


structure of saddle limit cycle, which lies on the border of the basins of attraction of initially coex-
isting attractors. One such scenario was found to occur in the model under investigation. It results
in the chaotic ring heteroclinic attractor, Fig. 2.

Fig. 2. a) Ring heteroclinic attractor; b) unstable invariant manifolds of the saddle cycle.

This work was supported by RSF grant No 15-12-20035.
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Whitney smooth families of invariant tori in the reversible
context 2 of KAM theory

Mikhail B. Sevryuk

V. L. Talroze Institute of Energy Problems of Chemical Physics (RAS), Moscow, Russia

In an overwhelming majority of the works on the reversible KAM theory, the reversing involu-
tion has the form

G1 : (x, y, z) �→ (−x, y,Kz),

where x ∈ Tn = (R/2πZ)n, y ranges in a domain D ⊂ Rm, z ranges in a neighborhood of the
origin of R2p, K is an involutive 2p × 2p matrix with eigenvalues 1 and −1 of multiplicity p each,
and one is looking for invariant n-tori close to the tori {y = const, z = 0}. In this case, the
dimension of the fixed point manifold of the reversing involution (m + p) is no less than half the
phase space codimension of the invariant tori (m + 2p), and such a setup is called the reversible
context 1.

However, nothing prevents one from considering systems reversible with respect to the involu-
tion

G2 : (x, y, z) �→ (−x,−y,Kz),

where now y ranges in a neighborhood of the origin of Rm (m ≥ 1) and the problem is to construct
an invariant n-torus close to the torus {y = 0, z = 0}. Here the dimension of the fixed point
manifold of the reversing involution (p) is smaller than half the phase space codimension of the
invariant torus (m + 2p), and such a setting is referred to as the reversible context 2. Since the
G2-reversible system ẋ = ω, ẏ = a, ż = 0 admits no invariant tori however small a �= 0 is
(the reversibility with respect to G2 does not preclude a drift along the variable y), the reversible
context 2 requires the presence of many external parameters (at least m + 1).

Some preliminary results pertaining to the reversible KAM theory in context 2 were obtained in
our papers [1, 2, 3]. In these works, one deals with analytic families of analytic reversible systems,
the main technical tool is Moser’s modifying terms theory [4], and Cantor families of analytic
invariant tori in the product of the phase space and the parameter space are constructed. According
to the general principles of KAM theory, such families of invariant tori are expected to be smooth in
the sense of Whitney, but this was not proven in [1, 2, 3] (the techniques of [4] are rather limited).

Our new result is as follows. Consider an (n+m+s)-parameter analytic family of G2-reversible
analytic systems

ẋ = ω + ξ(y, z, ω, σ, μ) + f(x, y, z, ω, σ, μ),
ẏ = σ + η(y, z, ω, σ, μ) + g(x, y, z, ω, σ, μ),
ż = Q(ω, μ)z + ζ(y, z, ω, σ, μ) + h(x, y, z, ω, σ, μ).

(1)

Here ω ∈ Rn, σ ∈ Rm, and μ ∈ Rs are external parameters (ω ranges in a neighborhood of some
point ω∗ ∈ Rn while σ and μ range in neighborhoods of the origins of Rm and Rs, respectively), Q
is a 2p × 2p matrix-valued function satisfying the identity KQ(ω, μ) ≡ −Q(ω, μ)K,

ξ = O(|y| + |z|), η = O(|y|2 + |z|2), ζ = O(|y|2 + |z|2 + |σ|2),
and the functions f , g, h are small perturbation terms. It is also assumed that det Q(ω∗, 0) �= 0 and
that the mapping μ �→ Q(ω∗, μ) is a versal unfolding of the matrix Q(ω∗, 0) in the space of 2p× 2p
matrices anti-commuting with K (with respect to the adjoint action of the group of non-singular
2p × 2p matrices commuting with K) [5]. This implies that any 2p × 2p matrix anti-commuting
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with K and sufficiently close to Q(ω∗, 0) is equal to AQ(ω∗, μ)A−1 for a suitable μ close to 0 and
a suitable 2p × 2p matrix A commuting with K and close to the identity matrix.

Then, roughly speaking, the following holds. For any values ω0, μ0 of the external parameters
ω, μ such that the pair (ω0, Q(ω0, μ0)) satisfies a certain Diophantine condition, there are values ω′,
σ′, μ′ (close to ω0, 0, μ0, respectively) of the external parameters ω, σ, μ such that the system (1) at

ω = ω′, σ = σ′, μ = μ′ (2)

after a nearly identical analytic change of variables (x, y, z) �−→ (x′, y′, z′) commuting with G2

takes the form

ẋ′ = ω0 + O(|y′| + |z′|), ẏ′ = O(|y′|2 + |z′|2), ż′ = Q(ω0, μ0)z
′ + O(|y′|2 + |z′|2)

(provided that f , g, h are small enough). Moreover, the values ω′, σ′, μ′ and the coordinate change
(x, y, z) �−→ (x′, y′, z′) depend on ω0, μ0 in a Whitney C∞ way.

In other words, whenever the pair (ω0, Q(ω0, μ0)) meets a suitable Diophantine condition, the
perturbed system (1) at the shifted parameter values (2) possesses an invariant analytic n-torus
{y′ = 0, z′ = 0} with the same frequency vector ω0 and the same normal behavior (characterized
by the matrix Q(ω0, μ0)) as the unperturbed invariant n-torus {y = 0, z = 0} at the parameter
values

ω = ω0, σ = 0, μ = μ0.

All the perturbed invariant n-tori constitute a Whitney C∞ family.
We prove this theorem by reducing it to a special case of the so-called BCHV theorem [6]

concerning the reversible context 1 with singular normal behavior of invariant tori. To carry out
such a reduction, one treats σ as an additional phase space variable (satisfying the equation σ̇ = 0)
and then replaces the equation σ̇ = 0 by the equation σ̇ = Λy where Λ is a new additional external
parameter ranging in a neighborhood of the origin of the space of m × m matrices. The reversing
involution of the augmented phase space is G : (x, y, σ, z) �→ (−x,−y, σ,Kz). The main step in
the proof is to verify that a shift along the parameter Λ vanishes.

The author is grateful to H. Hanßmann for fruitful discussions on the paper [6].
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Classical Hamiltonian systems, Lagrangian manifolds and 
Maslov indices, corresponding to spectra of Schroedinger 

operators with delta-potentials 
 

Andrei Shafarevich 
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We study spectral series of the Schroedinger operator with delta-type potential on 2D or 3D 
Riemannian spherically symmetric manifold. Lagrangian manifolds, corresponding to these 
series, do not coincide with the standard Liouville tori. We describe topological structure of these 
manifolds as well as Maslov indices, entering quantization conditions. In particular, we study the 
effect of the jump of the Maslov index via passing through the critical values of the multipliers of 
the delta-functions. 
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Bifurcation analysis of a 2D rigid circular cylinder interacting
dynamically with a point vortex in the absence of circulation
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3 Financial University under Government of the Russian Federation, Moscow, Russia

We consider the dynamics of a system that consists of a circular cylinder interacting with a
vortex filament parallel to the cylinder’s element in an unbounded volume of ideal fluid. The fluid
is assumed to be incompressible and at rest at infinity. The governing equations were first obtained
in [1], while the Hamiltonian form of the equations and their Liouville integrability was established
in [2]. In the gravity field this system was studied in [3] where it was shown to exhibit chaotical
behavior and therefore be no longer integrable.

The paper [4] addresses the topology of the integrable system (a cylinder plus a single vortex).
The fluid’s circulation about the cylinder was assumed to be different from zero. However, it was
specially noted that the case of zero circulation needs a thorough separate treatment.

Thus, this contribution is devoted to the case of zero circulation. We have obtained new intrigu-
ing invariant relations, built up the bifurcation diagram and explored bifurcations of the Liouville
tori.

The work is supported by the grants of RFBR Nos. 16-01-00170 and 16-01-00809.
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Nontrivial analogy of finite-core and point vortices in a
two-layer rotating fluid
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It is known that the theory of point vortices adequately describes the trajectory behaviors of
the distributed eddy centers, if these centers are spaced far enough. However, there is a deeper
connection between discrete and continuous approaches. Let us demonstrate this with the example
of the family of two-layer compensated geostrophic vortices.

The analysis of stability with respect to small perturbations of circular contours of unit-radius
vortex patches which compose a two-layer vortex with zero total potential vorticity (a heton) has
shown [1] that this vortex is neutrally stable only if γ < 1.705. Here γ = R/Rd, where R is the
characteristic horizontal scale, and Rd is the so-called Rossby radius of deformation [2]. Figure 1a
shows the curves of neutral stability modes with m belonging to the plane of the parameters (h1, γ)
(h1 is the nondimensional depth of upper layer), so that area of the mode with the corresponding

number is located above each curve h1 = 0.5
[
1 ±

√(
1/2m − L1(γ)

)(
1/2m − Lm(γ)

)]
. Here

Lm(γ) = Km(γ)Im(γ) is the product of Modified Bessel functions of mth order.
We found that there is a direct analogy between the instability criterion of m-th mode of the

distributed circular heton and the transition condition for a system composed of m uniformly dis-
tributed discrete hetons located along the circles of both layers for beginning the infinite type of
motion in the form of m two-layer vortex pairs radially running away.

We can note that:

• If γ is greater then its critical value γm
cr , then the originally vertical m discrete heton axes tilt,

and the newly formed two-layer pairs will move away along radial directions. The finite-core
dipole structures that form as the result of collapse of an unstable finite-size heton behave in
a similar manner.

• The asymptotics γm
cr ∼ m, which implies a linear dependence between the critical values

of stratification parameter γm and the numbers of high unstable modes m, is still valid in
discrete case up to proportionality factor (γm

cr)discr ∼ αm, α ≈ 0.37.

However, one should take into account the fundamental difference between the two models:
for discrete vortices at γ > (γm

cr)discr, a system of m radially scattering pairs always form,
while for a finite-core heton, the value of γm

cr determines only the lower boundary of the do-
main in which the mode with number m becomes unstable, and the conditions of realization
of this mode are not necessarily preferable.

• Nevertheless, this analogy enables a mathematical explanation to be given for the possible
separation mechanism of distributed pairs: for a newly formed vortex pair to start moving
away from the center of the original vortex, it is necessary that its local vorticity center
fall beyond the separatrix bounding the domain of finite motions of the appropriate
system of discrete vortexes.
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Fig. 1. (a) Heton neutral-stability curve on the plane of parameters (h1, γ) of modes with indicated numbers.
Configurations of contours of the top (full lines) and bottom (dashed lines) layers for an unstable heton at
h1 = 0.5 in the specified moments of dimensionless time: (b) γ = 2.4; (c) γ = 4.

Fig. 2. Phase portraits, i. e. isolines of Hamiltonian of system of m vortices, uniformly distributed on
circumferences with the same radius in each layer: m = 2, 3, γ = 1; m = 6, γ = 2. The denotations {1},
{2}, and {3} refer to different types of motion. Square markers show the intersection points of separatrices.
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Motion planning and tracking control for a spherical rolling
robot actuated by pendulum
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1 Kyushu University, Fukuoka, Japan

This paper deals with motion planning for a spherical rolling robot driven by a pendulum
mounted at the center of the spherical shell. A similar problem was considered in [1]. Here in
this paper, it is assumed that the pendulum is actuated by two motors. The full mathematical model
of the robot combines five kinematic equations, describing the evolution of the center of the robot
and its orientation, and the dynamic equations. The latter combines three differential equations for
the angular acceleration of the sphere and four differential equations describing the dynamics of
the pendulum. The total model contains twelve state space equations with two inputs.

It is shown that, contrary to the rolling robots actuated by symmetrical internal rotors[2, 3], the
motion planning problem can be decoupled and solved separately at the levels of kinematics and
dynamics. In particular, when the kinematic reference trajectory is produced by planning a pure
rolling (no spinning) motion, the dynamic equations can be reduced under imposition of virtual
constraints restricting the motion of the pendulum to the vertical plane tangent to the contact path
in the contact plane. The reduced dynamic system, which we call the hoop-pendulum system, has
just two differential equations of the second order, with the generalized coordinates given by the
contact point on the reference contact curve in the plane and the pendulum angle in the vertical
plane tangent to the path. The hoop-pendulum system is underactuated as there is only one control
input—the projection of the control moments onto the vertical plane tangent to the path.

The controllability of the hoop-pendulum system is established and two algorithms for planning
rest-to-rest movements, are proposed. One is based on the optimal control, minimizing the control
effort, and another one is based on the parameterization of the pendulum angle by the second
derivative of the Beta function. The feasibility of the the resulting timing control laws is verified
under simulation for tracing different contact curves (straight lines, circles, generalized Viviani’s
curve and the Loxodrome).

Finally, a backstepping-based feedback tracking controller for the whole configuration of the
spherical robot, comprising both the position and orientation, is proposed. The feasibility for the
backstepping controller is first tested for the hoop-pendulum system, followed by the construction
of a tracking controller for the full mathematical model. The validity of the proposed tracking
controller is demonstrated by establishing the asymptotic stability of the error dynamics. The per-
formance of the controller is verified under simulations for tracking linear and circular motions
respectively.
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Figure 1. A three-bladed screw

In this paper we consider the free fall of a homoge-
neous three-bladed screw consisting of a central solid
sphere and blades whose shape is an oblate ellipsoid
(see Fig. 1). The center of mass of the screw co-
incides with the center of the sphere, and thus the
sum of gravity torque and buoyancy torque about the
center of mass equals zero. The investigation of the
motion is performed within the framework of theories
of an ideal fluid and a viscous fluid.

To describe the motion of the body, two Carte-
sian coordinate systems are introduced: a fixed one,
Oaxyz, and a moving one, Oe1e2e3, attached to the
body (see Fig. 1). The origin O of the moving coor-
dinate system coincides with the center of mass of the
screw. The axis Oe3 of the moving coordinate system
coincides with the helical symmetry axis of the body.

The orientation of the screw blades with respect to the central sphere is determined by
the angle Φ, and the plane Oe1e2 is overlapped maximally at Φ = 0◦ (see Fig. 1), and this
overlapping is minimal at Φ = 90◦ .

The motion of the moving coordinate system relative to the fixed one is governed by the
following kinematic relations [1]:

α̇ = α × Ω, β̇ = β × Ω, γ̇ = γ × Ω,

ẋ = α · V , ẏ = β · V , ż = γ · V ,
(1)

where x, y and z are the coordinates of the point O in absolute space Oaxyz, α, β and γ are
the unit vectors of the fixed coordinate system referred to the moving coordinate system, V
is the velocity of the screw referred to the moving coordinate system, and Ω is the angular
velocity of the screw referred to the moving coordinate system.

The motion of the body in a resisting medium is governed by equations [2]

ṗ = p × Ω − μγ − F s,

Ṁ = M × Ω + p × V − Gs,
(2)

where p = CV + BΩ is the linear momentum, M = BT V +AΩ is the angular momentum,
C = mE + Λ1, A = J + Λ2, m is the mass of the body, J is the tensor of inertia of the
body, Λ1 is the tensor of added masses, Λ2 is the tensor of added moments of inertia, B is
the tensor resulting from the helical symmetry of the body, μ = (ρb − ρf)V g is the weigth
of the body in the fluid, ρb is the density of the body, ρf is the density of the fluid, V is
the volume of the body, g is the standard gravitational acceleration with g ↑↓ Oaz, F s is
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Based on the Lyapunov direct method, we get new sufficient conditions for uniform 

global asymptotic stabilization of nonlinear control systems with periodic coefficients by 
damping control. Effective sufficient conditions for asymptotic stabilization of affine and bilinear 
periodic systems are derived. Corollaries are obtained for bilinear periodic control system with 
the free dynamics defined by a linear Hamiltonian system. Examples are considered. 
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