Dr Dusan Zorica associate research professor 


Mathematical Institute, Kneza Mihaila 36, Email: dusan_zorica @ mi.sanu.ac.rs 



Biography 



Date
and place of birth: March 20^{th} 1977, Subotica, Serbia. Education:
Working
experience:




Monographs 



1. T. M. Atanackovic, S. Pilipovic, B. Stankovic,
D. Zorica, Fractional Calculus with Applications in
Mechanics: Vibrations and Diffusion Processes, ISTE  Wiley, 2014,
2. T. M. Atanackovic, S. Pilipovic, B. Stankovic,
D. Zorica, Fractional Calculus with Applications in
Mechanics: Wave Propagation, Impact and Variational Principles,
ISTE  Wiley, 2014, 



Refereed journal papers 



1. D. Zorica, S. M. Cveticanin, Fractional telegraphers equation as a consequence of Cattaneos heat
conduction law generalization, Theoretical and Applied Mechanics,
accepted. 2. Y. Bouras, D. Zorica, T. M. Atanackovic, Z.
Vrcelj, A nonlinear thermoviscoelastic rheological
model based on fractional derivatives for high temperature creep in concrete,
Applied Mathematical Modelling, 55 (2018) 551568. 3. V. Zeli, D.
Zorica, Analytical and numerical treatment of the heat conduction equation obtained
via timefractional distributedorder heat conduction law, Physica A: Statistical Mechanics and its
Applications, 492 (2018) 23162335. 4. G. Hoermann, Lj. Oparnica, D. Zorica, Solvability and microlocal analysis of the fractional Eringen wave
equation, Mathematics and Mechanics of Solids, accepted. 5. D. Zorica, N. Challamel, M. Janev, T.
Atanackovic, Buckling and postbuckling of a heavy
compressed nanorod on elastic foundation, Journal of Nanomechanics
and Micromechanics, 7 (2017) 0401700416. 6. S. M. Cveticanin, D.
Zorica, M. R. Rapaic, Generalized
timefractional telegrapher equation in transmission line modeling,
Nonlinear Dynamics, 88 (2017) 14531472. 7. D. Zorica, T. M. Atanackovic, Z. Vrcelj, B. N.
Novakovic, Dynamic stability of an axially loaded
nonlocal rod on a generalized Pasternak foundation, Journal of
Engineering Mechanics. ASCE, 143 (2017) D4016003110. 8. D. Zorica, M. Zigic, N. Grahovac, Viscoelastic body colliding against a rigid wall with and without dry
friction effects, Applied Mathematical Modelling, 45 (2017)
365382. 9.
G. Hoermann, Lj. Oparnica, D. Zorica, Microlocal analysis of fractional wave equations,
Zeitschrift für Angewandte Mathematik und Mechanik, 97 (2017) 217225. 10. T. M. Atanackovic, M. Janev, 11. T. M. Atanackovic, S. Konjik, 12. B. Petronijevic, I. Sarcev, D. Zorica, M. Janev,
T. M. Atanackovic, Fractional
twocompartmental model for articaine serum levels, Heat and Mass
Transfer, 52 (2016) 11251130. 13. Lj. M. Petrovic, D. M. Zorica, I. Lj. Stojanac,
V. S. Krstonosic, M. S. Hadnadjev, M. B. Janev, M. T. Premovic, T. M.
Atanackovic, Viscoelastic properties of uncured resin
composites: Dynamic oscillatory shear test and fractional derivative model,
Dental Materials, 31 (2015) 10031009. 14. T. M. Atanackovic, Y. Bouras, D. Zorica, Nano and viscoelastic Beck’s column on elastic foundation,
Acta Mechanica, 226 (2015) 23352345. 15. T. M. Atanackovic, M. Janev, S. Konjik, 16. T. M. Atanackovic, M. Janev, Lj. Oparnica, S.
Pilipovic, D. Zorica, Spacetime fractional
Zener wave equation, Proceedings of the Royal Society A, 471
(2015) 201406141125. 17. T. M. Atanackovic, B. N. Novakovic, Z. Vrcelj,
D. Zorica, Rotating nanorod with clamped ends,
International Journal of Structural Stability and Dynamics, 15 (2015)
145005018. 18. T. M. Atanackovic, M. Janev, S. Pilipovic, D.
Zorica, Convergence analysis of a numerical scheme for
two classes of nonlinear fractional differential equations,
Applied Mathematics and Computation, 243 (2014) 611623. 19. T. M. Atanackovic, 20. T. M. Atanackovic, M. Janev, S. Konjik, S.
Pilipovic, D. Zorica, Expansion formula for
fractional derivatives in variational problems, Journal of
Mathematical Analysis and Applications, 409 (2014) 911924. 21. T. M. Atanackovic, D. Zorica, Stability of the rotating compressed nanorod, Zeitschrift
für Angewandte Mathematik und Mechanik, 94 (2014) 499504. 22. Lj. M. Petrovic, D. M. Zorica, I. Lj. Stojanac,
V. S. Krstonosic, M. S. Hadnadjev, T. M. Atanackovic, A model of the viscoelastic behavior of flowable resin composites
prior to setting, Dental Materials, 29 (2013) 929934. 23. T. M. Atanackovic, M. Janev, 24. N. Challamel, D. Zorica, T. M. Atanackovic, D.
T. Spasic, On the fractional generalization of
Eringen’s nonlocal elasticity for wave propagation, Comptes Rendus
de Mécanique, 341 (2013) 298303. 25. T. M. Atanackovic, D. Zorica, On the BagleyTorvik equation, Journal of Applied
Mechanics. Transactions of the ASME, 80 (2013) 04101314. 26. T. M. Atanackovic, S. Pilipovic, D. Zorica, Forced oscillations of a body attached to a viscoelastic rod of
fractional derivative type, International Journal of Engineering
Science, 64 (2013) 5465. 27. T. M. Atanackovic, S. Konjik, Lj. Oparnica, D.
Zorica, The Cattaneo type spacetime fractional heat
conduction equation, Continuum Mechanics and Thermodynamics, 24
(2012) 293311. 28. T. M. Atanackovic, M. Janev, 29. T. M. Atanackovic, S. Pilipovic, D. Zorica, Distributedorder fractional wave equation on a finite domain: creep
and forced oscillations of a rod, Continuum Mechanics and
Thermodynamics, 23 (2011) 305318. 30. T. M. Atanackovic, S. Pilipovic, D. Zorica, Distributedorder fractional wave equation on a finite domain. Stress
relaxation in a rod, International Journal of Engineering Science,
49 (2011) 175190. 31. T. M. Atanackovic, 32. S. Konjik, Lj. Oparnica, D. Zorica, Waves in viscoelastic media described by a linear fractional model,
Integral Transforms and Special Functions, 22 (2011) 283291. 33. S. Konjik, Lj. Oparnica, D. Zorica, Waves in fractional Zener type viscoelastic media, Journal
of Mathematical Analysis and Applications, 365 (2010) 259268. 34.
T. M.
Atanackovic, S. Pilipovic, D. Zorica, Time distributed order
diffusionwave equation. I. Volterratype equation, Proceedings
of the Royal Society A, 465 (2009) 18691891. 35.
T. M.
Atanackovic, S. Pilipovic, D. Zorica, Time distributed order
diffusionwave equation. II. Applications of Laplace and Fourier
transformations, Proceedings of the Royal Society A, 465 (2009) 18931917. 36.
T. M.
Atanackovic, S. Pilipovic, D. Zorica, Existence and
calculation of the solution to the time distributed order diffusion equation,
Physica Scripta, T136 (2009) 014012 (6pp). 37.
T. M. Atanackovic, S. Pilipovic, D. Zorica, Diffusion wave equation with two fractional derivatives of different
order, Journal of Physics A: Mathematical and Theoretical 40
(2007) 53195333. 



Conference papers/abstracts 



1. S. M. Cveticanin, M. R.
Rapaic, D. Zorica, Frequency analysis of
generalized timefractional telegraphers equation, European
Conference on Circuit Theory and Design (ECCTD 2017), 4  6. IX 2017, 2. G. Hoermann, Lj. Oparnica, D. Zorica, Nonlocal wave equation using fractional stressgradient Eringens
constitutive law, 8th International Conference Transform Methods
and Special Functions 2017 (TMSF2017), 27  31.
VIII 2017, 3. D. Zorica, T. Atanackovic, Z.
Vrcelj, B. Novakovic, Nonlocal axially loaded
rod placed on viscoelastic and Pasternak type foundation: dynamic stability
analysis, 6th Congress of the Serbian Society of Mechanics, 19 
21. VI 2017, 4. T. Atanackovic, Y.
Bouras, D. Zorica, Beck column on Winkler foundation modelled
by nonlocal and hereditary constitutive equation, 2016 EMI
(Engineering Mechanics Institute) International Conference, 25  27. X 2016, 5. T. Atanackovic, G.
Hoermann, M. Janev, Lj. Oparnica, S. Pilipovic, D. Zorica, Zener wave equation: hereditary and nonlocal effects,
International Conference on Fractional Differentiation and its Applications
(ICFDA2016), 18  20. VII 2016, 6. A. Grillo, D. Zorica, Spacetime
fractional Jeffreystype heat equation, 2014 International
Conference on Fractional Differentiation and its Applications (ICFDA14), 23 
25. VI 2014, Catania, Italy  abstract. 7. D. Zorica, M. Zigic, N. Grahovac, Problem of a body impacting against a rigid wall, 2014
International Conference on Fractional Differentiation and its Applications
(ICFDA14), 23  25. VI 2014, 8. T. Atanackovic, S. Pilipovic, D. Zorica, Forced oscillations of the rod  body system, 2014
International Conference on Fractional Differentiation and its Applications
(ICFDA14), 23  25. VI 2014, 9. T. Atanackovic, S. Pilipovic, D. Zorica, Vibrations of a system: body and viscoelastic rod of solid or fluidlike
fractional type, 84th Annual Meeting of the International
Association of Applied Mathematics and Mechanics (GAMM), 18  22. III 2013, 10. T. Atanackovic, S. Pilipovic, D. Zorica, Forced oscillations of a body attached to a solid or fluidlike
viscoelastic rod of fractional type, International Scientific
Conference On Mechanics (MECH2012), 19  22. XI 2012, Sofia, Bulgaria 
abstract. 11. T. Atanackovic, S. Pilipovic, D. Zorica, Forced oscillations of a body attached to a light fractional
viscoelastic rod, Contemporary Problems of Mechanics and Applied
Mathematics, 50 Years of Seminar for Analysis and Foundations of Mathematics
Led by Academician Bogoljub Stankovic, 3  6. IX 2012, 12. T. Atanackovic, S. Pilipovic, D. Zorica, Vibrations of a system: viscoelastic rod of fractional type and body
attached to the rod, II International Conference on Contemporary
Problems of Mathematics, Mechanics and Computer Science, 17  19. VI 2012,
State University of Novi Pazar, Serbia  abstract. 13. T. Atanackovic, S. Pilipovic, D. Zorica, Distributedorder wave equation on a finite domain. Creep and forced
oscillations of a rod, 4th SerbianGreek Symposium ˮRecent Advances in Mechanicsˮ, 9  10. VII 2011, Vlasina Lake, Serbia 
abstract. 14.
D.
Zorica, Heat Conduction of Fractional Cattaneo Type,
Workshop on Macroscopic Modeling of Materials with Fine Structure, 26  28.
V 2011, 15. T. Atanackovic, S. Pilipovic, D. Zorica, Stress relaxation in a viscoelastic rod described by a constitutive
equation of distributedorder type, 4^{th} IFAC Workshop
Fractional Differentiation and its Applications (FDA10), 18  20. X 2010, 16. T. Atanackovic, A. Grillo, G. Wittum, D. Zorica,
An application of fractional calculus to growth
mechanics, 4^{th} IFAC Workshop Fractional Differentiation
and its Applications (FDA10), 18  20. X 2010, 17. T. Atanackovic, A. Grillo, G. Wittum, D. Zorica,
Fractional Jeffreystype diffusion equation,
4^{th} IFAC Workshop Fractional Differentiation and its Applications
(FDA10), 18  20. X 2010, 18. D. Zorica, A few generalizations of
the wave equation within the theory of fractional calculus,
Generalized Functions  Special Edition 2010 (GFSE10), 3  6. VI 2010, 19. D. Zorica, Distributional time
distributedorder diffusionwave equation, International
Conference on Generalized Functions (GF2009), 31. VIII  4. IX 2009, 20. D. Zorica, Forced oscillations of a
rod made of viscoelastic material of fractional derivative type, 2^{nd}
International Congress of Serbian Society of Mechanics (IConSSM2009), 1  5.
VI 2009, 21. 22. T. Atanackovic, S. Pilipovic, D. Zorica, Time distributed order diffusion equation, 3^{rd}
IFAC Workshop Fractional Differentiation and its Applications (FDA08), 5  7.
XI 2008, 23. T. Atanackovic, S. Pilipovic, D. Zorica, Time distributed order wave equation, 3^{rd}
SerbianGreek Symposium, 15  17. IX 2008, 24. T. Atanackovic, S. Pilipovic, D. Zorica, Diffusionwave
equation with two fractional derivatives, 1^{st}
International Congress Of Serbian Society of Mechanics (1^{st}
ICSSM2007), 10  13. IV 2007, 



