and I2 = I ⊗S A. For a morphism f : I −→ J in Pic(S) we have δ0(f) = f0 ⊗A (f ∗1 )−1,
with f0 = A ⊗S f and f2 = f ⊗S A. Note that this 0-level of Harrison complex (with
values in Pic(A(0))) is defined in the same way as that of Amitsur complex (with values
in Pic(S)), see Section 7.1.

Lemma 9.4.6 Let I ∈ Pic(S), and ρ ∈ HomS(I, I ⊗S A) such that ρ̃ is an isomorphism.
Then the following assertions are equivalent

1. ρ is coassociative;

2. ρ̃1 = ρ̃2 ◦ ρ̃0 : I00 −→ I12;
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3. (I, ρ̃) ∈ Z0(A,Pic).

Proof. Before proving the equivalence, we will first compute the maps ρ̃0, ρ̃1 and ρ̃2. Note
that I00 = (A⊗S I)0 = A⊗SA⊗S I, I02 = (A⊗S I)2 = (A⊗S I)⊗SA = A⊗S (I⊗SA) = I10

and I12 = (I ⊗S A)2 = (I ⊗S A)⊗S A. Due to (9.3.15) we also have isomorphisms

I01 = (A⊗S I)⊗A e11
(A⊗S A) −→ I00 = A⊗S A⊗S I

(a⊗S m)⊗A (b⊗S c) 7→ (∆(a))(b⊗S c)⊗S m;

I11 = (I ⊗S A)⊗A e11
(A⊗S A) −→ I12 = I ⊗S A⊗S A

(m⊗S a)⊗A (b⊗S c) 7→ m⊗S (∆(a))(b⊗S c).

Let us now compute the maps ρ̃0, ρ̃1 and ρ̃2. Since ρ̃ : I0 −→ I1, for a, b ∈ A and m ∈ I
we have

ρ̃0 : I00 −→ I10 = I02, ρ̃0(a⊗S b⊗S m) = a⊗S ρ̃(b⊗S m) = a⊗S m[0] ⊗S bm[1];

ρ̃2 : I02 −→ I12, ρ̃2(a⊗S m⊗S b) = ρ̃(a⊗S m)⊗S b = m[0] ⊗S am[1] ⊗S b;

(ρ̃2 ◦ ρ̃0)(a⊗S b⊗S m) = m[0][0] ⊗S am[0][1] ⊗S bm[1] = m[0][0] ⊗S (m[0][1] ⊗S m[1])(a⊗S b).

We view ρ̃1 as the composition of the isomorphisms

I00
∼= I01 −→ I11

∼= I12

we explained above. This composition maps a⊗S b⊗S m ∈ I00 subsequently as follows:

I00 3 a⊗S b⊗S m 7→ (1⊗S m)⊗A (a⊗S b) ∈ I01

7→ (m[0] ⊗S m[1])⊗A (a⊗S b) ∈ I11

7→ m[0] ⊗S ∆(m[1])(a⊗S b) ∈ I12.

Hence

ρ̃1(a⊗S b⊗S m) = m[0] ⊗S ∆(m[1])(a⊗S b).

The equivalence 1)⇐⇒ 2) now follows immediately. Now, 2) is equivalent to

ρ̃−1
1 ◦ ρ̃2 ◦ ρ̃0 = I00.

From Lemma 9.1.7, it follows that this is, up to switch map identification, equivalent to

ρ̃0 ⊗A(2) ρ̃2 ⊗A(2) ρ̃−1
1 = id,

the identity of I00⊗A(2) I02⊗A(2) I12. This is precisely the cocycle condition, up to duality
identification.
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Theorem 9.4.7 Let A be a commutative Hopf algebroid, and assume that τ : S −→ A is
injective. Then we have an isomorphism of monoidal categories

PicA(S) ∼= Z0(A,Pic).

Consequently we have an isomorphism of abelian groups

PicA(S) ∼= H0(A,Pic).

Proof. We define a functor F : PicA(S) −→ Z0(A,Pic) as follows. Take (I, ρ) ∈ PicA(S).
It follows from Lemma 9.4.5 that ρ̃ is an isomorphism, and from Lemma 9.4.6 that (I, ρ̃) ∈
Z0(A,Pic). We then define F(I, ρ) := (I, ρ̃). Let f : I −→ J be an isomorphism in

PicA(S). This means that it is an isomorphism of S-modules and that it is right A-
colinear. The latter condition is equivalent to the commutativity of the diagram

I I ⊗S A-ρI

J J ⊗S A.-ρJ
?

f
?

f ⊗S A

This in turn because of Lemma 9.4.4 is equivalent to the commutativity of the diagram

A⊗S I I ⊗S A-ρ̃I

A⊗S J J ⊗S A.-ρ̃J
?

f0

?

f1

This up to duality identification is equivalent to

ρ̃I ⊗A (I ⊗S A)∗ = (ρ̃J ⊗A (J ⊗S A)∗)(f0 ⊗A (f ∗1 )−1),

which up to duality identification, together with f being an isomorphism of S-modules,
means that f is a morphism in Z0(A,Pic).

We have that F is strongly monoidal, since

F(I, ρI)⊗S F(J, ρJ) = (I, ρ̃I)⊗S (J, ρ̃J) = (I ⊗S J, ρ̃I ⊗A ρ̃J) = F(I ⊗S J, ρI⊗SJ).

Indeed, we have that the diagram

?

∼=

(A⊗S I)⊗A (A⊗S J) (I ⊗S A)⊗A (J ⊗S A)-ρ̃I ⊗A ρ̃J

A⊗S (I ⊗S J) (I ⊗S J)⊗S A-
ρ̃I⊗SJ

?

∼=
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commutes, because for a, b ∈ A and m ∈ I, n ∈ J it is

(ρ̃I ⊗A ρ̃J)((a⊗S m)⊗A (b⊗S n)) = ρI(m)a⊗A ρJ(n)b
= (m[0] ⊗S m[1]a)⊗A (n[0] ⊗S n[1]b)
≡ (m[0] ⊗S n[0])⊗S m[1]an[1]b
= (m[0] ⊗S n[0])⊗S m[1]n[1]ab
= ρI⊗SJ(m⊗S n)ab = ρ̃I⊗SJ(ab⊗S (m⊗S n))
≡ ρ̃I⊗SJ((a⊗S m)⊗A (b⊗S n))

by the commutativity of A.
Conversely, let (I, ρ̃) ∈ Z0(A,Pic). Using the duality identification, we view ρ̃ as a map

I0 −→ I1. The corresponding map ρ : I −→ I ⊗S A (see Lemma 9.4.4) is coassociative by
Lemma 9.4.6 and satisfies the counit property by Lemma 9.4.5. We define G(I, ρ̃) := (I, ρ).
Similarly as above, one shows that G : Z0(A,Pic) −→ PicA(S) is a strongly monoidal
functor. Finally, it is clear that F and G are inverse to each other.

Remark 9.4.8 If τ is injective, then σ is also injective, since σ = S ◦ τ . The same
arguments as in the proof of Theorem 9.4.7 then show that APic(S) ∼= H0(A,Pic). The

fact that APic(S) ∼= PicA(S) also follows from Lemma 9.4.1.

Recall Sequence (9.3.21) from Theorem 9.3.5. In view of Theorem 9.4.7 we obtain
that there is a map α1 : H1(A,Gm) −→ PicA(S). Before giving an explicit description of
this map, let us compute H0(A,Gm) and H1(A,Gm). The subalgebra of A-coinvariants
of S is

R := ScoA = {s ∈ S | ρ(s) = s⊗S 1A}
= {s ∈ S | τ(s) = σ(s)}

where we applied (9.4.23). Then

H0(A,Gm) = {s ∈ Gm(S) | 1A ⊗S s = s⊗S 1A}
= {s ∈ Gm(S) | τ(s) = σ(s)}
= Gm(R).

Lemma 9.4.9 Let g ∈ A be such that ∆(g) = g ⊗S g. Then g is invertible if and only if
ε(g) = 1.

Proof. If ε(g) = 1, then g is invertible, since

gS(g) = (σ ◦ ε)(g) = σ(1) = 1 and S(g)g = (τ ◦ ε)(g) = τ(1) = 1.

If g is invertible, then

1A = g−1g = g−1(ε(g)⇀g) = g−1(σ ◦ ε)(g)g = (σ ◦ ε)(g),
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hence
ε(g) = (ε ◦ σ ◦ ε)(g) = ε(1A) = 1.

Recall that g ∈ A is called grouplike if it satisfies the conditions ∆(g) = g ⊗S g and
ε(g) = 1. Let G(A) denote the set of grouplike elements of A. From Lemma 9.4.9 we
have that G(A) is a multiplicative group.

Corollary 9.4.10
Z1(A,Gm) = G(A).

Proof. Since e1
0(g) = 1⊗S g, e1

1(g) = ∆(g) and e1
2(g) = g ⊗S 1, it follows that g ∈ A is an

element of Z1(A,Gm) if it is invertible and satisfies ∆(g) = g⊗S g, which is equivalent to
g being grouplike, by Lemma 9.4.9.

We now proceed to define the map α1 : H1(A,Gm) −→ PicA(S). Consider the map
γ : G(A) −→ PicA(S), where γ(g) = [(S, ρg)] for g ∈ G(A), with

ρg : S −→ S ⊗S A, ρg(s) = 1⊗S gτ(s).

S is a right A-comodule by ρg precisely because g is group-like, so γ is well-defined. If
g = δ0(t) = (1A ⊗S t)(t⊗S 1A)−1 = σ(t−1)τ(t), for some t ∈ Gm(S), then m(t−1) : (S, ρ1)
−→ (S, ρg), the multiplication by t−1, is an isomorphism in PicA(S). Indeed, m(t−1) is
clearly S-linear, and it is right A-linear, since

ρgm(t−1)(s) = ρg(t
−1s) = 1⊗S gτ(t−1s) = 1⊗S σ(t−1)τ(t)τ(t−1s)

= 1⊗S σ(t−1)τ(s) = t−1 ⊗S τ(s) = (m(t−1)⊗S A)(1⊗S τ(s))

= (m(t−1)⊗S A)ρ1(s)

for every s ∈ S. We have proved that if g ∈ B1(A,Gm), then γ(g) = 1 in PicA(S)
(note that B1(A,Gm) ⊂ G(A) by Corollary 9.4.10). Knowing from Corollary 9.4.10 that
H1(A,Gm) = G(A)/δ0(Gm(S)), we get that γ induces the map

α1 : H1(A,Gm) −→ PicA(S)

given by
α1([g]) = [(S, ρg)].

Let us now observe the sequence

1 Gm(R)- Gm(S)- G(A)-δ0
PicA(S)-γ Pic(S).- (9.4.26)

As we saw, by Corollary 9.4.10 we have the map δ0 : Gm(S) −→ G(A). It is a group map,
since δ0(t) = σ(t−1)τ(t) for t ∈ Gm(S). For the map γ : G(A) −→ PicA(S) we find that

γ(g)γ(h) = [(S, ρg)][(S, ρh)] = [(S, ρg ⊗S ρh)]
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where ρg ⊗S ρh : S ⊗S S −→ (S ⊗S A)⊗A (S ⊗S A) ∼= S ⊗S A is given by

(ρg ⊗S ρh)(s⊗S t) = ρg(s)⊗A ρh(t) = (1⊗S gτ(s))⊗A (1⊗S hτ(t))

≡ 1⊗S ghτ(st) = ρgh(st)

for every s, t ∈ S. This means that γ is a group map. It is obvious that Ker(δ0) = Gm(R),
hence the above sequence is exact at Gm(S). Assume g ∈ Ker(γ). As all isomorphisms of
S-modules are given by a multiplication by an invertible element of S, we have

ρgm(x) = (m(x)⊗S A)ρ1

for some x ∈ Gm(S). This means that for all s ∈ S

1⊗S gτ(xs) = x⊗S τ(s) = 1⊗S σ(x)τ(s) = 1⊗S σ(x)τ(x−1)τ(x)τ(s)

= 1⊗S σ(x)τ(x−1)τ(xs).

Multiplying this by τ(xs)−1 we obtain

g = σ(x)τ(x−1) = δ0(x) ∈ Im(δ0).

With this we have proved the exactness of Sequence (9.4.26) at G(A). It is clear that
Im(γ) ⊂ Ker(PicA(S) −→ Pic(S)), the latter map given by [(I, ρ)] 7→ [I]. Finally, assume
[(I, ρI)] ∈ Ker(PicA(S) −→ Pic(S)). Then there is an isomorphism of S-bimodules ϕ : I
−→ S and we define ρ : S −→ S⊗S A as ρ := (ϕ⊗S A)ρIϕ

−1. From the fact that ρI makes
I an A-comodule and that ϕ is an isomorphism follows that ρ makes S an A-comodule.
Right S-linearity of ρ : S −→ S ⊗S A ∼= A implies that it is completely determined by
ρ(1) = a ∈ A (ρ(s) = as). The coassociativity and the counit property of ρ yield that a
is a group-like. Thus we have proved that (9.4.26) is an exact sequence of groups.

In the situation where A = A ⊗H, as in Example 9.2.7, the exact Sequence (9.4.26)
was already discussed in [34, Prop. 2.1].

We conclude this section with the following remark. Lemmas 9.4.4 and 9.4.6 can be
seen as analogues of Lemmas 7.4.1 and 8.1.1 for corings. Nevertheless, while Lemma 8.1.1
led to the cohomological description of the Brauer group, Brc(S/R) ∼= H1(S/R,Pic) in
the second level of Villamayor-Zelinsky sequence (8.1.6), here Lemma 9.4.6 leads to the
cohomological description PicA(S) ∼= H0(A,Pic) in the first level of Sequence (9.3.21)
from Theorem 9.3.5. In the next chapter we will generalize Lemmas 7.4.1 and 8.1.1 to
commutative bialgebroids, and these will lead to an interpretation of the group H1(A,Pic)
in the second level of the latter sequence.



Chapter 10

The group of Galois coobjects

The major goal of this chapter is the interpretation of Harrison’s first cohomology group
over a commutative Hopf algebroid A with values in the category of invertible modules.
For this purpose we defineA-module corings and relative Hopf modules in this setting. We
introduce A-Galois coobjects and prove in the second section that they induce a group.
We will then show that this group is isomorphic to Harrison’s first cohomology group.
Finally, we study Harrison cohomology in some special cases of commutative bialgebroids.

10.1 A-module corings and Galois coobjects

In this section we introduce A-module corings over a commutative bialgebroid A. For
a Hopf algebroid A and an A-module coring C we define relative (A,C)-Hopf modules
and prove for them a Schneider type theorem in its dual version (Schneider’s Structure
Theorem for Hopf modules, [123, Theorem 1]). This gives rise to the notion of an A-Galois
coobject which is characterized by the latter theorem. At the end of this section we will
prove that every A-Galois coobject is invertible as an A-module.

Let A = (A, S, σ, τ,∆, ε) be a commutative bialgebroid. A module over a bialgebroid
A is a module over the underlying ring structure of A. Every right A-module M will be
regarded as an S-bimodule by restriction of scalars:

s⇀m↼t = mσ(s)τ(t).

Note that this S-bimodule structure differs from the one we used in Section 9.4 (here the
left and right S-actions differ). Let MA denote the category of right A-modules. We
have that (MA,⊗S, S) is a monoidal category. For M,N ∈ MA, the object M ⊗S N is
an A-module via

(m⊗S n)a = ma(1) ⊗S na(2)

for m ∈M,n ∈ N and a ∈ A, because for any s ∈ S we have

((m↼s)⊗S n)a = (mτ(s)⊗S n)a = mτ(s)a(1) ⊗S na(2) = ma(1) ⊗S nσ(s)a(2)

= (m⊗S (s⇀n))a.

211
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We consider S as an A-module via

s · a = sε(a).

Let F : MA −→ SMS denote the restriction of scalars functor. For M ∈ MA and
m ∈ M , let m denote the element of F(M) ∈ SMS. Noting that for s, t ∈ S it is
∆(σ(s)τ(t)) = ∆(s⇀1A↼t) = σ(s)⊗S τ(t), we find

sm⊗S nt = (m⊗S n)σ(s)τ(t) = mσ(s)⊗S nτ(t) = sm⊗S nt = s(m⊗S n)t.

This means that F is a strongly monoidal functor.

Let C ∈ MA, and consider an A-module map ∆C : C −→ C ⊗S C satisfying the
coassociativity condition

(C⊗S ∆C) ◦∆C = (∆C ⊗S C) ◦∆C.

We call ∆C a coassociative comultiplication on C. As before, we will use the Sweedler
notation

∆C(c) = c(1) ⊗S c(2).

Let ∆C be a coassociative comultiplication on C, and let εC : C −→ S be an A-linear map
satisfying

c(2)σ(εC(c(1))) = c = c(1)τ(εC(c(2))),

for all c ∈ C. Being right A-linear via the restriction of scalars functor F , the maps ∆C

and εC become S-bilinear. In particular, C is an S-coring and we will say that (C,∆C, εC)
is a (counital) A-module S-coring.

If a counit εC exists, then it is unique: assume that ε′C is another counit map, then for
all c ∈ C:

εC(c) = εC(c(2)σ(εC(c(1)))) = εC(c(2)σ(ε′C(c(1)))) = ε′C(c(1))εC(c(2))

= ε′C(c(1)τ(εC(c(2))) = ε′C(c) (10.1.1)

where in the third equality we applied that εC is right A-linear, and in the fourth that so
is ε′C.

Remark 10.1.1 This has as a consequence that two A-module S-corings (C,∆C, εC) and
(D,∆D, εD) are isomorphic if there is an isomorphism of A-modules ϕ : C −→ D which is
compatible with comultiplications. For if we define ε′C := εD ◦ ϕ, we then have

(D⊗S εD)(ϕ⊗S ϕ) = (ϕ⊗S εD)(C⊗S ϕ) = ϕ(C⊗S εD)(C⊗S ϕ) = ϕ(C⊗S ε′C)

and hence

ϕ = (D⊗S εD)∆D ◦ ϕ = (D⊗S εC)(ϕ⊗S ϕ)∆C = ϕ(C⊗S ε′C)∆C.

Being ϕ an isomorphism, this yields idC = (C⊗Sε′C)∆C. The left hand-side counit property
for C is similarly verified. Now from uniqueness of counits we get εC = ε′C, and by definition
of the latter ϕ is compatible with the counits.
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Let C be an A-module coring, and M ∈ MA. Assume that ρ : Mτ −→ Mτ ⊗S C,
ρ(m) = m[0] ⊗S m[1] is a right C-coaction on M . If ρ is right A-linear, that is, ρ(ma) =
m[0]a(1) ⊗S m[1]a(2), for all m ∈ M and a ∈ A, then we say that (M,ρ) is a right relative
(A,C)-Hopf module. An A-linear C-colinear map f : M −→ N is called a morphism of
relative Hopf modules. The category of relative right (A,C)-Hopf modules is denoted by
MC
A.
In a similar way, a left relative Hopf module is a left A-module together with an

A-linear left C-coaction λ : σM −→ C⊗S σM . The A-linearity means that

λ(am) = a(1)m[−1] ⊗S a(2)m[0],

where we now viewed C also as a left A-module. The category of relative left (A,C)-Hopf
modules is denoted by C

AM.
We call (M,ρ, λ) a two-sided relative Hopf module if M is an A-bimodule and a C-

bicomodule, (M,ρ) ∈MC
A, (M,λ) ∈ C

AM, and

λ(ma) = m[−1] ⊗S m[0]a, ρ(am) = am[0] ⊗S m[1],

for all a ∈ A and m ∈M .
Note that in the definitions of relative Hopf modules A was only a commutative bial-

gebroid. Nevertheless, in most of the constructions with relative Hopf modules A will be
a Hopf algebroid.

Let A be a Hopf algebroid and C an A-module coring. We have a well-defined switch
map

T : Cτ ⊗S σC −→ Cσ ⊗S τC, T (c⊗S d) = d⊗S c

with c ∈ C, d ∈ D. Indeed, for s ∈ S we have

T ((c↼s)⊗S d) = T (cτ(s)⊗S d) = d⊗S cτ(s) = d⊗S (s⇀c)

= (d↼s)⊗S c = dσ(s)⊗S c = T (c⊗S dσ(s)) = T (c⊗S (s⇀d)).

Let Ccop := C as an abelian group, with a left A-action defined by

a · c = cS(a) (10.1.2)

for a ∈ A, c ∈ C and the corresponding c ∈ Ccop. Then σC
cop
τ
∼= τCσ as S-bimodules, for

s⇀c↼t = σ(s)τ(t)c = cS(σ(s)τ(t)) = cτ(s)σ(t) = t⇀c↼s

with s, t ∈ S, and we have a well-defined coassociative A-module map

∆cop : Ccop −→ Ccop ⊗S Ccop, ∆cop(c) = c(2) ⊗S c(1) = t∆(c)

for c ∈ C and the corresponding c ∈ Ccop. Then (Ccop,∆cop, ε) is an A-module coring,
called the co-opposite coring of C.
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Remark 10.1.2 Note that in order that T be well-defined we had to consider Cσ ⊗S τC
for the codomain (not Cτ ⊗S σC as we usually assume). For the same reason the usual
switch map T : Aτ ⊗S σA −→ Aτ ⊗S σA is not well-defined and we can not speak about a
“cocommutative bialgebroid”.

Lemma 10.1.3 With notation as above, the categories MC
A and Ccop

A M are isomorphic.

Proof. Take M ∈ MC
A, and let M cop := M as an abelian group, with left A-action

a ·m = mS(a) for a ∈ A,m ∈M and the corresponding m ∈M cop. Then the map

λ : M cop −→ Ccop ⊗S M cop, λ(m) = m[1] ⊗S m[0]

is a left coaction on M cop, because

(Ccop ⊗S λ)λ(m) = m[2] ⊗S m[1] ⊗S m[0] = ∆cop(m[1])⊗S m[0] = (∆cop ⊗S M cop)λ(m).

This coaction is left A-linear and hence S-bilinear, since

λ(am) = (mS(a))[1] ⊗S (mS(a))[0] = m[1]S(a)(2) ⊗S m[0]S(a)(1)

= m[1]S(a(1))⊗S m[0]S(a(2)) = a(1)m[1] ⊗S a(2)m[0] = aλ(m).

This proves that (M cop, λ) ∈ Ccop

A M. The functor in the other direction is defined sym-
metrically, providing an isomorphism of categories, because the antipode S is bijective.

On C⊗S σAσ, we define left and right A-actions and C-coactions as follows:

b(c⊗S a)b′ = cb(1) ⊗S b(2)aS(b′);

ρ(c⊗S a) = c(1) ⊗S a(2) ⊗S c(2)S(a(1));

λ(c⊗S a) = c(1) ⊗S c(2) ⊗S a,

for all a, b, b′ ∈ A and c ∈ C. On τAτ ⊗S C, we define left and right A-actions and
C-coactions as follows:

b(a⊗S c)b′ = S(b)ab′(1) ⊗S cb′(2);

λ(a⊗S c) = c(1)S(a(2))⊗S a(1) ⊗S c(2);

ρ(a⊗S c) = a⊗S c(1) ⊗S c(2).

Proposition 10.1.4 Let A be a Hopf algebroid and C an A-module coring. Then τAτ⊗SC
and C⊗S σAσ are isomorphic two-sided relative (A,C)-Hopf modules.

Proof. Let us first show that C ⊗S σAσ is a right relative Hopf module. It is clear that
C⊗S σAσ is a right A-module. The map ρ is right A-linear since

ρ(c⊗S aS(b)) = c(1) ⊗S a(2)S(b)(2) ⊗S c(2)S(a(1)S(b)(1))

= c(1) ⊗S a(2)S(b(1))⊗S c(2)S(a(1))b(2)

= (c(1) ⊗S a(2))b(1) ⊗S c(2)S(a(1))b(2)

= (c⊗S a)[0]b(1) ⊗S (c⊗S a)[1]b(2).
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ρ is coassociative since

((C⊗S σAσ)⊗S ∆C)ρ(c⊗S a) = c(1) ⊗S a(2) ⊗S c(2)S(a(1))(1) ⊗S c(3)S(a(1))(2)

= c(1) ⊗S a(3) ⊗S c(2)S(a(2))⊗S c(3)S(a(1)) = (ρ⊗S C)ρ(c⊗S a).

The counit property is verified as follows:

((C⊗S σAσ)⊗S εC)ρ(c⊗S a) = (c(1) ⊗S a(2))τ(εC(c(2)S(a(1))))
(9.2.12)

= (c(1) ⊗S a(2))τ(εC(c(2)))τ(εA(a(1)))

= c(1) ⊗S a(2)S(τ(εC(c(2))))S(τ(εA(a(1))))

= c(1) ⊗S a(2)σ(εC(c(2)))σ(εA(a(1)))

= c(1)τ(εC(c(2)))⊗S a(2)σ(εA(a(1))) = c⊗S a

where in the third equation we applied the right A-module structure of C ⊗S σAσ. It is
straightforward to show that C ⊗S σAσ is a left A-module and a left C-comodule. It is
then a left relative Hopf module, because λ is left A-linear,

λ(cb(1) ⊗S b(2)a) = c(1)b(1) ⊗S c(2)b(2) ⊗S b(3)a = (c⊗S a)[−1]b(1) ⊗S b(2)(c⊗S a)[0].

It is obvious that C⊗S σAσ is an A-bimodule. It is a C-bicomodule, as

(λ⊗S C)ρ(c⊗S a) = λ(c(1) ⊗S a(2))⊗S c(2)S(a(1)) = c(1) ⊗S c(2) ⊗S a(2) ⊗S c(3)S(a(1))

= c(1) ⊗S ρ(c(2) ⊗S a) = (C⊗S ρ)λ(c⊗S a).

To compute the compatibility between the right A-action and left C-coaction is straight-
forward. We compute here the compatibility between the left A-action and the right
C-coaction:

ρ(cb(1) ⊗S b(2)a) = (cb(1))(1) ⊗S (b(2)a)(2) ⊗S (cb(1))(2)S((b(2)a)(1))

= c(1)b(1) ⊗S b(4)a(2) ⊗S c(2)b(2)S(b(3)a(1))

= c(1)b(1) ⊗S b(3)a(2) ⊗S c(2)(σ ◦ ε)(b(2))S(a(1))

= c(1)b(1) ⊗S b(3)a(2)(σ ◦ ε)(b(2))⊗S c(2)S(a(1))

= c(1)b(1) ⊗S b(2)a(2) ⊗S c(2)S(a(1))

= b(c(1) ⊗S a(2))⊗S c(2)S(a(1))

= b(c⊗S a)[0] ⊗S (c⊗S a)[1].

Note that in the fourth equation we applied the right S-module structure in σAσ. Hence
C⊗S σAσ is a two-sided relative Hopf module. In a similar way, we can show that τAτ⊗SC
is a two-sided relative Hopf module.

Now consider the map

f : τAτ ⊗S C −→ C⊗S σAσ, f(a⊗ c) = cS(a(2))⊗S S(a(1)) (10.1.3)
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with a ∈ A, c ∈ C. It is well-defined, since for every s ∈ S

f(aτ(s)⊗S c) = cS(a(2)τ(s))⊗S S(a(1)) = cσ(s)S(a(2))⊗S S(a(1)) = f(a⊗S cσ(s)).

A direct computation shows that f preserves the left and right actions and coactions:

f(b(a⊗S c)) = f(S(b)a⊗S c)
= cb(1)S(a(2))⊗S b(2)S(a(1)) = bf(a⊗S c);

f((a⊗S c)b) = f(ab(1) ⊗S cb(2)) = cb(3)S(a(2))S(b(2))⊗S S(a(1))S(b(1))

= cS(a(2))(τ ◦ ε)(b(2))⊗S S(a(1))S(b(1))

= cS(a(2))⊗S S(a(1))S(b(1)(τ ◦ ε)(b(2))) = f(a⊗S c)b;
λ(f(a⊗S c)) = λ(cS(a(2))⊗S S(a(1)))

= c(1)S(a(3))⊗S c(2)S(a(2))⊗S S(a(1))

= (C⊗S f)(c(1)S(a(2))⊗S a(1) ⊗S c(2))

= ((C⊗S f) ◦ λ)(a⊗S c);
ρ(f(a⊗S c)) = ρ(cS(a(2))⊗S S(a(1)))

= c(1)S(a(2))(1) ⊗S S(a(1))(2) ⊗S c(2)S(a(2))(2)S(S(a(1))(1))

= c(1)S(a(4))⊗S S(a(1))⊗S c(2)S(a(3))a(2)

= c(1)S(a(3))⊗S S(a(1))⊗S c(2)(σ ◦ ε)(a(2))

= c(1)S(a(3))⊗S S(a(1))(σ ◦ ε)(a(2))⊗S c(2)

= c(1)S(a(3))⊗S S(a(1)(τ ◦ ε)(a(2)))⊗S c(2)

= c(1)S(a(2))⊗S S(a(1))⊗S c(2)

= (f ⊗S C)(a⊗S c(1) ⊗S c(2))

= ((f ⊗S C) ◦ ρ)(a⊗S c)

for b ∈ A. Note that in the fifth equation of the last computation we applied the right
S-module structure in σAσ. The inverse of f is defined by the formula

f−1(c⊗S a) = S(a(2))⊗S cS(a(1)).

Indeed,

(f−1 ◦ f)(a⊗S c) = f−1(cS(a(2))⊗S S(a(1)))

= S(S(a(1))(2))⊗S cS(a(2))S(S(a(1))(1))

= a(1) ⊗S ca(2)S(a(3)) = a(1) ⊗S c(σ ◦ ε)(a(2))

= a(1)(τ ◦ ε)(a(2))⊗S c = a⊗S c;
(f ◦ f−1)(c⊗S a) = f(S(a(2))⊗S cS(a(1)))

= cS(a(1))S(S(a(2))(2) ⊗S S(S(a(2))(1))

= cS(a(1))a(2) ⊗S a(3) = c(τ ◦ ε)(a(1))⊗S a(2)

= c⊗S (σ ◦ ε)(a(1))a(2) = c⊗S a.
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Proposition 10.1.5 Let A be a commutative bialgebroid and C an A-module coring. We
have a pair of adjoint functors (F = −⊗AS,G = −⊗S C) between the categoriesMC

A and
MS. For N ∈MS, the A-action and C-coaction on N ⊗S C are given by the formulas

(n⊗S c)a = n⊗S ca ; ρ(n⊗S c) = n⊗S c(1) ⊗S c(2)

for n ∈ N, c ∈ C and a ∈ A.

Proof. Using (9.1.6), we have, for M ∈MC
A:

GF(M) = M ⊗A S ⊗S C ∼= M ⊗A σ◦εAC.

The map
ξ : M −→M ⊗A S, ξ(m) = m⊗A 1S

with m ∈M is right S-linear, since for s ∈ S

ξ(mτ(s)) = mτ(s)⊗A 1S = m⊗A (εA ◦ τ)(s)1S = m⊗S s.

We can therefore consider the map

ηM := (ξ ⊗S C) ◦ ρ : M −→ GF(M) ∼= M ⊗A σ◦εAC,

given by
ηM(m) = m[0] ⊗A 1S ⊗S m[1]

∼= m[0] ⊗A m[1]

for every m ∈M . It is clear that ηM is right A-linear and right C-colinear.
For N ∈MS, the map

εN : FG(N) = N ⊗S C⊗A S −→ N, εN(n⊗S c⊗A s) := nεC(c)s,

is well-defined for all n ∈ N, c ∈ C and s ∈ S, since for every t ∈ S it is

εN(nt⊗S c⊗A s) = ntεC(c)s = nεC(c)εA(σ(t))s

= nεC(cσ(t))s = εN(n⊗S cσ(t)⊗A s);
εN(n⊗S ca⊗A s) = nεC(c)εA(a)s = εN(n⊗S c⊗A εA(a)s).

It is clear that εN is right S-linear, and it is straightforward to see that ε and η are natural
transformations. We are done if we can show that

G(εN) ◦ ηG(N) = G(N) and εF(M) ◦ F(ηM) = F(M),

for all M ∈MC
A and N ∈MS. Let n ∈ N, c ∈ C,m ∈M and s ∈ S. Then

(G(εN) ◦ ηG(N))(n⊗S c) = G(εN)(n⊗S c(1) ⊗A 1S ⊗S c(2))

= nεC(c(1))1S ⊗S c(2) = n⊗S c(2)σ(εC(c(1))) = n⊗S c;
(εF(M) ◦ F(ηM))(m⊗A s) = εF(M)(m[0] ⊗A 1S ⊗S m[1] ⊗A s)

= m[0] ⊗A 1SεC(m[1])s = m[0] ⊗A (εA ◦ τ ◦ εC)(m[1])s

= m[0](τ ◦ εC)(m[1])⊗A s = m⊗A s.
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From now until the end of this section we will assume that A is a Hopf algebroid.

We saw in Proposition 10.1.4 that C⊗S σAσ ∈MC
A. We define

can := ηC⊗SA : C⊗S AS −→ C⊗S AS ⊗A σ◦εAC
∼= C⊗S C.

We compute that can is given by

can(c⊗S a) = c(1) ⊗S a(2) ⊗A c(2)S(a(1)) ∼= c(1) ⊗S c(2)(σ ◦ ε)(a(2))S(a(1))

= c(1) ⊗S c(2)S(a(1)(τ ◦ ε)(a(2))) = c(1) ⊗S c(2)S(a) (10.1.4)

for c ∈ C and a ∈ A. The map can := ηC⊗SAS lies in MC
A with the codiagonal A-module

structure on C⊗S AS ⊗A σ◦εAC, which comes down to the structure of a right A-module
on C ⊗S C given by c ⊗S d · a = c ⊗S da. We also compute easily that for all c ∈ C and
s ∈ S we have

εS : FG(S) = C⊗A S −→ S, εS(c⊗A s) = εC(c)s.

If (F ,G) is a pair of inverse equivalences, then, obviously, can and εS are isomorphisms.
Our aim is to show that the converse is also true if C is flat as a left S-module. Remark
that C is flat as a left S-module if and only if it is flat as a right S-module. This is due
to Proposition 9.2.4 and the fact that C inherits its S-bimodule structure from A.

Proposition 10.1.6 The transformation ε is a natural isomorphism (equivalently, G is
fully faithful) if and only if εS is an isomorpism.

Proof. This follows immediately from the fact εN = N ⊗S εS, for all N ∈MS.

Let can′ = can ◦ f : A⊗S C −→ C⊗S C, with f as in (10.1.3). Then

can′(a⊗S c) = can(cS(a(2))⊗S S(a(1))) = c(1)S(a(3))⊗S c(2)S(a(2))a(1)

= c(1)S(a(2))⊗S c(2)(σ ◦ ε)(a(1)) = c(1)S((σ ◦ ε)(a(1))a(2))⊗S c(2)

= c(1)S(a)⊗S c(2).

Since f is an isomorphism, can is an isomorphism if and only if can′ is an isomorphism.

Lemma 10.1.7 Consider the map

γ : A⊗S C⊗S C −→ C⊗S C⊗S C, γ(a⊗S c⊗S d) = cS(a(2))⊗S d(1)S(a(1))⊗S d(2)

with a ∈ A, c, d ∈ C. If can is bijective, then γ is also bijective.

Proof. Note that

s · can′(a⊗S c) = ∆(σ(s))(c(1)S(a)⊗S c(2)) = c(1)σ(s)S(a)⊗S c(2)

= c(1)S(τ(s)a)⊗S c(2) = can′(τ(s)a⊗S c),
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hence can′ is a left S-linear map τAτ ⊗S C −→ C⊗S C. Thus we can consider the map

C⊗S can′ : C⊗S τAτ ⊗S C −→ C⊗S C⊗S C.

We also have a well-defined right S-linear map

κ : C⊗S τAτ −→ Aτ ⊗S σCτ , κ(c⊗S a) = a(1) ⊗S ca(2),

where now C⊗S τAτ has a structure of a right S-module by c⊗A a · s = c⊗A aτ(s), and
similarly Aτ ⊗S σCτ . Indeed,

κ(cτ(s)⊗S a) = a(1) ⊗S ca(2)τ(s) = κ(c⊗S aτ(s)) = κ(c⊗S a)τ(s).

Since can is bijective, so is can′ by the above argument. Now we claim that

γ−1 = (κ⊗S C) ◦ (C⊗S can′−1
).

This may be seen as follows. First take c⊗S d⊗S e ∈ C⊗S C⊗S C, and let

can′
−1

(d⊗S e) =
∑
i

ai ⊗S fi ∈ A⊗S C.

Then
can′(

∑
i

ai ⊗S fi) =
∑
i

fi(1)S(ai)⊗S fi(2) = d⊗S e

and we compute(
γ ◦ (κ⊗S C) ◦ (C⊗S can′−1

)
)
(c⊗S d⊗S e)

=
(
γ ◦ (κ⊗S C)

)
(
∑
i

c⊗S ai ⊗S fi)

= γ
(∑

i

ai(1) ⊗S cai(2) ⊗S fi
)

=
∑
i

cai(3)S(ai(2))⊗S fi(1)S(ai(1))⊗S fi(2)

=
∑
i

c(τ ◦ ε)(ai(2))⊗S fi(1)S(ai(1))⊗S fi(2)

=
∑
i

c⊗S fi(1)S(ai(1)(τ ◦ ε)(ai(2)))⊗S fi(2)

=
∑
i

c⊗S fi(1)S(ai)⊗S fi(2) = c⊗S d⊗S e.

For a⊗S c⊗S d ∈ A⊗S C⊗S C, we have(
(κ⊗S C) ◦ (C⊗S can′−1

) ◦ γ
)
(a⊗S c⊗S d)

=
(
(κ⊗S C) ◦ (C⊗S can′−1

)
)
(cS(a(2))⊗S d(1)S(a(1))⊗S d(2))

= (κ⊗S C)(cS(a(2))⊗S a(1) ⊗S d)

= a(1) ⊗S cS(a(3))a(2) ⊗S d
= a(1) ⊗S c(σ ◦ ε)(a(2))⊗S d
= a⊗S c⊗S d.
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Proposition 10.1.8 Assume that C is flat as a (left) S-module. Then η is a natural
isomorphism (equivalently, F is fully faithful) if and only if can is an isomorphism.

Proof. Assuming that can is an isomorphism we will prove that η is a natural isomorphism
dividing the proof in six steps. The sequences we will consider in this proof are in Ab.
Let M ∈MC

A.
1) We have an exact sequence

0 - M M ⊗S C-ρ -ρ⊗ C
M ⊗S C⊗S C.-

M ⊗S ∆
(10.1.5)

It is clear that (10.1.5) is a complex. If∑
i

mi[0] ⊗S mi[1] ⊗S ci = (ρ⊗S C)(
∑
i

mi ⊗S ci)

= (M ⊗S ∆)(
∑
i

mi ⊗S ci) =
∑
i

mi ⊗S ci(1) ⊗S ci(2),

then

ρ(
∑
i

miε(ci)) =
∑
i

mi[0] ⊗S mi[1](τ ◦ ε)(ci) =
∑
i

mi ⊗S ci(1)(τ ◦ ε)(ci(2)) =
∑
i

mi ⊗S ci.

This proves exactness of (10.1.5) at M ⊗S C.
2) We have a second exact sequence

0 - MS ⊗A S MS ⊗A C-ϕ -f1
MS ⊗A (C⊗S C).-

f2

(10.1.6)

C is viewed as a left A-module via ac = ca for all a ∈ A, c ∈ C. The map ϕ is defined by
the formula

ϕ(m⊗A s) = m[0] ⊗A m[1]τ(s)

for m ∈M and s ∈ S. It is well-defined, since for every a ∈ A

ϕ((m↼a)⊗A s) = ϕ(mS(a)⊗A s) = (mS(a))[0] ⊗A (mS(a))[1]τ(s)

= m[0]S(a(2))⊗A m[1]S(a(1))τ(s) = (m[0]↼a(2))⊗A m[1]S(a(1))τ(s)

= m[0] ⊗A m[1]S(a(1))a(2)τ(s) = m[0] ⊗A m[1](τ ◦ ε)(a)τ(s) = m[0] ⊗A m[1]τ(ε(a)s)

= ϕ(m⊗A ε(a)s).

Let us prove that ϕ is injective. Suppose

ϕ(
∑
i

mi ⊗A si) =
∑
i

mi[0] ⊗A mi[1]τ(si) = 0.
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Then ∑
i

mi ⊗A si =
∑
i

mi ⊗A εA(τ(si))

=
∑
i

mi[0](τ ◦ εC)(mi[1])⊗A εA(τ(si))

=
∑
i

mi[0]τ(εC(mi[1])si)⊗A 1S

=
∑
i

mi[0](τ ◦ εC)(mi[1]τ(si))⊗A 1S = 0.

The maps f1, f2 : MS ⊗A C −→MS ⊗A (C⊗S C) are defined by the formulas

f1(m⊗A c) = m[0] ⊗A (m[1] ⊗S c) ; f2(m⊗A c) = m⊗A (c(1) ⊗S c(2)).

It is clear that f2 is well-defined. The map f1 is well-defined, since

f1(mS(a)⊗A c) = m[0]S(a(2))⊗A (m[1]S(a(1))⊗S c)
= m[0] ⊗A (m[1]S(a(1))a(2) ⊗S ca(3))

= m[0] ⊗A (m[1](τ ◦ ε)(a(1))⊗S ca(2))

= m[0] ⊗A (m[1] ⊗S c(σ ◦ ε)(a(1))a(2))

= f1(m⊗A ca).

Furthermore, f1ϕ(m⊗As) = f1(m[0]⊗Am[1]τ(s)) = m[0]⊗Am[1]⊗Sm[2]τ(s) = f2ϕ(m⊗As).
For the exactness of (10.1.6) at M ⊗A C we suppose∑

i

mi ⊗A (ci(1) ⊗S ci(2)) = f2(
∑
i

mi ⊗A ci) = f1(
∑
i

mi ⊗A ci) = mi[0] ⊗A (mi[1] ⊗S ci).

Applying εC to the third tensor factor, we get∑
i

mi ⊗A ci =
∑
i

mi[0] ⊗A mi[1](τ ◦ ε)(ci) = ϕ(
∑
i

mi ⊗A ε(ci)),

and it follows that (10.1.6) is exact.

3) Since C is flat as left S-module, it follows that the sequence

0 - MS ⊗A S ⊗S C MS ⊗A C⊗S C-ϕ⊗S C -f1 ⊗S C
MS ⊗A (C⊗S C)⊗S C.-

f2 ⊗S C
(10.1.7)

is also exact. Note that in M ⊗A S for all m ∈ M,a ∈ A and s ∈ S it is mS(a) ⊗A s =
m ⊗A εA(S(a))s = m ⊗A εA(a)s = ma ⊗A s. Hence the map χ : M ⊗A S −→ MS ⊗A S
given by m ⊗A s 7→ m ⊗A s is a well-defined bijection. This has for a consequence that
we have an isomorphism GF(M) = M ⊗A S ⊗S C ∼= MS⊗A S ⊗S C ∼= MS⊗A C. The map
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ϕ⊗S C can then be regarded as a map ϕ⊗S C : GF(M) −→MS ⊗A C⊗S C.

4) The map

k : MS ⊗A SA⊗S C −→M ⊗S C, k(m⊗A a⊗S c) = ma⊗S c

is a well-defined isomorphism for all m ∈ M,a ∈ A, c ∈ C. The map k is well-defined
since for all b ∈ A and s ∈ S

k(m · b⊗A a⊗S c) = k(mS(b)⊗A a⊗S c) = mS(b)a⊗S c = k(m⊗A b · a⊗S c)

and

k(m⊗A aτ(s)⊗S c) = maτ(s)⊗S c = ma⊗S cσ(s) = k(m⊗A a⊗S cσ(s)).

The inverse of k is given by the formula k−1(m⊗S c) = m⊗A 1A ⊗S c. Clearly, k ◦ k−1 =
M ⊗S C, and

(k−1 ◦ k)(m⊗A a⊗S c) = k−1(ma⊗S c) = ma⊗A 1A ⊗S c
= m · S(a)⊗A 1A ⊗S c = m⊗A S(a) · 1A ⊗S c = m⊗A a⊗S c.

Consequently, we have an isomorphism

h = (M ⊗A can′) ◦ k−1 : M ⊗S C −→MS ⊗A C⊗S C,

and we easily compute
h(m⊗S c) = m⊗A c(1) ⊗S c(2).

5) In a similar way, the map

k̃ : MS ⊗A SA⊗S C⊗S C −→M ⊗S C⊗S C, k̃(m⊗A a⊗S c⊗S d) = ma⊗S c⊗S d

is a well-defined isomorphism, with inverse k̃−1(m⊗S c⊗S d) = m⊗A 1A ⊗S c⊗S d.
The isomorphism γ from Lemma 10.1.7 is left A-linear when viewed as a map

A⊗S (C⊗S C) −→ (C⊗S C)⊗S C, where the domain and codomain are left A-modules by
the structures of the left tensor factors,

γ(b⇀a⊗S c⊗S d) = cS(a(2))S(b(2))⊗S d(1)S(a(1))S(b(1))⊗S d(2)

= (cS(a(2))⊗S d(1)S(a(1)))⊗S d(2)↼S(b) = b⇀γ(a⊗S c⊗S d).

So we can consider the composition

h̃ = (M ⊗A γ) ◦ k̃−1 : M ⊗S C⊗S C −→MS ⊗A (C⊗S C)⊗S C.

It follows from Lemma 10.1.7 that h̃ is an isomorphism. We easily compute that

h̃(m⊗S c⊗S d) = m⊗A (c⊗S d(1))⊗S d(2).
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6) We collect the exact sequences (10.1.5) and (10.1.7) in the diagram

0 - M M ⊗S C-ρ -ρ⊗S C
MS ⊗S C⊗S C-

M ⊗S ∆

?

ηM
?

h
?
h̃

0 - GF(M) MS ⊗A C⊗S C-ϕ⊗S C -f1 ⊗S C
MS ⊗A (C⊗S C)⊗S C-

f2 ⊗S C
(10.1.8)

and we claim that it commutes. Indeed,

(h ◦ ρ)(m) = m[0] ⊗A m[1] ⊗S m[2]

= (ϕ⊗S C)(m[0] ⊗A 1S ⊗S m[1]) = ((ϕ⊗S C) ◦ ηM)(m);

(h̃ ◦ (ρ⊗S C))(
∑
i

mi ⊗S ci) = h̃(
∑
i

mi[0] ⊗S mi[1] ⊗S ci)

=
∑
i

mi[0] ⊗A (mi[1] ⊗S ci(1))⊗S ci(2)

= (f1 ⊗S C)(
∑
i

mi ⊗A ci(1) ⊗S ci(2))

= ((f1 ⊗S C) ◦ h)(
∑
i

mi ⊗S ci);

(h̃ ◦ (M ⊗S ∆))(
∑
i

mi ⊗S ci) = h̃(
∑
i

mi ⊗S ci(1) ⊗S ci(2))

=
∑
i

mi ⊗S (ci(1) ⊗S ci(2))⊗S ci(3)

= (f2 ⊗S C)(
∑
i

mi ⊗A ci(1) ⊗S ci(2))

= ((f2 ⊗S C) ◦ h)(
∑
i

mi ⊗S ci).

Now (10.1.8) is a commutative diagram with exact rows. The maps h and h̃ are isomor-
phisms, so it follows from the five lemma that ηM is an isomorphism.

We will next examine when the pair of functors (F ,G) establish an equivalence of
categories. For that purpose consider the A-bimodule C := A⊗S C with actions

b(a⊗S c)b′ = bab′(1) ⊗S cb′(2).

Notice that the left A-action is not the same as in Proposition 10.1.4. We will use this
A-bimodule structure only in Lemma 10.1.9 and Theorem 10.1.10. Consider the maps

D : C −→ C⊗A C and E : C −→ A

defined by the formulas

D(a⊗S c) = (a⊗S c(1))⊗A (1A ⊗S c(2));

E(a⊗S c) = a(τ ◦ ε)(c).
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Lemma 10.1.9 (C = A⊗S C, D,E) is an A-coring, and the categories MC and MC
A are

isomorphic.

Proof. It is clear that D and E are A-bimodule maps, and that D is coassociative. The
counit property can be shown as follows:

((E ⊗A C) ◦D)(a⊗S c) = a(τ ◦ ε)(c(1))(1A ⊗S c(2))

= a(τ ◦ ε)(c(1))⊗S c(2) = a⊗S (σ ◦ ε)(c(1))c(2) = a⊗ c;
((C⊗A E) ◦D)(a⊗S c) = (a⊗S c(1))(τ ◦ ε)(c(2))

= a⊗S c(1)(τ ◦ ε)(c(2)) = a⊗ c,

where we used the fact that ∆(τ(s)) = 1⊗S τ(s).
Note that we have an isomorphism k′ : M⊗AC −→M⊗S C for every M ∈MA. Then

we define inverse functors

Φ : MC
A −→MC and Ψ : MC −→MC

A

by

Φ(M,ρ) = (M,k′
−1 ◦ ρ) and Ψ(N,R) = (N, k′ ◦R)

respectively, with M ∈MC
A and N ∈MC.

In [60] was proved that an A-coring C is flat as a left A-module if and only if the
category of right C-comodules MC is abelian, and the forgetful functor MC −→ MA is
exact. In this case, we can speak about exact sequences in MC and by the nature of the
forgetful functor we have that a sequence in MC is exact if and only if it is exact in MA
if and only if it is exact in Ab.

Observe that if C is an A-module coring over a commutative Hopf algebroid A which is
flat as a left S-module, then C is flat as left A-module. Then it follows from Lemma 10.1.9
that a sequence in MC

A is exact if and only if it is exact in Ab. This is used in the proof
of our next theorem.

Theorem 10.1.10 Let A be a commutative Hopf algebroid, and C an A-module coring,
which is flat as a left (or right) S-module. Then the following assertions are equivalent:

1. (F ,G) is a pair of inverse equivalences between the categories MC
A and MS;

2. can : C⊗S AS −→ C⊗S C and εS : C⊗A S −→ S are isomorphisms;

3. can is an isomorphism and C is faithfully flat as a left S-module.

Proof. 1) =⇒ 2) has been observed in the comments preceding Proposition 10.1.6.
2) =⇒ 1) follows from Propositions 10.1.6 and 10.1.8.
1) =⇒ 3). Let

0 −→ N ′ −→ N −→ N ′′ −→ 0 (10.1.9)
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be a sequence in MS, and assume that

0 −→ G(N ′) = N ′ ⊗S C −→ G(N) = N ⊗S C −→ G(N ′′) = N ′′ ⊗S C −→ 0

is exact in Ab. Since C is flat as a left S-module, we have by the above comment that
this sequence is also exact in MC

A. Since (F ,G) is an equivalence of categories, it follows
that (10.1.9) is exact in MS. This shows that C is faithfully flat as a left S-module.

3) =⇒ 2). Consider the map

α = ε⊗S C− C⊗S ε : C⊗S C −→ C, α(c⊗S d) = d(σ ◦ ε)(c)− c(τ ◦ ε)(d)

for c, d ∈ C. We claim that the sequence

C⊗S C
α−→ C

ε−→ S −→ 0 (10.1.10)

is exact. Since C ∈ SM is faithfully flat, it suffices to show that

C⊗S C⊗S C
α⊗SC−→ C⊗S C

ε⊗SC−→ C −→ 0

is exact. The map ε⊗S C is surjective since c = (σ ◦ ε)(c(1))c(2), for all c ∈ C. It is clear
that (εC ⊗S C) ◦ (α⊗S C) = 0. Assume now that

(ε⊗S C)(
∑
i

ci ⊗S di) = di(σ ◦ ε)(ci) = 0.

Then

(α⊗S C)(−
∑
i

ci ⊗S di(1) ⊗S di(2))

= −
∑
i

di(1)(σ ◦ ε)(ci)⊗S di(2) +
∑
i

ci(τ ◦ ε)(di(1))⊗S di(2)

= −
∑
i

∆(di(σ ◦ ε)(ci)) +
∑
i

ci ⊗S di(2)(σ ◦ ε)(di(1))

=
∑
i

ci ⊗S di.

We are now able to prove that εS : C ⊗A S −→ S, εS(c ⊗A s) = ε(c)s is an isomor-
phism. From the exactness of (10.1.10), it follows that ε is surjective, implying that εS
is surjective. Observe that

∑
i ci ⊗A si =

∑
i ci ⊗A (ε ◦ σ)(si) =

∑
i ci ⊗A (σ(si)⇀1S) =∑

i ciτ(si) ⊗A 1S = c ⊗A 1S for some c ∈ C. Suppose εS(c ⊗A 1S) = ε(c) = 0. From the
exactness of (10.1.10), it follows that there exists

∑
i ci ⊗S di ∈ C⊗S C such that

c = α(
∑
i

ci ⊗S di) =
∑
i

di(σ ◦ ε)(ci)− ci(τ ◦ ε)(di).

Now take ∑
j

ej ⊗S aj = can−1(
∑
i

ci ⊗S di) ∈ C⊗S AS.
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Then ∑
i

ci ⊗S di =
∑
j

ej(1) ⊗S ej(2)S(aj)

and

c =
∑
j

ej(2)S(aj)(σ ◦ εC)(ej(1))− ej(1)(τ ◦ εC)(ej(2))(τ ◦ εA ◦ S)(aj)

=
∑
j

ejS(aj)− ej(τ ◦ εA ◦ S)(aj),

so
c⊗A 1S =

∑
j

ej ⊗A εA(S(aj))− ej ⊗A (εA ◦ τ ◦ εA ◦ S)(aj) = 0

proving that ε is injective.

We call an A-module coring C an A-Galois coobject if C is flat as a left S-module and
satisfies the equivalent conditions of Theorem 10.1.10.

Example 10.1.11 Suppose that A is flat as a left (or right) S-module, see Proposi-
tion 9.2.4. Then A is an A-Galois coobject. In particular, it follows that A is faithfully
flat as a left (or right) S-module. (Observe that these results are analogous to Proposi-
tion 3.2.5 and Proposition 3.1.6.) Indeed, the canonical map canA : A⊗S AS −→ A⊗S A
is given by

canA(a⊗S b) = a(1) ⊗S a(2)S(b)

and we have

(canA ◦ canA)(a⊗S b) = can(a(1) ⊗S a(2)S(b)) = a(1) ⊗S a(2)S(a(3)S(b))

= a(1) ⊗S a(2)S(a(3))b = a(1) ⊗S (σ ◦ ε)(a(2))b

= a(1) ⊗S (ε(a(2))⇀b) = (a(1)↼ε(a(2)))⊗S b = a⊗S b.

The map εS : A⊗A S −→ S becomes the canonical isomorphism. Hence condition (2) of
Theorem 10.1.10 is satisfied.

Example 10.1.12 Previous example can be generalized as follows. Take J ∈ Pic(S), and
let {(ei, e∗i ) | i = 1, · · · , n} be a finite dual basis for J . The object A(J) = J ⊗S A⊗S J∗
is a right A-module:

(m⊗S a⊗S m∗)b = m⊗S ab⊗S m∗,
and, by restriction of scalars, an S-bimodule:

s(m⊗S a⊗S m∗)t = m⊗S σ(s)aτ(t)⊗S m∗ = sm⊗S a⊗S m∗t

for m ∈ J,m∗ ∈ J∗, a, b ∈ A and s, t ∈ S. Now A(J) ⊗S A(J) = J ⊗S A⊗S J∗ ⊗S J ⊗S
A⊗S J∗ ∼= J⊗SA(2)⊗S J∗. We define the comultiplication and counit on A(J) as follows:

∆A(J)(m⊗S a⊗S m∗) =
∑
i

m⊗S a(1) ⊗S e∗i ⊗S ei ⊗S a(2) ⊗S m∗ ≡ m⊗S ∆(a)⊗S m∗;
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εA(J)(m⊗S a⊗S m∗) = 〈m∗,m〉εA(a).

These maps are well-defined, and makeA(J) into anA-module coring. The coassociativity
is clear, and the counit property can be seen as follows.

((εA(J) ⊗S A(J)) ◦∆A(J))(m⊗S a⊗S m∗) = 〈e∗i ,m〉εA(a(1))ei ⊗S a(2) ⊗S m∗

= m⊗S (σ ◦ ε)(a(1))a(2) ⊗S m∗ = m⊗S a⊗S m∗.

If A is flat as a left S-module, then A(J) is also flat as a left S-module, since J and J∗

are flat S-modules. The map can : J ⊗S A⊗S J∗ ⊗S AS −→ J ⊗S A(2) ⊗S J∗ is given by
the formula

can(m⊗S a⊗S m∗ ⊗S b) = m⊗S a(1) ⊗S a(2)S(b)⊗S m∗.
Its inverse is given by

can−1(m⊗S a⊗S b⊗S m∗) = m⊗S a(1) ⊗S m∗ ⊗S a(2)S(b).

We conclude that A(J) is an A-Galois coobject, and we call it an elementary A-Galois
coobject.

Our next aim is to show that an A-Galois coobject C is invertible as an A-module.
First we need a lemma.

Lemma 10.1.13 Let C be an A-module coring. We have a well-defined map ζ : C ⊗S
σAσ ⊗S σA −→ C⊗S σAσ ⊗S C, defined by the formula

ζ(c⊗S a⊗S b) = c(1) ⊗S a(2) ⊗S c(2)S(a(1))S(b)

with c ∈ C, a, b ∈ A. If can : C⊗S AS −→ C⊗S C is bijective, then ζ is also bijective.

Proof. The map ζ is well-defined since for all s ∈ S

ζ(cτ(s)⊗S a⊗S b) = c(1) ⊗S a(2) ⊗S c(2)τ(s)S(a(1))S(b)

= c(1) ⊗S a(2) ⊗S c(2)S(σ(s)a(1))S(b) = ζ(c⊗S σ(s)a⊗S b)
= c(1) ⊗S a(2) ⊗S c(2)S(a(1))S(σ(s)b) = ζ(c⊗S a⊗S σ(s)b).

Now assume that can is bijective. We use the following formal notation

can−1(c⊗S d) = Σc(c⊗S d)⊗S a(c⊗S d)

for c, d ∈ C. Since can : C⊗S AS −→ C⊗S C is right A-linear, so is can−1:

Σc(c⊗S da)⊗S a(c⊗S da) = Σc(c⊗S d)⊗S a(c⊗S d)S(a).

In particular,

Σc(cτ(s)⊗S d)⊗S a(cτ(s)⊗S d)

= Σc(c⊗S dσ(s))⊗S a(c⊗S dσ(s))

= Σc(c⊗S d)⊗S a(c⊗S d)τ(s). (10.1.11)
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Now we claim that the map

δ : C⊗S σAσ ⊗S C −→ C⊗S σAσ ⊗S σAσ,

δ(c⊗S a⊗S d) = Σc(c⊗S d)⊗S a(2) ⊗S a(c⊗S d)S(a(1))

is well-defined. Indeed

δ(cτ(s)⊗S a⊗S d)
(10.1.11)

= Σc(c⊗S d)⊗S a(2) ⊗S a(c⊗S d)τ(s)S(a(1))

= Σc(c⊗S d)⊗S a(2) ⊗S a(c⊗S d)S(σ(s)a(1))

= δ(c⊗S σ(s)a⊗S d)

and
δ(cτ(s)⊗S a⊗S d)

(10.1.11)
= δ(c⊗S a⊗S dσ(s)).

Observing that

can(c⊗S a(1)b) = c(1) ⊗S c(2)S(a(1)b), (10.1.12)

we find

(δ ◦ ζ)(c⊗S a⊗S b) = δ(c(1) ⊗S a(2) ⊗S c(2)S(b)S(a(1)))

(10.1.12)
= c⊗S a(3) ⊗S a(1)bS(a(2))

= c⊗S a(2) ⊗S (σ ◦ ε)(a(1))b

= c⊗S (σ ◦ ε)(a(1))a(2) ⊗S b = c⊗S a⊗S b.

Finally

(ζ ◦ δ)(c⊗S a⊗S d) = ζ
(

Σc(c⊗S d)⊗S a(2) ⊗S a(c⊗S d)S(a(1))
)

= c(c⊗S d)(1) ⊗S a(3) ⊗S c(c⊗S d)(2)S(a(c⊗S d))a(1)S(a(2))

(10.1.12)
= c⊗S a(2) ⊗S d(σ ◦ ε)(a(1))

= c⊗S (σ ◦ ε)(a(1))a(2) ⊗S d = c⊗S a⊗S d.

Proposition 10.1.14 Let A be a Hopf algebroid and assume that it is flat as a left S-
module. If C is an A-Galois coobject, then C ∈MA is invertible. Its inverse is CS, which
equals C as an abelian group, but with A-action c · a = cS(a).

Proof. Let ψ : C⊗S AS −→ C be the (right A-linear) map given by ψ(c⊗S a) = cS(a) for
c ∈ C, a ∈ A. Then we have an exact sequence

C⊗A S- 0--ψ ⊗S S
C⊗S σAσ ⊗S S C⊗S S-

C⊗S εA ⊗S S
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by the definition of the coequalizer C⊗A S. By assumption, εC⊗A S : C⊗A S −→ S is an
isomorphism, then because of C⊗S σAσ ⊗S S ∼= C⊗S σAσ and C⊗S S ∼= C we obtain an
exact sequence

S-
εC

0.--ψ
C⊗S σAσ C-

C⊗S εA
Since A is flat, we have an exact sequence

A-εC ⊗S A
0.--ψ ⊗S A

C⊗S σAσ ⊗S A C⊗S S-
C⊗S εA ⊗S A

Now consider the (left S-linear) map

ϕ : σAσ ⊗S C −→ C, ϕ(a⊗S c) = ca.

Then we have an exact sequence

CS ⊗A C- 0--ψ ⊗S C
C⊗S σAσ ⊗S C C⊗S C-

C⊗S ϕ
by the definition of the coequalizer CS ⊗A C. With ζ as in Lemma 10.1.13, we then have
the following commutative diagram with exact rows:

A-εC ⊗S A
0--ψ ⊗S A

C⊗S σAσ ⊗S A C⊗S A-
C⊗S εA ⊗S A

?

ζ
?

can

CS ⊗A C- 0.--ψ ⊗S C
C⊗S σAσ ⊗S C C⊗S C-

C⊗S ϕ
Indeed,

((ψ ⊗S C) ◦ ζ)(c⊗S a⊗S b) = c(1)S(a(2))⊗S c(2)S(a(1))S(b)

= can(cS(a)⊗S b) = (can ◦ (ψ ⊗S A))(c⊗S a⊗S b);
((C⊗S ϕ) ◦ ζ)(c⊗S a⊗S b) = c(1) ⊗S c(2)S(a(1))S(b)a(2)

= c(1) ⊗S c(2)(τ ◦ ε)(a)S(b) = can(c(τ ◦ ε)(a)⊗S b)
= (can ◦ (C⊗S εA ⊗S A))(c⊗S a⊗S b).

From the five lemma it now follows that A ∼= CS ⊗A C.

10.2 Galois coobjects and the second Harrison coho-

mology group

In this section, we prove that the set of isomorphism classes of A-Galois coobjects form
a group. We will also give an interpretation of H1(A,Pic), the fifth term in Sequence
(9.3.21).
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Let A be a commutative bialgebroid. Let M ∈MA. As in Section 9.3, we can consider
the A(2)-modules Mi, for i = 0, 1, 2. Clearly

M0 = A⊗S M, M1 = M ⊗A ∆A(2), M2 = M ⊗S A.

In M1, we have

ma⊗A (b⊗S c) = m⊗A (a(1)b⊗S a(2)c),

for all m ∈M , a, b, c ∈ A. The functor

F1 = −⊗A ∆A(2) : MA −→MA(2)

has a right adjoint G1. This is the restriction of scalars functor: G1(N) = N with right
A-action given by n · a = n∆(a). Observe that we have an isomorphism

G1(M2 ⊗A(2) M0) ∼= M ⊗S M.

Using the adjunction (F1,G1) we have a natural isomorphism

HomA(M,M ⊗S M) ∼= HomA(2)(M1,M2 ⊗A(2) M0). (10.2.13)

Take a rightA-linear map D : M −→M⊗SM , and write D(m) = m(1)⊗Sm(2). As always,

summation is implicitly understood. The corresponding map D̃ : M1 −→ M2 ⊗A(2) M0 is
then given by the formula

D̃(m⊗A (a⊗S b)) = (m(1) ⊗S b)⊗A(2) (a⊗S m(2)) ≡ m(1)a⊗S m(2)b. (10.2.14)

Conversely, for f ∈ HomA(2)(M1,M2 ⊗A(2) M0), we have that the corresponding map
f̂ ∈ HomA(M,M ⊗S M) is given by

f̂(m) = G1(f(m⊗A (1⊗S 1))). (10.2.15)

Now observe that

M00 = M01 = A(2) ⊗S M ; M22 = M23 = M ⊗S A(2);

M03 = M20 = A⊗S M ⊗S A;

M02 = M10 = A⊗S M1 ; M13 = M21 = M1 ⊗S A.

Applying (9.1.6), and the fact that ∆2 = e2
1 ◦ e1

1 = e2
2 ◦ e1

1, we find that

M11 = (M ⊗A e11
A(2))⊗A(2) e21

A(3) ∼= M ⊗A ∆2A(3)

∼= (M ⊗A e11
A(2))⊗A(2) e22

A(3) = M12.
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Take anA-linear map D : M −→M⊗SM , and the corresponding D̃ : M1 −→M2⊗A(2)M0.
We then compute that

D̃0 : M02 = A⊗S M1 −→M20 ⊗A(3) M00 = (A⊗S M ⊗S A)⊗A(3) (A(2) ⊗S M)

D̃0(1⊗S (m⊗A (1⊗S 1))) = (1⊗S m(1) ⊗S 1)⊗A(3) (1⊗S 1⊗S m(2));

D̃1 : M11 −→M21 ⊗A(3) M01 = (M1 ⊗S A)⊗A(3) (A(2) ⊗S M)

D̃1(m⊗A (a⊗S b⊗S c)) = ((m(1) ⊗A (1⊗S 1))⊗S 1)⊗A(3) (a⊗S b⊗S m(2)c);

D̃2 : M12
∼= M11 −→M22 ⊗A(3) M02 = (M ⊗S A(2))⊗A(3) (A⊗S M1)

D̃2(m⊗A (a⊗S b⊗S c)) = (m(1)a⊗S b⊗S c)⊗A(3) (1⊗S (m(2) ⊗A (1⊗S 1)))

D̃3 : M13 = M1 ⊗S A −→M23 ⊗A(3) M03 = (M ⊗S A(2))⊗A(3) (A⊗S M ⊗S A)

D̃3((m⊗A (1⊗S 1))⊗S 1) = (m(1) ⊗S 1⊗S 1)⊗A(3) (1⊗S m(2) ⊗S 1).

In M ⊗A ∆2A(3), we have

ma⊗A (b⊗S c⊗S d) = m⊗A (a(1)b⊗S a(2)c⊗S a(3)d)

with m ∈M,a, b, c, d ∈ A. The functor

F11 = −⊗A ∆2A(3) : MA −→MA(3)

has a right adjoint G11. It is given by G11(N) = N , with right A-action n · a = n∆2(a). It
is easy to see that we have an isomorphism

G11(M23 ⊗A(3) M03 ⊗A(3) M00) ∼= M ⊗S M ⊗S M.

Applying the adjunction (F11,G11), we obtain a natural isomorphism

HomA(M,M ⊗S M ⊗S M) ∼= HomA(3)(M11,M23 ⊗A(3) M03 ⊗A(3) M00).

Lemma 10.2.1 Let I ∈ Pic(A), and consider an A-module map D : I −→ I ⊗S I, such

that D̃ (from the adjunction (F1,G1)) is an isomorphism. Let α = D̃−1 up to switch map
identification. Then D is coassociative if and only if (I, α) ∈ Z1(A,Pic).

Proof. Consider the compositions{
(I22 ⊗A(3) D̃0) ◦ D̃2

(D̃3 ⊗A(3) I01) ◦ D̃1
: I11 = I12 −→ I23 ⊗A(3) I03 ⊗A(3) I01

∼= I ⊗S I ⊗S I.

Using the above formulas, we compute that

((I22 ⊗A(3) D̃0) ◦ D̃2)(m⊗A (a⊗S b⊗S c)) = m(1)a⊗S m(2)(1)b⊗S m(2)(2)c,

((D̃3 ⊗A(3) I01) ◦ D̃1)(m⊗A (a⊗S b⊗S c)) = m(1)(1)a⊗S m(1)(2)b⊗S m(2)c.
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It follows that D is coassociative if and only if

(I22 ⊗A(3) D̃0) ◦ D̃2 = (D̃3 ⊗A(3) I01) ◦ D̃1,

or, equivalently
α2 ◦ (I22 ⊗A(3) α0) ◦ (α−1

3 ⊗A(3) I01) ◦ α−1
1 = I11.

By Lemmas 9.1.7 and 9.1.5, this is equivalent to

α2 ⊗A(3) I22 ⊗A(3) α0 ⊗A(3) α−1
3 ⊗A(3) I01 ⊗A(3) α−1

1 = I22 ⊗A(3) I01 ⊗A(3) id

and
α2 ⊗A(3) α0 ⊗A(3) α−1

3 ⊗A(3) α−1
1 = id,

up to switch map identification. Up to duality identification, this last formula is precisely
the cocycle condition.

Let M,N ∈ MA, and consider A-linear maps ∆M : M −→ M ⊗S M and ∆N : N
−→ N ⊗S N . View M and N as A-bimodules with same left and right actions. For
i = 0, 1, 2, we have isomorphisms of A(2)-modules

Mi ⊗A(2) Ni
∼= (M ⊗A N)i,

so we obtain a map

∆̃ : (M ⊗A N)1 −→ (M ⊗A N)2 ⊗A(2) (M ⊗A N)0
∼= (M ⊗A N)⊗S (M ⊗A N),

given by the formula

∆̃((m⊗A n)⊗A (a⊗S b)) = (m(1) ⊗A n(1)a)⊗S (m(2) ⊗A n(2)b).

Using (10.2.15), we find the corresponding map

∆ = ∆M⊗AN : M ⊗A N −→ (M ⊗A N)⊗S (M ⊗A N),

∆(m⊗A n) = (m(1) ⊗A n(1))⊗S (m(2) ⊗A n(2)).

Clearly ∆ is coassociative if ∆M and ∆N are coassociative.
Now assume that C and D are A-module corings, and consider the map

εC⊗SD : C⊗S D −→ S, εC⊗SD(c⊗A d) = εC(c)εD(d).

Lemma 10.2.2 With notation as above, (C⊗AD,∆C⊗AD, εC⊗AD) is an A-module coring.

Proof. The maps ∆C⊗AD and εC⊗AD are clearly right A-linear. We have seen above that
∆C⊗AD is coassociative; it is clear that εC⊗AD is well-defined. The left counit property can
be easily verified:

(c(2) ⊗A d(2))(σ ◦ εC⊗AD)(c(1) ⊗A d(1)) = (c(2) ⊗A d(2))(σ ◦ εC)(c(1))(σ ◦ εD)(d(1))

= c(2)σ(εC(c(1)))⊗A d(2)σ(εD(d(1))) = c⊗A d
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(we view C and D as A-bimodules with same left and right actions). The right counit
property can be handled in a similar way.

From now until the end of the section assume that A is a commutative Hopf algebroid,
flat as an S-module. Recall from Example 10.1.11 that this implies that A is faithfully
flat. Our next aim will be to prove that A-Galois coobjects induce a monoid. For this we
will need some lemmas.

On M ⊗S AS, we consider the following A(2)-module structure:

(m⊗S a)(b⊗S c) = mb(1) ⊗S ab(2)S(c)

for all m ∈M,a, b, c ∈ A. It is well-defined, because mτ(s)b(1)⊗Sab(2) = mb(1)⊗Sσ(s)ab(2)

and b(1)⊗S b(2)τ(s)S(c) = b(1)⊗S b(2)S(σ(s)c) for every s ∈ S. It makes M ⊗S AS an A(2)-
module, since ∆A and S are ring maps.

Lemma 10.2.3 Let M ∈MA. Then the A(2)-modules M ⊗S AS and M1 = M ⊗A ∆A(2)

are isomorphic.

Proof. The maps

f : M ⊗S AS −→M ⊗A ∆A(2), f(m⊗S a) = m⊗A (1⊗S S(a));

g : M ⊗A ∆A(2) −→M ⊗S AS, g(m⊗A (a⊗S b)) = ma(1) ⊗S a(2)S(b)

are well-defined, since

f(mτ(s)⊗S a) = mτ(s)⊗A (1⊗S S(a)) = m⊗A (1⊗S S(a)τ(s))

= m⊗A (1⊗S S(aσ(s))) = f(m⊗S σ(s)a);

g(m⊗A (a′(1)a⊗S a′(2)b)) = ma′(1)a(1) ⊗S a′(2)a(2)S(a′(3)b)

= ma′(1)a(1) ⊗S (σ ◦ ε)(a′(2))a(2)S(b)

= ma′(1)(τ ◦ ε)(a′(2))a(1) ⊗S a(2)S(b)

= ma′a(1) ⊗S a(2)S(b) = g(ma′ ⊗A (a⊗S b)).

A straightforward computation shows that g is A(2)-linear. So is f , for

f(m⊗S a · (b⊗ c)) = f(mb(1) ⊗S ab(2)S(c)) = mb(1) ⊗A (1⊗S S(ab(2))c)

= m⊗A (b(1) ⊗S b(2)S(a)S(b(3))c) = m⊗A (b⊗S S(a)c) = f(m⊗S a)(b⊗ c).

Finally, f and g are inverses of each other, since

(f ◦ g)(m⊗A (a⊗S b)) = f(ma(1) ⊗S a(2)S(b))

= ma(1) ⊗A (1⊗S S(a(2))b)

= m⊗A (a(1) ⊗S a(2)S(a(3))b)

= m⊗A (a(1) ⊗S (σ ◦ ε)(a(2))b) = m⊗A (a⊗S b);
(g ◦ f)(m⊗S a) = g(m⊗A (1⊗S S(a))) = m⊗S a.
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Lemma 10.2.4 Let M ∈ MA, and consider a right A-linear map D : M −→ M ⊗S M ,
and the corresponding D̃ : M1 −→M2 ⊗A(2) M0 in MA(2). Then D̃ ◦ f = can, with

can : M ⊗S AS −→M ⊗S M, can(m⊗S a) = m(1) ⊗S m(2)S(a).

Consequently can is bijective if and only if D̃ is bijective.

Proof. We have

(D̃ ◦ f)(m⊗S a) = D̃(m⊗A (1⊗S S(a))) = m(1) ⊗S m(2)S(a).

We can now prove:

Proposition 10.2.5 Assume that A is flat as a left S-module. If C and D are A-Galois
coobjects, then C⊗A D is also an A-Galois coobject.

Proof. C ⊗A D is an A-module coring, by Lemma 10.2.2. C is faithfully flat as a left
S-module, and, by Proposition 10.1.14, D is faithfully flat as a left A-module, hence
C⊗AD is faithfully flat as a left S-module. canC and canD are isomorphisms, so ∆̃C and
∆̃D are also isomorphisms in view of Lemma 10.2.4. This implies that ∆̃C⊗AD is also an
isomorphism, and so is canC⊗AD.

Proposition 10.2.6 If C is an A-Galois coobject, then C⊗AA ∼= C as A-Galois coobjects.

Proof. It suffices to show that the natural isomorphism ϕ : C⊗AA −→ C, ϕ(c⊗A a) = ca
is an isomorphism of corings. This is straightforward:

((ϕ⊗S ϕ) ◦∆)(c⊗A a) = c(1)a(1) ⊗S c(2)a(2) = ∆C(ca) = ∆C(ϕ(c⊗A a));

(εC ◦ ϕ)(c⊗A a) = εC(ca) = εC(c)εA(a) = εC⊗AA(c⊗A a).

Let C,C′,C′′ be A-Galois coobjects. It is easy to see that the natural isomorphism
(C⊗A C′)⊗A C′′ ∼= C⊗A (C′ ⊗A C′′) is an isomorphism of A-module corings. So it follows
that the set of isomorphism classes of A-Galois coobjects, Gal(A), is a monoid under the
product induced by ⊗A. The neutral element is [A].

Theorem 10.2.7 For a commutative Hopf algebroid A we have a monomorphism of
monoids β : Gal(A) −→ Z1(A,Pic).

Proof. Let (C,∆C, εC) be an A-Galois coobject. Consider the map ∆̃ : C1 −→ C2 ⊗A(2)

C0 corresponding to ∆C : C −→ C ⊗S C. It follows from Lemma 10.2.4 that ∆̃ is an
isomorphism. Hence we may consider α : δ1(C) −→ A(2), as in Lemma 10.2.1, and from
there we conclude that (C, α) ∈ Z1(A,Pic). We define β[(C,∆C, εC)] = [(C, α)].
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Let us prove that β does not depend on the choice of a representative of a class in
Gal(A). Due to Remark 10.1.1, two A-module S-corings (C,∆C, εC) and (D,∆D, εD) are
isomorphic if there is an isomorphism of A-modules ϕ : C −→ D such that the following
diagram commutes:

C C⊗S C-∆C

D D⊗S D.-∆D
?

ϕ

?

ϕ⊗S ϕ

By the adjunction (F1,G1) this is equivalent to commutativity of the diagram

C1 C2 ⊗A(2) C0
-∆̃C

D1 D2 ⊗A(2) D0.-∆̃D
?

ϕ1

?

ϕ2 ⊗A(2) ϕ0

This, in turn, is equivalent to commutativity of the right square in the next diagram

A(2) C∗1 ⊗A(2) C1
-

coevC1

A(2) D∗1 ⊗A(2) D1
-

coevD1

?

=

?

(ϕ∗1)−1 ⊗A(2) ϕ1

C∗1 ⊗A(2) C2 ⊗A(2) C0
-

C∗1 ⊗A(2) ∆̃C

D∗1 ⊗A(2) D2 ⊗A(2) D0.-
D∗1 ⊗A(2) ∆̃D

?

(ϕ∗1)−1 ⊗A(2) ϕ2 ⊗A(2) ϕ0

(10.2.16)

The left square is automatically commutative. Commutativity of the outer diagram is
equivalent to αD ◦ δ1(ϕ) = αC. This means that [(C, αC)] = [(D, αD)], i.e. β is well-
defined.

For twoA-Galois coobjects (C,∆C, εC) and (D,∆D, εD), the comultiplication on C⊗AD
is constructed in such a way that the map ∆̃C⊗AD : (C⊗AD)1 −→ (C⊗AD)2⊗A(2) (C⊗AD)0

corresponding to ∆C⊗AD is ∆̃C⊗A(2) ∆̃D up to switch map identification. This implies that
β preserves the multiplication.

The map ∆̃A : A ⊗A ∆A(2) ∼= A(2) −→ A2 ⊗A(2) A0
∼= A(2) is the identity on A(2),

for a ⊗A ∆(1 ⊗S 1) = a(1) ⊗S a(2) 7→ (a(1) ⊗S 1) ⊗A(2) (1 ⊗S a(2)) ≡ a(1) ⊗S a(2), so
β[(A,∆A, εA)] = [(A,A(2))].

We finally show that β is injective. Assume that β[(C,∆C, εC)] = [(A,A(2))]. Then C
and A are isomorphic as A-modules, let f : A −→ C be an A-module isomorphism. By
assumption we have ∆̃−1

C ◦ δ1(f) = ∆̃−1
A = A(2). This means that ∆̃−1

C ◦ (f0⊗A(2) f−1
1 ⊗A(2)

f2) = A(2), or equivalently ∆̃−1
C ◦ (f0 ⊗A(2) f2) = f1, i.e. (f0 ⊗A(2) f2)∆̃A = f0 ⊗A(2) f2 =

∆̃C ◦ f1, since ∆̃A is the identity. By the adjunction (F1,G1) this is equivalent to saying
that f is compatible with comultiplications ∆C and ∆A. From (10.1.1) we obtain now
that f is compatible also with the counits εC and εA.
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Remark 10.2.8 A natural question to ask is whether β is surjective. Take (C, α) ∈
Z1(A,Pic), and consider the corresponding isomorphism ∆̃ : C1 −→ C2⊗A(2) C0, and then
the corresponding map ∆C : C −→ C ⊗S C. It follows from Lemma 10.2.1 that ∆C is
coassociative. The problem is that we have no counit εC. If we can construct a counit εC
on C, then (C,∆C, εC) is an A-Galois coobject: from Lemma 10.2.4 we would have that
can is bijective, and being an invertible A-module, C is faithfully flat over it. Then clearly
β[(C,∆C, εC)] = [(C, α)].

We will discuss some sufficient conditions for the existence of a counit εC on C in
Propositions 10.2.10, 10.2.14 and 10.3.6. In general, we have the weaker property that
the comultiplication ∆C is cofirm. Let ∆C : C −→ C ⊗S C be a coassociative A-module
map. Then we can consider the cotensor product C2CC = Ker(∆C ⊗S C− C⊗S ∆C), i.e.,
the equalizer

1 - C2CC C⊗S C-e -∆⊗ C
C⊗S C⊗S C.-

C⊗S ∆

Because of the coassociativity, ∆C factors through C2CC. We say that ∆C is a cofirm
comultiplication if the induced map ∆C : C −→ C2CC is an isomorphism, and then (C,∆C)
is called a cofirm A-module S-coring. Obviously, corings with a counit are cofirm.

Proposition 10.2.9 Take (C, α) ∈ Z1(A,Pic). The comultiplication ∆C : C −→ C ⊗S C
constructed above is cofirm.

Proof. Let us show first that ∆C is surjective. Take
∑

i ci ⊗S c′i ∈ C2CC. From the fact
that ∆̃C is surjective, it follows that there exists

∑
j dj ⊗A (aj ⊗S bj) ∈ C ⊗A ∆A(2) such

that ∑
i

ci ⊗S c′i = ∆̃
(∑

j

dj ⊗A (aj ⊗S bj)
)

=
∑
j

dj(1)aj ⊗S dj(2)bj

in C⊗S C. Since ∆̃C is an isomorphism, the map

∆̃2
C = (∆̃C ⊗S C) ◦ (∆̃C ⊗A(2) A(3)) : C⊗A ∆2A(3) = (C⊗A ∆A(2))⊗A(2) ∆⊗SAA(3)

−→ (C⊗S C)⊗A(2) ∆⊗SAA(3) = (C⊗A ∆A(2))⊗S C
−→ C⊗S C⊗S C

is an isomorphism, too. We easily compute

∆̃2
C(c⊗A (a⊗S a′ ⊗S a′′)) = c(1)a⊗S c(2)a

′ ⊗S c(3)a
′′.

From the fact that
∑

i ci ⊗S c′i ∈ C2CC, it follows that∑
j

dj(1)aj(1) ⊗S dj(2)aj(2) ⊗S dj(3)bj =
∑
j

dj(1)aj ⊗S dj(2)bj(1) ⊗S dj(3)bj(2),

or
∆̃2

C

(∑
j

dj ⊗A (aj(1) ⊗S aj(2) ⊗S bj)
)

= ∆̃2
C

(∑
j

dj ⊗A (aj ⊗S bj(1) ⊗S bj(2))
)
,
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and, since ∆̃2
C is bijective:∑

j

dj ⊗A (aj(1) ⊗S aj(2) ⊗S bj) =
∑
j

dj ⊗A (aj ⊗S bj(1) ⊗S bj(2)). (10.2.17)

The map A⊗S A⊗S ε : ∆2A(3) −→ ∆A(2) is left A-linear. Indeed,

(A⊗S A⊗S ε)(b(a⊗S a′ ⊗S a′′)) = (A⊗S A⊗S ε)(b(1)a⊗S b(2)a
′ ⊗S b(3)a

′′)

= b(1)a⊗S b(2)a
′(τ ◦ ε)(b(3)a

′′) = b(1)a⊗S b(2)a
′(τ ◦ ε)(a′′)

= b
(
(A⊗S A⊗S ε)(a⊗S a′ ⊗S a′′)

)
.

Now apply C⊗A (A⊗S A⊗S ε) to both sides of (10.2.17). We then obtain∑
j

djaj(τ ◦ ε)(bj)⊗A (1⊗S 1) =
∑
j

dj ⊗A ∆(aj)(τ ◦ ε)(bj) =
∑
j

dj ⊗A (aj ⊗S bj)

hence ∑
i

ci ⊗S c′i = ∆̃C(
∑
j

djaj(τ ◦ ε)(bj)⊗A (1⊗S 1)) = ∆C(
∑
j

djaj(τ ◦ ε)(bj))

in C2SC, as ∆̃C(c ⊗A (1 ⊗S 1)) = c(1) ⊗S c(2) = ∆C(c) ∈ C2SC for every c ∈ C. This
shows that ∆C is surjective. To show that ∆C (and, a fortiori, ∆C) is injective, we argue
as follows. Since C is invertible as an A-module, it is also flat as an A-module. ∆A : A
−→ A(2) is injective, since A has a counit. Therefore

C⊗A ∆A : C⊗A A ∼= C −→ C⊗A ∆A(2)

is injective. If ∆C(c) = 0, then

∆̃C((C⊗A ∆A)(c)) = ∆̃C(c⊗A (1⊗S 1)) = ∆C(c) = 0,

hence (C⊗A ∆A)(c) = 0, as ∆̃C is an isomorphism, and then it follows c = 0.

In Propositions 10.2.10, 10.2.14 and 10.3.6 we will give examples of elements in
Z1(A,Pic) that lie in the image of β. Recall from Remark 10.2.8 that (C, α) ∈ Z1(A,Pic)
lies in the image of β if we find a counit for C.

In the proof of Theorem 9.3.5 we have seen that we have a map

α̃2 : Z2(A,Gm) −→ Z1(A,Pic), u 7→ (A,m(u)).

Proposition 10.2.10 Take u ∈ Z2(A,Gm). Then α̃2(u) ∈ Im (β).
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Proof. We are going to prove that β([A,∆u, εu]) = [(A,m(u))], where ∆u and εu are a
comultiplication and a counit on A twisted in some way by u. Write u = u1 ⊗S u2 =
U1 ⊗S U2, and u−1 = v1 ⊗S v2 = V 1 ⊗S V 2. From the fact that uu−1 = 1A(2) , it follows
u1(τ ◦ ε)(u2)v1(τ ◦ ε)(v2) = 1A and (σ ◦ ε)(u1)u2(σ ◦ ε)(v1)v2 = 1A.

As we have seen in the proof of Theorem 10.2.7, the corresponding map ∆̃u of the
still to be computed comultiplication ∆u on A is a map A(2) −→ A(2), and clearly so is
m(u). Setting m(u) = ∆̃−1

u yields ∆̃u(1 ⊗S 1) = v1 ⊗S v2. From (10.2.14) we obtain
v1 ⊗S v2 = ∆̃u(1 ⊗S 1) ≡ ∆̃u(1 ⊗A (1 ⊗S 1)) = 1(1) ⊗S 1(2), hence ∆u(1) = v1 ⊗S v2

and ∆u(a) = a(1)v
1 ⊗S a(2)v

2 for a ∈ A. We know from Lemma 10.2.1 that ∆u is a
comultiplication on A. We are done if we can show that this comultiplication has a
counit. We apply A⊗S ε⊗S ε to the 2-cocycle relation

(1A ⊗S u1 ⊗S u2)(∆(v1)⊗S v2)(U1 ⊗S ∆(U2))(V 1 ⊗S V 2 ⊗S 1A)

= 1A ⊗S 1A ⊗S 1A (10.2.18)

to obtain

1A = (τ ◦ ε)(u1u2)v1(τ ◦ ε)(v2)U1(τ ◦ ε)(U2)V 1(τ ◦ ε)(V 2) = (τ ◦ ε)(u1u2v2)v1.

Applying ε⊗S ε⊗S A to (10.2.18), we find, in a similar way

(σ ◦ ε)(u1v1v2)u2 = 1A,

and from here, replacing u by u−1,

(σ ◦ ε)(v1u1u2)v2 = 1A.

Now the map

εu : A −→ S, εu(a) = ε(u1u2a) (10.2.19)

is a counit. Indeed,

((εu ⊗S A) ◦∆u)(a) = (εu ⊗S A)(a(1)v
1 ⊗S a(2)v

2) = (σ ◦ ε)(u1u2a(1)v
1)a(2)v

2 = a;

((A⊗S εu) ◦∆u)(a) = (A⊗S εu)(a(1)v
1 ⊗S a(2)v

2) = a(1)v
1(τ ◦ ε)(u1u2a(2)v

2) = a.

In the sequel we will adopt the following notation: Au = (A,∆u, εu).
As an application of Proposition 10.2.10, we will show that Gal(A) is an abelian group.

Let C be an A-Galois coobject. Recall from page 213 that we have a well-defined map

T : C⊗S C −→ CS ⊗S CS, T (c⊗S d) = d⊗S c

and that the co-opposite coring Ccop
S := (Ccop,∆cop, εC) of C is an A-module coring with

σC
cop
τ
∼= τCσ as S-bimodules.
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Proposition 10.2.11 If C = (C,∆C, εC) is an A-Galois coobject, then Ccop
S is also an

A-Galois coobject.

Proof. We have that CS is faithfully flat as an A-module, since S is bijective and C is
faithfully flat as an A-module. Finally

canS : Ccop
S ⊗S A −→ Ccop

S ⊗S C
cop
S , canS(c⊗S a) = c(2) ⊗S c(1)a

is bijective, since canS = T ◦ can′ ◦ g, with

g : Ccop
S ⊗S A −→ A⊗S C, g(c⊗S a) = S(a)⊗S c,

and g, T and can′ are bijective (see the observation preceding Lemma 10.1.7).

Theorem 10.2.12 For a commutative Hopf algebroid A the monoid Gal(A) is an abelian
group.

Proof. Let C be an A-Galois coobject. We have seen in Proposition 10.1.14 that CS⊗AC ∼=
A as A-modules. We transport the comultiplication on CS ⊗A C to a comultiplication ∆′

on A. Let v = v1 ⊗S v2 = ∆′(1A). From Proposition 10.2.11, Proposition 10.2.5 and
Lemma 10.2.4 we obtain that the corresponding map ∆̃ for CS ⊗A C is an isomorphism.
From the adjunction (F1,G1) and the definition of ∆̃′ we then get that ∆̃′ is an isomor-
phism, too. We note that it is given by m(v), hence v is invertible. From the fact that ∆′

is right A-linear, it follows that ∆′(a) = v∆A(a), for all a ∈ A. Since ∆′ is coassociative,
we have ∆′(v1)⊗S v2 = v1 ⊗S ∆′(v2), which is v∆A(v1)⊗S v2 = v1 ⊗S v∆A(v2), meaning
that v is a 2-cocycle. Then ∆′ = ∆u with u = v−1 and CS ⊗A C ∼= Au as A-module
corings. Now clearly CS ⊗A C⊗A Av ∼= Au ⊗A Av ∼= A as A-module corings.

We say that a Galois coobject C has normal basis if C ∼= A as a right A-module. Let
Galnb(A) be the subset of Gal(A) consisting of isomorphism classes of Galois coobjects
with a normal basis. The following result can be viewed as the normal basis theorem for
a commutative Hopf algebroid.

Proposition 10.2.13 Galnb(A) is a subgroup of Gal(A), and is isomorphic to H2(A,Gm).

Proof. It is clear that the tensor product C⊗AC′ of two Galois coobjects with normal basis
has the normal basis property. Let C be a Galois coobject with normal basis. Identify
C and A as right A-modules, and consider ∆C(1) = u ∈ Gm(A(2)). It is straightforward
to show that u ∈ Z2(A,Gm), and that C ∼= Au as A-module corings. This shows that
the map f : Z2(A,Gm) −→ Galnb(A), f(u) = Au is surjective. It is a multiplicative
map, since the canonical isomorphism A⊗AA ∼= A defines an isomorphism of A-module
corings Au⊗AAv ∼= Auv, for all u, v ∈ Z2(A,Gm). A straightforward computation shows
that Ker(f) = B2(A,Gm).
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Take J,K ∈ Pic(S). For elementary A-Galois coobjects determined by J and K we
find

A(J)⊗A A(K) = (J ⊗S A⊗S J∗)⊗A (K ⊗S A⊗S K∗)
= (J ⊗S A⊗S J∗)⊗S⊗SA⊗SS (K ⊗S A⊗S K∗) ∼= J ⊗S K ⊗S A⊗S J∗ ⊗S K∗
∼= A(J ⊗S K)

via the well-defined isomorphism of A-module corings

f((m⊗S a⊗S m∗)⊗A (n⊗S b⊗S n∗) = m⊗S n⊗S ab⊗S m∗ ⊗S n∗

with m ∈ J,m∗ ∈ J∗, n ∈ K,n∗ ∈ K∗ and a, b ∈ A. Hence the set of isomorphism
classes of elementary A-Galois coobjects forms a subgroup of Gal(A). Let us denote it
by Galel(A).

Proposition 10.2.14 The map β restricts to an isomorphism Galel(A) ∼= B1(A,Pic).
Consequently, B1(A,Pic) ⊂ Im (β).

Proof. We will show that β(A(J)) ∼= d0(J), for all J ∈ Pic(S). First observe that

δ0(J) = (J ⊗S A)⊗A (A⊗S J∗) ∼= J ⊗S A⊗S J∗ = A(J).

Now
A(J)1 = J ⊗S (A⊗A(2) ∆A(2))⊗S J∗ ∼= J ⊗S A(2) ⊗S J∗

and

A(J)2 ⊗A(2) A(J)0 = (J ⊗S A⊗S J∗ ⊗S A)⊗A(2) (A⊗S J ⊗S A⊗S J∗)
∼= J ⊗S A⊗S J∗ ⊗S J ⊗S A⊗S J∗ ∼= J ⊗S A(2) ⊗S J∗.

The map ∆̃ : A(J)1 −→ A(J)2 ⊗A(2) A(J)0 corresponding to ∆ is the identity on J ⊗S
A(2) ⊗S J∗ up to the duality identification (it involves coevJ) and its inverse is equal to
λJ , up to the duality identification. This proves that β(A(J)) = (δ0(J), λJ) = d0(J).

10.3 Base extension for commutative bialgebroids

In this section A is a faithfully flat commutative Hopf algebroid over S. Let T/S be
a faithfully flat commutative ring extension, and consider the commutative ring AT :=
T ⊗S A⊗S T . We then have ring homomorphisms σT , τT : T −→ AT given by

σT (t) = t⊗S 1A ⊗S 1T and τT (t) = 1T ⊗S 1A ⊗S t.

Consider the maps

∆T : AT −→ AT ⊗T AT ∼= T ⊗S A⊗S T ⊗S A⊗S T ;
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εT : AT −→ T and ST : AT −→ AT
given by the formulas

∆T (t⊗S a⊗S t′) = t⊗S a(1) ⊗S 1T ⊗S a(2) ⊗S t′;

εT (t⊗S a⊗S t′) = ε(a)tt′ and ST (t⊗S a⊗S t′) = t′ ⊗S S(a)⊗S t.

Lemma 10.3.1 (AT , T, σT , τT ,∆T , εT ,ST ) is a commutative Hopf algebroid.

Proof. The maps ∆T and εT are clearly T -bilinear and (AT ,∆T , εT ) is a T -coring. It is
also clear that ST is a T -bimodule anti-homomorphism. Let us verify (9.2.9):

ST (t⊗S a(1) ⊗S 1T )(1T ⊗S a(2) ⊗S t′)
= (1T ⊗S S(a(1))⊗S t)(1T ⊗S a(2) ⊗S t′)
= 1T ⊗S S(a(1))a(2) ⊗S tt′ = 1T ⊗S (τ ◦ ε)(a)⊗S tt′

= 1T ⊗S 1A ⊗S ε(a)tt′ = (τT ◦ εT )(t⊗S a⊗S t′).

The other identity for ST is proved similarly.

Lemma 10.3.2 Let C be an A-module coring. Then CT := T ⊗S C⊗S T is an AT -module
coring. If C is an A-Galois coobject, then CT is an AT -Galois coobject.

Proof. CT becomes an AT -module in the following way:

(t⊗S c⊗S t′)(u⊗S a⊗S u′) = tu⊗S ca⊗S t′u′.

The comultiplication and counit on CT are defined in a similar way as the comultiplication
and counit on AT . Being comultiplication and counit on C right A-linear, so are the
respective maps for CT . Suppose C is an A-Galois coobject. Then it is faithfully flat over
S. Hence CT is faithfully flat over T ⊗S S ⊗S T ∼= T ⊗S T . Since T/S is faithfully flat,
then so is T ⊗S T/T , and by transitivity of faithful flatness we obtain that CT is faithfully
flat as a left T -module. Observe that CT ⊗T AT = (T ⊗S C ⊗S T ) ⊗T (T ⊗S A ⊗S T ) ∼=
T⊗SC⊗ST⊗SA⊗ST and CT⊗TCT = (T⊗SC⊗ST )⊗T (T⊗SC⊗ST ) ∼= T⊗SC⊗ST⊗SC⊗ST .
The map

canT : T ⊗S C⊗S T ⊗S A⊗S T −→ T ⊗S C⊗S T ⊗S C⊗S T
is given by the formula

canT (t⊗S c⊗S t′ ⊗S a⊗S t′′) = t⊗S c(1) ⊗S t′′ ⊗S c(2)S(a)⊗S t′.

It is clear that canT is an isomorphism if can is an isomorphism. This proves that CT is
an AT -Galois coobject.

Proposition 10.3.3 The map Gal(A) −→ Gal(AT ) mapping [C] to [CT ] is a group homo-
morphism.



242 10. The group of Galois coobjects

Proof. We have an isomorphism

CT ⊗AT DT = (T ⊗S C⊗S T )⊗T⊗SA⊗ST (T ⊗SD⊗S T ) ∼= T ⊗S (C⊗AD)⊗S T = (C⊗AD)T

of AT -module corings.

Now observe that

A(n)
T
∼= T ⊗S A⊗S T ⊗S A⊗S T ⊗S · · · ⊗S A⊗S T.

We have morphisms of commutative rings rn : A(n) −→ A(n)
T given by

rn(a1 ⊗S · · · ⊗S an) = 1T ⊗S a1 ⊗S 1T ⊗S · · · ⊗S 1T ⊗S an ⊗S 1T

for ai ∈ A, i = 1, . . . , n. From the definition of σT , τT and ∆T , it follows easily that

rn+1 ◦ eni = eni,T ◦ rn : A(n)
T −→ A

(n+1)
T .

Here we use the notation introduced in Section 9.3. The map eni,T : A(n)
T −→ A(n+1)

T

is defined as eni , but with A and S replaced by AT and T . Let P be a functor from

the category of commutative rings to that of abelian groups. With δn,T : Pic(A(n)
T )

−→ Pic(A(n+1)
T ) defined analogously as δn, we find

δn,T ◦ P (rn) =
n+1∑
i=0

(−1)iP (eni,T ◦ rn) =
n+1∑
i=0

(−1)iP (rn+1 ◦ eni ) = P (rn+1) ◦ δn.

This proves the following:

Proposition 10.3.4 The maps rn define a morphism of complexes r• : C•(A, P ) −→
C•(AT , P ). As a consequence, we have group homomorphisms Zn(A, P ) −→ Zn(AT , P ),
Bn(A, P ) −→ Bn(AT , P ) and Hn(A, P ) −→ Hn(AT , P ).

We have a similar statement for cohomology with values in the category of invertible
modules.

Proposition 10.3.5 We have group homomorphisms Hn(A,Pic) −→ Hn(AT ,Pic).

Proof. The map rn induces a functor Rn : Pic(A(n)) −→ Pic(A(n)
T ). Then we have a

natural isomorphism of functors

Rn+1 ◦ En
i
∼= En

i,T ◦Rn

with En
i,T : Pic(A(n)

T ) −→ Pic(A(n+1)
T ), and consequently,

Rn+1 ◦ δn = δn,T ◦Rn.
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Then we proceed as in Proposition 10.3.4. An alternative proof can be given by writing
down the exact sequence (9.3.21) for A and AT . By Proposition 10.3.4, we have group
morphisms Hn(A,Gm) −→ Hn(AT ,Gm) and Hn(A,Pic) −→ Hn(AT ,Pic). By the five
lemma, we then have morphisms Hn(A,Pic) −→ Hn(AT ,Pic).

The map

ε
(n)
A : A(n) −→ S, ε

(n)
A (a1 ⊗S · · · ⊗S an) = εA(a1) · · · εA(an)

is an algebra map; consider the corresponding induction functor

Fn : MA(n) −→MS, Fn(M) = M ⊗A(n)
ε
(n)
A
S.

It is monoidal, since

Fn(M)⊗S Fn(N) = (M ⊗A(n) S)⊗S (N ⊗A(n) S)

= (M ⊗A(n) S)⊗A(n)⊗A(n)S
(N ⊗A(n) S) = (M ⊗A(n) N)⊗A(n) S = Fn(M ⊗A(n) N).

Let (MA(n))T denote the category with objectsMT := T⊗SFn(M)⊗ST forM ∈MA(n)

and morphisms T ⊗S Fn(f)⊗S T for morphisms f in MA(n) . We define a functor

Fn,T : (MA(n))T −→MT by Fn,T (MT ) = ∇̃T (T ⊗S Fn(M)⊗S T )

for M ∈ MA(n) and similarly for morphisms, where ∇̃T is the multiplication on T up to
the flip map.

Proposition 10.3.6 Let (C, α) ∈ Z1(A,Pic). If there exists a faithfully flat extension T
of S such that CT ∼= AT as AT -modules, then (C, α) ∈ Im (β).

Proof. Observe that

F2(Ci) = C⊗A e1i
(A⊗S A)⊗A⊗SA ε

(2)
A
S ∼= C⊗A εAS = F1(C),

since ε
(2)
A ◦ e1

i = εA, for i = 0, 1, 2. This implies that we have an isomorphism

F2(α) : F2(δ1(C)) ∼= F2(C2)⊗S F2(C∗1)⊗S F2(C0)
∼= F1(C)⊗S F1(C∗)⊗S F1(C) ∼= F1(C) −→ F2(A(2)) = S.

Let π : C −→ F1(C), π(c) = c⊗A 1S be the canonical epimorphism, and consider the map
εC = F2(α) ◦ π : C −→ S.

In the situation where C = Au, with u ∈ Z2(A,Gm), we have εC = εu, the counit of
Au given by (10.2.19). Indeed, in this situation α = m(u), and we easily compute that
F2(α) : A(2) ⊗A(2)

ε
(2)
A
S ∼= S −→ A(2) ⊗A(2)

ε
(2)
A
S ∼= S is given by

F2(α)(s) = F2(α)((1A ⊗S 1A)⊗A(2) s) = (u1 ⊗S u2)⊗A(2) s = εA(u1u2)s.
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Now for a ∈ Au we get εAu(a) = F2(α) ◦ π(a) = F2(α)(a ⊗A 1S) = F2(α)(εA(a)) =
εA(u1u2)εA(a) = εu(a).

If T is a faithfully flat extension of S such that there is an AT -module isomorphism
ϕ : CT −→ AT , then CT , viewed as an AT -module coring, has normal basis, hence CT =
(AT )ũ for some cocycle ũ ∈ Z2(AT ,Gm). Since ϕ is AT -linear, we have ϕ = T ⊗S ϕ⊗S T
for some A-linear map ϕ : C −→ A, and ũ = 1T ⊗S u⊗S 1T for some u ∈ Z2(A,Gm). Then
CT inherits a counit given by ∇̃T (T ⊗S εu ⊗S T ) ◦ ϕ : CT −→ T .

We define πCT := T ⊗S πC ⊗S T : CT −→ F1,T (CT ) and

εCT := (F2,T (αCT ) ◦ πCT ) : CT −→ F1,T (CT ) −→ T.

We will show now that the from (Au)T inherited counit on CT equals εCT . In Dia-
gram (10.2.16) in the proof of Theorem 10.2.7 replace C by CT and D by (AT )u. Then
the outer diagram in Diagram (10.2.16) yields α(AT )u ◦ δ1(ϕ) = αCT . We apply to this
equation the functor F2,T to get F2,T (α(AT )u) ◦ F1(ϕ) = F2,T (αCT ). This, together with
the fact that π is obviously a natural transformation implies that the two trapezes in the
diagram

CT F1(CT )-
πCT T-

F2,T (αCT )

F1((AT )u)
?

F1(ϕ)

(AT )u -

∇̃T (T ⊗S εu ⊗S T )

HHH
HHHj

F2,T (α(AT )u)

�
��
�
��*

π(AT )u

T
?

=

?

ϕ

commute. The lower triangle also commutes, since by the previously discussed case for
Au, we have εu = F2(Au) ◦ π : Au −→ F1(Au) and hence

∇̃T (T ⊗S εu ⊗S T ) = ∇̃T (T ⊗S F2(Au)⊗S T ) ◦ (T ⊗S π ⊗S T ) = F2,T (α(AT )u)π(AT )u .

The commutativity of the outer diagram now proves that our candidate for the counit,
εCT , is the counit ∇̃T (T ⊗S εu⊗S T ) ◦ϕ, indeed. From the counit property of this map on
CT and faithful flatness of T/S one deduces that εu = F2(αC) ◦πC is the counit on C.

Corollary 10.3.7 Let (C, α) ∈ Z1(A,Pic). If there exists a faithfully flat extension T of

S such that (CT ,∆T ) ∈ B1(AT ,Pic), then (C, α) ∈ Im β.

Proof. Assume that CT ∼= J∗⊗T (T ⊗SA⊗S T )⊗T J as AT -modules, for some J ∈ Pic(T ).
Take a faithfully flat extension U of T such that J ⊗T U ∼= U as an U -module, see
Corollary 9.1.3. Then

CU ∼= (CT )U ∼= U ⊗T J∗ ⊗T T ⊗S A⊗S T ⊗T J ⊗T U
∼= U ⊗T T ⊗S A⊗S T ⊗T U ∼= (AT )U ∼= AU

as AU -modules and it follows from Proposition 10.3.6 that (C, α) ∈ Im β.
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Corollary 10.3.8 Let A be a commutative Hopf algebroid faithfully projective as an S-
module. Then β : Gal(A) −→ Z1(A,Pic) is an isomorphism.

Proof. Take (C, α) ∈ Z1(A,Pic). Let p be a prime ideal of S, and let Sp be the localization
of S at p. Since A is projective of finite rank as an S-module, A⊗SSp as a finite extension
of the local ring Sp is a semilocal ring. Because of this, and since C ∈ Pic(A), we get that
C⊗S Sp is free of rank one as an A⊗S Sp-module. Similarly as in Lemma 9.1.1, one shows
that there exists f(p) ∈ S \p such that C⊗S S(f(p)) is free (of rank one) as an A⊗S S(f(p))-
module. Thus C⊗SS(f(p))

∼= A⊗SS(f(p)) asA⊗SS(f(p))-modules for every prime ideal p of S.
Now, as in (9.1.1) we have that T = S(f(p1))×· · ·×S(f(pk)) is a faithfully flat extension of S.
Then C⊗ST ∼= (C⊗SS(f(q1)))×· · ·×(C⊗SS(f(qk))) ∼= (A⊗SS(f(q1)))×· · ·×(A⊗SS(f(qk))) ∼=
A⊗S T as A⊗S T -modules. This further implies CT = T ⊗S C⊗S T ∼= T ⊗SA⊗S T = AT
as AT -modules, and we obtain from Proposition 10.3.6 that (C, α) ∈ Im β.

In terms of Proposition 10.2.14 we obtain:

Corollary 10.3.9 Assume A is flat as a left S-module. Then we have a group monomor-
phism

β : Gal(A)/Galel(A) −→ H1(A,Pic).

If A is faithfully projective as a left S-module, then β is an isomorphism.

This gives an interpretation of the middle factor in the second level of Sequence (9.3.21)
of Theorem 9.3.5 in terms of Galois coobjects over a commutative bialgebroid A.

10.4 Some special cases

In this final section we will study some special cases that one gets from Sequence (9.3.21)
and Corollary 10.3.9. In particular, we recover Corollary 8.1.9 for corings. We also relate
Sequence (9.3.21) with that of Section 4.5 for the category of R-modules.

Let S be a faithfully flat commutative R-algebra and consider the commutative Hopf
algebroid A = S ⊗R S from Example 9.2.6. We have

A(n) ∼= S⊗
n+1
R .

Bearing in mind that the comultiplication on S⊗RS is given by ∆(s⊗s) = (s⊗1)⊗S (1⊗t)
for all s, t ∈ S, we get that

eni : S⊗
n+1
R −→ S⊗

n+2
R , eni (s1 ⊗ · · · ⊗ sn+1) = s1 ⊗ · · · ⊗ 1S ⊗ · · · ⊗ sn+1,

for i = 0, · · · , n+ 1, where 1S appears in tensor position i+ 1. So the complex (9.3.14) is
now the Amitsur complex from Section 7.1 and the Harrison cohomology groups of S⊗RS
with values in P coincide with the Amitsur cohomology groups:

Hn(S ⊗R S, P ) = Hn(S/R, P ).
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From the Faithfully Flat Descent Theorem , [33, Proposition 2.5], we have that the ca-
tegories MR and MS⊗RS are equivalent. The equivalence is strongly monoidal, and this
implies

Pic(R) ∼= PicS⊗RS(S) ∼= H0(S ⊗R S,Pic). (10.4.20)

The second isomorphism follows from Theorem 9.4.7. Now it is clear that our Sequence
(9.3.21) with A = S ⊗R S recovers the Villamayor-Zelinsky sequence (7.1.3).

An S ⊗R S-module coring is an S-coring C satisfying the additional property that
xc = cx, for all c ∈ C and x ∈ R. This is an S/R-coring by Section 8.1. The map
can : C⊗S (S⊗RS) −→ C⊗SC from (10.1.4) is given by can(c⊗S (a⊗b)) = c(1)⊗S c(2)(b⊗a)
for all c ∈ C and a, b ∈ S, and it can be rewritten as can : C⊗R S −→ C⊗S C, can(c⊗ b) =
c(1) ⊗S bc(2). Note that the isomorphism (10.2.13) generalizes that of Lemma 7.4.1, and
that Lemma 10.2.1 generalizes Lemma 8.1.1 for corings.

Proposition 10.4.1 C is an Azumaya S/R-coring if and only if C is an S ⊗R S-Galois
coobject.

Proof. Let C be an S ⊗R S-Galois coobject. Then it is an S/R-coring which is faithfully
flat as a left S-module and for which the map can : C⊗R S −→ C⊗S C is an isomorphism.
By Lemma 10.2.4 then ∆̃ is an isomorphism as well. Moreover, C ∈ Pic(S ⊗R S), see
Proposition 10.1.14, hence it is faithfully projective as an S ⊗R S-module. This proves
that C is an Azumaya S/R-coring in the sense of Theorem 8.1.4, 1).

Conversely, let C be an Azumaya S/R-coring. Then ∆̃ is an isomorphism, Theo-
rem 8.1.4, and so is can (Lemma 10.2.4). Furthermore, C is faithfully projective over
S ⊗R S, and S/R is faithfully flat, hence S ⊗R S/S is faithfully flat. This implies that C
is faithfully flat as a left S-module. Now from Theorem 10.1.10, 3) we obtain that C is
an S ⊗R S-Galois coobject.

Take I ∈ Pic(S). We find for an elementary S ⊗R S-Galois coobject (S ⊗R S)(I) =
I ⊗S S ⊗R S ⊗S I∗ ∼= I∗ ⊗R I. From all the above we may write

Galel(S ⊗R S) = Canc(S/R), Gal(S ⊗R S) = K0Azc(S/R),

Gal(S ⊗R S)/Galel(S ⊗R S) = Brc(S/R).

In Corollary 8.1.9 we have showed that Brc(S/R) ∼= H1(S⊗RS,Pic). If we substitute this
and the isomorphisms (10.4.20) into the exact sequence (9.3.21) forA = S⊗RS, we recover
Sequence (8.1.6). If S is faithfully projective as an R-module, then Brc(S/R) ∼= Br(S/R),
and we get the Chase-Rosenberg exact Sequence (7.2.4).

Note that an S ⊗R S-Galois coobject with normal basis is an Azumaya coring with
normal basis. Then Proposition 10.2.13 reclaims the Normal Basis Theorem for Azumaya
corings, Aznb(S/R) ∼= H2(S/R,Gm) from Theorem 8.3.1.

Let us now consider the case A = H where H is a commutative Hopf algebra over a
commutative ring S with an antipode S. In Example 9.2.5 we discussed its structure of
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an S-bialgebroid. Then

R := ScoH = {s ∈ S | σ(s) = τ(s)} = S.

In this situation, Harrison cohomology with values in Gm was considered in [43]. Observe
that e0

0 = τ = σ = e0
1, so Z0(H,P ) = 1, for every covariant functor P from the category

of commutative rings to that of abelian groups. From Theorem 9.3.5 we get

H1(H,Gm) ∼= H0(H,Pic).

Take J ∈ Pic(S). Then H(J) = J ⊗R H ⊗R J∗ ∼= H, hence Galel(H) = {[H]} is trivial.
In a similar way, we find that B1(H,Pic) = 1, and

H1(H,Pic) = Z1(H,Pic).

Observe that an H-module coring is nothing but an H-module coalgebra, since σ = τ .
An H-Galois coobject is then a right H-module coalgebra C which is faithfully flat as a
left R-module and for which the map can : C ⊗R H −→ C ⊗R C given by can(c ⊗ h) =
c(1) ⊗ c(2)S(h) is an isomorphism. We have that Ccop is a left H-module coalgebra, with
left H-action given by

h · c = cS(h).

The map can : C ⊗R H −→ C ⊗R C is given by the formula

can(c ⊗ h) = c(1 ) ⊗ c(2 )S(h) = c(1 ) ⊗ h · c(2 )

Let T be the switch map. The map δ = T ◦ can ◦ T : H ⊗R C −→ C ⊗R C is then given
by

δ(h⊗ c) = h · c(2) ⊗ c(1).

δ is precisely the map considered in [28, Theorem 8.7.6] (with C replaced by Ccop).
Comparing Theorem 10.1.10 to [28, Theorem 8.7.4], we see that C is an H-Galois coobject
in our sense if and only if Ccop is an H-Galois coobject in the sense of [28, Sec. 8.7].

From now on, assume that H is finitely generated and projective as an R-module.
Then

Gal(H) ∼= Z1(H,Pic) = H1(H,Pic),

by Corollary 10.3.9. Since H is commutative, H∗ is a cocommutative Hopf algebra, and
Harrison cohomology for H is isomorphic to Sweedler cohomology for H∗:

Hn(H,P ) ∼= Hn
Sw(H∗, P ), Hn(H,Pic) ∼= Hn

Sw(H∗,Pic),

see for example [28, Prop. 9.2.3]. As we pointed out in Section 4.1, where we studied
Sweedler cohomology in a braided monoidal category, Sweedler cohomology was originally
introduced by Sweedler in [126], see also [28, Sec. 9.1].

Let J be a (cocommutative) Hopf algebra over R, and A a right J-comodule algebra.
Recall from [28, Theorem 8.7.6] that A is called a J-Galois object if A is faithfully flat as an
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R-module and the map γ : A⊗R A −→ A⊗R J , γ(a⊗ b) = ab[0] ⊗ b[1] is an isomorphism.
If J is finitely generated and projective, then every J-Galois object A is also finitely
generated and projective (see [42] or [28, Theorem 8.3.1]; note that we generalized this
result to braided monoidal categories in Proposition 5.2.5). The set of isomorphism classes
of J-Galois objects forms an abelian group under the operation induced by the cotensor
product over J . Following [58], we will denote this group by A(J) in order to avoid the
confusion in notation we used in Chapter 10 and Chapters 3–6 (A(J) was denoted by
Gal(MR; J) in the first part of the thesis, where MR is the category of R-modules).

Let C be an H-Galois coobject (in the sense of [28, Sec. 8.7]). Then C is faithfully
flat as an R-module, and C∗ is a left H∗-module algebra. Duality arguments imply
immediately that γ = δ∗, so C∗ is an H∗-Galois object. In a similar way, if A is an
H∗-Galois object, then A∗ is an H-Galois coobject. We can conclude that

A(H∗) ∼= Gal(H).

Writting out Sequence (9.3.21) with A = H∗ we realize that our sequence generalizes
and continues the Early-Kreimer sequence

1 −→ H2(H∗,Gm) −→ A(H) −→ H1(H∗,Pic) −→ H3(H∗,Gm)

from [58, Theorem 3.3]. Note that this is a longer version of

1 −→ H2(H∗,Gm) −→ A(H) −→ Pic(H∗)

constructed in [46, 102]. Taking into account the duality between the Harrison and
Sweedler cohomology, we see that the above sequence is the one we studied in Section 4.5
for the category of R-modules. Thus our Sequence (9.3.21) for A = H∗ is an infinite
version of the above ones.

Theorem 10.4.2 Let J be a cocommutative finitely generated Hopf algebra over R. Then
we have an exact sequence

0 −→ H1
Sw(J,Gm) −→ H0

Sw(J,Pic) −→ H0
Sw(J,Pic) = 1

−→ H2
Sw(J,Gm) −→ A(J) −→ H1

Sw(J,Pic)

−→ H2
Sw(J,Gm) . . .

Observe that H-Galois objects with normal basis from A(H) are H∗-Galois coobjects
with normal basis in Gal(H∗). Thus with A = H∗ we have that Proposition 10.2.13
recovers the Normal Basis Theorem stated in Proposition 4.3.3 for the category of R-
modules.
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[18] G. Böhm, Doi-Hopf modules over weak Hopf algebras, Comm. Algebra 28/10 (2000),
4687?4698.
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