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Abstract
This thesis presents the definition of the Synapse protocol — a meta protocol
for connecting heterogeneous overlay networks; its formal specification together
with the specification of the already existing overlay network protocol Chord;
a proof of the correctness of the Chord protocol using the ASM formalism; a
refined version of this proof that makes use of a novel inference procedure for
dealing with a time flow isomorphic to ω2 and finely granulated ASM rules; a
probabilistic assessment of the properties of the Synapse protocol; an updated
version of the proposal of metadata schemata for describing digitized objects and
collections for cultural and scientific heritage of Serbia; and an implementation
of a catalog of digitized collections based on the Chord protocol.

Overlay networks — a class of P2P systems — are structures that provide
an organizational overview of the resources from a logical standpoint. They are
fully independent of the underlying network and the connections between devices
on the physical level. Overlay networks have been identified as a promising
model that could cope with the current issues of the Internet, such as scalability,
resource discovery, failure recovery, routing efficiency, and, in particular, in the
context of information retrieval.

The structure of this thesis is as follows: first, an overview of the Chord pro-
tocol, the ASM formalism, and the state-of-the-art in the digitization practices
are presented. This is followed by the description of the Chord protocol using
the ASM formalism, and the proof of the correctness of the Chord protocol us-
ing high-level rules. Since it is problematic to assume that the transition time
in ASM is equal to 0, as one could then be able to infer that the system is in
two different states at one time instant, a new temporal logic with time flow
isomorphic to ω2 is introduced. After that, using the finely granulated ASM
rules of the Chord protocol and the new inference system, revisited proofs of
the previously proved theorems are provided.

The next part of the thesis contains the definition of the Synapse protocol,
its formal specification using the ASM formalism — an extension of the already
presented Chord specification, and a probabilistic assessment of the properties
of the Synapse protocol, which are then compared to the results obtained from
extensive simulations and experiments.

The final part of the thesis contains an updated version of the proposal of
metadata schemata for describing digitized objects and collections for cultural
and scientific heritage of Serbia, accompanied by the description of the main
principles behind and an implementation of a catalog of digitized collections
based on the Chord protocol.

The results presented in this thesis can serve as a foundation for future
research. The demonstrated techniques can be re-used to obtain results for
more network protocols. The correctness proofs can constitute a starting point
for formal verification using a formal proof assistant, so as to get a formally
verified proofs of the correctness of the Chord protocol. The semantics of the
introduced temporal logic can be fully adopted into the ASM inference system.
On the other hand, the probabilistic methods used can be applied to solving
further problems in graph theory. Finally, the implemented catalog can be a
good testbed for a new concept of distributed NRDBMSs.
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Rezime
Ova teza daje definiciju protokola Sinapsa, meta protokola za povezivanje het-
erogenih prekrivajućih mreža, formalnu specifikaciju postojećeg protokola za
prekrivajuće mreže Chord -a, kao i protokola Sinapsa, dokaz korektnosti Chord
protokola korišćenjem formalizma mašina apstraktnih stanja, kao i profinjenih
dokaza koji koriste proceduru odlučivanja u kome je tok vremena izomorfan
skupu ω2, kao i granulisana ASM pravila, verovatnosnu ocenu očekivanih os-
obina protokola Sinapsa, ažuriranu verziju predloga shema metapodataka za
opis digitalizovanih objekata i kolekcija kulturne i naučne baštine u Srbiji, kao
i implementaciju kataloga digitalizovanih kolekcija zasnovanog na Chord pro-
tokolu.

Prekrivajuće mreže, klasa P2P sistema, su struktura koja je nezavisna od
mreža nad kojima su realizovane i koje zaiste povezuju same uređaje, i pred-
stavlja logičku organizaciju resursa. One su prepoznate kao model mreža koji
obećava koji može uspešno da se nosi sa trenutnim problema Interneta, kakvi su
skalabilnost, otrkrivanje resursa, opravka od greške u radu, efikasnijeg rutiranja,
i, posebno, u pogledu pretrage informacija.

Na početku ove teze dat je pregled Chord protokola, mašina apstraktnih
stanja i trenutne situacije u procesima digitalizacije. Za ovim sledi opis Chord
protokola korišćenjem formalizma mašina apstraktnih stanja. Dat je dokaz ko-
rektnosti Chord protokola korišćenjem pravila na višem nivou. S obzirom na
potencijalni problem koji može da nastane u situaciji ako se pretpostavi da
je vreme potrebno za izvršavanje tranzicija u formalizmu mašina apstraktnih
stanja jednak 0, zbog činjenice da se u jednom trenutku sistem može naći u
istovremeno u dva različita stanja, uvodi se nova temporalna logika sa vremen-
skim tokom izomorfnim skupu ω2. Nakon toga, korišćenjem granulisanih pravila
višeg nivoa i novog sistema izvođenja, daju se novi dokazi prethodno dokazanih
teorema o korektnosti Chord protokola.

Sledeći deo sadrži definiciju protokola Sinapsa, formalnu specifikaciju koja
koristi formalizam mašina apstraktnih stanja kao proširenje specifikacije Chord
protokola i verovatnosnu ocenu očekivanih osobina ovog protokola, koje su
porede sa rezultatima iscrpnih eksperimenata i simulacija.

Poslednji deo sadrži ažuriranu verziju predloga shema metapodataka za opis
digitalizovanih objekata i kolekcija kulturne i naučne baštine u Srbiji. Za ovim
sledi opis glavnih principa i realizacije kataloga digitalizovanih kolekcija zasno-
vanog na Chord protokolu.

Rezultati prezentovani u ovoj tezi mogu poslužiti kao osnova za buduća is-
traživanja. Tehnike korišćene ovde mogu biti upotrebljene na drugim mrežnim
protokolima. Dobijeni dokazi mogu poslužiti za formalnu verfikaciju korišćen-
jem nekog interaktivnog dokazivača kako bi se dobili mašinski provereni dokazi
korektnosti Chord protokola. Semantiku uvedene temporalne logike moguće
je potpuno utopiti u sistem izvođenja mašina apstraktnih stanja. Nasuprot
tome, korišćena metoda verovatnosne ocene može se primeniti u domenu teorije
grafova. Na kraju, realizovani katalog može biti testno okruženje novog kon-
cepta distribuiranih ne-relacionih sistema upravljanja bazama podataka.
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1

Introduction

A decentralized P2P system [72] involves many peers (nodes) that execute the
same software, participate with equal rights to the system, and can join or
leave the system at any time. In such a framework, processes are dynamically
distributed to the peers and there is no centralized control. P2P systems have no
inherent bottlenecks and can potentially scale very well. Moreover, since there
are no dedicated nodes critical for the functioning of the systems, those systems
are more resilient to failures, attacks, etc., than their centralized counterparts.
The main applications of P2P-systems involve file sharing, redundant storage,
real-time media streaming, etc.

P2P systems are often implemented in the form of overlay networks [81], a
structure independent of the physical organization of the underlying network.
An overlay network provides a logical outlook on the organization of the re-
sources. Recently, overlay networks have been identified as a promising model
that could cope with the current issues of the Internet, such as scalability, re-
source discovery, failure recovery, routing efficiency, and, in particular, in the
context of information retrieval.

Today, one can notice that not only many disparate overlay networks co-exist
across the Internet, but that there also exist scenarios in which they compete
for the same resources on shared nodes and underlying network links. One
of the main problems of overlay networking is how to allow different overlay
networks to interact and co-operate with each other. When it comes to the
overlay networks that have already been developed, one can perceive a great
extent of heterogeneity between them. In most cases, this heterogeneity renders
them unable to co-operate, communicate, and exchange resources with one an-
other without resorting to the costly, non-scalable, and security-compromising
operation that is overlay merging.

On the other hand, there are many situations where different overlay net-
works could benefit from co-operation for various purposes, such as collective
performance enhancement, larger shared information, better resistance to loss
of connectivity (network partitions), improved routing performance in terms of
delay, throughput, and packets loss (by, for instance, co-operative forwarding
of flows). In the context of large-scale information retrieval, several overlays
may wish to offer an aggregation of their resources to their potential common
users, without relinquishing control over them. In terms of fault-tolerance, co-
operation can increase the availability of the system. If one overlay were to
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become unavailable, the global network would only undergo partial failure, as
other different resources would still be usable.

Some of the overlay networks are realized in the form of DHTs that provide
a lookup service similar to a hash table. A DHT consists of 〈key, value〉 pairs,
and any participating peer can efficiently retrieve the value associated with
a given key. Responsibility for maintaining the mapping from keys to values
is distributed among the peers, in such a way that any change in the set of
participants causes a minimal amount of disruption to the system. This allows
a DHT to scale up to an extremely large number of peers and still be able to
successfully handle continuous node arrivals, departures, and failures.

The Chord protocol [78–80] is one of the first, simplest, and most popular
DHTs. The paper [78] which introduces Chord has been recently awarded the
SIGCOMM 2011 Test-of-Time Award.

Recently, several NRDBMSs have been developed [21,54] that are commonly
based on a Chord-like technology. To better analyze their behavior, it is useful
to characterize scenarios in which the correctness of the underlying protocol
holds. Following that idea, several deterministic conditions that guarantee cor-
rectness of Chord have been formulated in this thesis, and the corresponding
statements have been proven. This contrasts the approaches from [56, 78–80]
where a probabilistic analysis is proposed, and correctness holds with “high
probability".

This characterization was realized by describing Chord using ASM [45] and
proving the correctness of the formalization, motivated by the fact that the er-
rors in concurrent systems are difficult to reproduce and are solely discovered
through program testing. There are at least two reasons that justify the use
of ASMs. First, ASMs are versatile machines that can simulate arbitrary algo-
rithms in a direct and essentially coding-free way. Here, the term algorithm is
taken in a broader sense, encompassing programming languages, architectures,
distributed and real-time protocols, etc. The simulator is not supposed to im-
plement the algorithm on a lower abstraction level; the simulation should be
performed on the natural abstraction level of the algorithm. Second, a vast
literature on ASMs shows how to model real-world complex systems closely and
faithfully, and how to use models in order to verify that their properties hold
(see, e.g. [12], the Bakery algorithm [10], the Railroad crossing problem [47], the
Kerberos algorithm [8], Java formalization [14], [15], a special issue devoted to
the method [11], etc). The ASM-code for Chord presented here has been written
following one of the best implementations [29] of the high level C++-like pseudo
code from [80]. The main difference between the implementation in [29] and this
specification is in the addition of mechanisms proposed in [82] for improving the
efficiency of detecting a failed successor which have been incorporated into the
code.

The main objectives of Chord are maintaining the ring topology as nodes
concurrently join and leave a network, mapping keys onto nodes, and distributed
data handling. The formalism of ASM allows for a precise description of a class
of possible runs — so called regular runs — of the protocol, and for the proof of
correctness of the main operations with respect to these runs. Moreover, several
examples of runs, given in Example 3.1.3, that violate the constraints for the
regular runs illustrate how correctness can be broken in various scenarios.

There were only a few attempts to formally verify behavior of DHTs in
general and Chord in particular [5, 6, 52, 56, 71, 82, 85]. They will be considered
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below and will be compared with the approach presented in this thesis.
If it is assumed that transition time in ASMs is equal to 0, it is possible to

infer that system is in two different states at one time, one state before and one
state after the execution of the transition. This might lead to inconsistencies,
especially in cases where time is crucial for the inference. For this reason, a
temporal logic with time flow isomorphic to ω2 is introduced, as well as the
proofs of the same correctness theorems of the main Chord operations with the
new semantics.

The ready-to-market DHT-based technology of structured overlay networks
can be enriched with the capability of accessing different overlays through co-
located nodes, i.e. peers who are, by the choice of the user, members of several
overlays. Such nodes are not only able to query multiple overlays in order to
find a match, but can also replicate requests, passing them through from one
network to another, and efficiently collect results from these request. As a basic
example, it is possible to consider two distant databases. A node of the first
database stores a 〈key, value〉 pair. Without network cooperation, a node of the
second database would not be able to communicate with the node of the first
database and if it tries to search for that key it will never get the stored value.
In another example, a number of nodes of an overlay network can get isolated
by an underlay network failure, creating partitions within a single network. If
some or all of those nodes could be reached via an alternative overlay network,
then the partition could be recovered by using an alternative routing path.

In the context of large scale information retrieval, several overlays may want
to offer an aggregation of their information/data to their potential common
users without losing control of it. Imagine two companies wishing to share
or aggregate information contained in their distributed databases, obviously
while keeping their proprietary routing and their exclusive right to update it.
Finally, in terms of fault-tolerance, cooperation can increase the availability of
the system — if one overlay becomes unavailable the global network will only
undergo partial failure as other distinct resources will be usable.

Having a single global overlay has many obvious advantages and is the de
facto most natural solution, but it appears unrealistic in the actual setting. In
some optimistic case, different overlays are suitable for collaboration by opening
their proprietary protocols in order to build an open standard; in many other
pessimistic cases, this opening is simply implausible for many different reasons
(backward compatibility, security, commercial, practical, etc.). As such, study-
ing protocols to interconnect collaborative (or competitive) overlay networks
constitutes a potentially promising research vein.

A solution for interconnecting different overlay networks could be found in
the use of a meta-protocol that allows a request to be routed through multi-
ple heterogeneous networks, thus increasing the success rate of every request.
One of the possible solutions for the inter-connection of heterogeneous overlay
networks is the Synapse protocol [59], that is described in detail in Chapter 4.
It is a generic and flexible meta-protocol that provides simple mechanisms and
algorithms for easy interconnection of overlay networks. As an extension of the
ASM formal description of the Chord protocol, a formal specification of Synapse
within the formalism of ASM will be given. In addition to the specification of
Synapse in ASM, a probabilistic estimate on the exhaustiveness of the Synapse
protocol across a number of scenarios will be provided.

Digitization is an important step aimed in preservation and promotion of
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heritage. It safeguards cultural diversity in the global environment and offers a
rich treasure to the world-wide public of the Web. Usually, digitization can be
seen as a collection of activities, including digital capture, transformation from
analogue to digital form, description and representation of heritage objects and
documentation about them, processing, presentation and long-term preservation
of digitized content, etc.

In the digitization of catalog services, an IS has been shown to be essen-
tial in matching offers, requests, and resources. The IS is, in most cases, a
front-end web site connected to a back-end database. A classical client-server
architecture is usually sufficient to manage those services. Users register their
profile onto one IS, and then post their offers/requests. In presence of multiple
services, for technical and/or commercial reasons, it is not possible to share
content across different ISs, despite the evident advantage. In most cases, ISs
are not equipped with mechanisms for intercommunication concerning any of
their features (lookup, search, etc.). Although, in principle, this does not affect
the correct behavior of an IS, it is clear that interoperability would increase the
overall quality of the service. Moreover, the classical shortcomings of client-
server architectures make both services unavailable in case when one of them
is down. Any attempt to make distinct and disconnected institutional client-
server based architectures does not foresee any form of service interconnection,
with the unpleasant consequence of losing potential matches between offers and
requests between users of different communities on the same subject.

Also, the digitized documents are, by their nature, highly distributed re-
sources. This triggered the development of the Catalog of digital collections of
Serbia based on the Synapse protocol, as a real-life proof-of-concept.

The contributions of this thesis are:

• A description of the Chord and Synapse protocols using the ASM formal-
ism

• Both high-level and refined proofs of correctness of the Chord formaliza-
tion

• A temporal logic with time flow isomorphic to ω2

• A probabilistic assessment of the exhaustiveness of the Synapse protocol

• An updated version of the Proposal of metadata schemata for movable
cultural heritage given in [63]

• A proposal of metadata schemata for describing collections

• A realization of the application: Distributed catalog of digitized collections
of Serbia

The remainder of the thesis is organized in the following way:

• Section 2.1 describes the Chord protocol in an “informal” way;

• Section 2.2 presents the basics of the ASM formalism;

• Section 2.3 gives an overview of the current digitization practices in Serbia
and in the world;
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• Chapter 3 introduces the ASM description of the Chord protocol with a
high-level proof of the correctness of this specification, a temporal logic
with time flow isomorphic to ω2 and a refined proof of the correctness of
the Chord protocol with respect to this time flow and low-level rules of its
ASM description

• Chapter 4 contains the description of the Synapse protocol, its ASM spec-
ification and a probability assessment of its exhaustiveness;

• Chapter 5 presents two proposals of metadata standards for description
of cultural and scientific heritage, and describes one realization of the
Distributed Catalog of Digitized Collections of Serbia.

The thesis is concluded with a summary of the obtained results and an exposition
of plans for further work, given in Chapter 6.
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2

Background

2.1 Chord Protocol

As it is said, the Chord protocol [78–80] is one of the first, simplest and most
popular DHTs. A number of nodes running the Chord protocol form a ring-
shaped network. The main operation supported by Chord is mapping the given
key onto a node using consistent hashing. The consistent hashing [51] pro-
vides load-balancing, i.e., every node receives roughly the same number of keys,
and only a few keys are required to be moved when nodes join and leave the
network. Each node in a Chord network (with N -nodes) needs “routing” infor-
mation about only a few other nodes (O(logN)), and resolves all lookups via
O(logN) messages to other nodes. When the network is not stable, i.e., the
corresponding “routing” information is out of date since nodes join and leave
arbitrarily, the performance degrades. However, a recent development [82] has
shown that Chord’s stabilization algorithm (with minor modifications) main-
tains good lookup performance despite continuous failure and joining of nodes.

Identifiers are assigned to nodes and keys by the consistent hash function.
The identifier for a node or a key, hash(node) or hash(key), is produced by
hashing IP of the node, or the value of the key. The length of identifiers (for
example m bits) must guarantee that the probability that two objects of the
same type are assigned same identifiers is negligible. Identifiers are ordered in
an identifier circle modulo 2m. Then, the key key is assigned to the node such
that hash(node) = hash(key). If such a node does not exist, the key is assigned
to the first node in the circle whose identifier is greater than hash(key).

Every node possesses information on its current successor and predecessor
nodes in the identifier circle. To accelerate the lookup procedure, a node also
maintains routing information in the form of the so-called Finger Table with up
to m entries. The ith entry in the table at the node n contains the identifier
of the first node s that succeeds n by at least 2i−1 in the identifier circle, i.e.,
s = successor(n + 2i−1), where 1 6 i 6 m (and all arithmetic is preformed
modulo 2m). The stabilization procedure implemented by Chord must guarantee
that each node’s successor pointer and finger table are up to date. The procedure
runs periodically in the background at each node. To increase robustness, each
Chord node can create a successor list of size r, containing the node’s first r
successors.
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Beside the mapping of keys onto the set of nodes, the only other operations
realized by Chord are adding/removing of a node to/from a network. When a
node n joins an existing network, certain keys previously assigned to n’s suc-
cessor now become assigned to n. When node n leaves the network regularly, it
notifies its predecessor and successor and reassigns all of its keys to the successor.

A node can search the network which runs the Chord protocol by executing
following operations:

n.find_successor(id)
i f ( id ∈ (n, successor])

re turn successor ;
e l s e
n′ = closest_preceding_node(id) ;
r e turn n′.find_successor(id) ;

n.closest_preceding_node(id)
f o r i = m downto 1

i f (finger[i] ∈ (n, id))
re turn finger[i] ;

r e turn n ;

An example of such search is illustrated by Figure 2.1:

Figure 2.1: Function find_successor

A node starts a new Chord network by:

n.create()
predecessor = nil ;
successor = n ;

A node can join the network which runs the Chord protocol by executing
following operation:

n.join(n′)
predecessor = nil ;
successor = n′.find_successor(n) ;

Every node which is a member of a Chord network runs following operations
periodically:

n.stabilize()
x = successor.predecessor ;
i f (x ∈ (n, successor))
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successor = x ;
successor.notify(n) ;

n.notify(n′)
i f (predecessor i s nil or n′ ∈ (predecessor, n))
predecessor = n′ ;

n.check_predecessor()
i f (predecessor has f a i l e d )
predecessor = nil ;

n.fix_finger()
next = next+ 1 ;
i f (next > m)
next = 1 ;

finger[next] = find_successor(n+ 2next−1)

2.2 Abstract State Machines

The Abstract State Machines are defined in [12,45,46]. Here only the essential
definitions are quoted.

A Gurevich’s Abstract State Machine A is defined by a program Prog -
consisting of a finite number of transition rules, at most countable set of states
and initial states. A models the operational behavior of a real dynamic system
S in terms of evolution of states.

A state S is a first-order structure over a fixed signature (which is also the
signature of A), representing the instantaneous configuration of S. The value
of a term t at S is denoted by [t]S . The basic transition rule is the following
function update

f(t1, . . . , tn) := t

where f is an arbitrary n-ary function and t1, . . . , tn, t are first-order terms. To
fire this rule in a state S evaluate all terms t1, . . . , tn, t at S and update the
function f to [t]S on parameters [t1]S , . . . , [tn]S . This produces another state
S′ which differs from S only in the new interpretation of the function f (since
states represent memory, function update represents change in the content of
one memory location).

Additionally, the following transition rules exist.
The conditional constructor produces “guarded” transition rules of the form:

i f g then
R1

e l s e
R2

end i f

where g is a ground term (the guard of the rule) and R1, R2 are transition rules.
To fire that new rule in a state S evaluate the guard; if it is true, then execute
R1, otherwise execute R2. The else part may be omitted.

The seq constructor produces transition rules of the form:
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seq
R1

. . .
Rn

endseq

to apply R1, . . . , Rn sequentially. Note that the seq-constructor is originally
defined without the endseq-line, but it was added to improve readability.

The par constructor produces transition rules of the form:

par
R1

. . .
Rn

endpar

to apply R1, . . . , Rn simultaneously, when possible, otherwise do nothing.
If U is a universe name, v is a variable, g(v) is a Boolean term and R is a

rule then the following expression (choose constructor) is a rule with the main
existential variable v that ranges over U and body R:

choose v in U s a t i s f y i n g g(v)
R

endchoose

If there is an element a ∈ U such that condition g(a) is true, fire rule R (with
a substituted for v), otherwise do nothing.

To express the simultaneous execution of a rule R for each x satisfying a
given condition ϕ (forall constructor):

f o r a l l x with ϕ do
R

e n d f o r a l l

A run (or computation) of A is a finite or infinite sequence S0;S1;S2; . . .
where S0 is an initial state and every Si+1 is obtained from Si executing a
transition rule.

In general runs may be affected by the environment. Environment manifests
itself via so-called external functions. Every external function can be understand
as a (dynamic) oracle. The ASM provides the arguments and the oracle gives
the result.

In a distributed Gurevich’s Abstract State Machine A multiple autonomous
agents cooperatively model a concurrent computation of S. Each agent a exe-
cutes its own single-agent program Prog(a) as specified by the module associ-
ated with a by the function Mod. More precisely, an agent a has a partial view
V iew(a;S) of a given global state S as defined by its sub-vocabulary Fun(a)
(i.e. the function names occurring in Prog(a)) and it can make a move at S
by firing Prog(a) at V iew(a;S) and changing S accordingly. The underlying
semantic model ensures that the order in which the agents of A perform their
actions is always such that no conflicts between the update sets computed for
distinct agents can arise. The global program Prog is the union of all single-
agent programs. Nullary function Me, that allows an agent to identify itself
among other agents, is interpreted as a for each agent a, and does not belong to
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Fun(a) for any agent a. It cannot be the subject of an update instruction and
is used to parameterize the agent’s specific functions. A sequential run of a dis-
tributed Gurevich’s Abstract State machine A is a (finite or infinite) sequence
S0;S1; . . . ;Sn; . . . of states of A, where S0 is an initial state and every Sn+1 is
obtained from Sn by executing a move of an agent. The partially ordered run,
defined in [45], is the most general definition of runs for a distributed ASM.
In order to prove properties on a partially ordered run, the attention may be
restricted to a linearization of it, which is, in turn, a sequential run (see [45] for
more explanations). In the rest of this thesis only regular runs in which a state
is global and moves of agents are atomic will be considered.

2.3 Digitization Practices

The document [70] “Recommendations for coordination of digitization of cul-
tural heritage in South-Eastern Europe" accepted at the South-Eastern Europe
regional meeting on digitization of cultural heritage (Ohrid, Macedonia, 17-20
March 2005) said that the digitization practice in SEE was not matching the
priorities communicated on the EU-level and that the rich cultural content of
the region was underrepresented in the electronic space. This situation was not
much changed during past years. One of the main principles accepted by the
participants of the Meeting said that “It is recognized that knowledge of the
cultural and scientific heritage is essential for taking decisions concerning its
digitization and for interpreting the digitized resources. For this reason, inven-
torying and cataloging should precede or accompany the digitization of cultural
and scientific assets."

Concerning the Meeting conclusions Serbian National Center for Digitiza-
tion (NCD) recognized the metadata problem as the most sophisticated one in
the cataloging phase of digitization. There are a lot of metadata schemes for
describing digitized assets of heritage, but not the universal one. Serbian na-
tional heritage is described after different standards, according to the nature of
assets, but once being digitized, national heritage needs one metadata standard
before including in the national database of digital objects. The standard should
guarantee interoperability among resources available by different providers and
compatibility with the most popular existing international standards.

2.3.1 Situation in Serbia

At the moment, there is no wide spread metadata standard for describing digi-
tized heritage in Serbia. Actually, although the digitization process is entering in
the most of the institution caring about national heritage, there is no metadata
standard formally accepted at the state level. Different providers of heritage
resources (libraries, museums, archives, some research institutions) use interna-
tional standards appropriate for their specific fields, or ad-hock methods, or old
procedures for describing cultural assets in classical format (formulated in 1980s
or early 1990s). In fact, some providers wait for some solution of the metadata
problem and do not do anything related to digital cataloging. It means that the
digital catalogs in Serbia, if exist at all, cannot help in communication between
different kinds of providers and users.
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2.3.2 International Standards
There are plenty of metadata standards for describing heritage resources, for
example:

• Dublin Core [32],

• EAD [36],

• MARC [62],

• TEL AP [38],

• FRBR [49,83] etc.

Dublin Core is developed and maintained by the Dublin Core Metadata Ini-
tiative (DCMI). The goal of DCMI is to promote interoperable metadata stan-
dards and develop specialized metadata vocabularies for describing resources.
Although this standard can be applied to every kind of resources ensuring in-
teroperability, as it is noted in [16], the problem is that the DC Element Set
(Simple DC) is rather restricted and different information must be grouped into
one element. More recently, DCMI has allowed some refinements of Simple DC
- so called Qualified DC, so that it is possible to develop DC Application Pro-
files for specific applications and domains. It is important to emphasize that it
is possible to lose some information in the process of reducing Qualified DC to
Simple DC values. It might be noted that it was possible to use Qualified DC to
describe NCD standard, but , in this moment more important issue is to define
what data should be included in the metadata standard, than to chose how to
express them in one or the other format.

The other above mentioned standards are mainly related to some special
sub-domains of heritage. Encoded Archival Description (EAD) is focused on
the archival resources with the goal to allow describing them and to make them
accessible to users.

Similarly, the MARC standards are used mostly for the representation and
communication of bibliographic and related information in machine-readable
form. Another librarian-supported standard is The European Library Applica-
tion Profile (TEL AP). TEL AP for objects is based on the proposal of Dublin
Core Metadata Initiative - Libraries Working Group for the Library Application
Profile from 2002. TEL Metadata Working Group is responsible for additions
and changes made on the basic document for TEL purposes, the functionality of
the Portal at the first place. National Library of Serbia became the full partner
of The European Library in 2005 and getting known with the TEL AP concept
was a kind of inspiration for the NCD metadata model. The TEL Metadata
Registry of terms is currently in development, as well as TEL AP for objects,
TEL AP for collections and future TEL AP for services. Functional require-
ments for bibliographic records (FRBR) is a conceptual, object-oriented model
for metadata records, born also in the library world. The model is based on
three groups of entities. The first one presents the products of intellectual or
artistic endeavor being described, by four entities: work, expression, manifes-
tation and item. Two entities: person and corporate body are in the second
group, connected to the responsibility for the intellectual or artistic content,
the production and distribution, or the custodianship of these products. The
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third group is covering subject area for intellectual or artistic endeavor with
four entities: concept, object, event and place. FRBR is extendable to archives,
museums and publishing area.

In the field of museums, there is no widely accepted metadata standards.
There is a set of recommendations called Spectrum, the UK Museum Docu-
mentation Standard [76]. Thus, although these standards are very important
and useful in the corresponding sub-domains of digitized heritage, they are par-
tially incompatible, and cannot be directly used to cover the whole domain of
heritage.

Having all that in mind, the NCD decided, according to its coordinating
role in the digitization field in Serbia, to take care and obligatory to try to solve
this metadata problem and define a unique metadata core to assure the inter-
operability between various digital resources of national cultural and scientific
heritage - Proposal of metadata schema for movable cultural heritage.

Digital objects are usually organized in digital collections. A considerable
work has gone into building aggregations of digital collections, that was the case
with the Digital National Library of Serbia too [28]. Some of the well-known
aggregations like Europeana [39] or OAIster [66] have just started to develop
collection-level metadata. In 2009, the efforts of NCD metadata working group
resulted in a new Proposal of metadata schema for digital collection description.
For this schema, The European Library Application Profile for collections [38]
was starting point, as well as the MICHAEL collection description [65]. It
allows one to create a catalog containing descriptions of physical and/or virtual
collections of the already digitized objects.
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3

Proof of the Correctness of
the Chord Protocol

3.1 Description of Chord Using Abstract State
Machines

3.1.1 Basic Notions
Let L, M and K be three positive integer constants such that K 6 2M 6 L.
Let N = 2M . The following disjoint universes will considered:

• the set Peer = {p1, . . . , pL} of all peers that might participate in the
considered Chord network,

• the set Key = {k1, . . . , kK} of identifiers of objects that might be stored
in the considered Chord network, and the set V alue = {v1, . . . , vK} of the
values of those K objects,

• the set Chord = {0, 1, . . . , N − 1} denoting at most N peers that are
involved in the network in a particular moment,

• the sets Join = {join, skip} andAction = {put, fair_leave, unfair_leave,
get, skip} which represent the actions of the peers,

• the sets

◦ Mode = {not_connected, connected},
◦ ModeJoin = {undef , finished, wait_for_successor, wait_for_keys},
◦ ModeLeave = {undef , wait_for_successor, proceed_to_finish},
◦ ModeStabilize = {undef , wait_for_successor, wait_for_keys,
wait_for_predecessor, wait_for_successor_keys, finished},

◦ ModeGet = {undef , wait_for_key, wait_for_value},
◦ ModePut = {undef , wait_for_response},
◦ ModeFingers = {undef , wait_for_response}

which represent the states of the peers,
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Figure 3.1: Structure of Chord node

• the set MessageType = {find_successor, send_successor, get,
send_predecessor, set_predecessor, successor_found, received_keyvalue,
send_keys, get_predecessor, received_predecessor, value_found,
request_and_remove_keyvalue} of special nullary functions denoting
type of communication,

• the set ContentType = {Chord×V alue}∗ ∪{Chord×Chord}∪Chord∪
V alue which represents all possible types of messages content, and

• the set Message = MessageType × ContentType which represents mes-
sages that are exchanged by the nodes. A messages is defined by its type
and content.

Note that:

• it might be that L > N (K > N), i.e., that there are more peers (objects
to be stored in the network) than nodes, but it can never be N > L, and

• without any loss of generality it can be assumed that the numbers of keys
and values are the same; if there are more values than keys, all values
mapped to the same key might be organized in a list.

In the sequel, the following (standard) list-manipulation functions will be used:
list constructor, add a new element to the list, remove an element from the list,
and listitem returns the ith element of a list; and the strict and the total orders
of N (denoted by <, and 6). Also, a⊕N b will be used to denote (a+b) mod N .

Any peer, active in the network will be called a node. A node (Figure
3.1) will be represented by its identifier id in the network, information on its
predecessor and successor, a finger table, a pointer (next) to an element in
the finger table which will be updated in the current stabilization cycle, and a
list of 〈key, value〉 pairs of the records for which the node is responsible for.

More formally, the following functions are introduced:

• id : Peer → Chord ∪ {undef }

• successor : Chord→ Chord ∪ {undef },

• predecessor : Chord→ Chord ∪ {undef },

• finger : Chord→ {Chord ∪ {undef }}∗,
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Function Description
hash Maps the sets of peers and keys to Chord ∪ {undef }
ping Tests whether a node is reachable
member_of Checks whether a node is between two nodes in Chord
communication Realizes communication requests
mode Determines a state of a peer
mode_join Determines a state of a peer during join operation
mode_leave Determines a state of a peer during fair leave operation
mode_stabilize Determines a state of a peer during stabilize operation
mode_fingers Determines a state of a peer during update of finger

table member
mode_put Determines a state of a peer during put operation
mode_get Determines a state of a peer during get operation
known_nodes Simulates external knowledge about existing nodes
key_value Select a 〈key, value〉 for storing in the network
keys Select to look for a value with particular key

Table 3.1: Chord functions

• next : Chord→ {1, . . . ,M}, and

• keyvalue : Chord→ (Chord× V alue)∗,

where Chord∗ is the set that contains lists of the identifiers of nodes, and
(Chord × V alue)∗ is the set of lists containing pairs 〈hash(key), value〉. Each
finger(x) has M entries ordered respect to the ring ordering.

In other words, a peer p, which is a node, is represented by the tuple

〈id(p), successor(id(p)), predecessor(id(p)),

finger(id(p)), next(id(p)), keyvalue(id(p))〉.

All the other functions that will be used in the formal description of the
protocol, but that are not parts of specification of nodes, are outlined in Table
3.1 and described below. It is assumed that the five functions in Table 3.1
(hash, ping, known_nodes, key_value and keys) are external.

The hash function assigns identifiers of nodes to peers and keys:

• hash : Peer ∪Key → Chord ∪ {undef },

where undef is a special value used in the situations when hash function tries
to assign new id for the new:

• peer and there are already N nodes in the network, or

• key and there are already N keys in the network.

The function must also guarantee that in each moment two different active
peers (keys) have different hash values. However, note that it is possible that
in different moments different peers have the same identifier. Also, it may
happen that a peer can have different identifiers (obtained by different calls of
the hash function before and after a period in which the peer is not present in
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(a)
,

(b) (c)

Figure 3.2: Function member_ of

the network). The above mentioned id function can be explained as a “local"
counterpart of hash. Namely, it can be assumed that the values produced by
hash are stored in the local memory and read and published by id. In the
program given below, id will be invoked with the argument Me to allow a node
to identify itself in the network.

The external function ping, defined as:

• ping : Chord→ {true, false}
returns true or false, depending on whether the argument is reachable in the
network.

The function member_ of :

• member_ of : Chord× Chord× Chord→ {true, false},
determines whether the first argument is between two next two arguments with
respect to the ring ordering, more formally:

• if arg2 = arg3 always returns true,

• if arg2 < arg3 returns true if arg2 < arg1 6 arg3 holds,

• if arg2 > arg3 returns true if ¬(arg3 < arg1 6 arg2) holds,

• otherwise returns false.

Example 3.1.1. Let N = 64. Then,

• member_ of(31, 14, 14) = true, see Figure 3.2.a,

• member_ of(31, 14, 48) = true, see Figure 3.2.b,

• member_ of(62, 14, 48) = false, see Figure 3.2.b,

• member_ of(31, 48, 14) = false, see Figure 3.2.c,

• member_ of(62, 48, 14) = true, see Figure 3.2.c.

�

The communication will be realized following the ideas from [8] and [12].
During communication a direct channel is open between two nodes (assuming
that channels do not loose information):
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• communication : Chord× Chord→Message∗.

The first argument is the sender and the second one is the receiver of a message.
When a sender sends a new message to a receiver, it appends it to the list
Message∗ of all messages which where sent by this sender to that receiver.
When the receiver processes this message, it removes it from the list. Different
type of messages contain different information:

• if the type of message is request_and_remove_keyvalue or set_predecessor,
these messages will be used just to alert receiver, so the content of these
messages is empty,

• if the type of message is send_keys, the content of the message is the list
keyvalue(sender),

• if the type of message is get_predecessor, the content of the message is
predecessor(sender),

• if the type of message is find_successor, the content of the message is
〈id1, id2〉 where id1 denotes the value for which the successor is asked, and
the id2 denotes the peer which initiated the query,

• if the type of message is get, the content of the message is hash(key),

• if the type of message is successor_found, the content of the message is
v ∈ Chord for which member_ of(v, sender, successor(sender)) = true,

• if the type of message is value_found, the content of the message is the
resulting V ∈ V alue,

• if the type of message is received_keyvalue, the content of the message
is list that will be stored as keyvalue(receiver),

• if the type of message is received_predecessor, the content of the message
is id that will be stored as predecessor(receiver).

The function mode:

• mode : Peer →Mode

determines a state of a peer. Initially, for all p ∈ Peer, the value of mode(p) is
set to not_connected.

The functionsmode_join,mode_leave,mode_stabilize,mode_get,mode_put
and mode_fingers:

• mode_join : Peer →ModeJoin

• mode_leave : Peer →ModeLeave

• mode_stabilize : Peer →ModeStabilize

• mode_put : Peer →ModePut

• mode_get : Peer →ModeGet

• mode_fingers : Peer →ModeFingers
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express states of peers as the various Chord operations influence them. Initially,
for all p ∈ Peer, the values of these functions are set to undef .

The external function known_nodes:

• known_nodes : Peer → Chord

simulates external knowledge about the nodes in the particular Chord network.
The external function key_value:

• key_value : Peer → Key × V alue

simulates the choice of a node to store a 〈key, value〉 pair in the Chord network.
The external function keys:

• keys : Peer → Key

simulates the choice of a node to look if some value with particular key is stored
in the Chord network.

3.1.2 Chord Rules
The rest of this section contains formal description using formalism of ASM of
the Chord protocol. The general program is executed by every peer, and a high
level description of the rules performed in a Chord network which corresponds
to the pseudo code given in [80] (note that the rules FairLeave, UnfairLeave,
Put and Get are not given there). A detailed specification of these rules is
provided in the Appendix A.

Peer_agent Module

The following main module contains actions that are executed by every peer.
The mode of all peers is initially not_connected. After a node joins a network
successfully, its mode is changed to connected. In each execution of a loop,
a node concurrently calls the rules responsible for the ring topology mainte-
nance (Stabilize, UpdatePredecessor, UpdateFingers) and communica-
tion (ReadMessages) and, according to a non-deterministic choice, it might
also invoke one of the FairLeave, UnfairLeave, Put and Get rules.

MainModule=
i f mode(Me) = not_connected then

i f Choosed Action I s Join
seq

i f There Are No Known Nodes then
Start

e l s e
Join

end i f
i f Connection Su c c e s s f u l then
mode(Me) := connected

e l s e
mode(Me) := not_connected

end i f
endseq
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end i f
e l s e

i f mode(Me) = connected then
i f id(Me) Does Not Have Communication Problems then

par
ReadMessages
Stabilize
UpdatePredecessor
UpdateFingers
ExtendedJoinModel =

seq
choose ac t i on in Action
par
LeavingActions =

FairLeave Or UnfairLeave
KeyV alueHandling =

Put Or Get
endpar

endseq
endpar

e l s e
mode(Me) := not_connected

end i f
e nd i f

e nd i f

Chord Rules - High Level Description

In the sequel, the rules of the Chord protocol (listed in Table 3.2) will be de-
scribed.

When Nodei starts a new Chord network, the following rule is executed:

Start=
seq
id(Me) := hash(Me)
I n i t i a l i z e Values For Node id(Me)

endseq

When Nodei asks Nodej , which is the member of a Chord network, to join
the network the following rule is executed (a network is fulfilled if it already
contains N nodes):

Join=
seq
id(Me) := hash(Me)
i f Chord I s Not F u l f i l l e d then

seq
I n i t i a l i z e Values For Node id(Me) With Respect
To known

Take keyvalue That Should Belong To
Node id(Me) From successor(id(Me))
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endseq
end i f

endseq

After an application of the join rule, all keys which have the hash value
less or equal then the id of the new node, and which have been stored in the
keyvalue list of the successor of the new node are moved to the keyvalue list of
the new node.

When Nodei leaves a Chord network in a fair way, it executes the following
rule:

FairLeave=
seq

i f successor(id(Me)) I s Not Al ive then Update successor(id(Me))
end i f
i f id(Me) I s Not The Only Node In Chord then

seq
par

Give keyvalue(id(Me)) To successor(id(Me)))
Remove id(Me) From Succes sor Po inte r s Ring

endpar
Deact ivate Values For Node id(Me)

endseq
end i f

endseq

Note that a node can also leave a Chord network in an unfair way, for example
caused by a node crash, communication problems, etc. As it will be shown in
Section 3.1.3 the other rules can detect such situations. Thus, the body of
UnfairLeave rule is empty.

The next three rules are responsible for detecting situations in which the
considered Chord network is not in a stable state, updating information about
the network and reconnecting the successor pointers of nodes to establish a
stable state. These rules are applied periodically, while a peer belongs to the
considered Chord network:

Stabilize=
i f successor(id(Me)) I s Al ive then

seq
Set x To Be predecessor(successor(id(Me)))
i f (x 6= undef ∧member_ of(x, id(Me), successor(id(Me)))) then

seq
successor(id(Me)) := x
Take Keyvalue That Should Belong To

Node id(Me) From successor(id(Me))
endseq

end i f
i f x = undef∨(x 6= undef∧member_ of(id(Me), x, successor(id(Me))))

then
Not i fy successor(id(Me)) To

Update I t s predecessor To id(Me)
end i f
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Rule Description Resulting State
Start The first node starts A state with one

the network node
Join A new node joins A state with an

the network additional node
FairLeave A node leaves fairly A state without

the network one node
UnfairLeave A node leaves/crashes A state without

one node
Stabilize A node updates its Successor and

successor and predecessor predecessor update
UpdatePredecessor Periodic check of Predecessor update

the predecessor
UpdateFingers A node runs update Updating finger table

on its finger table entries
Put A new 〈key, value〉 pair Updating 〈key, value〉

is stored table
Get Finding a value for Unchanged state

a given key
FindSuccessor Finding a responsible Unchanged state

node for given key or
successor of a node

ReadMessage Read messages dedicated Changing some local
to a node variables if it is

requested

Table 3.2: Chord rules
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endseq
e l s e

Update successor(id(Me))
end i f

Stabilize is responsible to update information on successor of a node either
because the successor is crashed or the new node with appropriate id has enter
the network, and to notify new successor about its new predecessor.

Checking if the current predecessor of a node is still active is realized by:

UpdatePredecessor=
i f predecessor(id(Me)) I s Not Al ive then

Deact ivate Values For predecessor(id(Me))
end i f

Updating the values from finger table is realized by firing:

UpdateFingers=
For Next next(id(Me)) Update finger.listitem(next(id(Me)))

With Respons ib le Node For id(Me)⊕N 2next(id(Me))−1

During one cycle of Peer_agent Module exactly one value from finger table is
updated.

Storing a new 〈key, value〉 pair is realized by the following rule:

Put=
i f Chord I s Not F u l f i l l e d then

Not i fy Respons ib le Node For hash(key) To Add
〈hash(key), value〉 To I t s keyvalue Table

end i f

The name of the rule FindSuccessor comes from [78]. By this rule a node is
asked to return successor of the given argument. The corresponding argument
can be the hash value of a key, or the id of a peer. In the former case, the
result is the identifier of the member of the network which is responsible for
the 〈key, value〉 pair. In the later case, the rule gives the identifier of the first
member of the network which is equal to, or greater then, the argument. Note
that, if the argument is the id of a node (i.e., a peer that is active in a network),
the result is id, and not the identifier of its successor.

FindSuccesor=
For Given key

i f member_ of(key, id(Me), successor(id(Me))) then
Respond With successor(id(Me))

e l s e
Forward Query To Closes Predeces so r From finger(id(Me))

end i f

In the above rule, for the argument h, the current node n returns its successor
to the node which was started the query, if member_ of(h, n, successor(n)) =
true. Otherwise, the query is forwarded to the node whose id precedes h in n’s
finger table, or is the maximal element of this table.

Example 3.1.2. Let N = 64 and the nodes with the ids {1, 14, 28, 31, 32, 48}
form a Chord network (see Figure 3.3). Let the corresponding successor pointers
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Figure 3.3: Rule FindSuccessor

form a ring. Note that there is no node with the identifier 29 in the network.
The result of call of the successor of 29 by the node 14 is 31, because node 29 is
understood as the hash of a key or the id of a node entering the network. The
node 14 will transfer the query to its successor (node 28). This node will return
its successor (node 31) as the result, because member_ of(29, 28, 31) is true.

However, since the node with the identifier 31 exists in the network, the result
of the call of the successor of 31 will be 31.

Finally, note that, if one needs information on the successor of a node, for
example the node 31, then it should call for a successor of 31⊕64 1. �

Any node present in a Chord network can execute Get rule (ask for the
value of a key). That rule does not change the actual state of the network, but
it is defined as:

Get=
Invoke FindSuccessor For Given key
And Check Corresponding value

During the each execution of a Peer_agent Module all the messages send to
a node are processed:

ReadMessages=
Read Messages Dedicated To Me ,
Change Local Var i ab l e s I f I t I s Requested And
Clear Processed Messages

3.1.3 Correctness of the Formalization

In this section the correctness of our ASM formal description of the Chord
protocol will be presented with respect to the so-called regular runs. First,
following [45] a distributive algebra1 A will be formally considered. It consists

1 [45, Section 6.2]: A distributed algebra A consists of the following:

• A finite indexed set of single-agent programs πν , called modules. The module names ν
are static nullary function names.

• A vocabulary Υ = Fun(A) which includes each Fun(πν) − Self but does not contain
Self . In addition, Υ contains a unary function name Mod.

• A collection of Υ-states, called initial states of A, satisfying the following conditions:

◦ Different module names are interpreted as different elements.
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of the module Peer_agent introduced in Section 3.1.2, a vocabulary Υ, and a
collection of Υ-states, such that:

• the vocabulary Υ contains:

◦ all function names that appear in the module Main, except Me,

◦ a nullary function name undef , the standard Boolean constants and
operations, and

◦ a unary function name Mod,

• a state S of the vocabulary Υ is a pair which consists of:

◦ a base set Peer∪Key∪V alue∪Chord∪Action∪Communication∪
{Main}, where Main is a module name, and

◦ an Υ-interpretation I which satisfies that

I(Mod) : Peer → {Main},

while the other function names are interpreted as the corresponding
objects defined at the beginning of Section 3.1,

• in a local state (of the vocabulary Υ ∪ {Me}) which corresponds to the
peer p ∈ Peer and the state S, denoted by View(p; S), all symbols are
interpreted as in S, and additionally I(Me) = p.

In the initial state a valuemode(p) is set to not_connected and id(p) is set to
undef for all p ∈ Peer, while values of successor(c), predecessor(c), finger(c),
next(c) and keyvalue(c) are set to undef for all c ∈ Chord.

Definition 3.1.1. Let x1, x2 ∈ Node and y0, . . . yr ∈ Node be all the nodes from
a Chord network such that y0 = x1, yr = x2 and member_of(yi+1, yi, yi+2) =
true for all i ∈ {0, . . . , r − 2}. The pair 〈x1, x2〉 forms a stable pair in a state
if the following holds:

• yi+1 = successor(yi), yi = predecessor(yi+1), for all i ∈ {0, . . . , r − 1}.

A Chord network {x0, . . . , xk−1}, k > 1, is stable in a state if the pair 〈x0, x0〉
is stable. �

Intuitively, a pair 〈x1, x2〉 is stable in a state if there is no node trying to
join the network through the node on the ring-interval (x1, x2) in that state and
there is not a break in a successors’ pointers chain.

A move at a state S is an execution of the module Main by a peer p at
View(p; S). The corresponding rules belong to the low-level description given
in Appendix A. Similarly as in [45], only atomic moves will be considered.

A run2 of our distributive algebra A is a triple 〈Moves, P, σ〉 such that:

◦ There are only finitely many elements a such that, for some module name ν,
Mod(a) = ν.

2Note that this is a simplification of the corresponding definition from [45] which results
from the fact that the set Peer is fixed at the beginning and cannot be changed during
executions of Chord.
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• Moves is a partially ordered set of moves of peers such that every set
{y : y 6 x} is finite, and y < x means that the move y must be finished
before x begins,

• the function P associates with every x ∈ Moves a peer P (x) which exe-
cutes x, and satisfies that each nonempty set {x : P (x) = p} is linearly
ordered, and

• the function σ associates with every finite initial segment ofMoves a state
of A, while σ(∅) denotes an initial state.

Furthermore, it is required that the following coherence condition holds for every
run:

• Let x be a maximal element of a finite initial segment X of Moves, and
Y = X \ {x}. Then, x transforms σ(Y ) to σ(X).

A state is reachable in a run 〈Moves, P, σ〉 if it belongs to the range of σ.
A run ρ′ = 〈Moves′, P ′, σ′〉 is an initial segment of a run ρ = 〈Moves, P, σ〉 if

Moves′ is an initial segment ofMoves and P ′ and σ′ are restrictions of P and σ,
respectively. A run ρ′ is a linearization of a run ρ if Moves′ is a linearization3

of Moves, P ′ and P coincide, and σ′ is a restriction of σ. Note that each
linearization is a sequential run. Two fundamental corollaries formulated in [45]
are:

Corollary 3.1.1. 1. All linearizations of the same finite initial segment of
a run have the same final state.

2. A property holds in every reachable state of a run ρ iff it holds in every
reachable state of every linearization of ρ.

Definition 3.1.2. Regular runs are all runs of a distributive algebra A which
satisfy that:

• any execution of FairLeave, UnfairLeave and Put might happen only
between a stable pair of nodes,

• the fairness condition, in the sense that every node will eventually execute
its next move. �

The following example illustrates the need for the above constraint. In the
example and in the rest of this section the sequences of moves will be graphically
illustrated, so that Si denotes a state, the updated values are in bold, and ♦
means that the rest of a network is not affected by a move.

Example 3.1.3. Let S0 be the initial state in which the nodes N1 and N3 are
members of a network, and the node N2 wants to join. Suppose that before the
pair 〈N1, N3〉 becomes stable, N1 executes the put rule with the hash 2 of a key.
Since N1 is not aware of N2, the corresponding key will be stored in N3, and
not in N2.

3Moves′ is linearly ordered, Moves′ and Moves have the same elements, and if x < y in
Moves, then x < y in Moves′.
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S0

id 1 3
predecessor ♦ 1
successor 3 ♦
hash(key) empty empty

N2Join−−−−−→

S1

id 1 2 3
predecessor ♦ undef 1
successor 3 3 ♦
hash(key) empty empty empty

N2Stabilize−−−−−−−−→

S2

id 1 2 3
predecessor ♦ undef 2
successor 3 3 ♦
hash(key) empty empty empty

N1Put(Key2)−−−−−−−−−→

S3

id 1 2 3
predecessor ♦ undef 2
successor 3 3 ♦
hash(key) empty empty 2

N1Stabilize−−−−−−−−→

S4

id 1 2 3
predecessor ♦ undef 2
successor 2 3 ♦
hash(key) empty empty 2

N1Stabilize−−−−−−−−→

S5

id 1 2 3
predecessor ♦ 1 2
successor 2 3 ♦
hash(key) empty empty 2

Again, assume that S0 is the initial state and the network contains the nodes
N1, N3 and N4. If the node N2 executes the join rule, and before the pair
〈N1, N4〉 becomes stable, N3 wants to leave, N2 will be isolated from the rest of
the network, and the other nodes will never be aware of it.

S0

id 1 3 4
predecessor ♦ 1 3
successor 3 4 ♦

N2Join−−−−−→
S1

id 1 2 3 4
predecessor ♦ undef 1 3
successor 3 3 4 ♦

N3FairLeave−−−−−−−−→
S2

id 1 2 4
predecessor ♦ undef 1
successor 4 3 ♦

A similar example can be given for UnfairLeave. �

In the sequel, the executions of Chord networks will be analyzed. It will
be shown that a stable pair of nodes in a Chord network, which executes a
regular run, eventually becomes stable after adding/removing of a node between
them (the theorems 3.1.1-3.1.6). Corollary 3.1.3 formulates the corresponding
statement for a stable network. Finally, it will be proved that the proposed
key-handling correctly distributes keys and answers queries (Theorem 3.1.7 and
Corollary 3.1.4). Table 3.3 summarizes how our results are related to statements
from some other papers.

Theorem 3.1.1 expresses that the rule FindSuccessor will terminate in a
finite number of steps. It corresponds to [80, Theorem IV.2]. The statements
3.1.2 – 3.1.6 guarantee that the successor and predecessor pointers for each node
will be eventually up to date after a node joins, or unfairly leaves the network.
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Theorem 3.1.3 expresses the correctness of the model of executions without
failures of nodes and corresponds to [80, Theorem IV.3]. In the statements 3.1.4
– 3.1.6 the model of executions with possible failures is considered. Theorem
3.1.6 is the main statement concerning correctness of maintaining topological
structure of Chord networks. Theorem 3.1.7 states that 〈key, value〉 pairs are
properly distributed over the network. Finally, Corollary 3.1.4 shows that if
Get returns undef , the corresponding 〈key, value〉 pair is not in the network.
In the corresponding proofs some finite initial sequences of runs will be used.
Stabilize and UpdatePredecessor are executed periodically by all nodes
in a network, but the only those applications which change the values of the
functions predecessor and successor will be mentioned. Note that, in each proof
some fixed linearization of moves will be considered, but according to Corollary
3.1.1, all linearizations of the corresponding regular run will result in the same
final state.

Theorem 3.1.1. Let n ∈ Chord be the node which fires the rule FindSucces-
sor for h ∈ {0, 1, . . . , N − 1}. Let m′ be the minimal element of Chord such
that h 6 m′. If the pair 〈n,m′〉 is stable in that state, the node n will get the
result after a finite number of moves.

Proof. Let the node n be asked for the successor of h:

• if h is a member of the ring-interval (n, successor(n)], successor(n) as the
result is returned; otherwise

• a node k (such that the ring-interval (k, h] is the smallest subset of the
ring-interval (n, h] for every node from the finger table of n) is chosen to
answer the query.

Then, FindSuccessor is invoked by the node k. The number of such calls is
limited since there are finitely many nodes between n and h. Furthermore, in
each step the ring-interval (k, h] shrinks, and since - by the construction - the
first element of the finger table of a node is its successor, the node m will be
eventually reached such that h ∈ (m, successor(m)]. Note that in each step
a node (an active member of the network) is contacted, and that the result is
directly sent to the node n which issued the query. Node n must be active
at that moment. It cannot execute (Un)FairLeave before it gets the answer,
since (Un)FairLeave actions can be executed only when nodes do not wait for
answers from earlier fired queries.

Theorems 3.1.2 – 3.1.6 guarantee that the successor and predecessor pointers
for each node will be eventually up to date after a node joins, or unfair leaves
the network. In the corresponding proofs some finite initial sequences of runs
will be uses. Due to the fact that the Stabilize and UpdatePredecessor
are applied periodically by all nodes in a network, only those applications which
change the values of the functions predecessor and successor will be mentioned.

Note that, in each proof some fixed linearization of moves will be considered,
but according to Corollary 3.1.1, all linearizations of the corresponding regular
run will result in the same final state.

Theorem 3.1.3 corresponds to Theorem IV.3 from [78–80].
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Theorem 3.1.2. Let a peer join a Chord network, between two nodes which
constitute a stable pair. Then, there is a number k > 0 of steps, such that if
no other join rule happens in the meantime, the Stabilize rule will bring the
starting pair to be stable after k steps.

Proof. Suppose that the network contains only one node Ni1 and that Ni2 wants
to join. The following sequence of moves will be considered:

S0

id i1
predecessor i1
successor i1

Ni2
Join−−−−−→

S1

id i1 i2
predecessor i1 undef
successor i1 i1

Ni2
Stabilize−−−−−−−−→

S2

id i1 i2
predecessor i2 undef
successor i1 i1

At this moment the pair is not stable, and the restriction to the regular runs
does not allow the nodes to try to leave the network. Also, according to the
assumption of the statement, other peers will not execute the Join rule, which
consigns to:

S2
Ni1

Stabilize−−−−−−−−→
S3

id i1 i2
predecessor i2 undef
successor i2 i1

Ni1
Stabilize−−−−−−−−→

S4

id i1 i2
predecessor i2 i1
successor i2 i1

Obviously, a stable pair has been established, again.
Suppose that there are two or more nodes in the network, and that Nik

wants to join. Let Nik−1
and Nik+1

be the members of the network such that
successor(ik−1) = ik+1, and predecessor(ik+1) = ik−1 (i.e., 〈Nik−1

, Nik+1
〉 is a

stable pair). Furthermore, let member_ of(ik, ik−1, ik+1) = true. Then, the
following sequence of moves will be considered:

S0

id ik−1 ik+1

predecessor ♦ ik−1
successor ik+1 ♦

Nik
Join−−−−−→

S1

id ik−1 ik ik+1

predecessor ♦ undef ik−1
successor ik+1 ik+1 ♦

Nik
Stabilize−−−−−−−−→

S2

id ik−1 ik ik+1

predecessor ♦ undef ik
successor ik+1 ik+1 ♦

Similarly as above, the restriction to the regular runs does not allow the nodes
to try to leave the network, other peers will not execute the Join rule, and
which results with:
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S2

Nik−1
Stabilize

−−−−−−−−−−→
S3

id ik−1 ik ik+1

predecessor ♦ undef ik
successor ik ik+1 ♦

Nik−1
Stabilize

−−−−−−−−−−→

S4

id ik−1 ik ik+1

predecessor ♦ ik−1 ik
successor ik ik+1 ♦

Thus, a stable pair has been established.

Theorem 3.1.3 (Concurrent joins). Let a Chord network contain a stable
pair. If a sequence of Join rules is executed between the nodes which form
this stable pair, interleaved with Stabilize, UpdatePredecessor and Up-
date_fingers, then there is a number k > 0 of steps, such that after the last
Join rule, the starting pair of nodes will be stable after k steps.

Proof. First, note that UpdateFingers does not change the values of the
functions predecessor and successor. Similarly, UpdatePredecessor might
change values of the function predecessor only after an UnfairLeave. Thus,
executions of UpdatePredecessor and UpdateFingers will not be consid-
ered in the rest of this proof.

If it is assumed that all peers that want to join the network have different
successors. Then, by Theorem 3.1.2, the statement holds. Otherwise, there must
be at least two peers that want to join the network having the same successor.
Suppose that Ni2 and Ni3 want to join and that Ni1 and Ni4 are members of the
network, such that successor(i1) = i4 and predecessor(i4) = i1. Furthermore,
let member_ of(i2, i1, i3) = true and member_ of(i3, i2, i4) = true. Then, the
following sequence of moves will be considered:

S0

id i1 i4
predecessor ♦ i1
successor i4 ♦

Ni2
Join−−−−−→

S1

id i1 i2 i4
predecessor ♦ undef i1
successor i4 i4 ♦

Ni3
Join−−−−−→

S2

id i1 i2 i3 i4
predecessor ♦ undef undef i1
successor i4 i4 i4 ♦

Ni3
Stabilize−−−−−−−−→

S3

id i1 i2 i3 i4
predecessor ♦ undef undef i3
successor i4 i4 i4 ♦

Ni1
Stabilize−−−−−−−−→

S4

id i1 i2 i3 i4
predecessor ♦ undef undef i3
successor i3 i4 i4 ♦

Ni1
Stabilize−−−−−−−−→

S5

id i1 i2 i3 i4
predecessor ♦ undef i1 i3
successor i3 i4 i4 ♦

At this moment, the successor pointers of Ni1 and Ni3 connect those nodes and
Ni4 . Then, similarly as in Theorem 3.1.2, executions of Stabilize by Ni2 and
Ni1 result with the stable pair 〈Ni1 , Ni4〉 in the state S9:
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Ni2
Stabilize−−−−−−−−→

S6

id i1 i2 i3 i4
predecessor ♦ undef i1 i3
successor i3 i3 i4 ♦

Ni2
Stabilize−−−−−−−−→

S7

id i1 i2 i3 i4
predecessor ♦ undef i2 i3
successor i3 i3 i4 ♦

Ni1
Stabilize−−−−−−−−→

S8

id i1 i2 i3 i4
predecessor ♦ undef i2 i3
successor i2 i3 i4 ♦

Ni1
Stabilize−−−−−−−−→

S9

id i1 i2 i3 i4
predecessor ♦ i1 i2 i3
successor i2 i3 i4 ♦

The execution of the Stabilize rule by Ni3 in S2 does not change the values
predecessor(i2) and successor(i2). The same holds if more than one node (de-
noted Nj1 , Nj2 , . . . ) join the network between Ni1 and Ni3 . So, if it is assumed
that

i1 6 . . . 6 j2 6 j1 6 i3 6 i4,

then, similarly as above, a sequence of executions of the Stabilize rule by the
nodes Nj1 , Ni1 , Nj2 , Ni1 , . . . result with a stable starting pair.

Theorem 3.1.4. Let a Chord network contain a stable pair and let a node be-
tween them leave the network. Then, there is a number k > 0 of steps, such that
if no Join rule happens at the considered part of the network in the meantime,

Proof. If it is assumed that the node leaves the network in a fair way, since
FairLeave produces a stable pair, the statement holds for k = 0. Thus, let
UnfairLeave be executed.

Suppose that the network contains only two nodes Ni1 and Ni2 , and that
Ni2 leaves in an unfair way and breaks the ring. Then, the following sequence
of moves will be considered:

S0

id i1 i2
predecessor i2 i1
successor i2 i1

Ni2UnfairLeave−−−−−−−−−−−→
S1

id i1
predecessor i2
successor i2

Ni1UpdatePredecessor−−−−−−−−−−−−−−−→
S2

id i1
predecessor undef
successor i2

Ni1Stabilize−−−−−−−−→

S3

id i1
predecessor undef
successor i1

Ni1
Stabilize−−−−−−−−→

S4

id i1
predecessor i1
successor i1

The state S4 is stable.
Suppose that there are three or more nodes in a network. Let Nik−1

, Nik
and Nik+1

be the members of the network such that successor(ik−1) = ik and
successor(ik) = ik+1. Suppose that Nik unfair leaves and breaks the ring of the
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successors pointers. Then, the following sequence of moves which results with
the stable pair 〈Nik−1

, Nik+1
〉 in state S4 will be considered:

S0

id ik−1 ik ik+1

predecessor ♦ ik−1 ik
successor ik ik+1 ♦

Nik
UnfairLeave−−−−−−−−−−−→

S1

id ik−1 ik+1

predecessor ♦ ik
successor ik ♦

Nik+1
UpdatePredecessor

−−−−−−−−−−−−−−−−−→
S2

id ik−1 ik+1

predecessor ♦ undef
successor ik ♦

Nik−1
Stabilize

−−−−−−−−−−→

S3

id ik−1 ik+1

predecessor ♦ undef
successor ik+1 ♦

Nik−1
Stabilize

−−−−−−−−−−→
S4

id ik−1 ik+1

predecessor ♦ ik−1

successor ik+1 ♦

Theorem 3.1.5. Let a Chord network contain a stable pair. Let a node which
is between those nodes leave the network following by several nodes which want
to join between them. Then, there is a number k > 0 of steps, such that the
considered pair will be brought into a stable state after k steps.

Proof. If it is assumed that the node leaves the network in a fair way. It produces
a stable pair, and according to the theorems 3.1.3 and 3.1.4, the statement holds.
Then, let the node Ni2 execute UnfairLeave and break the ring. If no node
joins the network in the ring interval [predecessor(i2), successor(i2)], the state-
ment holds similarly as in theorems 3.1.3 and 3.1.4. Finally, assume that a node
joins the network in the ring interval [predecessor(i2), successor(i2)]. Suppose
that Ni1 , Ni2 and Ni4 are members of the network, such that successor(i1) = i2,
predecessor(i2) = i1, successor(i2) = i4 and predecessor(i4) = i2. Further-
more, let member_ of(i2, i1, i3) = true and member_ of(i3, i2, i4) = true. Let
Ni2 be the node that will leave, and Ni3 node that will join the network. The
following sequence of moves will be considered:

S0

id i1 i2 i4
predecessor ♦ i1 i2
successor i2 i4 ♦

Ni2
UnfairLeave−−−−−−−−−−−→

S1

id i1 i4
predecessor ♦ i2
successor i2 ♦

Ni3
Join−−−−−→

S2

id i1 i3 i4
predecessor ♦ undef i2
successor i2 i4 ♦

Ni4
UpdatePredecessor−−−−−−−−−−−−−−−→

S3

id i1 i3 i4
predecessor ♦ undef undef
successor i2 i4 ♦

Ni1
Stabilize−−−−−−−−→

S4

id i1 i3 i4
predecessor ♦ undef undef
successor i4 i4 ♦
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Ni3
Stabilize−−−−−−−−→

S5

id i1 i3 i4
predecessor ♦ undef i3
successor i4 i4 ♦

Ni1
Stabilize−−−−−−−−→

S6

id i1 i3 i4
predecessor ♦ undef i3
successor i3 i4 ♦

Ni1
Stabilize−−−−−−−−→

S7

id i1 i3 i4
predecessor ♦ i1 i3
successor i3 i4 ♦

which results with the stable starting pair in the state S7. If more than one node
want to join the network in the considered ring interval, the similar arguments
as in the proof of Theorem 3.1.3 can be used to establish the statement.

Note that the restriction from the formulation of Theorem 3.1.5, that no
other leave-rules are allowed after the first one, is not essential. According to
the definition of regular runs, leave-rules can be executed only between nodes
which constitute a stable pair, and we can consider an execution of a sequence
of join rules interleaved with leave-rules, and obtain the same result. The above
statement will hold for each subsequence which starts with a leave rule followed
by several join rules. Thus, the following corollary holds:

Corollary 3.1.2. Let a Chord network contain a stable pair. Let a node, which
is in between those nodes, leave the network. Then, there is a number k > 0,
such that the considered pair of nodes will become stable after k moves.

Theorem 3.1.6 incorporates all previous ideas, and is the main statement
concerning correctness of maintaining topological structure of Chord networks.

Theorem 3.1.6. Let a finite initial segment of a run produce the state S of a
Chord network. Then, for every pair of nodes n, n′ ∈ Chord, there is a number
k > 0, such that 〈n, n′〉 will become stable after k moves.

Proof. The case in which the state S is stable is trivial. So, it can be assumed
that S is not stable. According to the definition of regular runs, no leave rule
might happen before the network becomes stable. Thus, only a sequence of Join
rules interleaved with Stabilize, UpdatePredecessor and UpdateFingers
can be executed. Since the number of nodes in the network is limited, the
number of join rules in the sequence must be finite. Then, similarly as in
Theorem 3.1.5, the statement holds.

Since a network is stable in a state if all pairs of nodes from the network are
stable in that state, the following corollary holds:

Corollary 3.1.3. Let a finite initial segment of a run produce the state S of
a Chord network. Then, there is a number k > 0, such that the network will
become stable after k moves.

Finally, the next two statements say that the presented formalization con-
sistently manipulates distributed keys. Theorem 3.1.7 states that 〈key, value〉
pairs are properly distributed over the network. Informally, it follows from
the facts that for every n ∈ Chord, hash(key) 6 n for the keys for which n
is responsible for, and that all rules that manipulate 〈key, value〉 pairs invoke
FindSuccessor rule.
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Theorem 3.1.7 (Golden rule).

∀(〈key, value〉 ∈ Keys× V alues, n ∈ Chord)(〈key, value〉 ∈ keyvalue(n)

⇒ member_ of(hash(key), predecessor(n), n).

Proof. Obviously, the statement holds for a Chord network containing only one
node. According to the definition, a Join executed by Ni moves to Ni the
corresponding 〈key, value〉 pairs stored in its successor. Similarly, FairLeave
and Stabilize executed by Ni transfer all 〈key, value〉 pairs from Ni to its
successor. When a node leaves the network in a unfair way, all 〈key, value〉 pairs
it stored would be lost. Thus the statement remains true. By the definition, for a
given 〈key, value〉 pair, Put finds a node responsible for the pair which satisfies
the statement. Finally, all the other rules do not manipulate 〈key, value〉 pairs.

Corollary 3.1.4 follows from the definition of Get, and the theorems 3.1.1
and 3.1.7:

Corollary 3.1.4. If Get returns undef for some key∈Keys, then there is no
value∈V alues such that (key, value) pair is stored in the Chord network.

Namely, according to Theorem 3.1.7, all 〈key, value〉 pairs are stored prop-
erly, and from Theorem 3.1.1 Get considers only the 〈key, value〉 pairs which
satisfy condition member_ of( hash(key), predecessor(id(N)), id(N)) and that
are stored in the node N .

3.1.4 Discussion and Related Work
One of the basic ideas behind the results presented in Section 3.1.3 is not all
possible runs are considered, but only regular runs. Example 3.1.3 shows that
without that restriction the ring topology can be damaged which might result
in splitting a Chord network in disjoint parts and/or in loosing data.

Bakhshi,
Gurov

Liben-
Nowell
et al.

Stoica
et al. Tru’o’ng Zave ASM

CHORD

Find
Successor
Termina-

tion

- - Theorem
IV.2 - - Theorem

3.1.1

Pure Join
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5.5
Theorem
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Section

3.4 (Simu-
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Theorem
3.1.3

Model
with
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-

Theorem
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HP)
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IV.5 (A
Scenario
wrt HP)

Chapter 6
(Counter-
examples)

Section 4
(Counter-
examples)

Corollary
3.1.3

(wrt RR)

〈key, value〉
Handling - - - - -

Theorem
3.1.7

Corol-
lary 3.1.4
(wrt RR)

Table 3.3: Schematic Overview of the Related Work

The request that every execution of the main module by a peer is atomic can
be relaxed so that only executions of the Chord-rules are required to be atomic.
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In that case it is necessary to introduce TTL mechanism. It means that if some
rule does not finish in predefined number of module executions, a node repeats
execution of that rule from the beginning.

On the other hand, the atomicity assumption is essential and cannot be
completely avoided since it eliminates several observed shortages, for instance
when a node tries to join the existing network via another node which tries to
leave in the same moment. Another counterexample concerns a Chord-network
and a nodeNi which leaves the network by executing the FairLeave rule. Then,
Ni tries to transfer its keyvalue-table to Nsuccessor(i). However, suppose that
Nsuccessor(i) leaves the network in the same moment. Obviously, the content of
Ni’s keyvalue-table will be lost.

Several improvements of Chord protocol are proposed to increase robustness:

• in [78] each Chord node can maintain a list containing the node’s first r
successors, and

• it is usual in software implementations [29] to make multiple copies of all
(key, value)-pairs (for example, by different hash functions).

Note that those changes might improve performance of a Chord network, but
do not affect correctness. Quite simple generalizations of Example 3.1.3 would
produce incorrect behavior.

The Chord protocol is introduced in [78–80]. The papers analyze the proto-
col, its performance and robustness, under the assumption that the nodes and
keys are randomly chosen and give several theorems that involve the phrase with
high probability, for example: “With high probability, the number of nodes that
must be contacted to find a successor in aN -node network is O(logN)" [80, The-
orem IV.2]. Theorem 3.1.1 corresponds to that statement, but only proves cor-
rectness of the rule FindSuccessor. Theorem [80, Theorem IV.2] considers
the so-called pure join model of Chord which does not allow (un)fair-leaving,
while here the failures of nodes are permitted, but restrict runs to be regular. If
the random distribution is assumed, it is easy to see that the same complexity
result can be obtained. On the other hand, in the theorems [80, Theorem IV.5]
and [80, Theorem IV.6] behavior of FindSuccessor is analyzed when failures
of nodes can happen. Then, to prove high probability of correctness it is neces-
sary to involve the aforementioned improvement of Chord which concerns lists
of successors of nodes. The only statement in [80] which avoids the mentioned
phrase about high probability is Theorem IV.3. It (corresponds to Theorem
3.1.3 and) proves that inconsistent states produced by executing several concur-
rent Join-rules are transient, i.e., that after the last Join-rule, nodes in a network
will form a cycle. That theorem also considers the pure join model. Although
only regular runs are considered here, since in Theorem 3.1.3 (un)fair-leaving
is not allowed, the theorem holds for all runs. More general sequences of con-
current joining and leaving are considered in [56], where a lower bound of the
rate at which nodes need to maintain the system such that it works correctly
is given (again) with high probability. In the previous sense, Corollary 3.1.3
corresponds to the main statement [56, Theorem 5.9] of that paper.

It is not quite clear how to compare these two approaches, and there is benefit
from both of them. One can argue that the probabilistic approach (providing
lower bounds of probabilities) is useful to study robustness of protocols. On the
other hand, the approach described in this thesis enables to identify sequences
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of actions leading to (un)stable states of Chord networks, which can be useful
when one analyzes properties of systems that incorporate Chord and assume its
correctness, as it is the case with non-relational database systems.

In [52] the theory of stochastic processes is used to estimate the probability
that a Chord network is in a particular state. In [5, 6] Chord’s stabilization
algorithm is modeled using the π-calculus and it’s correctness is established by
proving the equivalence of the corresponding specification and implementation.
Possible departures of nodes from a network are not examined in this approach.
The thesis [82] presents the results of testing of Chord protocol which is based
on random simulations. It reports some failures and proposes modifications in
the Join and Stabilization rules. For example, an update of the successor of
a node is added to the Stabilize-rule to decrease the number of steps needed
to obtain a stable state. The specification of Chord presented in Section 3.1.1
includes that modification. In [85] the Alloy formal language is used to prove
correctness of the pure join model. The same formalization produces several
counterexamples to correctness of Chord ring-maintenance. For the approach
presented here, since only the regular runs are considered, those examples do
not cause incorrectness. However, this does not imply that in a more general
framework some shortages cannot happen.

Finally, all the mentioned papers mainly consider maintaining of topologi-
cal structure of Chord networks, and do not analyze handling of 〈key, value〉-
pairs.Theorem 3.1.7 and Corollary 3.1.4 show that consistency of data handling
is kept in a model of execution which involves failures of nodes.

3.2 Refinement of the Model

A general framework for formal description of systems with so called zero-time
transitions, illustrated through Petri nets as state machines and TRIO as as-
sertion language was introduces in [44]. The key novelty in that approach of
modeling zero-time transitions was introduction of infinitesimals in the time
flow. More precisely, they have adopted and operationalized a natural assump-
tion that transitions of any particular system from one state to the next are not
instantaneous but infinitesimal with respect to the execution time of the entire
system.

It could be useful to adopt the abstraction of zero-time transitions when
the their duration is so short that it can be neglected w.r.t. the whole system
evolution in ASM. The main problem arises at the formal level of deduction. At
the begging of the transition at time t1 the system is at the state s1, and at the
end of the transition at time t2 the system is at the state s2. If it is assumed
that duration of the transition is 0, the consequence of this that t1 = t2 and at
that time the system is both in state s1 and in state s2. This exposes to the risk
of formal contradictions, especially for the systems where the time is crucial for
the inference.

In this section the new semantics will be introduces to prove the Theorems
from Section 3.1.3. Also, the language of the introduced temporal logic will be
used to formally describe new set of executions ε-regular runs.

With respect to [7] and [44], in this section a discrete linear time temporal
propositional logic adequate for modeling zero-time transitions will be presented.
Following the concept of non-instantaneous transitions of a system and discrete
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linear time model, the goal is to obtain the time flow isomorphic to concatenation
of ω copies of ω, i.e. with ω2 as the model of the time flow.

Arguably, the most intuitive representation of the ordinal ω2 is the lexico-
graphically ordered ω × ω. For the purpose of this thesis, changes of the first
coordinate represent different states of a system, while the changes of the sec-
ond coordinate represent transitions from one state to the next. Hence, it was
natural to introduce the following temporal operators:

• [ω]. It represents next state of a system. In the terms of a time flow,
it corresponds to the operation α 7→ α + ω on ω2. Semantically, [ω]φ is
satisfied in the 〈i, j〉-th time instant iff φ is satisfied in the 〈i + 1, 0〉-th
time instant;

• [1]. It represents the infinitesimal change of a system within some state.
In terms of a time flow, it behaves like the usual next operator: [1]φ is
satisfied in the 〈i, j〉-th moment iff φ is satisfied in the 〈i, j+1〉-th moment;

• U. It represents the adequate generalization of the until operator from
ω to ω2. Semantically, φ Uψ is satisfied in the 〈i, j〉-th moment iff there
is 〈k, l〉 >lex 〈i, j〉 so that ψ is satisfied in the 〈k, l〉-th moment, and for
all 〈r, s〉 such that 〈i, j〉 6lex 〈r, s〉 <lex 〈k, l〉, φ is satisfied in 〈r, s〉-th
moment. Here 6lex denotes lexicographical ordering;

• u. It is a local version of the until operator. Semantically, φ uψ is satisfied
in the 〈i, j〉-th moment iff there is a nonnegative integer k such that ψ is
satisfied in the 〈i, j + k〉-th moment, and for all l < k, φ is satisfied in
〈i, j + l〉-th moment.

The main technical results are the proofs of the completeness theorem and
determination of the complexity for the satisfiability procedure (PSPACE).

3.2.1 Syntax and semantics

Let V ar = {pn | n ∈ ω} be the set of propositional variables. The set For of
all L([1], [ω], u, U)-formulas is the smallest superset of V ar that is closed under
the following formation rules:

• φ 7→ ∗φ, where ∗ ∈ {¬, [1], [ω]};

• 〈φ, ψ〉 7→ (φ ∗ ψ), where ∗ ∈ {∧, u, U}.

As it is usual, in order to simplify notation the standard convention of omission
of parentheses and the standard priority of connectives will be used (all unary
connectives have the greater priority than any binary connective; connectives
of the same arity have identical priority). From now on, a formula will stand
for an L([1], [ω], u, U)-formula. Formulas will be denoted by φ, ψ and θ, indexed
if necessary. The remaining logical and temporal connectives ∨, →, ↔, f, g, F
and G are defined in the usual way:

• φ ∨ ψ =def ¬(¬φ ∧ ¬ψ);

• φ→ ψ =def ¬φ ∨ ψ;
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ξ〈0,0〉 ξ〈1,0〉 · · ·

ξ〈0,1〉 ξ〈1,1〉

ξ〈0,2〉 ξ〈1,2〉

...
...

Figure 3.4: Kripke model

• φ↔ ψ =def (φ→ ψ) ∧ (ψ → φ);

• fφ =def (φ→ φ)uφ;

• gφ =def ¬f¬φ;

• Fφ =def (φ→ φ)Uφ;

• Gφ =def ¬F¬φ;

• [a]0φ =def φ; [a]n+1φ =def [a][a]nφ, a ∈ {1, ω}.

Nonempty sets of formulas will be called theories.
The time flow is isomorphic to the ordinal ω ·ω (recall that in ordinal arith-

metics ω · ω is a concatenation of ω copies of ω). Instead of 〈ω · ω,∈〉, as a
canonical ordering the lexicographically ordered ω×ω will be used. Recall that
〈i, j〉 6lex 〈k, l〉 iff i < k, or i = k and j 6 l. If the context is clear, “lex" will
be omitted from the subscript. From now on, the elements of ω × ω would be
referred as time instants, and will be denoted by r , s and t, indexed or primed
if necessary. In particular, r should be regarded as 〈r1, r2〉, s should be regarded
as 〈s1, s2〉 and so on.

Definition 3.2.1. A model is any function (evaluation) of the form ξ : ω×ω×
V ar −→ {0, 1}. �

Models will be denoted by ξ, η and ζ, indexed if necessary. Note that
the equivalent Kripke style semantics can be obtained by introducing worlds
as valuations of the form ξi,j(p) = ξ(i, j, p), for every propositional variable p.
Thus, the models presented here can be graphically represented as in Figure
3.4.

Definition 3.2.2. Let ξ : ω × ω × V ar −→ {0, 1}. The predicate ξ |=r φ is
defined, which reads “a model ξ satisfies formula φ in the r-th moment (or in
the r-th time instant)", recursively on the complexity of formulas as follows:

1. ξ |=r pn ⇔def ξ(r, pn) = 1;

2. ξ |=r ¬φ⇔def ξ 6|=r φ;
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3. ξ |=r φ ∧ ψ ⇔def ξ |=r φ and ξ |=r ψ;

4. ξ |=r [1]φ⇔def ξ |=〈r1,r2+1〉 φ;

5. ξ |=r [ω]φ⇔def ξ |=〈r1+1,0〉 φ;

6. ξ |=r φ uψ ⇔def there exists k ∈ ω such that ξ |=〈r1,r2+k〉 ψ and ξ |=〈r1,r2+i〉
φ for all 0 6 i < k;

7. ξ |=r φ Uψ ⇔def there exists s > r such that ξ |=s ψ and ξ |=t φ for all
r 6 t < s. �

A formula φ is satisfiable iff there exist a model ξ and a time-instant t so
that ξ |=t φ. A formula φ is valid iff ξ |=t φ for all ξ and all t. For instance,
an immediate consequence of (2) and (3) of Definition 3.2.2 is validity of any
substitutional instance of any classical tautology. A slightly less trivial example
of a valid formula is [1][ω]φ↔ [ω]φ. Indeed,

ξ |=t [1][ω]φ ⇔ ξ |=〈t1,t2+1〉 [ω]φ

⇔ ξ |=〈t1+1,0〉 φ

⇔ ξ |=t [ω]φ.

Concerning the relationship between the operators U and u, it is not hard to
see that

(φ uψ)→ (φ Uψ)

is valid, but the converse implication is not.
If T is a theory, then ξ |=t T means that ξ |=t φ for all φ ∈ T , while T |= φ

means that, for all ξ and all t, ξ |=t T implies ξ |=t φ. A theory T is satisfiable
iff there exist a model ξ and a time-instant t so that ξ |=t T . A theory T is
finitely satisfiable iff all finite subsets of T are satisfiable.

Theorem 3.2.1. The compactness theorem fails for L([1], [ω], u, U).

Proof. Let
T = {F¬p0} ∪ {[ω]m[1]np0 | m,n ∈ ω}.

If ξ |=t F¬p0, then there exist m,n ∈ ω so that ξ |=〈t1+m,t2+n〉 ¬p0. As a
consequence, ξ 6|=t [ω]m[1]np0, so T is unsatisfiable. It remains to show that T
is finitely satisfiable.

Let S be a nonempty finite subset of T . Since S is finite, there exists a
positive integer k such that k > max(m,n) for all formulas of the form [ω]m[1]np0
that appear in S. Let ξ be any model such that ξ(r, p0) = 1 for all r < 〈k, 0〉
and ξ(k, 0, p0) = 0. Then, ξ |=〈0,0〉 S, F¬p0, so S is satisfiable.

3.2.2 Complete axiomatization
Since [1] and [ω] are essentially modal operators with some additional properties
(self-duality for example), one natural way to approach the construction of a
syntactical counterpart ` of the satisfiability relation |= is to determine suffi-
cient but reasonable amount of properties that enables the construction of the
standard monster model (the set of worlds is the set of all saturated theories).
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In particular, one must provide that T ` φ implies [a]T = {[a]ψ | ψ ∈ T} ` [a]φ,
a ∈ {1, ω} and validity of deduction theorem (T ` φ→ ψ iff T, φ ` ψ).

However, the situation that is consider here is significantly simpler than the
general one. Firstly, all the models have exactly the same frame ω2. Secondly,
satisfiability of propositional letters in any node can be defined syntactically by
formulas of the form [ω]m[1]np. Hence, if T is any complete theory, then it is
quite reasonable to expect that the function ξT : ω×ω×V ar −→ {0, 1} defined
by

ξT (m,n, p) = 1 iff T ` [ω]m[1]np

is a model of T in a sense that ξT |=〈m,n〉 φ iff T ` [ω]m[1]nφ (in particular,
ξT |=〈0,0〉 T ).

So, the definition of ` will incorporate sufficient amount of semantical prop-
erties of |= to ensure formal proof of the fact that ξT described above is a model
of a complete theory T .

Axioms and inference rules

The axioms of L([1], [ω], u, U) are all instances of the following eight schemata:

A1 Tautology instances;

A2 [1][ω]φ↔ [ω]φ;

A3 ¬[a]φ↔ [a]¬φ, a ∈ {1, ω};
A4 [a](φ ∗ ψ)↔ ([a]φ ∗ [a]ψ), [a] ∈ {1, ω} and ∗ ∈ {∧,∨,→,↔};
A5 ψ → (φ uψ);

A6 φ uψ → φ Uψ;

A7
(∧n

k=0[1]k(φ ∧ ¬ψ) ∧ [1]n+1ψ
)
→ φ uψ;

A8
(∧n

k=0[ω]kg(φ ∧ ¬ψ) ∧ [ω]n+1φ uψ
)
→ φ Uψ.

A1 reflects the fact that all tautology instances are valid. A2 captures the
interplay between [1] and [ω], which in ordinal arithmetics can be stated as
1 + ω = ω. A3 and A4 reflect self-duality of both [1] and [ω]. A5, A6, A7 and
A8 capture the ⇒ part in the following characterization of u and U:

• ¬(φ uψ)⇔ ¬ψ ∧∧n∈ω∨nk=0[1]k(¬φ ∨ ψ) ∨ [1]n+1¬ψ;

• ¬(φ Uψ)⇔ ¬(φ uψ) ∧∧n∈ω∨nk=0[ω]k¬g(φ ∧ ¬ψ) ∨ [ω]n+1¬(φ uψ).

The inference rules of L([1], [ω], u, U) are the following four rules:

R1 Modus ponens: from φ and φ→ ψ infer ψ;

R2 Necessitation: from φ infer [a]φ, a ∈ {1, ω};
R3 u-rule: from the set of premises

{θ → ¬ψ} ∪
{
θ →

n∨
k=0

[1]k(¬φ ∨ ψ) ∨ [1]n+1¬ψ | n ∈ ω
}

infer θ → ¬(φ uψ);

59



Bojan Marinković

R4 U-rule: from the set of premises

{θ → ¬(φ uψ)} ∪
{
θ →

n∨
k=0

[ω]k¬g(φ ∧ ¬ψ) ∨ [ω]n+1¬(φ uψ) | n ∈ ω
}

infer θ → ¬(φ Uψ).

Modus ponens and necessitation have the same meaning as in any modal
logic with multiple modal operators, see for instance [77]. Rules R3 and R4
reflect the ⇐ part of the characterization of u and U.

Basic proof theory

The inference relation ` is defined as follows:

Definition 3.2.3. An L([1], [ω], u, U)-formula φ is a theorem, denoted by ` φ,
iff there exists an at most countably infinite sequence of L([1], [ω], u, U)-formulas
φ0, . . . , φα (the ordering type of φ0, . . . , φα is α + 1, where α is any countable
ordinal) such that φα = φ and for all β 6 α, φβ is instance of some axiom, or
φβ can be obtained from some previous members of the sequence by application
of some inference rule. �

Definition 3.2.4. Let T be an L([1], [ω], u, U)-theory and φ an L([1], [ω], u, U)-
formula. A formula φ is syntactical consequence of T (or that φ is deducible
or derivable from T ), denoted by T ` φ, iff there exists an at most countably
infinite sequence of L([1], [ω], u, U)-formulas φ0, . . . , φα such that φα = φ and for
all β 6 α, φβ is instance of some axiom, φβ ∈ T , or φβ can be obtained from
some previous members of the sequence by application of some inference rule,
where the application of necessitation is restricted to theorems. �

An immediate consequence of the previous two definitions is the fact that
structural rules cut (T ` Γ, Γ ` φ implies T ` φ) and weakening (T ` φ
implies T, ψ ` φ) are true for the introduced consequence relation `. The
soundness theorem (T ` φ implies T |= φ) can be straightforwardly proved by
the induction on the length of the inference. Let us prove deduction theorem
for L([1], [ω], u, U).

Theorem 3.2.2 (Deduction theorem). T ` φ→ ψ iff T, φ ` ψ.
Proof. The ⇒ part is a straightforward consequence of weakening and modus
ponens. The converse implication will be proved by induction on the length of
the inference.

If ψ is an axiom instance or ψ ∈ T , then T ` ψ, so since T ` ψ → (φ→ ψ)
(A1), by modus ponens T ` φ→ ψ. If ψ = φ, then by A1, T ` φ→ φ.

Suppose that ψ is a theorem. Then, ` [a]ψ, so by weakening T ` [a]ψ,
T ` φ → [a]ψ stands. Thus, it is verified that the ⇐ part is preserved under
the application of necessitation.

Suppose that T ` φ → (θ → ¬ψ2) and T ` φ → (θ → ∨n
k=0[1]k(¬ψ1 ∨

ψ2) ∨ [1]n+1¬ψ2) for all n ∈ ω. Since p → (q → r) is equivalent to p ∧ q → r,
the following holds T ` φ ∧ θ → ¬ψ2 and T ` φ ∧ θ → ∨n

k=0[1]k(¬ψ1 ∨ ψ2) ∨
[1]n+1¬ψ2). By u-rule, T ` φ ∧ θ → ¬(ψ1 uψ2), i.e. T ` φ→ (θ → ¬(ψ1 uψ2)).
Hence, it is verified that the⇐ part is preserved under the application of the u-
rule. The remaining step (application of the U-rule) can be proved similarly.
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Lindenbaum’s theorem

Roughly speaking, the standard maximization argument in the proof of Linden-
baum’s theorem goes as follows: the starting point is a consistent theory and in
consecutive steps and it is extended with a single formula or with its negation
(depending which choice preserves consistency), until all formulas have been
exhausted. Due to the presence of infinitary inference rules, it is necessary to
additionally check in each step whether the current formula that is incompatible
with the current theory can be derived by application of R3 or R4. If that is
the case, at least one premise have to be blocked. Detailed construction is given
below.

Lemma 3.2.1. Suppose that T is a consistent theory and that T ` ¬(θ →
¬(φ uψ)). Then, T,¬(θ → ¬ψ) is consistent, or there exists a nonnegative
integer m such that T,¬

(
θ → ∨m

k=0[1]k(¬φ ∨ ψ) ∨ [1]m+1¬ψ
)
is consistent.

Proof. If T,¬(θ → ¬ψ) and T,¬
(
θ → ∨m

k=0[1]k(¬φ ∨ ψ) ∨ [1]m+1¬ψ
)
are in-

consistent for all m ∈ ω, then T ` θ → ¬ψ and T ` θ → ∨m
k=0[1]k(¬φ ∨ ψ) ∨

[1]m+1¬ψ for all m ∈ ω, so by R3, T ` θ → ¬(φ uψ), which contradicts the fact
that T is consistent.

Lemma 3.2.2. Suppose that T is a consistent theory and that T ` ¬(θ →
¬(φ Uψ)). Then, T,¬(θ → ¬(φ uψ)) is consistent, or there exists a nonneg-
ative integer m such that T,¬

(
θ → ∨m

k=0[ω]k¬g(φ ∧ ¬ψ) ∨ [ω]m+1¬(φ uψ)
)
is

consistent.

Proof. Similar as the proof of Lemma 3.2.1, with the use of R4 instead of R3.

Theorem 3.2.3 (Lindenbaum’s theorem). Every consistent theory can be max-
imized, i.e. extended to a complete theory.

Proof. Let T be a consistent theory and let 〈φn | n ∈ ω〉 be one enumeration
of the set of all L([1], [ω], u, U)-formulas. The sequence 〈Tn | n ∈ ω〉 of theories
will be inductively defined as follows:

1. T0 = T ;

2. If Tn is compatible with φn (Tn ∪ {φn} is consistent), then let Tn+1 =
Tn ∪ {φn};

3. If Tn is incompatible with φn (Tn ∪ {φn} is inconsistent) and φn 6= θ →
¬(ψ1 uψ2), θ → ¬(ψ1 Uψ2), then let Tn+1 = Tn ∪ {¬φn};

4. If Tn is incompatible with φn and φn = θ → ¬(ψ1 uψ2), then let Tn+1 =
Tn∪{¬φn,¬(θ → ∨m

k=0[1]k(¬φ∨ψ)∨ [1]m+1¬ψ)}, where m is the smallest
nonnegative integer such that Tn+1 is consistent. If there is no such m,
then by Lemma 3.2.1, Tn ∪{¬φn,¬(θ → ¬ψ)} is consistent, so let Tn+1 =
Tn ∪ {¬φn,¬(θ → ¬ψ)};

5. If Tn is incompatible with φn and φn = θ → ¬(ψ1 Uψ2), then let Tn+1 =
Tn∪{¬φn,¬(θ → ∨m

k=0[ω]k¬g(φ∧¬ψ)∨ [ω]m+1¬(φ uψ))}, where m is the
least nonnegative integer such that Tn+1 is consistent. If there is no such
m, then by Lemma 3.2.2, Tn ∪ {¬φn,¬(θ → ¬(φ uψ))} is consistent, so
let Tn+1 = Tn ∪ {¬φn,¬(θ → ¬(φ uψ))}.
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Note that each Tn is consistent. Let Tω =
⋃
n∈ω Tn. Clearly, Tω ` φ or Tω ` ¬φ

for any formula φ. It remains to show consistency of Tω. In order to do so, it is
sufficient to show that Tω is deductively closed. Case (2) ensures that all axiom
instances and all theorems are in Tω. Since necessitation can be applied only
on theorems, Tω is closed under its application. It remains to show that Tω is
closed under modus ponens, u-rule and U-rule.

MP: Let φ, φ → ψ ∈ Tω. Then, there exist k,m ∈ ω so that φ ∈ Tk and
φ → ψ ∈ Tm. Let ψ = φn and let l = k + m + n + 1. By construction of Tω,
Tk, Tm, Tn+1 ⊆ Tl, so by modus ponens, Tl ` ψ. Since Tl is consistent, ψ = φn
and Tn ⊆ Tl, Tn and ψ are compatible, so Tn+1 = Tn ∪ ψ, i.e. ψ ∈ Tω.

u-rule: Let {θ → ¬ψ} ∪ {θ → ∨m
i=0[1]i(¬φ ∨ ψ) ∨ [1]m+1¬ψ | m ∈ ω} ⊆ Tω

and let θ → ¬(φ uψ) = φk. Suppose that θ → ¬(φ uψ) /∈ Tω. Then, Tk+1 =
Tk,¬φk,¬(θ → ¬ψ) or Tk+1 = Tk,¬φk,¬(θ → ∨m

i=0[1]i(¬φ ∨ ψ) ∨ [1]m+1¬ψ).
Now, for sufficiently large index n, Tn contains both θ1 and ¬θ1, where θ1 = θ →
¬ψ or θ1 = θ → ∨m

i=0[1]i(¬φ ∨ ψ) ∨ [1]m+1¬ψ, which contradicts consistency of
Tn.

U-rule: Similarly as the previous case.

Completeness theorem

Due to the fact that the validity of Lindenbaum’s theorem for L([1], [ω], u, U) has
been established, it remains to show that each complete theory T is satisfiable.
Thus, trough the rest of this section T will be a complete theory.

Definition 3.2.5. Let T be a complete theory. The canonical model ξT is
defined by

ξT (k, l, p) = 1 ⇔def T ` [ω]k[1]lp.

�

The proof of the fact that ξT |=〈0,0〉 T will be devided into the following five
lemmas:

Lemma 3.2.3. Let T ` φ uψ. Then, T ` ψ or there exists a nonnegative
integer m such that T ` ∧mi=0[1]i(φ ∧ ¬ψ) ∧ [1]m+1ψ.

Proof. Contrary to the assumption of the lemma, let T 6` ψ and T 6` ∧mi=0[1]i(φ∧
¬ψ)∧[1]m+1ψ for allm ∈ ω. Since T is complete, T ` ¬ψ and T ` ∨mi=0[1]i(¬φ∨
ψ)∨ [1]m+1¬ψ for all m ∈ ω, so by R3 (for θ any axiom instance can be chosen),
T ` ¬(φ uψ), which contradicts consistency of T .

Lemma 3.2.4. Let T ` φ Uψ. Then, T ` φ uψ or there exists a nonnegative
integer m such that T ` ∧mi=0[ω]ig(φ ∧ ¬ψ) ∧ [ω]m+1(φ uψ).

Proof. Contrary to the assumption of the lemma, let T 6` φ uψ and

T 6`
m∧
i=0

[ω]ig(φ ∧ ¬ψ) ∧ [ω]m+1ψ

for all m ∈ ω. Since T is complete, T ` ¬(φ uψ) and T ` ∨mi=0[ω]i¬g(φ ∧
¬ψ) ∨ [ω]m+1¬(φ uψ) for all m ∈ ω, so by R4 (for θ any axiom instance can be
chosen), T ` ¬(φ Uψ), which contradicts consistency of T .
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Lemma 3.2.5. Let φ be any L([1], [ω])-formula. Then, for all 〈k, l〉 ∈ ω × ω,

ξT |=〈k,l〉 φ iff T ` [ω]k[1]lφ.

Proof. The induction on the complexity of L([1], [ω])-formulas will be used. The
case of propositional letters is covered by definition of ξT .

ξT |=〈k,l〉 ¬φ ⇔ ξT 6|=〈k,l〉 φ
IH⇔ T 6` [ω]k[1]lφ

⇔ T ` ¬[ω]k[1]lφ
A3⇔ T ` [ω]k[1]l¬φ;

ξT |=〈k,l〉 φ ∧ ψ ⇔ ξT |=〈k,l〉 φ and ξT |=〈k,l〉 ψ
IH⇔ T ` [ω]k[1]lφ and T ` [ω]k[1]lφ

⇔ T ` ([ω]k[1]lφ) ∧ ([ω]k[1]lψ)
A4⇔ T ` [ω]k[1]l(φ ∧ ψ);

ξT |=〈k,l〉 [1]φ ⇔ ξT |=〈k,l+1〉 φ
IH⇔ T ` [ω]k[1]l+1φ

⇔ T ` [ω]k[1]l[1]φ;

ξT |=〈k,l〉 [ω]φ ⇔ ξT |=〈k+1,0〉 φ
IH⇔ T ` [ω]k+1φ

⇔ T ` [ω]k[ω]φ
A2⇔ T ` [ω]k[1]l[ω]φ.

Lemma 3.2.6. Let φ be any L([1], [ω], u)-formula. Then, for all 〈k, l〉 ∈ ω×ω,

ξT |=〈k,l〉 φ iff T ` [ω]k[1]lφ.

Proof. As in the proof of the previous lemma, the induction on the complexity
of L([1], [ω], u)-formulas will be used. By Lemma 3.2.5, the only thing that has
to be considered is the case of u-formulas.

Let ξT |=〈k,l〉 φ uψ. Then, ξT |=〈k,l〉 ψ or there exists a nonnegative integer
m such that ξT |=〈k,l〉

∧m
i=0[1]i(φ ∧ ¬ψ) ∧ [1]m+1ψ. By induction hypothesis,

T ` [ω]k[1]lψ or T ` [ω]k[1]l
∧m
i=0[1]i(φ ∧ ¬ψ) ∧ [1]m+1ψ. By A4, A5 and A7,

T ` [ω]k[1]l(φ uψ).
Conversely, let T ` [ω]k[1]l(φ uψ). By A4 and Lemma 3.2.3, T ` [ω]k[1]lψ

or there exists a nonnegative integer m such that T ` [ω]k[1]l
∧m
i=0[1]i(φ∧¬ψ)∧

[1]m+1ψ. By induction hypothesis, ξT |=〈k,l〉 ψ or ξT |=〈k,l〉
∧m
i=0[1]i(φ ∧ ¬ψ) ∧

[1]m+1ψ, so by definition of |=, ξT |=〈k,l〉 φ uψ.
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Lemma 3.2.7. Let φ be any L([1], [ω], u, U)-formula. Then, for all 〈k, l〉 ∈ ω×ω,

ξT |=〈k,l〉 φ iff T ` [ω]k[1]lφ.

Proof. A straightforward modification of the proof of the previous lemma based
on lemmas 3.2.4 and 3.2.6.

Corollary 3.2.1. ξT |=〈0,0〉 φ iff T ` φ.

Proof. An immediate consequence of Lemma 3.2.7.

Hence, the fact that each consistent theory is satisfiable has been proved,
which concludes the proof of strong completeness theorem for L([1], [ω], u, U).

Representation of zero-time transitions

The main technical idea behind choosing ω2 as a model of the time flow is to
separate states of the system and transitions from one state to the next. More
precisely, time instants of the form 〈k, 0〉 are reserved for temporal description
of different states of a system, while transitions from 〈k, 0〉 to 〈k + 1, 0〉 are
temporally described throughout the k-th ω-stick {〈k, n〉 | n ∈ ω}. Recall that
the state of a system in any time instant t is described by formulas satisfied in
t.

As it was described in [44], any transition can occur within a closed time
interval. In order to model this phenomenon, the following two things have to
be provided:

• Any formula φ that is satisfied in all 〈k, n〉, n > n0, should also be satisfied
in 〈k + 1, 0〉;

• Any change can occur only once.

This leads to additional transition axioms:

TR1 gφ→ [ω]φ;

TR2 (φ ∧ [1]¬φ)→ g[1]¬φ.

Clearly, the strong completeness theorem holds for the extended system as
well since both TR1 and TR2 can be seen as L([1], [ω], u, U)-theories.

3.2.3 Decidability
In the process of showing decidability of the SAT problem for L([1], [ω], u, U)-
formulas and determination of the complexity, the argument presented by A. P.
Sistla and E. M. Clarke in [75] will be modified.

By V ar(φ) will be denoted the set of all propositional variables appearing
in φ, while by Sub(φ) will be denoted the set of all subformulas of φ. Note that

|Sub(φ)| 6 length(φ),

where |Sub(φ)| is the cardinal number of Sub(φ) and length(φ) is the number
of symbols in φ. Moreover, let
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(a) Initial Model

· · · ξ〈r1,0〉 · · · ξ〈s1,0〉 ξ〈s1+1,0〉 · · ·

ξ〈r1,r2−1〉

ξ〈r1,r2〉 ξ〈s1,s2〉

...
...

⇒

(b) Transformed Model

· · · ξ〈r1,0〉 ξ〈s1+1,0〉 · · ·

ξ〈r1,r2−1〉

ξ〈s1,s2〉

...

Figure 3.5: r ∼ s

Sub∗(φ) = Sub(φ) ∪ {ψ u θ : ψ U θ ∈ Sub(φ)}
and

Sub∗(φ, t, ξ) = {ψ ∈ Sub∗(φ) | ξ |=t ψ}.
Note that |Sub∗(φ)| 6 2 length(φ).

For the given formula φ and any model ξ : ω × ω × V ar −→ {0, 1} a binary
relation ∼φ,ξ on ω × ω is defined as follows:

r ∼φ,ξ s iff Sub∗(φ, r, ξ) = Sub∗(φ, s, ξ).

If the context is clear, φ and ξ will be omitted from the subscript and just
∼ will be written instead of ∼φ,ξ. It is easy to see that ∼ is an equivalence
relation with no more than 4length(φ) classes.

In the sequel, following the procedure from [75], it will be shown that a
model satisfying a formula can be transformed to another model of the formula
which is more suitable to prove decidability. In this transformation the initial
model will be pruned of non-essential worlds. Figure 3.5 illustrates the deletion
process.

Lemma 3.2.8, also known as deleting or filtration lemma, is the main tech-
nical tool for the removal of the redundant worlds from the given model. More
precisely, Lemma 3.2.8 says that if r < s and r ∼φ,ξ s, then ξ-values on
[r, s)lex × V ar do not have any impact on Sub∗(φ, t, ξ) for all t /∈ [r, s)lex.
In particular, if t < r < s and r ∼φ,ξ s, then the truth value of the predicate
ξ |=t φ is independent of ξ|[r,s)lex×V ar. Moreover, there is a unique isomorphism

f : 〈ω × ω,6lex〉 ∼= 〈(ω × ω) \ [r, s)lex,6lex〉,
so if the model η is defined by η(i, j, p) = ξ(f(i, j), p) for all p ∈ V ar, then the
following holds:

ξ |=t φ iff η |=t φ.

Note that η is just a technical rearrangement of ξ \ ξ|[r,s)lex×V ar and that the
true meaning of the previous equivalence is

ξ |=t φ iff ξ \ ξ|[r,s)lex×V ar |=t φ,
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which is the reason why Lemma 3.2.8 is referred as deleting or filtration lemma.

Lemma 3.2.8. With notation as before, suppose that φ, ξ, η, r and s satisfy
the following conditions:

1. r < s;

2. Sub∗(φ, r, ξ) = Sub∗(φ, s, ξ);

3. η(t, p) = ξ(t, p) for all t < r and all p ∈ V ar;

4. η(r1 + i, r2 + j, p) = ξ(s1 + i, s2 + j, p) for all i, j ∈ ω and all p ∈ V ar.

Then, the following hold:

(a) Sub∗(φ, t, ξ) = Sub∗(φ, t, η) for all t < r;

(b) Sub∗(φ, 〈s1 + i, s2 + j〉, ξ) = Sub∗(φ, 〈r1 + i, r2 + j〉, η) for all i, j ∈ ω.

Proof. Note that (b) is an immediate consequence of Definition 3.2.2 and the
fourth condition in the statement of the lemma. Therefore, it remains to prove
(a). It turns out that a somewhat stronger claim is easier to prove. Namely,
let A be the set of all formulas with variables from V ar(φ) that satisfy (a) then
V ar(φ) ⊆ A and A is closed under ¬, ∧, [1], [ω], u and U. Moreover, since

ψ u θ ⇔ θ ∨
∨
n∈ω

n∧
k=0

[1]k(ψ ∧ ¬θ) ∧ [1]n+1θ

and

ψ U θ ⇔ ψ u θ ∨
∨
n∈ω

n∧
k=0

[ω]kg(ψ ∧ ¬θ) ∧ [ω]n+1(ψ u θ),

for the verification of the lemma it is sufficient to prove that V ar(φ) ⊆ A and
that A is closed under ¬, ∧, [1] and [ω].

By (3), all propositional letters form V ar(φ) satisfy (a). Moreover, if ¬ψ, θ1∧
θ2 ∈ Sub(φ) and ψ, θ1 and θ2 satisfy (a), then by Definition 3.2.2 it immediately
follows that ¬ψ and θ1 ∧ θ2 also satisfy (a).

Suppose that [1]ψ ∈ Sub∗(φ) and that ψ satisfies (a), then ξ |=t [1]ψ iff
η |=t [1]ψ for all t < r has to be proved. There are two relevant cases:

• 〈t1, t2 + 1〉 < r. Then,

ξ |=t [1]ψ ⇔ ξ |=〈t1,t2+1〉 ψ

⇔ η |=〈t1,t2+1〉 ψ (ψ ∈ A and 〈t1, t2 + 1〉 < r)

⇔ η |=t [1]ψ.

• 〈t1, t2 + 1〉 = r (note that this case cannot occur if r is a limit, i.e. if
r2 = 0). Then,

ξ |=t [1]ψ ⇔ ξ |=r ψ

⇔ ξ |=s ψ (follows from(2))

⇔ η |=r ψ (follows from(4))

⇔ η |=t [1]ψ.
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Suppose that [ω]ψ ∈ Sub∗(φ) and that ψ satisfies (a). There are three
relevant cases:

• 〈t+ 1, 0〉 < r. Then,

ξ |=t [ω]ψ ⇔ ξ |=〈t1+1,0〉 ψ

⇔ η |=〈t1+1,0〉 ψ (ψ ∈ A and 〈t1 + 1, 0〉 < r)

⇔ η |=t [ω]ψ;

• Let 〈t1 + 1, 0〉 = r. Then,

ξ |=t [ω]ψ ⇔ ξ |=r ψ

⇔ ξ |=s ψ (follows from (2))

⇔ η |=r ψ (follows from (4))

⇔ η |=〈t1+1,0〉 ψ (〈t1 + 1, 0〉 = r)

⇔ η |=t [ω]ψ;

• Let 〈t1 + 1, 0〉 > r. Since t < r, it must be t1 = r1, so

ξ |=t [ω]ψ ⇔ ξ |=r [ω]ψ

⇔ ξ |=s [ω]ψ (follows from (2))

⇔ ξ |=〈s1+1,0〉 ψ

⇔ η |=〈r1+1,0〉 ψ (follows from (4))

⇔ η |=〈t1+1,0〉 ψ (r1 = t1)

⇔ η |=t [ω]ψ.

Definition 3.2.6. Suppose that r < s and ξ |=r ψ U θ. ψ U θ is fulfilled before
s iff there exists t ∈ [r, s)lex such that ξ |=t θ and ξ |=t′ ψ for all t′ such that
r 6 t′ < t.

In Lemma 3.2.9 it is shown that if 〈k, 0〉 ∼φ,ξ 〈k + m, 0〉 and all U-formulas
from Sub∗(φ, 〈k, 0〉, ξ) are fulfilled before 〈k + m, 0〉, then Sub∗(φ, r, ξ) does
not depend on the ξ-values on {〈t, p〉 : t > 〈k + m, 0〉, p ∈ V ar} for all
r < 〈k +m, 0〉. In particular, for any r 6 〈k, 0〉 the following holds:

ξ |=r φ iff ξ|[r,〈k+m,0〉)lex×V ar |=r φ.

The technical inconvenience lies in the fact that the function ξ|[r,〈k+m,0〉)lex×V ar
is not a model, so its domain has to be extended to ω×ω×V ar. The natural way
to do so is to extend periodically ξ|[r,〈k+m,0〉)lex×V ar to the ultimately periodic
model η with the outer period (outer loop) m. More precisely, η coincides with
ξ on the set [〈0, 0〉, 〈k+m, 0〉)lex × V ar and η(k+ i, j, p) = η(k+m+ i, j, p) for
all i, j ∈ ω and all p ∈ V ar.
Lemma 3.2.9 (Outer loop). With notation as before, suppose that φ, ξ, η, k
and m (k,m ∈ ω and m > 0) satisfy the following conditions:

1. Sub∗(φ, 〈k, 0〉, ξ) = Sub∗(φ, 〈k +m, 0〉, ξ);
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2. ξ(t, p) = η(t, p) for all t < 〈k +m, 0〉 and all p ∈ V ar;
3. η(s, p) = η(〈s1 +m, s2〉, p) for all s > 〈k, 0〉 and all p ∈ V ar;
4. Each ψ U θ ∈ Sub∗(φ, 〈k, 0〉, ξ) is fulfilled before 〈k +m, 0〉.
Then, the following hold:

(a) Sub∗(φ, t, ξ) = Sub∗(φ, t, η) for all t < 〈k +m, 0〉;
(b) Sub∗(φ, s, η) = Sub∗(φ, 〈s1 +m, s2〉, η) for all s > 〈k, 0〉.

Proof. Both cases (a) and (b) will be proved simultaneously by induction on
the complexity of formulas. Due to the third condition of the lemma, which
establishes periodicity of η, to prove the statement (b) it is sufficient to consider
only 〈k, 0〉 6 s < 〈k + m, 0〉. Firstly, (a) and (b) are obviously true for all
propositional variables from V ar(φ) and they are preserved by negation and
conjunction (this is an immediate consequence of Definition 3.2.2).

Suppose that [1]ψ ∈ Sub∗(φ) and that ψ satisfies both (a) and (b). Let
t < 〈k +m, 0〉. Then,

ξ |=t [1]ψ ⇔ ξ |=〈t1,t2+1〉 ψ

⇔ η |=〈t1,t2+1〉 ψ (〈t1, t2 + 1〉 < 〈k +m, 0〉 and ψ satisfies (a))

⇔ η |=t [1]ψ.

Let 〈k, 0〉 6 t < 〈k +m, 0〉. Then,
η |=t [1]ψ ⇔ η |=〈t1,t2+1〉 ψ

⇔ η |=〈t1+m,t2+1〉 ψ (〈t1, t2 + 1〉 < 〈k +m, 0〉 and ψ satisfies (b))

⇔ η |=〈t1+m,t2〉 [1]ψ.

Suppose that [ω]ψ ∈ Sub∗(φ) and that ψ satisfies both (a) and (b). Let
t < 〈k +m, 0〉. If 〈t1 + 1, 0〉 < 〈k +m, 0〉, then

ξ |=t [ω]ψ ⇔ ξ |=〈t1+1,0〉 ψ

⇔ η |=〈t1+1,0〉 ψ

⇔ η |=t [ω]ψ.

If 〈t1 + 1, 0〉 = 〈k +m, 0〉, then
ξ |=t [ω]ψ ⇔ ξ |=〈t1+1,0〉 ψ

⇔ ξ |=〈k+m,0〉 ψ
⇔ ξ |=〈k,0〉 ψ (by (1))

⇔ η |=〈k,0〉 ψ (by (2))

⇔ η |=〈k+m,0〉 ψ (by (b))

⇔ η |=t [ω]ψ.

Let 〈k, 0〉 6 t < 〈k +m, 0〉. If 〈t1 + 1, 0〉 < 〈k +m, 0〉, then
η |=t [ω]ψ ⇔ η |=〈t1+1,0〉 ψ

⇔ η |=〈t1+1+m,0〉 ψ

⇔ η |=〈t1+m+1,0〉 ψ

⇔ η |=〈t1+m,t2〉 [ω]ψ.
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If 〈t1 + 1, 0〉 = 〈k +m, 0〉, then

η |=t [ω]ψ ⇔ η |=〈t1+1,0〉 ψ

⇔ η |=〈k+m,0〉 ψ
⇔ η |=〈k+2m,0〉 ψ (by (3))

⇔ η |=〈t1+m+1,0〉 ψ

⇔ η |=〈t1+m,t2〉 [ω]ψ.

Suppose that ψ u θ ∈ Sub∗(φ) and that ψ and θ satisfy both (a) and (b).
Let t < 〈k+m, 0〉. Then, 〈t1, t2 + i〉 < 〈k+m, 0〉 for all i < ω, so ξ |=〈t1,t2+i〉 θ
iff η |=〈t1,t2+i〉 θ for all i < ω and ξ |=〈t1,t2+i〉 ψ ∧ ¬θ iff η |=〈t1,t2+i〉 ψ ∧ ¬θ for
all i < ω. Consequently, ξ |=t ψ u θ iff η |=t ψ u θ. Similarly, if 〈k, 0〉 6 t <
〈k +m, 0〉, then η |=t ψ u θ iff η |=〈t1+m,t2〉 ψ u θ

Suppose that ψ U θ ∈ Sub∗(φ) and that ψ and θ satisfy both (a) and (b).
Then, for all t < 〈k +m, 0〉, ξ |=t θ iff η |=t θ and ξ |=t ψ ∧ ¬θ iff ξ |=t ψ ∧ ¬θ.

Let ξ |=t ψ U θ for some t < 〈k+m, 0〉. By (4), there exists t 6 r < 〈k+m, 0〉
such that ξ |=r θ. Since [t, 〈k+m, 0〉)lex is a well ordering, it is possible to chose
the minimal r ∈ [t, 〈k +m, 0〉)lex such that ξ |=r θ. Now ξ |=s ψ ∧ ¬θ holds for
all t 6 s < r, so by induction hypothesis and Definition 3.2.2, η |=t ψ U θ.

Let η |=t ψ U θ for some t < 〈k + m, 0〉. Then, there exists r > t such that
η |=r θ and η |=s ψ ∧ ¬θ for all t 6 s < r. Since [t,∞)lex is a well ordering, it
is possible to chose the minimal r. Moreover, (b) implies that the minimal r is
strictly less than 〈k +m, 0〉, so ξ |=t ψ U θ holds.

It remains to prove (b) for ψ U θ, provided that ψ and θ satisfy both (a) and
(b). By (b) and Definition 3.2.2, η |=s θ iff η |=〈s1+m,s2〉 θ and η |=s ψ ∧ ¬θ
iff η |=〈s1+m,s2〉 ψ ∧ ¬θ for all s ∈ [〈k, 0〉, 〈k + m, 0〉)lex. As it has already
been proved, η |=s ψ U θ iff ξ |=s ψ U θ for all s ∈ [〈k, 0〉, 〈k + m, 0〉)lex. As a
consequence, η satisfies (4).

Let 〈k, 0〉 6 t < 〈k + m, 0〉 and let η |=t ψ U θ. By (4), there exists t 6 r <
〈k + m, 0〉 such that η |=r θ and η |=s ψ ∧ ¬θ for all s ∈ [t, r)lex. By induction
hypothesis, η |=〈r1+m,r2〉 θ and η |=〈s1+m,s2〉 ψ ∧ ¬θ for all s ∈ [t, r)lex, so
η |=〈t1+m,t2〉 ψ U θ. The converse implication can be proved similarly.

Definition 3.2.7. Let j < k and ξ |=〈i,j〉 ψ u θ. ψ u θ is fulfilled before 〈i, k〉 iff
there exists r ∈ ω such that j 6 r < k, ξ〈i,r〉 |= θ and ξ |=〈i,s〉 ψ for all s ∈ ω
such that j 6 s < r.

Lemma 3.2.10 is the local variant of Lemma 3.2.9. More precisely, if 〈k, l〉 ∼φ,ξ
〈k, l+m〉 and all u-formulas from Sub∗(φ, 〈k, l〉, ξ) are fulfilled before 〈k, l+m〉,
then Sub∗(φ, r, ξ) does not depend on the ξ-values on [〈k, l+m〉, 〈k+ 1, 0〉)lex×
V ar for all r /∈ [〈k, l+m〉, 〈k+1, 0〉)lex×V ar. In particular, for any r < 〈k, l+m〉
the following holds

ξ |=r φ iff ξ|(
(ω×ω)\[〈k,l+m〉,〈k+1,0〉)lex

)
×V ar |=r φ.

Similarly as before, technical difficulty lies in the fact that the function

ξ|(
(ω×ω)\[〈k,l+m〉,〈k+1,0〉)lex

)
×V ar
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is not a model. The natural way to extend its domain to ω × ω × V ar is to
introduce m as the local period (inner loop, period on the second coordinates)
on the {k}×ω×V ar. In particular, the extension η coincides with ξ on the set(

(ω × ω) \ [〈k, l +m〉, 〈k + 1, 0〉)lex
)
× V ar,

and η(k, l + i, p) = η(k, l +m+ i, p) for all i ∈ ω and all p ∈ V ar.
Lemma 3.2.10 (Inner loop). With notation as before, suppose that φ, ξ, η, k,
l and m (k, l,m ∈ ω and m > 0) satisfy the following conditions:

1. Sub∗(φ, 〈k, l〉, ξ) = Sub∗(φ, 〈k, l +m〉, ξ);
2. ξ(t, p) = η(t, p) for all t < 〈k, l +m〉, all t > 〈k + 1, 0〉 and all p ∈ V ar;
3. η(k, i, p) = η(k, i+m, p) for all i > l and all p ∈ V ar;
4. All ψ u θ ∈ Sub∗(φ, 〈k, l〉, ξ) are fulfilled before 〈k, l +m〉.

Then, the following hold:

(a) Sub∗(φ, t, ξ) = Sub∗(φ, t, η) for all t < 〈k, l +m〉 and all t > 〈k + 1, 0〉;
(b) Sub∗(φ, s, η) = Sub∗(φ, 〈s1, s2 +m〉, η) for all s ∈ [〈k, l〉, 〈k + 1, 0〉)lex.

Proof. Both cases (a) and (b) will be proved simultaneously by induction on the
complexity of formulas. As before, the statement is obviously true for propo-
sitional variables and its validity is preserved under negation and conjunction.
Furthermore, (2) implies that Sub∗(φ, t, ξ) = Sub∗(φ, t, η) for all t > 〈k + 1, 0〉.
Similarly as in the proof of Lemma 3.2.9 it can be shown that (4) holds for η as
well.

Suppose that [1]ψ ∈ Sub∗(φ) and that ψ satisfies both (a) and (b). Let
t < 〈k, l + m〉. If t2 + 1 < l + m, then by induction hypothesis ξ |=t [1]ψ iff
η |=t [1]ψ. Let t2 + 1 = l +m. Then

ξ |=t [1]ψ ⇔ ξ |=〈k,l+m〉 ψ
⇔ ξ |=〈k,l〉 ψ
⇔ η |=〈k,l+m〉 ψ
⇔ η |=t [1]ψ.

Let 〈k, l〉 6 t < 〈k + 1, 0〉. Then,

η |=t [1]ψ ⇔ η |=〈t1,t2+1〉 ψ

⇔ η |=〈t1,t2+1+m〉 ψ

⇔ η |=〈t1,t2+m+1〉 ψ

⇔ η |=〈t1,t2+m〉 [1]ψ.

Suppose that [ω]ψ ∈ Sub∗(φ) and that ψ satisfies (a) and (b). Let t <
〈k, l + m〉. If t1 + 1 < k, then (a) can be straightforwardly verified for [ω]ψ by
induction hypothesis. If t1 + 1 = k, then

ξ |=t [ω]ψ ⇔ ξ |=〈k,0〉 ψ
⇔ η |=〈k,0〉 ψ
⇔ η |=t [ω]ψ.

70



Interconnection of Heterogeneous Overlay Networks

Let t1 = k. Then,

ξ |=t [ω]ψ ⇔ ξ |=〈k+1,0〉 ψ

⇔ η |=〈k+1,0〉 ψ

⇔ η |=t [ω]ψ.

Let 〈k, l〉 6 t < 〈k+ 1, 0〉. Then, by Definition 3.2.2, η |=t [ω]ψ iff η |=〈k,l+i〉
[ω]ψ for all i < ω. Hence [ω]ψ satisfies (b).

Suppose that ψ u θ ∈ Sub∗(φ) and that both ψ and θ satisfy (a) and (b).
Let t < 〈k, l + m〉 and ξ |=t ψ u θ. The only nontrivial case is when t1 = k
and t2 > l. Then, there exists n < ω such that t2 + n < l + m, ξ〈k,t2+n〉 |= θ
and ξ〈k,l+i〉ψ ∧ ¬θ for all i ∈ {0, . . . , n − 1}. By induction hypothesis, ξ can
be replaced with η, so η |=t ψ u θ. The converse implication can be proved
similarly.

Let 〈k, l〉 6 t < 〈k + 1, 0〉. By induction hypothesis, for all i < ω, η |=〈k,i〉 θ
holds iff η |=〈k,i+m〉 θ and η |=〈k,i〉 ψ ∧ ¬θ holds iff η |=〈k,i+m〉 ψ ∧ ¬θ. Hence,
by Definition 3.2.2, ψ u θ satisfies (b).

Suppose that ψ U θ ∈ Sub∗(φ) and that both ψ and θ satisfy (a) and (b). Let
t < 〈k, l + m〉 and ξ |=t ψ U θ. Then, there exists r > t such that ξ |=r θ and
ξ |=s ψ ∧ ¬θ for all s such that t 6 s < r. There are four relevant possibilities:

• r < 〈k, l +m〉,

• 〈k, l +m〉 6 r < 〈k + 1, 0〉, and t < 〈k, l〉

• 〈k, l +m〉 6 r < 〈k + 1, 0〉, and 〈k, l〉 6 t < 〈k, l +m〉

• 〈k + 1, 0〉 6 r.

In the first case, since ξ and η coincide for t < 〈k, l+m〉, ξ |=t ψ U θ ⇔ η |=t ψ U θ
holds.

In the second case, it must be ξ |=〈k,l〉 ψ U θ, and since r < 〈k + 1, 0〉,
ξ |=〈k,l〉 ψ u θ holds. Due to (4), r < 〈k, l + m〉 holds, which contradicts the
assumed r > 〈k, l +m〉.

In the third case, ξ |=t ψ U θ implies ξ |=〈k,l+m〉 ψ U θ. By (1), ξ |=〈k,l〉 ψ U θ.
Furthermore, r < 〈k + 1, 0〉, so ξ |=〈k,l〉 ψ u θ. Since ψ u θ ∈ Sub∗(φ), similarly
as above a contradiction follows from (4).

In the fourth case, in ξ, ψ holds in each world between t and r. By conditions
(2) and (3) the same holds for η.

Theorem 3.2.4 establishes decidability in the following way: if φ is any for-
mula and M = (2 lenght(φ) + 1) 4lenght(φ), then φ is satisfiable iff there exists a
function

ζ : {0, . . . ,M}2 × V ar(φ) −→ {0, 1}
such that ζ |=〈0,0〉 φ. Since ζ is not a model, the technical difficulty lies in the
proper utilization of lemmas 3.2.8, 3.2.9 and 3.2.10 so that the initial model ξ
such that ξ |=t φ can be transformed to the ultimately periodical model η with
the following properties:

• η |=〈0,0〉 φ;
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Figure 3.6: Ultimately periodic model

• Sub∗(φ, r, η) does not depend on η-values on {M,M + 1, . . . }2 × V ar for
all r ∈ {0, . . . ,M}2.

Figure 3.6 illustrates the form of an ultimately periodic model.

Theorem 3.2.4 (Periodicity). Let ξ |=t φ. Then, there exist a model η and
positive integers k, m, li and ni, i = 1, . . . , k +m with the following properties:

1. η |=〈0,0〉 φ;

2. η(i, j, p) = η(i+m, j, p) for all i > k and all j ∈ ω;

3. η(i, j, p) = η(i, j + ni, p) for all i < k +m and all j > li;

4. max(m,n1, · · · , nk+m) 6 (2 length(φ) + 1) · 4length(φ);

5. max(k, l1, . . . , lk+m) 6 4length(φ).

Proof. Starting with a model ξ, the desired model η will be built gradually. Let

η0(i, j, p) = ξ(i+ t1, j + t2, p), i, j ∈ ω, p ∈ V ar.

Clearly, η0 |=〈i,j〉 ψ iff ξ |=〈i+t1,j+t2〉 ψ for all ψ ∈ For, hence η0 satisfies (1).
Recall that an equivalence relation ∼ on ω × ω has been defined by

r ∼ s iff Sub∗(φ, r, η0) = Sub∗(φ, s, η0).

Note that ∼ has finitely many equivalence classes. The number of classes is
bounded by 4length(φ), since there are at most 2 length(φ) formulas in Sub∗(φ).
Consequently, at least one of the sets

Ai = {〈j, 0〉 : j ∈ ω and 〈i, 0〉 ∼ 〈j, 0〉}, i ∈ ω
is infinite. Let i0 be the smallest nonnegative integer such that Ai0 is infinite.
Let ψ1 U θ1, . . . , ψs U θs be the sequence of all U-formulas from Sub∗(φ, 〈i0, 0〉, η0)
and r1, . . . , rs the sequence of time instances so that, for all j ∈ {1, . . . , s},
η0 |=rj θj and η0 |=t ψj for all t ∈ [〈i0, 0〉, rj)lex. Let j0 be the smallest positive
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integer such that 〈i0, 0〉 ∼ 〈j0, 0〉 and 〈j0, 0〉 > rj for all j ∈ {1, . . . , s}. It is easy
to see that η0, 〈i0, 0〉 and 〈j0, 0〉 satisfy conditions (1) and (4) of Lemma 3.2.9.

Without loss of generality it is possible to assume that r1 6 · · · 6 rs.
Let rj = 〈rj,1, rj,2〉 for all j ∈ {1, . . . , s}, and let I0 = (〈r0,1, 0〉, 〈r1,1, 0〉)lex,
I1 = (〈r1,1, 0〉, 〈r2,1, 0〉)lex, . . . , Is = (〈rs,1, 0〉, 〈rs+1,1, 0〉)lex, where r0,1 = i0
and rs+1,1 = j0. Now, using the pseudo-code, the construction of the model
η1 and the positive integer m 6 2 lenght(φ) 4length(φ) will be described so that
η1 |=〈0,0〉 φ and η1, 〈i0, 0〉, 〈i0 + m, 0〉 satisfy conditions (1) and (4) of Lemma
3.2.9:

η′ := η0;

For j = 0 to s do:

While there exist 〈a, 0〉, 〈b, 0〉 ∈ Ij so that a < b and Sub∗(φ, 〈a, 0〉, η′) =
Sub∗(φ, 〈b, 0〉, η′) do:

η′′(t′, p) := η′(t′, p) for all t′ < 〈a, 0〉 and all p ∈ V ar;
η′′(〈a+ i, i′〉, p) := η′(〈b+ i, i′〉, p) for all i, i′ ∈ ω and all p ∈ V ar;
rl,1 := rl,1 + a− b for all l ∈ {j, . . . , s+ 1};
Il := (〈rl,1, 0〉, 〈rl+1,1, 0〉)lex, for all l ∈ {j, . . . , s};
η′ := η′′;

m := rs+1,1 − i0;

η1 := η′.

Note that η′′ is constructed from η′ in such a way that η′, η′′ and φ satisfy
conditions of Lemma 3.2.8. Furthermore, η′ is initialized to be η0, so by Lemma
3.2.8, η1 |=〈0,0〉 φ. Moreover, the immediate consequence of the construction
of η1 is the fact that Sub∗(φ, 〈i0, 0〉, η1) = Sub∗(φ, 〈i0 + m, 0〉, η1) and that η1,
〈i0, 0〉 and 〈i0 + m, 0〉 satisfy condition (4) of Lemma 3.2.9. Note that for all
j ∈ {0, . . . , s}, and all 〈a, 0〉, 〈b, 0〉 ∈ Ij by the construction we have that

〈a, 0〉 6∼φ,η1 〈b, 0〉.

Since s 6 2 length(φ)+1 and the number of classes of ∼ is bounded by 4length(φ),
m 6 (2 lenght(φ) + 1) 4lenght(φ) holds.

As the next step towards the desired model η the model η2 and the positive
integer k 6 4length(φ) will be constructed so that η2 |=〈0,0〉 φ and η2, 〈k, 0〉,
〈k+m, 0〉 satisfy conditions (1) and (4) of Lemma 3.2.9. As above, the pseudo-
code will be used to describe the construction of η2 and k:

η′ := η1;

k := i0;

While there exist a < b 6 k so that Sub∗(φ, 〈a, 0〉, η′) = Sub∗(φ, 〈b, 0〉, η′)
do:

η′′(t′, p) := η′(t′, p) for all t′ < 〈a, 0〉 and all p ∈ V ar;
η′′(〈a+ i, i′〉, p) := η′(〈b+ i, i′〉, p) for all i, i′ ∈ ω and all p ∈ V ar;
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k := k + a− b;
η′ := η′′;

η2 := η′.

Similarly as in the case of η1, it is possible to verify that η2 and k satisfy
conditions (1) and (5) of the present theorem.

Now, the construction of the model η3 and positive integers li, ni, i ∈
{1, . . . , k + m} will be described so that conditions (1), (3)-(5) of the present
theorem are satisfied.

η′ := η2;

For i = 0 to k +m− 1 do:

Find positive integers ji,1, ji,2 so that ji,1 < ji,2, 〈i, ji,1〉 ∼φ,η′ 〈i, ji,2〉
and η′, 〈i, ji,1〉, 〈i, ji,2〉 satisfy condition (4) of Lemma 3.2.10. The
existence of such ji,1 and ji,2 can be proved similarly as it has been
done in the case of η0, 〈i0, 0〉 and 〈j0, 0〉, prior to the construction of
η1;
Form the set {ψ1 u θ1, . . . , ψv u θv} ⊆ Sub∗(φ, 〈i, ji,1〉, η′) of all u-fo-
rmulas in Sub∗(φ, 〈i, ji,1〉, η′);
For each j ∈ {1, . . . , v} find the smallest nonnegative integer rj such
that ji,1 6 rj < ji,2, η′ |=〈i,rj〉 θj and for all t ∈ [〈i, ji,1〉, 〈i, rj〉)lex,
η′ |=t ψj holds. Without loss of generality it is possible to assume
that r1 6 · · · 6 rv;
r0 := ji,1, rv+1 := ji,2;
I0 := (〈i, r0〉, 〈i, r1〉)lex, . . . , Iv := (〈i, rv〉, 〈i, rv+1〉)lex;
For j = 0 to v do:

While there exist 〈i, a〉, 〈i, b〉 ∈ Ij so that a < b and

Sub∗(φ, 〈i, a〉, η′) = Sub∗(φ, 〈i, b〉, η′)

do:
η′′(t′, p) := η′(t′, p) for all t′ < 〈i, a〉 and all p ∈ V ar;
η′′(t′, p) := η′(t′, p) for all t′ > 〈i+ 1, 0〉 and all p ∈ V ar;
η′′(〈i, a + i′〉, p) := η′(〈i, b + i′〉, p) for all i′ ∈ ω and all p ∈
V ar;
rl := rl + a− b for all l ∈ {j, . . . , v + 1};
Il := (〈i, rl〉, 〈i, rl+1〉)lex for all l ∈ {j, . . . , v + 1};
η′ := η′′;

ni+1 := rv+1 − r0;
li+1 := r0;
While there exist a < b 6 li+1 so that

Sub∗(φ, 〈i, a〉, η′) = Sub∗(φ, 〈i, b〉, η′)

do:
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η′′(t′, p) := η′(t′, p) for all t′ < 〈i, a〉 and all p ∈ V ar;
η′′(t′, p) := η′(t′, p) for all t′ > 〈i+ 1, 0〉 and all p ∈ V ar;
η′′(〈i, a+ i′〉, p) := η′(〈i, b+ i′〉, p) for all i′ ∈ ω and all p ∈ V ar;
li+1 := li+1 + a− b;
η′ := η′′;

η3(t′, p) := η′(t′, p) for all t′ < 〈i, li+1 + ni+1〉 and all p ∈ V ar;
η3(t′, p) := η′(t′, p) for all t′ > 〈i+ 1, 0〉 and all p ∈ V ar;
η3(〈i, d+ ni+1〉, p) := η3(〈i, d〉, p) for all d > li+1.

Using the similar argument as above it is possible to show that constructed
integers li and nj are bounded by 4length(φ) and (2 length(φ) + 1) 4length(φ) re-
spectively. The third condition follows immediately from the definition of η3,
while the first condition is preserved by Lemmas 3.2.10 and 3.2.8.

Finally, the model η3 has to be transformed to the desired model η so that
the second condition of the theorem is also satisfied. Since it has been already
determined the beginning of the outer loop k and the outer period m, the final
model η is defined as follows:

η(t′, p) = η3(t′, p) for all t′ < 〈k +m, 0〉 and all p ∈ V ar;

η(〈i+ k +m, j〉 = η(〈i+ k, j〉)) for all i, j ∈ ω and all p ∈ V ar.

By construction,
〈k, 0〉 ∼φ,η3 〈k +m, 0〉

and each U-formula from the set Sub∗(φ, 〈k, 0〉, η3) is fulfilled before 〈k +m, 0〉,
so by Lemma 3.2.9, the model η satisfies conditions (1) and (2) and hence all
conditions of the theorem. �

Theorem 3.2.5. The satisfiability of L([1], [ω], u, U)-formulas is PSPACE com-
plete.

Proof. On the one hand, in [75] it is shown that the satisfiability of L([1], u)-
formulas is PSPACE complete, so the lower bound of satisfiability of L([1], [ω], u, U)-
formulas is PSPACE. For the other direction, a nondeterministic Turing ma-
chine that determines satisfiability and uses polynomial space with respect to
the length of a given formula will be constructed. Before the start of the actual
description of the TM, the following the notation and terminology will be used:

• k,m: nonnegative integers that have the same meaning as the correspond-
ing numbers in Theorem 3.2.4 (k is the size of the initial segment, while
m is the size of the outer loop);

• klocal, mlocal: local versions of k and m (they are locally restricted to the
current inner loop {〈i, n〉 | n ∈ ω});

• Sstart: formulas from Sub∗(φ) guessed to be true at 〈0, 0〉;

• Spresent: formulas from Sub∗(φ) guessed to be true at the present moment;

• S[1]: formulas from Sub∗(φ) guessed to be true at the next time instant
〈i, j + 1〉;

75



Bojan Marinković

• S[ω]: formulas from Sub∗(φ) guessed to be true at ω-jump 〈i+ 1, 0〉;

• Sin: formulas from Sub∗(φ) guessed to be true at the beginning of the
inner period 〈i, kloc〉;

• Su: the set of all u-formulas from Sin;

• Sout: formulas from Sub∗(φ) guessed at the beginning of the outer period
〈k, 0〉;

• SU: the set of all U-formulas from Sout;

• Any of sets S∗ is said to satisfy Boolean consistency iff for all ψ, θ ∈ Sub(φ)
the following is true:

◦ ψ ∈ S∗ or ¬ψ ∈ S∗;
◦ ψ ∈ S∗ ⇔ ¬ψ /∈ S∗;
◦ ψ ∧ θ ∈ S∗ ⇔ ψ, θ ∈ S∗;

• Spresent, S[1] and S[ω] are properly linked iff for all ψ, θ ∈ Sub(φ) the
following conditions are satisfied:

◦ [1]ψ ∈ Spresent ⇔ ψ ∈ S[1];

◦ [ω]ψ ∈ Spresent ⇔ ψ ∈ S[ω];

◦ ψ u θ ∈ Spresent iff θ ∈ Spresent, or ψ,¬θ ∈ Spresent and ψ u θ ∈ S[1].
Here ¬θ ∈ Spresent has the same meaning as θ /∈ Spresent;

◦ If the counter is not on the end of the inner loop, then ψ U θ ∈ Spresent

iff θ ∈ Spresent, or ψ,¬θ ∈ Spresent and ψ U θ ∈ S[1]. If the counter is
on the end of the inner loop, then ψ U θ ∈ Spresent iff θ ∈ Spresent, or
ψ,¬θ ∈ Spresent and ψ U θ ∈ S[ω].

TM, that determines satisfiability, works as follows:

input φ;

guess k, m, Sstart and Sout;

check Boolean consistency of Sstart and Sout; if it fails return false;

if φ /∈ Sstart return false;

construct SU;

Spresent := Sstart;

for i = 0 to k +m− 1 do;

guess kloc, mloc, Sin;

if i < k +m− 1 guess S[ω]; else S[ω] := Sout;

check Boolean consistency of Sin and S[ω]; if it fails return false;

construct Su;

for j = 0 to kloc +mloc − 1 do;
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if j < kloc +mloc − 1 guess S[1]; else S[1] := Sin;
check Boolean consistency of S[1]; if it fails return false;
check whether Spresent, S[1] and S[ω] are properly linked; if it fails
return false;
if j > kloc then for all ψ u θ ∈ Su check whether θ ∈ Spresent; if it
passes, delete ψ u θ from Su;
if k 6 i < k + m − 1 then for all ψ U θ ∈ SU check whether
θ ∈ Spresent; if it passes, delete ψ U θ from SU;
Spresent := S[1];
next j;

if Su 6= ∅ return false;

Spresent := S[ω];

next i;

if SU 6= ∅ return false;

end.

It is easy to see that the TM just described uses polynomial space with
respect to length(φ), so the satisfiability problem is at most PSPACE hard.
Since PSPACE is both upper and lower complexity bound, the theorem holds.

3.2.4 Related work

The motivation for this particular modification of discrete linear time temporal
logic has come from the research of A. Gargantini, D. Mandrioli and A. Morzenti
that was presented in [44].

In the recent companion paper [41], authors use concepts from non-standard
analysis and provide notions of micro and macro steps in an extension of the
TRIO metric temporal general-purpose specification language. The key differ-
ence between that paper and the approach described here is that here the time
flow is restricted to a concrete well-ordering.

In [26, 27] a family of temporal logics that extend LTL to allow time flows
isomorphic to any countable limit ordinal are presented. Decidability of those
logics is analyzed using generalized Büchi automata. The logic described there
corresponds to the logic with time isomorphic to ω2, where the considered op-
erators (in their notation) are ©1, ©ω and Uω

2

.
The results presented in this section can be classified as a research related

to discrete linear time temporal logics, with particular application on system
descriptions and handling zero-time transitions in Petri nets. For modal and
temporal part, reader can refer to [1, 9, 17–20,33–35,40,43,48,55,61,68].

The infinitary techniques presented here (application of infinitary inference
rules in order to overcome inherited noncompactness) are connected with the
research presented in [30,31,67].

Decidability argumentation presented here is a modification of the work of
A. Sistla and E. Clarke presented in [75].
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3.3 Refinement proof of ASM Chord verification
In this Section the proof of Theorems 3.1.2 – 3.1.5 will be given assuming the
refined format that the time for execution of a step which is a part of a rule is
infinitely smaller than the time used for the communication between two nodes,
and using low level definition of the Chord rules given in Appendix A. The new
set of allowed executions, called ε-regular runs, is introduced as a special kind
of regular runs:

Definition 3.3.1 (ε-regular runs). ε-regular runs are regular runs that satisfy:

• ¬fair_leave(n) Umember_ of_stable_pair(n), and

• ¬unfair_leave(n) Umember_ of_stable_pair(n), and

• ¬put(n) Umember_ of_stable_pair(n), and

• F execute_rule(n)

for every node n ∈ Node, where member_ of_stable_pair(n), fair_leave(n),
unfair_leave(n), put(n) and execute_rule(n) denote respectively a relation
that n is a member of a stable pair of nodes, n can execute FairLeave, Un-
fairLeave, Put or its next rule.

Note that, for the finite set P = {p1, . . . , pk} and the given unary predicate
R ⊂ P , it is possible to introduce new propositional letters pr1, . . . , prk such
that R(pi) holds iff pri = >, i.e. it is possible to code R(x) into the propositional
case.

Theorem 3.3.1. Let a peer join a Chord network, between two nodes which
constitute a stable pair. Then, there is a number k > 0 of steps, such that if
no other join rule happens in the meantime, the Stabilize rule will bring the
starting pair to be stable after k steps.

Proof. Suppose that the network contains only one node N1 and that N2 wants
to join. The following sequence of moves will be considered:

State Rule Node Values
S〈0,0〉 successor(N1) = N1

predecessor(N1) = N1

S〈1,0〉 JoinBegin New
S〈1,1〉 hash(New) = N2

S〈1,2〉 predecessor(N2) = undef
S〈2,0〉 JoinGetSuccessor N2

S〈2,1〉 successor(N2) = N1

S〈3,0〉 StabilizeBegin N2

S〈4,0〉 StabilizeWithPredecessor N2

S〈4,1〉 x = N1

S〈5,0〉 ReadMessage N1

S〈5,1〉 predecessor(N1) = N2

S〈6,0〉 StabilizeBegin N1

S〈7,0〉 StabilizeWithPredecessor N1
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S〈7,1〉 x = N2

S〈7,2〉 successor(N1) = N2

S〈8,0〉 StabilizeBegin N1

S〈9,0〉 StabilizeWithPredecessor N1

S〈9,1〉 x = N2

S〈10,0〉 ReadMessage N1

S〈10,1〉 predecessor(N2) = N1

Obviously, a stable pair has been established, again.
Suppose that there are two or more nodes in the network, and that N2 wants

to join. Let N1 and N3 be the members of the network such that successor(1) =
3, and predecessor(3) = 1 (i.e., 〈N1, N3〉 is a stable pair).

State Rule Node Values
S〈0,0〉 successor(N1) = N3

predecessor(N3) = N1

S〈1,0〉 JoinBegin New
S〈1,1〉 hash(New) = N2

S〈1,2〉 predecessor(N2) = undef
S〈2,0〉 JoinGetSuccessor N2

S〈2,1〉 successor(N2) = N3

S〈3,0〉 StabilizeBegin N2

S〈4,0〉 StabilizeWithPredecessor N2

S〈4,1〉 x = N1

S〈5,0〉 ReadMessage N3

S〈5,1〉 predecessor(N3) = N2

S〈6,0〉 StabilizeBegin N1

S〈7,0〉 StabilizeWithPredecessor N1

S〈7,1〉 x = N2

S〈7,2〉 successor(N1) = N2

S〈8,0〉 StabilizeBegin N1

S〈9,0〉 StabilizeWithPredecessor N1

S〈9,1〉 x = N2

S〈10,0〉 ReadMessage N1

S〈10,1〉 predecessor(N2) = N1

Thus, a stable pair has been established.

Theorem 3.3.2 (Concurrent joins). Let a Chord network contain a stable
pair. If a sequence of Join rules is executed between the nodes which form
this stable pair, interleaved with Stabilize, UpdatePredecessor and Up-
date_fingers, then there is a number k > 0 of steps, such that after the last
Join rule, the starting pair of nodes will be stable after k steps.
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Proof. First, note that UpdateFingers does not change the values of the
functions predecessor and successor. Similarly, UpdatePredecessor might
change values of the function predecessor only after an UnfairLeave. Thus,
executions of UpdatePredecessor and UpdateFingers will not be consid-
ered in the rest of this proof.

If it is assumed that all peers that want to join the network have different
successors. Then, by Theorem 3.3.1, the statement holds. Otherwise, there must
be at least two peers that want to join the network having the same successor.
Suppose that N2 and N3 want to join and that N1 and N4 are members of
the network, such that successor(1) = 4 and predecessor(4) = 1. Then, the
following sequence of moves will be considered:

State Rule Node Values
S〈0,0〉 successor(N1) = N4

predecessor(N4) = N1

S〈1,0〉 JoinBegin New1

S〈1,1〉 hash(New1) = N2

S〈1,2〉 predecessor(N2) = undef
S〈2,0〉 JoinBegin New2

S〈2,1〉 hash(New2) = N3

S〈2,2〉 predecessor(N3) = undef
S〈3,0〉 JoinGetSuccessor N2

S〈3,1〉 successor(N2) = N4

S〈4,0〉 JoinGetSuccessor N3

S〈4,1〉 successor(N3) = N4

S〈5,0〉 StabilizeBegin N3

S〈6,0〉 StabilizeWithPredecessor N3

S〈6,1〉 x = N1

S〈7,0〉 ReadMessage N4

S〈7,1〉 predecessor(N4) = N3

S〈8,0〉 StabilizeBegin N1

S〈9,0〉 StabilizeWithPredecessor N1

S〈9,1〉 x = N3

S〈9,2〉 successor(N1) = N3

S〈10,0〉 StabilizeBegin N1

S〈11,0〉 StabilizeWithPredecessor N1

S〈11,1〉 x = N3

S〈12,0〉 ReadMessage N3

S〈12,1〉 predecessor(N3) = N1

S〈13,0〉 StabilizeBegin N2

S〈14,0〉 StabilizeWithPredecessor N2

S〈14,1〉 x = N3

S〈14,2〉 successor(N2) = N3

S〈15,0〉 StabilizeBegin N1

S〈16,0〉 StabilizeWithPredecessor N1

S〈16,1〉 x = N2

S〈17,0〉 ReadMessage N3

S〈17,1〉 predecessor(N3) = N2
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S〈18,0〉 StabilizeBegin N1

S〈19,0〉 StabilizeWithPredecessor N1

S〈19,1〉 x = N2

S〈19,2〉 successor(N1) = N3

S〈20,0〉 StabilizeBegin N1

S〈21,0〉 StabilizeWithPredecessor N1

S〈21,1〉 x = N2

S〈22,0〉 ReadMessage N2

S〈22,1〉 predecessor(N2) = N1

Thus, a stable pair has been established.

Theorem 3.3.3. Let a Chord network contain a stable pair and let a node be-
tween them leave the network. Then, there is a number k > 0 of steps, such that
if no Join rule happens at the considered part of the network in the meantime.

Proof. If it is assumed that the node leaves the network in a fair way, since
FairLeave produces a stable pair, the statement holds for k = 0. Thus, let
UnfairLeave be executed.

Suppose that the network contains only two nodes N1 and N2, and that N2

leaves in an unfair way and breaks the ring. Then, the following sequence of
moves will be considered:

State Rule Node Values
S〈0,0〉 successor(N1) = N2

predecessor(N1) = N2

successor(N2) = N1

predecessor(N2) = N1

S〈1,0〉 UnfairLeave N2

S〈2,0〉 UpdatePredecessor N1

S〈2,1〉 predecessor(N1) = undef
S〈3,0〉 StabilizeBegin N1

S〈4,0〉 StabilizeWaitSuccessor N1

S〈4,1〉 successor(N1) = N1

S〈5,0〉 StabilizeBegin N1

S〈6,0〉 StabilizeWithPredecessor N1

S〈6,1〉 x = undef
S〈7,0〉 ReadMessage N1

S〈7,1〉 predecessor(N1) = N1

Suppose that there are three or more nodes in a network. Let N1, N2 and N3

be the members of the network such that successor(1) = 2 and successor(2) =
3. Suppose that N2 unfair leaves and breaks the ring of the successors pointers.
Then, the following sequence of moves which results with the stable pair 〈N1, N3〉
will be considered:
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State Rule Node Values
S〈0,0〉 successor(N1) = N2

predecessor(N2) = N1

successor(N2) = N3

predecessor(N3) = N2

S〈1,0〉 UnfairLeave N2

S〈2,0〉 UpdatePredecessor N3

S〈2,1〉 predecessor(N3) = undef
S〈3,0〉 StabilizeBegin N1

S〈4,0〉 StabilizeWaitSuccessor N1

S〈4,1〉 successor(N1) = N3

S〈5,0〉 StabilizeBegin N1

S〈6,0〉 StabilizeWithPredecessor N1

S〈6,1〉 x = undef
S〈7,0〉 ReadMessage N3

S〈7,1〉 predecessor(N3) = N1

Theorem 3.3.4. Let a Chord network contain a stable pair. Let a node which
is between those nodes leave the network following by several nodes which want
to join between them. Then, there is a number k > 0 of steps, such that the
considered pair will be brought into a stable state after k steps.

Proof. If it is assumed that the node leaves the network in a fair way. It produces
a stable pair, and according to the theorems 3.3.2 and 3.3.3, the statement holds.
Then, let the nodeN2 execute UnfairLeave and break the ring. If no node joins
the network in the ring interval [predecessor(2), successor(2)], the statement
holds similarly as in Theorems 3.3.2 and 3.3.3. Finally, assume that a node
joins the network in the ring interval [predecessor(2), successor(2)]. Suppose
that N1, N2 and N4 are members of the network, such that successor(1) = 2,
predecessor(2) = 1, successor(2) = 4 and predecessor(4) = 2. Let N2 be the
node that will leave, and N3 node that will join the network. The following
sequence of moves will be considered:

State Rule Node Values
S〈0,0〉 successor(N1) = N2

predecessor(N2) = N1

successor(N2) = N4

predecessor(N4) = N2

S〈1,0〉 UnfairLeave N2

S〈2,0〉 JoinBegin New
S〈2,1〉 hash(New) = N3

S〈2,2〉 predecessor(N3) = undef
S〈3,0〉 JoinGetSuccessor N3

S〈3,1〉 successor(N3) = N4
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S〈4,0〉 UpdatePredecessor N4

S〈4,1〉 predecessor(N4) = undef
S〈5,0〉 StabilizeBegin N1

S〈6,0〉 StabilizeWaitSuccessor N1

S〈6,1〉 successor(N1) = N4

S〈7,0〉 StabilizeBegin N3

S〈8,0〉 StabilizeWithPredecessor N3

S〈8,1〉 x = undef
S〈9,0〉 ReadMessage N4

S〈9,1〉 predecessor(N4) = N3

S〈10,0〉 StabilizeBegin N1

S〈11,0〉 StabilizeWithPredecessor N1

S〈11,1〉 x = N3

S〈11,2〉 successor(N1) = N3

S〈12,0〉 StabilizeBegin N1

S〈13,0〉 StabilizeWithPredecessor N1

S〈13,1〉 x = N3

S〈14,0〉 ReadMessage N3

S〈14,1〉 predecessor(N3) = N1

which results with the stable starting pair. If more than one node want to join
the network in the considered ring interval, the similar arguments as in the proof
of Theorem 3.3.2 can be used to establish the statement.
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4

Synapse Protocol

As it is said in the Introduction, one of the possible solutions for the inter-
connection of heterogeneous overlay networks is the Synapse protocol. It was
introduced in [59]. It is a generic and flexible meta-protocol that provides sim-
ple mechanisms and algorithms for easy interconnection of overlay networks.
The Synapse protocol has already found some applications in the real-world
situations that is presented in [24,64].

Some of the results presented in this chapter are the result of work by the
other members of the INRIA LogNet team (http://www-sop.inria.fr/teams/
lognet/LOGNET/), and co-authors of [59], but they will presented here to give
better understanding of all the aspects of the Synapse protocol. Figures that
are inherited from [59] and that are work of my co-authors are marked with *
in the captions.

4.1 Definition

Information is a set of basic 〈key, value〉 pairs, as commonly encountered in pro-
tocols for information retrieval. The protocol specifies how to insert information
(PUT), how to retrieve it through a key (GET) and how to join a given overlay
(JOIN) over a heterogeneous collection of overlay networks linked by co-located
nodes. These co-located nodes represent a simple way to aggregate the resources
of distinct overlays. It is assumed that each overlay has its own inner routing
algorithm, called by the Synapse protocol to route requests inside each overlay.
Also, it is assumed that there is no knowledge of the logical topology of all the
involved overlay networks connected by Synapse. To ensure the usual properties
of the underlying network, it is assumed that communication is both symmetric
and transitive. Synapse simply ignores about how routing takes place inside the
overlays, Synapse only offers a mechanism to route from one overlay to another
in a simple, scalable and efficient way.

The inter-overlay network, induced by the Synapse protocol, can be consid-
ered as an aggregation of heterogeneous sub-overlay networks (referred to as in-
tra-overlay networks henceforth). Each intra-overlay consists of one instance of,
e.g., Chord [78–80] or any structured, unstructured or hybrid overlay, equipped
with a 〈key, value〉 distribution and retrieval mechanism. It is assumed that an
overlay network for information retrieval consists of a set of nodes on which the
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information on some resources is distributed. Each intra-overlay has its own
hash function, 〈key, value〉 distribution and retrieval policy, logical topology,
search complexity, routing and fault-tolerance mechanisms, so on and so forth.
The Synapse protocol can be summarized by the following points:

• Synapses: the interconnection of intra-overlay networks is achieved by co-
located nodes taking part in several of these intra-overlays, called synapses.
Each peer will act according to the policy of each of its intra-overlays, but
will have the extra-role of forwarding the requests to some intra-overlay it
belongs to.

• Peer’s name: every peer comes with a proper logical name in each intra-
overlay; in particular, synapses have as many logical names as the number
of networks they belongs to.

• Keys mapping in peers: each peer is responsible for a set of resources
〈key, value〉 it hosts. Since every intra-overlay has different policies for
keys distribution, it is possible to say that also the inter-overlay induced
by Synapse also inherits homogeneous distribution among the intra- and
inter-networks. As for peers, every key comes with a proper logical name
peculiar to each intra-overlay.

• Set of resources assigned to set of nodes: all overlay protocols for informa-
tion retrieval share the invariant of having a set of peers responsible of a
specific set of resources. This invariant allows for routing under structured,
unstructured and hybrid networks, because by construction, intra-routing
is the one always responsible for its correctness, since Synapse just cares
about overlay’s inter-connection.

• Network independency and message translation: intra-network protocols
are different by construction: as such, when a message leaves a particular
network and enters another network, the first network loses control of the
route of that message inside the second one.

• Topology, exhaustiveness, complexity and scalability: by construction, the
inter-overlay network induced by the Synapse protocol belongs to the cat-
egory of unstructured overlay networks, with a routing that is not exhaus-
tive, even if Synapse can connect only overlays that guarantee exhaustivity.
The same goes for the routing complexity that can be upper-bounded only
in the presence of precise and strong hypotheses about the type of intra-
overlay networks. The same goes for scalability: a Synapse inter-overlay
is scalable if all the intra-networks are scalable.

• Loopy routing avoidance: to avoid lookup cycles when doing inter-routing,
each peer maintains a list of tags of already processed requests, in order
to discard previously seen queries, and a TTL value, which is decreased
at each hop. These two features prevent the system from generating loops
and useless queries, thus reducing the global number of messages in the
Synapse inter-overlay.
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4.1.1 “White box” vs. “black box” Synapse protocol

One important issue in interconnecting overlay networks is the ability of one
overlay to potentially modify its protocol instead of only accepting that co-
located nodes will route packets without any change in the protocol itself. This is
a concrete backward compatibility issue, since many overlays already exist, and
it is hard to change them at this point for many reasons (security, commercial,
technological ...).

As such, two models of the Synapse protocol have been developed. The
first white box model, is suitable to interconnecting overlays whose standards
are open and collaborative, meaning that the protocol and the software client
can be modified accordingly. The second, black box model, is suitable to inter-
connecting overlays that, for different reasons, are not collaborative at all, in
the sense that they only route packets according to their proprietary and im-
mutable protocol. The white box allows the adding of extra parameters to the
current inter-overlay that are connected, while the black box deals with those
extra parameters by means of a synapse control network, i.e. a distributed over-
lay that stores all the synapse parameters that cannot be carried on by some
intra-overlay network.

White box Synapse

The white box hereby presented is capable of connecting heterogeneous network
topologies given the assumption that every node is aware of the additions made
to existing overlay protocols. The new parameters used to handle the game
over strategy and replication need to be embedded into the existing protocols,
so does the unhashed key in order to be rehashed when a synapse is met. One
important requirement of the Synapse white box protocol with respect to other
protocols using hash functions is that the keys and nodes’ addresses circulate
unhashed from hop to hop. Hash functions have no inverse: once a sought key
is hashed, it is impossible to retrieve its initial value, and thus impossible to
forward to another overlay having a different hash function, since hash functions
may vary (in implementations and keysize) from overlay to overlay. Both the
hashed and the clear key data can be carried within the message, or a fast hash
computation can be performed at each step. Standard cryptographic protocols
can be used in case of strong confidentiality requirements, without affecting the
scalability of the Synapse protocol itself.

The following pseudo code illustrates the instructions of the white box version
of the Synapse protocol:

on r e c e i p t o f OPE(code, key, value) receive an operation code
from ipsend do a key and a value from ipsend

tag = this.new_tag(ipsend) ; create a new unique tag for this lookup
send FIND(code, ttl,mrr, tag, key, value, ipsend) send a FIND

to this.myip ; message with code . . . ipsend to itself

on r e c e i p t o f receive a FIND message with code . . . ipdest from ipsend

FIND(code, ttl,mrr, tag, key, value, ipdest) from ipsend do
i f ttl = 0 the lookup is aborted because of zero ttl or because

or this.game_over?(tag) of the game over strategy
e l s e this.push_tag(tag) ; push the tag of the query as “already processed”
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next_mrrs = distrib_mrr(mrr, this.net_list) ; fix the assoc list
splitting

all the mrr between all net the synapse belongs to
f o r a l l net ∈ this.net_list do for all net the synapse belongs do

i f this.isresponsible?(net, key) the current synapse is responsible
for the key in the net

send FOUND(code, net,mrr, key, value) send a FOUND

to ipdest ; message with code . . . value to ipdest

on r e c e i p t o f FOUND(code, net,mrr, key, value) receive a FOUND

from ipsend do message with code . . . value from ipsend

match code
code = GET GET code

send READ_TABLE(net, key) send a READ_TABLE

message
to ipsend (omitted) through the net with key to ipsend

code = PUT PUT code
i f mrr < 0 stop replication since no inter PUT is allowed
e l s e send send a WRITE_TABLE message (omitted)

WRITE_TABLE(net, key, value) through the net with key
to ipsend and value to ipsend

on r e c e i p t o f JOIN(net) receive a JOIN message to reach
from ipsend do the net from ipsend

this.insert_net(net, ipsend) the current synapse insert ipsend in the net

Black box synapse

Interconnecting existing overlays made of “blind” peers, who are not aware of
any additional parameters, seems to be a natural Synapse evolution and it con-
stitutes a problem worth investigating. The assumption is that an overlay can
be populated by blind peers (e.g. nodes previously in place) and synapses at
the same time. Both interact in the same way in the overlay and exchange the
same messages; moreover, those synapses can be members of several overlays
independently (thus being able to replicate a request from one overlay to an-
other) and can communicate with each other exclusively through a dedicated
Control Network. The Control Network is basically a set of DHTs allowing each
node to share routing information with other synapses without being aware of
the routing of the undergoing message. So far the DHTs implemented are the
following: (i) a Key table, responsible for storing unhashed keys circulating in
the underlying overlays and every synapse accessing this table can easily retrieve
the key in clear way using only the information it is aware of; (ii) a Replication
table, in which is stored the number of times the key should be replicated across
all of the the overlays; (iii) a Cache table, used to implement the replication of
GET requests, and cache multiple responses and control the flooding of foreign
networks.
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Figure 4.1: Routing across differents overlays and dealing with a network par-
tition*

4.1.2 Routing across different intra-overlays

Figure 4.1 shows how a value present in one overlay can be retrieved from a GET
launched by another overlay. Peer A in the overlay ON1 receives a GET(key)
message: the routing goes until the synapse B, which triggers a second intra-
overlay routing in ON2. The two routings proceed in parallel, and, in particular,
the routing in ON2 terminates successfully with a peer-to-peer interaction be-
tween the peer A and peer C responsible of the resource. Routing continues on
ON1 until synapse D, which triggers a third intra-overlay routing in ON3. The
routing proceeds in parallel, and, in particular, routing in ON3 terminates suc-
cessfully with a second peer-to-peer interaction between A and H, while routing
in ON1 proceeds to a failure on peer F via the synapse E. Synapse E launches a
fourth intra-overlay routing in ON2 that proceeds to a failure on node B (game
over strategy) via synapse G. Finally, G launches a fifth intra-overlay routing on
ON3, terminating with a failure on D (again game over strategy). Peers playing
game over strategy are depicted as squares.

4.1.3 Dealing with network partition

Figure 4.1 also shows how intra-overlays take advantage of joining each other
in order to recover situations where network partitioning occurs (because of the
partial failure of nodes or the high churn of peers). Since network partitions
affect routing performance and produce routing failures, the possibility of re-
trieving a value in a failed intra-overlay routing is higher, thanks to alternative
inter-overlay paths. More precisely, the figure shows how a value stored in peer
E of the overlay ON1 can be retrieved in presence of a generic network partition
by routing via ON2 and ON3 through synapses B,C,D, and E.

4.2 Description of the Synapse Protocol Using
the ASM Formalism

Section 3.1 describes the Chord protocol in the setting of ASM, and gives proof
of the conditions under which a system maintained by this protocol forms stable
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and correct structure and distributes the keys over the nodes. The Synapse
protocol is not fully exhaustive and its underlying structure depends on the
protocol of all overlay networks participating the system. Thus, the specification
of the Synapse protocol in ASM will be presented here as an extension of the
description in Chapter 3.1.

Let K,J,N andM be three positive integers.The following disjoint universes
will be introduced:

• the set Network = {net1, . . . , netN} denotes all of the overlay networks
present in the given system,

• the set Hash = {hash1, . . . , hashN} denotes hash functions for each of
the overlay networks,

• the set Node = {node1, . . . , nodeM} represents the set of all of the nodes
participating in the given system,

• the setKey = {key1, . . . , keyK} denotes of identifiers of objects that might
be stored in the considered system, and the set V alue = {value1, . . . , valueK}
represents the values of those K objects,

• the set Query = {query1, . . . , queryJ} denotes all possible queries in the
given system,

• the set Action = {join, leave, syn_get, syn_put} denotes of the possible
actions of a synapse node.

Each network in Network is equipped with its own specific Join, Leave,
Put and Get rules. As these rules depend on the protocols in each of the
intra-overlays, they cannot be specified formally at this point.

Also, the following functions are introduced:

• action : Node→ Action, to save current action of a node,

• networkList : Node → ListOfNetworks, which maps every node ∈
Node into a list of overlays in which that node participates,

• processed : Node→ ListOfQueries, to register already processed queries.

• keyTable : Node ×Network ×Hash → Key, for connecting hashed and
unhashed values of the keys for every overlay network,

• cacheTable : Network ×Key → ListOfV alues, used for caching already
returned values.

The last two functions will be used only for the black box Synapse protocol.

4.2.1 Rules

During each execution of a Synapse_agent Module, which is defined in Section
4.2.2 below, the rules ReadMessages, SynGet and SynPut will be applied.
The responsibility of the ReadMessages rule is to process all of the messages
sent to a particular node:
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ReadMessages=
Read Messages Dedicated To Me ,
Change Local Var i ab l e s I f I t I s Requested And
Clear Processed Messages

If a synapse node applies one of the SynPut or SynGet rules, the main
operation is to invoke the Put or Get rules, respectively, of the underlying
protocols. If a synapse node is queried by some other node, the same procedure
extends the search space and, possibly, returns more answers. The white and
black box models of these rules slightly differ. Namely, in the case of the White
Box model, the functions keyTable and cacheTable are not used because all
of the nodes are aware of the changes made to the original protocol, while in
the black box model the synapses need those functions in order to access and
manipulate the unhashed keys. Here, only the high level version of these rules
will be given. For the detailed version of the rules, all of the protocols that are
used by all overlay networks has to be known and then, also, to change the rules
of the basic protocols, i.e. to change all of the rules that are given in Appendix
A.

White box Synapse Get and Put in ASM

SynPut=
f o r a l l net with net ∈ networkList(Me)

Invoke Put Of Network net To Store 〈key, value〉

SynGet=
i f query /∈ processed(Me) and ttl > 0 Check if the query is already

processed or TTL is reached
f o r a l l net with net ∈ networkList(Me)

par
Invoke Get Of Network net To Find key

with Reduces ttl
processed(Me).add(query)

endpar

Black box Synapse Get and Put in ASM

SynPut=
seq

Get Unhashed Value o f key From keyTable
f o r a l l net with net ∈ networkList(Me)

Invoke Put Of Network net To Store 〈key, value〉
endseq

SynGet=
seq

Invoke Get In Or i g i na l Network
Get Unhashed Value o f key From keyTable
i f query /∈ processed(Me) and ttl > 0 Check if the query is already

processed or TTL is reached
par
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Get Resu l t s From The cacheTable Check if a similar query
got the result

f o r a l l net with net ∈ networkList(Me)
par
Invoke Get Of Network net To Find key

with Reduces ttl
processed(Me).add(query)

endpar
endpar

Add Result To cacheTable Store the result for future queries
endseq

4.2.2 Synapse module

The following main module contains actions executed by every synapse node.

seq
ReadMessages Process messages
Choose An Action Choose next action
par

i f action(Me) = join
seq

Choose net To Join
par

Join network net Invoke Join of net
networkList(Me).add(net) Add net to local list

endpar
endseq

end i f
i f action(Me) = leave then

seq
Choose net To Leave
par

Leave network net Invoke Leave of net
networkList(Me).remove(net) Remove net from local list

endpar
endseq

end i f
i f action(Me) = syn_put then

SynPut Invoke local SynPut
end i f
i f action(Me) = syn_get then

SynGet Invoke local SynGet
end i f

endpar
endseq

This module is executed in an infinite loop, with the appropriate rule(s)
being applied in each of the iterations.
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4.3 Properties of the Synapse Protocol

In this section, the properties of the Synapse protocol will be examined. The
focus will be on the probability assessments of the exhaustiveness of the Synapse
protocol examined under various assumptions. Several software solutions will
be used for the simulations and experiments:

1. openSynapse - white box model of the Synapse protocol based on [29],

2. jSynapse - both white and black box models developed by the members of
the LogNet team, and

3. py-Synapse - Python scripts, using the white box model of the Synapse
protocol.

The contribution of this thesis is given in Section 4.3.1. The other sim-
ulations and conclusions are the result of work by the other members of the
LogNet team, and co-authors of [59], but they will presented here to give the
“full” picture of the Synapse protocol.

4.3.1 Quassi-exhaustiveness of the Synapse Protocol

“Simple” probabilistic techniques will be used to solve this problems. An al-
ternative approach could involve the techniques developed in random graph
theory, which might seem as a natural path to take, given the complicated
inter-connected structure of the network. Unfortunately, in this case the config-
uration is not fully random. On the contrary, certain parts exhibit a high level
of structure. Another approach to avoid this situation and try to model our
problem using random multigraphs and to focus on the existence of the paths
of certain length, which is still an open problem.

First, Lemmas 4.3.1 and 4.3.2, respectively, will be used to give the prob-
abilities of avoiding synapses in one overlay and avoiding all of the synapses
which are members of another particular overlay. Then, the probability of ex-
haustiveness of the Pure white box model of the Synapse protocol will be given,
where there is no failure of the nodes, TTL is not limited, and synapse nodes
are members of exactly two different overlay networks. Afterwards, it will be
examined how that probability changes if the failure of the nodes is allowed,
the TTL is limited, and the higher degrees of connectivity of the synapses is
allowed. Also, the probability of exhaustiveness of the Pure black box model of
the Synapse protocol will be calculated.

To achieve statistical significance for the experiments and simulations per-
formed in this Section, each configuration of the experiment or simulation was
repeated between 1000 and 2000 times, depending on the experiment or simula-
tion.Whenever where the settings of the experiment and simulation corresponds
the setting of a theorem the results of obtained in [59] will be used.

4.3.2 Quassi-exhaustiveness of white box Synapse

Lemma 4.3.1. Let there be b nodes in the overlay, where w of them are not
synapses, while the rest of them are. If the search procedure were to contact up
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to l nodes (with uniform probability of choosing a number from {1, . . . , l}), the
probability of contacting no synapses is equal to:

P
(1)
w,b,l =

1

l

l∑
m=1

(
w
m

)(
b
m

) .
Proof. The probability of not contacting any of the synapses out of the m nodes
that have been contacted is equal to:

Pm =

(
w
m

)(
b
m

) ,
because

(
n
k

)
is the number of combinations in which k nodes out of the possible

n could be contacted. From the set {1, . . . , l}, it is possible to uniformly choose
the number of nodes to be contacted, the final probability that is looked for is
equal to:

P
(1)
w,b,l =

1

l

l∑
m=1

Pm =
1

l

l∑
m=1

(
w
m

)(
b
m

) .
Lemma 4.3.2. Let the system contain a number of overlays, and let M0 and
M1 be two of these overlays. Let M0 contain b = w + r + g nodes, where w, r
and g are the number of nodes that are not synapses, the number of synapses
towards the overlay M1, and the number of synapses to the remaining overlays
in the system, respectively. If the search procedure were to contact up to l nodes
(with uniform probability of choosing the number from {1, . . . , l}), the probability
of contacting no synapses to M1, if it is known that at least one synapse has
been contacted, is:

P
(2)
w,r,g,l =

1

l

l∑
m=1

∑m
i=1

(
g
i

)(
w
m−i

)∑m
i=1

(
g+r
i

)(
w
m−i

) .
Proof. If m nodes have been contacted, the probability of not contacting any of
the synapses leading to M1, if at least one synapse has been contacted, is:

Pm =

∑m
i=1

(
g
i

)(
w
m−i

)∑m
i=1

(
g+r
i

)(
w
m−i

) .
Similarly to Lemma 4.3.1, from the set {1, . . . , l}, it is possible to uniformly

choose the number of nodes to be contacted, the final probability that is looked
for is equal to:

P
(2)
w,r,g,l =

1

l

l∑
m=1

Pm =
1

l

l∑
m=1

∑m
i=1

(
g
i

)(
w
m−i

)∑m
i=1

(
g+r
i

)(
w
m−i

) .

Hereinafter, it will be assumed that the complexity of the search procedure
for any regular/control overlay is log2(n). Also the following notation will be
used:
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• N, (N > 2) - total number of intra-overlays,

• n - number of nodes per intra- overlay,

• s - for the white box model - percentage of regular nodes that have become
synapses; for the black box model - percentage of synapses with respect to
all of the nodes in the system,

• pf - probability for a node/synapse to fail,

• c - number of connections per synapse,

• F - the event that the given key has been found,

• KO - the event that the given key is stored at the same intra-overlay as
the starting node,

• S - the event that a synapse has been contacted,

• D - the event that a query passed a maximum of D intra-overlays,

• Bc - the complementary event of some event B.

Pure white box Synapse

In this scenario, the nodes do not fail, TTL is not limited, and synapse nodes
are members of exactly two different intra-overlay networks.

Theorem 4.3.1 (Pure white box Satisfaction Ratio). The probability for a node
to get a value for a given key stored in the system, where all the synapses are
connecting exactly two intra-overlays, is:

P (F ) = 1−
N − 1

N

(
P

(1)
(1−s)n,(1+s)n,l +

(
1− P (1)

(1−s)n,(1+s)n,l

)(
P

(2)

(1−s)n, 2ns
N−1 ,2ns

N−2
N−1 ,l

)N−1)
,

where l = blog2((1 + s)n)c.

Proof. The probability P (F ) to find the given key is equal to:

P (F ) = 1− P (F c).

There are two possibilities: the given key and the starting node are or are
not stored in the same intra-overlay. Therefore, using the formula of total
probability, it is possible to obtain:

P (F c) = P (KO)P (F c|KO) + P (KOc)P (F c|KOc).

Due to the property of intra-overlays that if a key is stored in a particular
intra-overlay it will always be found, P (F c|KO) is equal to 0, so:

P (F c) = P (KOc)P (F c|KOc).
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Next, the probability that the given key and the starting node are not in the
same intra-overlay is equal to:

P (KOc) =
N − 1

N
.

There are two cases in which the key that is stored in a different intra-
overlay cannot be retrieved from the starting node. In the first case, none of the
synapses have been reached during the search procedure at the starting intra-
overlay. In the second case, at least one of the synapses was asked but anyway
the key was not found (because the query didn’t reach the overlay where the
key is stored). This is reflected by:

P (F c|KOc) = P (Sc)P ((F c|KOc)|Sc) + P (S)P ((F c|KOc)|S),

where P ((F c|KOc)|Sc) is equal to 1. Finally:

P (F ) = 1− N − 1

N
(P (Sc) + P (S)P ((F c|KOc)|S)). (4.1)

From Lemma 4.3.1, it is possible to obtain P (Sc). It is possible to consider
the situation where the intra-overlay contains (1 + s)n nodes while 2sn of them
are synapses, which lead to:

P (Sc) = P
(1)
(1−s)n,(1+s)n,l.

Also:
P (S) = 1− P (Sc).

Similarly, from Lemma 4.3.2 it is possible to get P ((F c|KOc)|S)). This time
the situation where there is N − 1 intra-overlays with (1 + s)n nodes in total,
while (1− s)n are not synapses, and 2ns

N−1 are those synapses which lead to the
particular overlay, is considered. This has to be adopted for all N − 1 overlays
that are not in the starting network, yielding:

P ((F c|KOc)|S)) = P
(2)

(1−s)n, 2ns
N−1 ,2ns

N−2
N−1 ,l

N−1
.

Now, all of the components required for equation (4.1) are obtained, so:

P (F ) = 1−
N − 1

N

(
P

(1)
(1−s)n,(1+s)n,l +

(
1− P (1)

(1−s)n,(1+s)n,l

)(
P

(2)

(1−s)n, 2ns
N−1 ,2ns

N−2
N−1 ,l

)N−1)
.

In Figure 4.2, the results of the deployment of openSynapse and JSynapse
are presented, as well as the graph constructed from the result of Theorem 4.3.1.
The lines represent various experiments where the given number of nodes was
uniformly distributed over the given number of overlay networks, as described
in the corresponding legends. The percentage of the nodes that have become
synapses is given on the x-axis. It is possible to see from the graphs that there
exists a substantial correspondence between the theoretically predicted results
and those obtained through experimentation.
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(a) openSynapse Tests
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Figure 4.2: Satisfaction Ratio - Experiments and Theory

White box Synapse with Node Failure

In this scenario, with respect to the previous one, it will be allowed the possibility
for a node to fail.
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Lemma 4.3.3. The expected number of nodes per intra-overlay is:

E(n) = (1− pf )n.

If node failures are allowed in Theorem 4.3.1, the number of nodes per intra-
overlay would be E(n) rather then n. Also, the probability that a given key
was not stored on some of the nodes that have failed is 1 − pf . With this, the
following result is obtained:

Theorem 4.3.2. The probability for a node to get a value for a given key stored
in the system is:

P (F ) = (1− pf )

(
1− N − 1

N

(
P

(1)
(1−s)(1−pf )n,(1+s)(1−pf )n,l+

+
(

1− P (1)
(1−s)(1−pf )n,(1+s)(1−pf )n,l

)(
P

(2)

(1−s)n, 2(1−pf )ns

N−1 ,2(1−pf )nsN−2
N−1 ,l

)N−1))
,

where l = blog2((1 + s)n)c.

White box Synapse with Multiple Connectivity of Synapses

In this scenario, it is allowed synapses to connect more than two intra-overlays
at the same time, but, it won’t be consider node failures.

Theorem 4.3.3. The probability for a node to get a value for a given key stored
in the system, where all the synapses are connecting exactly c intra-overlays, is:

P (F ) = 1− N − 1

N

(
P

(1)
(1−s)n,(1+(c−1)s)n,l+

+
(

1− P (1)
(1−s)n,(1+(c−1)s)n,l

)
P

(2)

(1−s)n, cns
N−1 ,cns

N−2
N−1 ,l

N−1
)
,

where l = blog2((1 + (c− 1)s)n)c.

Proof. The total number of nodes in Lemmas 4.3.1 and 4.3.2 increases with every
new connection of a new synapse, so we can consider every new connection as
a new node of the intra-overlay network.

In Figure 4.3, the situation where 10000 nodes are uniformly distributed
over 20 intra-overlay networks is illustrated. The lines represent the percentage
of the nodes which are transformed to synapses, while on the x-axis the degree
of connectivity of the synapses is presented. Again, it is possible to see that
theoretical predictions correspond to the obtained experimental results.

White box with TTL

In this scenario, it will be considered TTL stopping criterion for the issued
request. Under assumption that TTL is the number of overlays that can be
reached during one query, then the following theorem holds:
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Figure 4.3: Connectivity of Synapses - Simulations and Theory

Theorem 4.3.4. The probability for a node to get a value for a given key stored
in the system is:

P (F ) = 1− N − 1

N

(
D

N

(
P

(1)
(1−s)n,(1+s)n,l +

(
1− P (1)

(1−s)n,(1+s)n,l

)
(
P

(1)
(1−s)n,(1+s)n,l +

(
1− P (1)

(1−s)n,(1+s)n,l

)(
P

(2)

(1−s)n, 2ns
D−1 ,2ns

D−2
D−1 ,l

)D−1))
+
N −D
N

)
where l = blog2((1 + s)n)c, and D is the maximum allowed number of intra-
overlays for a query to pass.

Proof. Similarly to the proof of Theorem 4.3.1, it is possible to get:

P (F ) = 1− N − 1

N
P (F c|KOc),

where:

P (F c|KOc) = P (D)P ((F c|KOc)|D) + P (Dc)P ((F c|KOc)|Dc).
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Next, since the probability P ((F c|KOc)|Dc) of not finding the given key is
1, and P (D) = D

N , the following holds:

P (F c|KOc) =
D

N
P ((F c|KOc)|D) +

N −D
N

.

Now, like in the proof of Theorem 4.3.1, the event (F c|KOc)|D can be
divided into whether the synapse in the starting network has or has not been
contacted, but this time taking into account a system containing D overlays:

P (F c|KOc)|D) = P
(1)
(1−s)n,(1+s)n,l + (1− P (1)

(1−s)n,(1+s)n,l)P ((F c|KOc)|D)|Sc),
and

P ((F c|KOc)|D)|Sc) = P
(1)
(1−s)n,(1+s)n,l+(
1− P (1)

(1−s)n,(1+s)n,l

)(
P

(2)

(1−s)n, 2ns
D−1 ,2ns

D−2
D−1 ,l

)D−1
,

which completes our equation.

In Figure 4.4, a system of 1000 nodes uniformly distributed over 10 intra-
overlay networks is examined. The lines on the graphs represent scenarios with
different percentages of nodes that have become synapses, whereas the x-axis
is dedicated to the TTL, again with a clear correspondence between the theory
and the experiments.

4.3.3 Quassi-exhaustiveness of black box Synapse
Theorem 4.3.5 (Pure black box Satisfaction Ration). The probability for a
node to get a value for a given key stored in the system, in the Pure black box
Synapse model, is:

P (F ) = 1− N − 1

N

(
P

(1)
(1−s)n,n,l +

(
1− P (1)

(1−s)n,n,l

))
·

· P (2)

(1−s)n, sn
N−1 ,sn

N−2
N−1 ,l

N−1
P

(1)
sn(N−1),snN,L.

where l = blog2(n)c and L = blog2(snN)c,
Proof. Similarly as in the proof of Theorem 4.3.1, it is possible to obtain:

P (F ) = 1− N − 1

N
(P (Sc) + P (S)P ((F c|KOc)|S)). (4.2)

Also, the equations
P (Sc) = P

(1)
(1−s)n,n,l,

and P (S) = 1 − P (Sc) hold. This time, besides the N intra-networks, there
is one more control network consisting of all of the synapses in the system.
Therefore, the following:

P ((F c|KOc)|S)) =

(
P

(2)

(1−s)n, sn
N−1 ,sn

N−2
N−1 ,l

)N−1
P

(1)
sn(N−1),snN,L

completes Equation 4.2.
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(a) py-synapse Simulations

(b) Theoretical Calculations

Figure 4.4: TTL - Simulations and Theory

Similarly, like in the previous section, it is possible to extend Pure black box
Synapse model and the obtained formula by allowing node failures and multiple
connectivity of the synapses, or by introducing TTL. In Figure 4.5, the results
of the deployment of jSynapse are shown, as well as the graph illustrating the
result of Theorem 4.3.5. The lines represent various experiments where the
given number of nodes was uniformly distributed over the given number of
intra-overlay networks, while the total number of synapses per overlay is given
on the x-axis. Just as in the previous three cases, it is possible to notice a clear
correspondence between the graphs.

4.3.4 Latency and Communication

To be able for better understanding of the behavior of platforms interconnecting
structured overlay networks through the Synapse approach the series of simula-
tion were realized.

The focus was on the key metrics traditionally considered in distributed
information retrieval process, such as latency (number of hops required to reach
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(a) jSynapse simulations

(b) Theoretical Calculations

Figure 4.5: Black box Synapse - Simulations and Theory

the requested object) and the amount of communications produced (number
of messages generated for one request). The behavior of these metrics will
be highlighted while varying the topology (the number of synapses and their
connectivity, TTL, the number of intra-overlays ...).

Settings

The topology of the intra-overlay simulated is a set of Chord networks intercon-
nected by some synapses. Information is a set of 〈key, value〉 pairs. Each pair
is unique and exists once and only once in the network. The unstructured inter-
connection of structured networks will be studied with discrete-time simulation:
queries are launched on the first discrete time step, initiating a set of messages
in the network, and each message sent at the current step will be received by
its destination (next routing hop) at the next hop.

Latency

The first set of simulations has the intent of studying how the previously men-
tioned metrics vary while increasing the number of synapses or the degree of
existing ones (the number of intra-overlays a co-located node belongs to). The
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Figure 4.6: Latency in Synapse*

number of nodes is fixed to 10000, uniformly distributed amongst 20 intra-
overlays (approximately 500 nodes within each Chord). Queries are always trig-
gered by one random node, the key sought by a query is also picked uniformly
at random among the set of keys stored by the network. A query is said to be
satisfied if the pair corresponding to the key has been successfully retrieved.

As illustrated in Figure 4.6, one first point to notice is that the number
of hops remains logarithmic when changing a Chord network into a Synapse
network (the number of nodes is 10000, the latency never exceeds 14). Other
experiments conducted by increasing the number of nodes confirm this. More
precisely, Figure 4.6 highlights the following behavior: (i) when the network
contains only a few synapses, the latency first increases with the degree of
synapses: only a few close keys are retrieved (keys available in the network
of the node that initiated the query); (ii) then, when both parameters (the
connectivity and the number of synapses) have reached a certain threshold, the
searches can touch more synapses, and the whole network becomes progressively
visible, multiple parallel searches become more and more frequent and distant
nodes (and keys) are reached faster. As it is possible to see, increasing the
number of synapses decreases the latency of only a small constant factor. In
other words, synapse topologies do not need a lot of synapses to be efficient.
This result fits with random graphs behavior: when the number of neighbors
in the graph reaches a (small) threshold, the probability for the graph to be
connected tends towards 1.

Communication

Obviously, multiple searches in parallel lead to an increased number of mes-
sages. As illustrated in Figure 4.7, this number increases proportionally with
the connectivity and the number of synapses.

The number of messages can become high when the number of synapses
increases. To limit this impact, TTL is introduced to reduce the overhead while
keeping an acceptable level of exhaustiveness. A second set of experiments
examines the impact of the TTL on the search queries. This TTL is simply
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decreased every time the query traverses a node.

The number of overlays is varying, to experiment the impact of the gran-
ularity of the network. In other words, a Synapse network made of few large
structured intra-overlays could be called strongly structured, while another net-
work with many smaller structured intra-overlays could be called weakly struc-
tured. The number of nodes was still set to 10000, and every node is a synapse
belonging to 2 intra-overlays chosen uniformly at random.

As highlighted by Figure 4.8, it is possible to drastically reduce the amount of
communications experienced, with the number of messages being almost divided
by 2. To sum up, Synapse architectures can use TTL, leading to a significant
exhaustiveness while drastically reducing the expected overhead. Finally, still
see Figure 4.8, the granularity does not significantly influence communications
when the number and connectivity of the synapses are fixed.
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4.4 Related Work

Several propositions have been made over the years to build alternate topologies
based on the coexistence of smaller local overlay networks. The first approach
has been based on hierarchical systems [37,84], where some elected super-peers
being are promoted to a top-level overlay network, leading to the requirement of
costly merging mechanisms to ensure a high level of exhaustiveness. In a more
general view, merging several co-existing structured overlay networks has been
shown to be a very costly operation [25,74].

In the context of mobile ad hoc networks, Ariwheels [13,57] has been designed
to provide a large variety of services through a multi-layer overlay network,
where super-peers, called Brokers, act as servers for a subset of peers. Ordinary
peers, called Agents, submit queries to their Broker and receive results from it.
Ariwheels provides an efficient mapping between physical devices in the wireless
underlay network and virtual entities in the overlay network.

Authors in [23] present two models for two overlays to be (de)composed,
known as absorption (a sort of merging) and gatewaying. Their protocol enables
a CAN-network to be completely absorbed into another one (in the case of the
absorption), and also to provide a mechanism to create bridges between DHTs
(in the case of the gatewaying). They do not specifically take advantage of a
simple assumption that nodes can be part of multiple overlays at the same time,
thus playing the role of natural bridges.

More recently, authors in [22] propose a novel information retrieval proto-
col, based on gateways, called DHT-gatewaying, which is scalable and efficient
across homogeneous, heterogeneous and assorted co-existing structured overlay
networks1. They argue that there is not one preferred structured overlay net-
work implementation, and that peers are members of co-existing DHTs. Their
assumptions are (i) only some peers support the implementations of different
DHTs and (ii) some peers are directly connected to peers that are members of
other DHTs, and are called Virtual Gateways (VG)). When a request is sent
in one overlay, and no result was found, the requester can opt to widen his
search by forwarding the original search request to nodes which belong to other
structured overlay networks (mapping the search to the format supported by
their relative overlay). A TTL value is added to the original search in order to
avoid cycles; this value is decremented each time a request crosses a new DHT
domain. Unfortunately the evaluation of their protocol lacks precious details
and precision. It is unclear how they evaluate their protocol.

Authors in [53] present Synergy, an overlay inter-networking architecture
which improves routing performance in terms of delay, throughput and packet
loss by providing cooperative forwarding of flows between networks. Authors
suggest that co-located nodes are good candidates for enabling inter-overlay
routing and that they reduce traffic. Our approach can also be seen as a deeper
study of their concepts.

On the way of designing inter-overlay networking based on co-located nodes,
authors in [50] present algorithms which enable a symbiosis between different
overlays networks with a specific application in mind: file sharing. They propose
mechanisms for hybrid P2P networks cooperation and investigate the influence

1Ex. Two 160-bit Chord, or two 160/256-bit Chord, or one 160-bit Chord and one 256-
CAN.
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of system conditions, such as the numbers of peers and the number of meta-
information a peer has to keep. They provide interesting observations on how
to join a candidate network, cooperative peers’ selection, how to find other P2P
networks, when to start cooperation, by taking into account the size of the
network (for instance, a very large network will not really benefit from a coop-
eration with a small network), so on and so forth. Again, a more comprehensive
understanding of this approach is missing.

Authors in [42] consider multiple spaces with some degree of intersection
between spaces, i.e. with co-located nodes. They focus on different potential
strategies to find a path to another overlay from a given overlay, i.e. how requests
can be efficiently routed from one given overlay to another one. They compare
various inter-space routing policies by analyzing which trade-offs, in terms of
state overhead, would give the best results, in terms of the number of messages
generated and routed, the number of hops it takes to find a result and the
state overhead (i.e. the number of fingers a node has to keep). They provide
a comparative analytical study of the different policies. They show that with
some dynamic finger caching and with multiple gateways (in order to avoid
bottlenecks and single points of failures) which are tactfully laid out, they obtain
pretty good performances. Their protocol focuses on the interconnection of
DHTs, while Synapse can be extended it to any kind of overlays.

In preliminary work [58] of INRIA LogNet team, BabelChord protocol was
introduced as solution for inter-connecting Chord overlay networks using co-
located nodes that are part of multiple Chord “floors”. These nodes connect,
in an unstructured fashion, several Chord overlays together The simulations
showed that it is possible to achieve pretty high exhaustivity with a small
amount of those co-located nodes.

In [2], the authors have developed a multi-ring model based on Chord, in
which each shared resource is described by one or more keywords. Nodes are
organized in multiple keyword rings, and each node in a keyword ring contains
the list of nodes that host resources matching a certain keyword/value pair.
A new keyword ring is only created when the number of queries or registered
resources for the keyword rises above a certain threshold. To enable keyword
rings to be found, a Super Ring is used to host a ring of nodes which contain
pointers to other rings. One major drawback of the model is that it heavily
depends on the bootstrap node.

In [60], the developers present ML-Chord, a multi-layered P2P resource shar-
ing model. They introduce overlay layers of categories. The number of these
categories depends on the number of categories for a specific domain or ontology.
Also, they introduce two types of nodes: normal peers, which can be associated
with one or several layers and bridge peers, which are peers with better capa-
bilities which are linked to all categories, and which themselves form a category
as well. The problem with this approach is that it is not possible to simply
encapsulate a new system into an existing one because all of the Chord layers
share the same hash function. Although this system is scalable and efficient, it
is not possible easy to introduce a new category during the system lifetime. The
developers suggest that one node should be linked to only one layer for better
performance. So, if a node with good capabilities has not become a bridge peer
at the start of the lifecycle of the system, it will remain a normal node, and its
beneficial capabilities will be lost.
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Distributed Catalog of
Serbian Digitized Cultural
Collections

This chapter presents recommendation for two metadata formats for describing
the digitized objects and collections of the cultural and scientific heritage in
Serbia. The full description of these recommendations is available at http://
www.ncd.org.rs/ncd_en/standards.html. Based on these recommendations
and the Chord protocol the Distributed Catalog of Serbian Digitized Cultural
Collections has been developed. A description of this application will be given
here. The realized application can be easily adopted to use Synapse protocol,
but at this stage, when few collections have been described and almost all of
them are from the librarian world, the decision was to use Chord protocol. The
catalog is active at http://digitalne_kolekcije.ncd.org.rs/web_search/
Search_jsp.jsp.

5.1 Recommendation for the National Standard
for Describing Digitized Heritage in Serbia

For the recommendation for the National Standard for Describing Digitized
Heritage in Serbia some requirements were determined to accommodate more-
or-less divergent descriptive practices and to articulate needs of different specific
heritage contexts. More precisely, the requirements were:

• the definition should be rich enough so that it could be used to describe
assets from libraries, museums, and archives, as well as from the other
providers (research institutions, for example),

• the definition should be flexible enough to allow translation to and from
international standards,

• the definition should allow: multilingual description of cultural and sci-
entific assets and use of some predefined dictionaries for the particular
elements as much as possible.
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Figure 5.1: Objects of NCD Recommendation for Description Digitized Cultural
Heritage

The underlying idea is that the description of cultural assets based on this
metadata set should be used to make decisions about future digitization. For
this reason, the proposal contains more structured and detailed elements than
it is usually the case.

5.1.1 Description of the standard

According to the previous requirements, the following five basic objects were
distinguished:

• Person, and Group-of-persons for entities that have intellectual or some
other important contribution to the creation of assets, that are subjects
of and/or owners of cultural heritage assets,

• Digital-document, for an individual file containing digital representation
of the corresponding asset,

• Digitized-asset, for the digitized asset of heritage, and

• Controlled-term, for elements of a predefined dictionary.

Figure 5.1 contains a structure based on the above mentioned set of meta-
data objects, where the nodes represent the objects, and the arcs represent
relationships between them. This structure forms a unique core representing
an intersection of descriptions of assets from libraries, museums, and archives.
However, our proposal allows some extensions related to the particular fields of
interests.

The object Controlled-term corresponds to standardized data values that can
be used to improve access to information about heritage. Those values should
be organized in a structured controlled vocabulary which offers preferred terms
and synonyms, as for example in [3].
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The sets of meta-data that corresponds to each of these objects were defined.
They contain a descriptive and an administrative part. The administrative part
identifies authors and/or owners of descriptions, assets of heritage and their
digital representations. Note that, if appropriate, a description of access rights
is also available to limit access to (parts of) resources. The following provides
an abbreviated version of the descriptions of the mentioned objects1 (the full
description in Serbian is available [69]).

The object Person

Metadata which describe the object Person are:

• Descriptive:

◦ Name

∗ First name
∗ Middle name
∗ Family name

◦ Version of name . . .

∗ First name
∗ Middle name
∗ Family name

◦ Nickname . . .

◦ Pseudonym . . .

◦ Day of birth

◦ Day of death

◦ Sex

∗ Type
∗ Period

◦ Biography . . .

∗ Biography
∗ Language of biography

◦ Resources related to the person . . .

◦ Picture(s) . . .

◦ Note . . .

∗ Note
∗ Language of note

• Administrative:

◦ Record creation date

◦ Record creator(s)

◦ Record owner
1’. . . ’ means that the element could be repeated more than once.
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The object Group-of-persons

Metadata which describe the object Group-of-persons are:

• Descriptive:

◦ Name

◦ Version of name . . .

◦ Foundation date

◦ Dismissing day

◦ History

◦ Place

◦ Activity . . .

◦ Type

◦ Identifier . . .

◦ Description . . .

∗ Description
∗ Language of description

◦ Resources related to the group of persons . . .

◦ Picture(s) . . .

◦ Member . . .

∗ Identifier
∗ Role

◦ Note . . .

∗ Note
∗ Language of note

• Administrative:

◦ Record creation date

◦ Record creator(s)

◦ Record owner

The element Activity specifies in more details fields in which the group is
active, while the elements Type and Identifier identify the group according to
the local codification system.

The object Digital-document

Metadata which describe the object Digital-document are:

• Descriptive:

◦ Title . . .

∗ Title
∗ Language of title
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◦ Creator . . .

∗ Identifier
∗ Role

◦ Location of digital document . . .

◦ Related asset . . .

◦ Note . . .

∗ Note
∗ Language of note

• Administrative:

◦ Archive date

◦ Digital document format(s) . . .

◦ Size

◦ Digital document MIME format(s) . . .

◦ Capture device(s) . . .

◦ Rights

◦ Access rights

◦ URL . . .

◦ Digital object owner

◦ Record creation date

◦ Record creator(s)

◦ Record owner

The element Related asset of heritage connects a particular digital document
to the object(s) from which it is produced (note that one digital document can
represent more than one physical object - for example, it is possible that two
or more objects is represented by one photo). The administrative part for the
object Digital-document contains more elements than it is the case for the other
objects: they describe history, technical details and operations performed during
the digitization process itself.

The object Digitized-asset

Metadata which describe the object Digitized-asset are:

• Descriptive:

◦ Title

∗ Title
∗ Original name
∗ Version of name . . .

? Version of name
? Type of version
? Language of version
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◦ Creator . . .

∗ Identifier
∗ Role

◦ Contributor . . .

∗ Identifier
∗ Role

◦ Subject . . .

∗ Topic
∗ Spatial
∗ Temporal

◦ Classification . . .

∗ Classification scheme
∗ Classification identifier
∗ Classification group

◦ Description . . .

∗ Description
∗ Language of description

◦ Resources related to the object . . .

◦ Category

∗ Date of proclamation
∗ Decision identifier for the proclamation
∗ The proclamation decision made by
∗ National category
∗ Date of national categorization
∗ Decision identifier for the national categorization
∗ The national categorization made by
∗ International category . . .

? Category
? Date
? Decision identifier for the international categorization
? The international categorization made by

◦ Provenance

∗ Date of origin
∗ Provenance of origin . . .
∗ Version . . .

? Description of the version . . .
− Description
− Language of description

? Date of the version
? Place of the version
? Country of the version
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◦ Physical description . . .

∗ Dimension type
∗ Dimension value
∗ Description

◦ Material . . .

◦ Type

◦ Acquisition

∗ Date
∗ Type

◦ Related object . . .

∗ Type of relation
∗ Related object ID

◦ History . . .

∗ Object’s history
∗ Language of history

◦ Owner

◦ Source object ID

◦ Bibliography . . .

◦ Note . . .

∗ Note
∗ Language of note

• Administrative:

◦ Rights

◦ Access rights

◦ Record creation date

◦ Record creator(s)

◦ Record owner

The elements Broader object and Related object describe relationships be-
tween parts of compound objects.

The object Controlled-term

Metadata which describe the object Controlled-term are:

• Descriptive:

◦ Accepted form of the term

◦ Explanation of the accepted form of the term

◦ Synonym

◦ Translation to other schemata/languages

◦ Description in Serbian
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◦ Broader term

◦ Related term

◦ Note . . .

∗ Note
∗ Language of note

• Administrative:

◦ Record creation date

◦ Record creator(s)

◦ Record owner

The proposed structure of this object could be useful in the process of creat-
ing a structured controlled thesaurus of terms, synonyms, classification schemes,
etc. The element Translation to other schemata/languages should allow use of
recognized standard multilingual terminological sources.

Similarly as above, the elements Broader term and Related term correspond
to relationships between terms.

5.1.2 Translations to international standards
As a particular part, the proposal defines mappings to and from some interna-
tional standards for meta-data (Dublin Core Metadata Element Set, The Euro-
pean Library Application Profile, Table of Core Metadata Elements for Library
of Congress Digital Repository Development, Encoded Archival Description).
An example of the translation of the elements of the objects Digital-document
and Digitized-asset is given in Table 5.1. As it can be seen, some different ele-
ments of our objects must be grouped into one element and for some elements
there are no corresponding translations in some of the mentioned standards.
The full mapping is available at http://www.ncd.org.rs/ncd_sr/standards/
ncd_dokumenti_2_0.html#_Toc160349341.

5.1.3 Library Specific
Metadata which describe the object Digitized-asset specific to the assets from
the libraries are:

• Language . . .

◦ Language

◦ Type

• Publication

• Edition

• Identifier . . .

• Table of content

• Collection . . .
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NCD DC ISAD EAD TEL AP Library of
Congress

Description description 3.3.1 scopecontent description description
summary

Type type 3.1.5 genreform type original
content type

Material medium 3.1.5 physdesc format.medium
Rights rights 3.4.2 userestrict rigths access

rights
Access rights accessRights 3.4.1 accessrestrict rights access

category
Note 3.6.1 note, odd

Capture device(s) daodesc capture
device ID

MIME format(s) Format daodesc format internet
media type

Table 5.1: Partial Mappings to/from International Standards from Section 2.3.2

• Printer

• Place of printing

• Publisher . . .

• Place of publishing

• Issued

• COBISS identifier

5.1.4 Archival Specific

Metadata which describe the object Digitized-asset specific to the assets from
the archives are:

• Level

• Acquisition

• Appraisal

• Accruals

• Physical and technical description

• Origin location

• Alternative forms

• Rules of keeping
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5.1.5 Museum Specific
Metadata which describe the object Digitized-asset specific to the assets from
the museums are:

• Number of parts

• Epoch

• Author’s signature

• Monument Text

• Technics . . .

• Style . . .

• Finding . . .

◦ Part . . .

◦ Date . . .

◦ Place . . .

∗ Name
∗ Part
∗ Coordinates
∗ Settlement
∗ Municipality
∗ Region
∗ Country

Example 5.1.1. In this example it is illustrated how to describe a book of a well-
known Serbian comediograph Branislav Nušić. The book, Autobiography, belongs
to the collection of the Serbian Children’s digital library [73]. The illustrator of
the edition, published by Kreativni centar, is Dobrosav Živković, and the editors
are Simeon Marinković and Slavica Marković. Digitization of the book was
performed by Nikola Pavlović from National library of Serbia. The author of
the metadata records is Tamara Butigan Vučaj.

Table 5.2 contains a record which corresponds to the author. Table 5.3 con-
tains a record which corresponds to the digital version of the book. Table 5.4
contains a record which corresponds to the “hardcopy" version of the book.

Descriptive
Name
* First name Branislav
* Family name Nušić
Name version
* First name Ben
* Family name Akiba
Date of birth 1864
Date of death 1938
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Sex male
Biography
* Link http://sr.wikipedia.org/

wiki/Branislav_Nušić
* Language of Biography sr
Biography
* Link http://en.wikipedia.org/

wiki/Branislav_Nusic
* Language of Biography en
Administrative
Record Creation Date 30/3/2007
Record Creator Tamara Butigan Vučaj
Record Owner NBS

Table 5.2: Description of the object Person

Descriptive
Title Digitalizovana dečija knjiga Autobiografija,

Branislava Nušića
* Version of Title Digitized children’s book:

Autobiography written by Branislav Nušić
* Language of Version en
Creator
* Identifier ID (Nikola Pavlović)
* Role technician
Location of digital document http://www.digitalna.nb.rs/wb/NBS/Knjige/

Srpska_decja_digitalna_biblioteka/II-449580
Administrative
Archive date 2004
Digital document format jpg
Size 17.9MB
Digital document image
MIME format
Capture device Epson GT 15000
Rights NBS gained rights from the publishing house
Access rights Unlimited
Digital object owner NBS
Record creation date 30/3/2007
Record creator Tamara Butigan Vučaj
Record owner NBS

Table 5.3: Description of the object Digital-document

Descriptive
Title
* Title Autobiografija
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* Original name Autobiografija
* Version Autobiography
* Language of Version en
Creator
* Identifier ID (Branislav Nušić)
* Role writer
Contributor
* Identifier ID (Dobrosav Živković)
* Role illustrator
Contributor
* Identifier ID (Simeon Marinković)
* Role editor
Contributor
* Identifier ID (Slavica Marković)
* Role editor
Classification
* Classification_scheme UDK
* Classification_identifier 821.163.41-93
Description
* Source Autobiografija poznatog srpskog pisca

Branislava Nušića ispričana u formi
šaljivog romana. Sadrži i kraća objašnjenja
manje poznatih reči.

* Language of Description sr
Description
* Source Autobiography of famous Serbian writer

Branisav Nušić but written as a funny story.
Vocabulary sections included.

* Language of Description en
Date and provenance
* Date of origin 2001
* Provenance of origin Belgrade
* Version of the cultural monument First issue
Dimension
* Dimension name Number of pages
* Dimension value 283
Dimension
* Dimension name Book back height
* Dimension value 24 cm
Type text
Acquisition
* Type of acquisition Legal deposit
* Date of acquisition 06/2001
Owner NBS
Source object ID II449580
Administrative
Rights Publishing house Kreativni centar
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Access rights Unlimited
Record creation date 30/01/2007
Record creator Tamara Butigan Vučaj
Record owner NBS
Extensions for librarian edition
Publisher Kreativni centar
Language sr
Edition Collection Pustolovine
Identifier ISBN 86-7781-042-0

Table 5.4: Description of the object Digitalized-asset

5.2 Recommendations for the National Standard
for Describing Collections

The metadata area is not resistant to Web 2.0 influences, on the contrary, it
has been radically changing. Changes like social tagging, indexing and annota-
tion bring more democracy in this traditionally conservative domain, including
broader community in the kingdom of memory institutions. That is why it
is important to have the technical environment supporting the aggregation of
all available metadata and providing an open space for exchanging metadata.
In this context, the NCD recommendations for metadata schemata are just the
starting point to describe the heritage, leaving to the users to adjust it according
their own needs.

This schema contains two groups of metadata elements:

• descriptive (17 elements) and

• administrative (5 elements),

listed below (mandatory fields are marked with asterisks, while . . . denotes that
the corresponding fields can be repeated):

• descriptive:

◦ title∗

∗ original title∗

∗ title version . . .
? title version language∗

? title version∗

◦ creator . . .

∗ identifier
∗ role . . .

◦ contributor . . .

∗ identifier
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∗ role . . .
◦ owner
◦ subject . . .
◦ classification . . .
∗ classification scheme∗

∗ classification identifier∗

◦ description . . .
∗ source language
∗ source

◦ period of existence . . .
∗ date of creation
∗ date of dismisson
∗ comment . . .

? source language
? source

◦ coverage
◦ type∗

◦ nature of collection
◦ identifier∗

◦ collection’s object . . .
◦ history . . .
∗ source language
∗ source

◦ related collection . . .
∗ type of relation∗

∗ identifier∗

◦ source object id
◦ bibliography . . .
◦ note . . .
∗ source language
∗ source

• administrative:

◦ rights
◦ access rights
◦ record creation date
◦ record creator
◦ record owner

Example 5.2.1. In this example it is illustrated how to describe the collection
of the Serbian Children’s digital library [73]. The author of the metadata records
is Tamara Butigan Vučaj.

Table 5.5 contains a record which corresponds to the description of this col-
lection.
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Descriptive
Title
Original Title Srpska digitalna dečija biblioteka
* Version of Title Serbian Children’s digital library
* Language of Version en
Owner NBS
Type Collection of Books
Nature of Collection physical and virtual
Rights NBS gained rights from the publishing houses
Access rights Unlimited
Record creation date 21/4/2010
Record creator Tamara Butigan Vučaj
Record owner NBS

Table 5.5: Description of the Collection

5.3 Application

As it is said at the begging of this Chapter, Distributed Catalog of Serbian
Digitized Cultural Collections is based on the Recommendations for the Na-
tional Standard for Describing Collections and the Chord protocol. Web part of
the application is active at http://digitalne_kolekcije.ncd.org.rs/web_
search/Search_jsp.jsp.

5.3.1 Principles

One of the main features of a distributed catalog of digitized collections in
Serbia is to assist researchers and members of the wider community in retrieving
information concerning some fact of interest to them, information which can
be provided from different kinds of sources. As mentioned before, digitized
documents and collections, by their nature, are highly distributed resources.
By connecting different kinds of data providers into one system, the quality of
the resulting information can be increased.

This realization of the catalog contains only metadata on digital collections
which follows a part of the Recommendation for the metadata format for de-
scribing collections, described in Section 5.2. One of the main reasons for this
is the intellectual property rights issue. Simply, some institutions do not wish
to outsource control over their digital repositories, and, instead, choose only to
publish information about certain collections or some documents which are part
of those collections.

A user can connect to one or more communities of which he is a member (i.e.
he has been invited to or his request has been accepted). Two operations are
then available, namely (i) storing a new record and (ii) finding a record which
contains some information.

Suppose that someone wishes to store the following information on one dig-
itized collection:
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<collection>
<title>

<originalTitle>Title</originalTitle>
<version lang="Language">Version</version>

</title>
<creator>

<id>ID</id>
<role>Role</role>

</creator>
<owner>Owner</owner>
<type>Type</type>
<natureOfCollection>Nature</natureOfCollection>
<identifier>URL</identifier>

</collection>

To make the catalog searchable for the values in the fields: originalTitle, version,
creator, owner and natureOfCollection, then the segments in accordance with
Table 5.6 have to be stored. More precisely:

No. Key Value
1 originalT itle]T itle hash(z)
2 version]V ersion hash(z)
3 creator]ID hash(z)
4 owner]Owner hash(z)
5 natureOfCollection]Nature hash(z)
6 hash(z) z

where z represents the full meta-data record on one digital document

Table 5.6: Different data structures stored in the distributed catalog DHT for
each entry

1. For every field of a meta-data record which is searchable, the hashed value
for the current overlay of the entire meta-data record as value is stored
with the key which contains information about the field and its value.
Rows 1 to 5 in table 5.6.

2. The entire meta-data record as a value is stored with the corresponding
key that contains its hashed value for the current overlay. Row 6 in table
5.6.

Note that all of the keys are stored with their hashed values. With this in place,
the search mechanism has two phases. During the first phase, the hashed value of
the meta-data record (the first kind of entries) will be found and then, during the
second phase, the entire meta-data record (the second kind of entries) is looking
for, but only in the overlays which contain the first kind of entries. Although
the multiple copies of data exists, so as to accomplish failure resistance of the
system, the storage space is of the same complexity as for a standard DBMS
with indices. If N and M are the number of overlays and the number of nodes
per overlay, respectively, then the time complexity of a search, in the worst case,
is O((N + 1) ∗ (time to search an overlay with M nodes)).
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5.3.2 Description of the Distributed Catalog
Distributed catalog of digitized collections consists of two parts:

1. Web oriented part, and

2. “stand alone" Java application.

First part (Figure 5.2) is dedicated to the general public for searching. It is
realized as a Java Servlet.

Figure 5.2: Distributed Catalog - Search Form

The results are then presented as clear HTML page (Figure 5.3).

Figure 5.3: Distributed Catalog - Displaying Results

The “stand alone" Java application is dedicated to the system administrators
and data providers. After connecting to the Catalog (Figure 5.4), the form for
entering new records or editing existing ones appears (Figure 5.5).

With this application it is also possible to search the Catalog (Figure 5.6).
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Figure 5.4: Distributed Catalog - Connecting Dialog

Figure 5.5: Distributed Catalog - Form for entering new/editing existing records

Figure 5.6: Distributed Catalog - Searching Dialog
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Conclusions and Further
Work

6.1 Conclusions

In this thesis an ASM-based formalization of the Chord protocol has been pre-
sented. It has been proved that the proposed formalization is correct with
respect to the regular runs. This is the first comprehensive formal analysis of
Chord presented in the literature which concerns both maintenance of the ring
topology and data distribution. It has also been indicated that if all possible
runs are considered, incorrect behavior of Chord protocol could appear. This
proof has, also, been given in the refined form, where the temporal logic with
time flow isomorphic to ω2 has been introduced and the new semantics has been
used with the low level description of the rules of the Chord protocol.

Then this ASM description of the Chord protocol is extended to give the
specification of the Synapse protocol using the formalism of ASM and prob-
abilistic assessments of the exhaustiveness of this protocol under a variety of
scenarios has been given. It can be concluded that the exhaustiveness equations
that have been proven are in strong correspondence with the results obtained
by running the appropriate simulations and experiments. These equations have
shown us that good exhaustiveness can be reached with a relatively small per-
centage of strategically positioned synapse nodes. It is always better to have a
higher degree of connectivity of the synapses and an unlimited TTL, but even
with relatively small numbers, reasonably good exhaustiveness can be achieved.
To sum up, Synapse architectures can achieve a significant exhaustiveness us-
ing TTL, while reducing the expected overhead of communications and latency.
Also, the granularity does not significantly influence communications when the
number and connectivity of the synapses are fixed.

The scalability of the Synapse protocol and its applicability to a real-life
situation has been proven.
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6.2 Further Work
One possible direction for further work would be to apply technique presented
in Chapter 3.1 to describe other DHT, Wireless and Ad hoc network protocols.

Another challenge could be verification of the given description in one of
the formal proof assistants (e.g., Coq, Isabelle/HOL). It might also produce a
certified program implementation from the proof of correctness of our ASM-
based specification.

It would be possible to continue work on the full adoption of the semantics
of temporal logic introduced in Section 3.2 in ASM inference system.

Also, the technique presented in Section 4.3 can be used for solving some
open problems in the field of random multigraphs, especially when some parts
of those graphs are not fully random but very-well structured.

The Synapse protocol has good potential as a new concept of DDBMS. With
this concept, it is possible to connect heterogeneous DHTs in a homogeneous
way. Since the full exhaustiveness of information retrieval cannot be guaranteed,
the procedure of removing/updating items currently was out of scope of this
research. The reason for this is that the only one who may remove or update
items inside the catalog should be the one who inserted them in the first place,
thus guaranteeing the highest probability of data consistency. For this, a User
Management System has to be implemented, for instance, by implementing
cryptographic techniques into the presented system, as described in [4]. Within
this system the digital documents can be stored. The decision was, that this
should also stay out of the scope of this thesis, but as a possible research in the
future. As a positive side-effect, this catalog can lay as a promising groundwork
for a low-cost solution to cultural interconnection of the institutions inside the
region.
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Appendix A

Appendix: Chord Rules - Low
Level Description

Here, a detailed specification of the module and rules introduced in Section
3.1.2 will be presented. The lines on the right side given in the different font
correspond to the lines from the high level description.

Main Module=
// Peer tries to start/connect to the Chord network
i f mode(Me) = not_connected then

i f mode_join(Me) = undef then
i f action = undef then

// Peer has been not active and can choose to skip or to join
choose a in Join Chosen Action Is Join
action := a

endchoose
e l s e

i f action = join then
seq

// Checking the list of known nodes of Chord network
known := known_nodes(Me)
i f known = undef then There Are No Known Nodes

// Start new Chord network
Start

e l s e
// Join to existing Chord network
Join =
i f mode_join(Me) = undef then

JoinBegin
e l s e

// Continuing joining process depending on received mes-
sages

i f mode_join(Me) = wait_for_successor then
JoinGetSuccessor

e l s e
i f mode_join(Me) = wait_for_keys then

137



Bojan Marinković

JoinGetKeys
e l s e

par
// Connection was successful - start stabilization

process
i f id(Me) 6= undef then
mode(Me) := connected Connection

Successful
// Connection was not successful - try again
e l s e
mode(Me) := not_connected

end i f
mode_join(Me) = undef
action := undef

endpar
end i f

end i f
e nd i f

e nd i f
endseq

e l s e
// the skip action has been chosen
action := undef

end i f
end i f

// Connected node chooses what to do
e l s e

i f mode(Me) = connected then Does Not Have Communication
Problems

// Checking if id(Me) can communicate with other nodes
i f ping(id(Me)) = true then

par
// Read all new messages
ReadMessages
// Begin new stabilization cicle
Stabilize =
i f mode_stabilize(Me) = undef
∧(action 6= fair_leave ∨ action 6= unfair_leave) then

StabilizeBegin
e l s e

i f mode_stabilize(Me) = wait_for_predecessor then
StabilizeWithPredecessor

e l s e
i f mode_stabilize(Me) = wait_for_keys then

StabilizeSetKeys
e l s e

i f mode_stabilize(Me) = wait_for_successor then
StabilizeUpdateSuccessor

e l s e
i f mode_stabilize(Me) = wait_for_successor_keys then
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StabilizeUpdateKeys
end i f

e nd i f
e nd i f

e nd i f
e nd i f
// Cheking connectivity of the predecessor
UpdatePredecessor
// Update value for a finger table member
UpdateF ingers =
i f mode_fingers(Me) = undef
∧(action 6= fair_leave ∨ action 6= unfair_leave) then

UpdateFingersBegin
e l s e

i f mode_fingers(Me) = wait_for_response
UpdateFingersSet

end i f
e nd i f
// Allow other actions beside Join
ExtendedJoinModel =
seq

i f action = undef then
choose a in Action
action := a

endchoose
end i f
par

// Allow leaving
LeavingActions =
par
FairLeave =
i f action = fair_leave ∧mode_stabilize(Me) = undef
∧mode_fingers(Me) = undef then

// Node is leaving network in a fair way
i f mode_leave(Me) = undef then

FairLeaveGetSuccessor
e l s e

i f mode_leave(Me) = wait_for_successor then
FairLeaveUpdateSuccessor

e l s e
par

FairLeaveExchange
mode(Me) := not_connected
action := undef

endpar
end i f

end i f
e nd i f
i f action = unfair_leave∧mode_stabilize(Me) = undef
∧mode_fingers(Me) = undef then
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par
// Node is leaving network in a unfair way
UnfairLeave
mode(Me) := not_connected
action := undef

endpar
end i f

endpar
// Allow key/value handling
KeyV alueHandling =
par
Put =
i f action = put then

// Inserting new 〈key, value〉 pair
i f mode_put(Me) = undef then

seq
〈key, value〉 := key_value(Me)
PutFindResponsible

endseq
e l s e

par
PutKeyValue
action := undef

endpar
end i f

end i f
Get =
i f action = get then

i f mode_get(Me) = undef then
seq

// Searching for existing value
key := keys(Me)
GetKey

endseq
e l s e

i f mode_get(Me) = wait_for_key then
GetValue

e l s e
par

GetFinish
action := undef

endpar
end i f

e nd i f
e nd i f

endpar
endpar

endseq
endpar

e l s e
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// Connection problems detected - reset connection
par
mode(Me) := not_connected
mode_stabilize(Me) := undef
mode_fingers(Me) := undef
mode_leave(Me) := undef
mode_put(Me) := undef
mode_get(Me) := undef
action := undef

endpar
end i f

e nd i f
e nd i f

Start=
seq

// Setting id(Me) according to the hash function
id(Me) := hash(Me)
// Set all messages to id(Me) to empty
ClearMessages
// Initialization of local structure Initialize Values For Node
par
predecessor(id(Me)) := undef
successor(id(Me)) := id(Me)
finger(id(Me)) := [ ]
next(id(Me)) := −1
keyvalue(id(Me)) := [ ]

endpar
endseq

JoinBegin=
seq

// Setting id(Me) according to the hash function
id(Me) := hash(Me)
// If connection is succesful
i f id(Me) 6= undef then Chord Is Not Fulfilled

seq
// Set all messages to id(Me) to empty
ClearMessages
// Initialize local structure
seq Initialize Values For Node

par
predecessor(id(Me)) := undef
finger(id(Me)) := [ ]
next(id(Me)) := −1

endpar
// Ask for the successor
communication(id(Me), known).add(〈find_successor, 〈id(Me), id(Me)〉〉)
mode_join(Me) := wait_for_successor

endseq
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endseq
e l s e

// Connection was not succesful
mode_join(Me) := finished

end i f
endseq

JoinGetSuccessor=
// Get the message with the information on the successor
f o r a l l m ∈Message with m = communication(sender, id(Me))

i f m = 〈successor_found, content〉 then
i f content = 〈id(Me), successor〉 then

par
// Set successor
su c c e s s o r ( id (Me) ) := suc c e s s o r
// Ask successor for keys Take keyvalue
communication(id(Me), successor(id(Me))
.add(〈request_and_remove_keyvalue, undef 〉)

mode_join(Me) := wait_for_keys
// Remove processed message
communication(sender, id(Me)).remove(m)

endpar
end i f

end i f
e n d f o r a l l

JoinGetKeys=
// Get the message with keys and values
f o r a l l m ∈Message with m = communication(sender, id(Me))

i f m = 〈received_keyvalue, content〉 then
par

// Set keys
keyvalue(id(Me) := content
mode_join(Me) := finished
// Remove processed message
communication(sender, id(Me)).remove(m)

endpar
end i f

e n d f o r a l l

FairLeaveUpdateSuccessor=
// Check the successor and update it if necessary
i f ¬ping(successor(id(Me))) then successor(id(Me)) Is Not Alive

seq Update successor(id(Me))
communication(id(Me), id(Me)).add(〈find_successor, 〈id(Me)⊕N1, id(Me)〉〉)
mode_leave(Me) := wait_for_successor

endseq
e l s e
mode_leave(Me) := proceed_to_finish

end i f
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FairLeaveGetSuccessor=
seq

// Get the message with the information on the successor
f o r a l l m ∈Message with m = communication(sender, id(Me))

i f m = 〈successor_found, content〉 then
i f content = 〈id(Me), successor〉 then

par
// Set successor
su c c e s s o r ( id (Me) ) := suc c e s s o r
// Remove processed message
communication(sender, id(Me)).remove(m)

endpar
end i f

end i f
e n d f o r a l l
mode_leave(Me) := proceed_to_finish

endseq

FairLeaveExchange=
seq

// If Me is not the last node id(Me) Is Not The Only Node In Chord
i f ¬(successor(id(Me)) = predecessor(id(Me)) ∧ predecessor(id(Me)) =

id(Me)) then
par

// Send keys/values to the successor Give keyvalue(id(Me))
communication(id(Me), successor(id(Me)).add(〈send_keys, keyvalue(id(Me))〉)
// Exchange pointers between the successor and the predecessor
communication(id(Me), successor(id(Me)) Remove id(Me)
.add(〈send_predecessor, predecessor(id(Me))〉)

communication(id(Me), predecessor(id(Me))
.add(〈send_successor, successor(id(Me))〉)

// Clean local memory Deactivate Values
predecessor(id(Me)) := undef
successor(id(Me)) := undef
finger(id(Me)) := [ ]
keyvalue(id(Me)) := [ ]

endpar
end i f

endseq

StabilizeBegin=
// Check if id(Me) can communicate with other nodes
i f ping(id(Me)) = true then

// Check the successor’s connection
i f ping(successor(id(Me))) = true then successor(id(Me)) Is Alive

par
// Get information on the predecessor of the successor
communication(id(Me), successor(id(Me))).add(〈get_predecessor, undef 〉)
mode_stabilize(Me) := wait_for_predecessor

endpar
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e l s e
par

// Find new successor
communication(id(Me), id(Me)).add(〈find_successor, 〈id(Me)⊕N1, id(Me)〉〉)
mode_stabilize(Me) := wait_for_successor

endpar
end i f

e nd i f

StabilizeWithPredecessor=
// Get the message with the information on the predecessor of the successor
f o r a l l m ∈Message with m = communication(sender, id(Me)) do

i f m = 〈received_predecessor, content〉 then
seq
x := content Set x To Be predecessor(successor(id(Me)))
// Remove processed message
communication(sender, id(Me)).remove(m)
// There is a new node between id(Me) and the successor
i f (x 6= undef ∧member_ of(x, id(Me), successor(id(Me)))) then

par
// Update the successor and take keys/values from it
successor(id(Me)) := x
communication(id(Me), successor(id(Me)) Take Keyvalue
.add(〈request_and_remove_keyvalue, undef 〉)

mode_stabilize(Me) := wait_for_keys
endpar

end i f
// id(Me) is a new node between successor and its predecessor
i f x = undef ∨(x 6= undef ∧member_ of(id(Me), x, successor(id(Me)))) then

// Notify the successor to change the predecessor
par Notify successor(id(Me)) To Update Its predecessor
communication(id(Me), successor(id(Me))).add(〈set_predecessor, undef 〉)
mode_stabilize(Me) := undef

endpar
end i f

endseq
end i f

e n d f o r a l l

StabilizeSetKeys=
// Get the message with keys and values
f o r a l l m ∈Message with m = communication(sender, id(Me))

i f m = 〈received_keyvalue, content〉 then
par

// Add keys/values to local table
keyvalue(id(Me).add(content)
mode_stabile(Me) := undef
// Remove processed message
communication(sender, id(Me)).remove(m)

endpar
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end i f
e n d f o r a l l

StabilizeWaitSuccessor=
// Get the message with the in fo rmat ion on the su c c e s s o r
f o r a l l m ∈Message with m = communication(sender, id(Me))

i f m = 〈successor_found, content〉 then
i f content = 〈id(Me)⊕N 1, successor〉 then

par
// Set su c c e s s o r
su c c e s s o r ( id (Me) ) := suc c e s s o r
// Ask su c c e s s o r f o r keys
communication(id(Me), successor(id(Me))
.add(〈request_and_remove_keyvalue, undef 〉)

mode_stabilize(Me) := wait_for_successor_keys
// Remove proce s sed message
communication(sender, id(Me)).remove(m)

endpar
end i f

e nd i f
e n d f o r a l l

StabilizeUpdateKeys=
// Get the message with keys and values
f o r a l l m ∈Message with m = communication(sender, id(Me))

i f m = 〈received_keyvalue, content〉 then
par

// Add keys/values to local table
keyvalue(id(Me).add(content)
mode_stabilize(Me) := undef
// Remove processed message
communication(sender, id(Me)).remove(m)

endpar
end i f

e n d f o r a l l

UpdatePredecessor=
// Check if id(Me) can communicate with other nodes
i f ping(id(Me)) = true then

// Check the predecessor’s connection
i f ping(predecessor(id(Me))) 6= true then Predecessor Is Not Alive
predecessor(id(Me)) := undef Deactivate Value

end i f
e nd i f

UpdateFingersBegin=
// Update a finger table item
par
next(id(Me)) := (next(id(Me))⊕M 1) + 1

communication(id(Me), id(Me)).add(〈find_successor, 〈id(Me)⊕N2next(id(Me))−1, id(Me)〉〉)
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mode_fingers(Me) := wait_for_response
endpar

UpdateFingersSet=
// Get the message with the information on the successor
f o r a l l m ∈Message with m = communication(sender, id(Me))

i f m = 〈successor_found, content〉 then
i f content = 〈id(Me)⊕N 2next(id(Me))−1, successor〉 then

par
// Set current finger table item
finger(id(Me)).listitem(next(id(Me))) := successor
// Remove processed message
communication(sender, id(Me)).remove(m)
// Begin update next table item
mode_fingers(Me) := undef

endpar
end i f

end i f
e n d f o r a l l

PutFindResponsible=
// Insert new 〈key, value〉 pair into Chord network
par

// Find the responsible node for hash(key)
communication(id(Me), id(Me)).add(〈find_successor, 〈hash(key), id(Me)〉〉)
mode_put(Me) := wait_for_responsible

endpar

PutKeyValue=
// Get the message with the information on the responsible node
f o r a l l m ∈Message with m = communication(sender, id(Me))

i f m = 〈successor_found, content〉 then
i f content = 〈hash(key), successor〉 then

par
x := successor
i f x 6= undef then

// Send 〈key, value〉 to the responsible node Notify Responsible
Node

communication(id(Me), x).add(〈send_keys, [〈hash(key), value〉]〉)
e l s e

Skip
end i f
// Remove processed message
communication(sender, id(Me)).remove(m)
// Finishing this instering operation
mode_put(Me) := undef

endpar
end i f

end i f
e n d f o r a l l
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GetKey=
// Begin search for given value
par Invoke FindSuccessor
communication(id(Me), id(Me)).add(〈find_successor, 〈hash(key), id(Me)〉〉)
mode_get(Me) := wait_for_key

endpar

GetValue=
// Get the message with the information on the responsible node
f o r a l l m ∈Message with m = communication(sender, id(Me))

i f m = 〈successor_found, content〉 then
i f content = 〈hash(key), successor〉 then

par
// Ask responsible node for the value connected with the given key
responsible := successor Check Corresponding value
communication(id(Me), responsible).add(〈get, hash(key)〉)
// Remove processed message
communication(sender, id(Me)).remove(m)
mode_get(Me) := wait_for_value

endpar
end i f

e nd i f
e n d f o r a l l

GetFinish=
// Get the message with the information on the asked value
f o r a l l m ∈Message with m = communication(sender, id(Me))

i f m = 〈value_found, content〉 then
i f content = 〈hash(key), successor〉 then

par
value := content
// Remove processed message
communication(sender, id(Me)).remove(m)
mode_get(Me) := undef

endpar
end i f

e nd i f
e n d f o r a l l

Search=
// Find given value in local key/value table
seq

choose value in V alue s a t i s f y i n g
〈hash(key), value〉 ∈ keyvalue(id(Me))
content := value

endchoose
communication(id(Me), sender).add(value_found, content)

endseq

ClearMessages=
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// Clear messages remaining by the node which had same id
f o r a l l node ∈ Chord
communication(node, id(Me)) := []

e n d f o r a l l

ReadMessages=
// Process received messages
f o r a l l m ∈Message with m = communication(sender, id(Me)) do

seq
par
// Send proper keys/values to new predecessor
i f m = 〈request_and_remove_keyvalue, content〉 then

seq
r e s := [ ]
f o r a l l 〈h, v〉 ∈ keyvalue(id(Me)) with h 6 sender do

par
keyvalue(id(Me)).remove(〈h, v〉)
res.add(〈h, v〉)

endpar
e n d f o r a l l
communication(id(Me), sender) := 〈received_keyvalue, res〉

endseq
end i f
// Add received keys/values to local table
i f m = 〈send_keys, content〉 then
keyvalue(id(Me)).add(content)

end i f
// Set given predecessor
i f m = 〈set_predecessor, content〉 then
predecessor(id(Me)) := sender

end i f
// Send information on local predecessor
i f m = 〈get_predecessor, content〉 then
communication(id(Me), sender) := 〈received_predecessor, predecessor(id(Me))〉

end i f
// Process query on respoinsible node
i f m = 〈find_successor, content〉 then

FindSuccessor
end i f
// Process search on given value in local table
i f m = 〈get, content〉 then

Search
end i f

endpar
// Remove processed message
communication(sender, id(Me)).remove(m)

endseq
e nd f o r a l l

FindSuccessor=
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seq
〈h, starter〉 := content
// If h is between id(Me) and its successor responsible node is the successor
i f ping(successor(id(Me)))∧member_ of(h, id(Me), successor(id(Me))) then

Respond
communication(id(Me), starter).add(〈successor_found, 〈h, successor(id(Me)〉)〉)

e l s e
// Find the closest preceding node in local finger table

seq
index := undef
choose i in {1, . . . ,M} s a t i s f y i n g
member_ of(finger(id(Me)).listitem(i), id(Me), h)
∧¬member_ of(finger(id(Me)).listitem(i+ 1), id(Me), h)))
∧ping(finger(id(Me)).listitem(i)) = true
// h is between two values in local finger table
index := i

// h is bigger then all values in local finger table - the closest is the
maximal element

i f index = undef then
choose i in {1, . . . ,M} s a t i s f y i n g
ping(finger(id(Me)).listitem(i)) = true
∧(∀j ∈ {2, . . . ,M + 1|j > i})ping(j) = false

index := i
end i f
// Forward query to it Forward Query
communication(id(Me), finger(id(Me)).listitem(index))
.add(〈find_successor, 〈h, starter〉〉)

endseq
end i f

endseq
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