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Switching in time-optimal problems

Andrey Agrachev

SISSA, Trieste, Italy & MIAN, Moscow, Russia

We study the time-optimal problem for generic control-affine system of the form:

ẋ = f0(x) +
n∑

i=1

uifi(x), x ∈ R
n+1,

n∑

i=1

u2
i ≤ 1,

and try to decode the structure of jump discontinuities of the optimal control in terms of Lie bracket
relations between the vector fields f0, f1, . . . fn. Pontryagin Maximum Principle, the blow-up pro-
cedure, and elementary hyperbolic dynamics allow to reduce the problem to the study of an explic-
itly integrable dynamical system on the sphere Sn−1.
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On a question by Wintner about the classification of the
isosceles solutions of the 3-body problem

Alain Albouy1, Hildeberto Cabral2

1 Observatoire de Paris, Paris, France
2 Universidade Federal de Pernambuco, Recife, Brasil

An isosceles solution of the Newtonian 3-body problem is a solution where the triangle formed
by the 3 bodies remains isosceles all the time. In [2], Aurel Wintner recalls that in any such solution
either the 2 bodies at the base of the triangle have same mass, or the triangle is always equilateral.
He sketches in two pages a proof due to W. D. MacMillan and to J. Chazy and concludes, at page
315: “It would, of course, be desirable to find a proof based on dynamical, rather than on function-
theoretical, principles. But it is quite doubtful that such proof exists. At any rate, the result is very
deep, apparently much deeper than [the classification of the homographic solutions].”

We present a simpler proof which avoids complex analysis. We reduce the question to the exam-
ination of the conservation of energy on a candidate orbit which is obtained by a simple quadrature.
The strange fact is that this candidate orbit could not be excluded by examining its qualitative
behavior. It indeed visits the most interesting “allures finales” in Chazy’s classification. For exam-
ple, the candidate orbit can mimic a hyperbolic-parabolic escape at time −∞ and a “continuable”
hyperbolic escape at time +∞. Chazy stated the conditions for the existence of an analytical con-
tinuation of an orbit of the n-body problem when the configuration reaches infinity in time and
space. The candidate orbit does satisfy these conditions and indeed a continuation is proposed by
the formula.

References

[1] Cabral, H. E. On the isosceles solutions of the three-body problem, 2012, Bol. Soc. Mat.
Mexicana (3), 18, pp. 135–141

[2] Wintner A., The Analytical Foundations of Celestial Mechanics. Princeton Univ. Press, 1941

5



Nilpotent approximation of mobile robot with a trailer

Andrey Ardentov, Yu. Sachkov and A. Pichugin

1 Program Systems Institute of RAS, Pereslavl-Zalesskiy, Russia

Different models of mobile wheel robot with a trailer can be defined by the following differential
system:

ẋ = u1 cos θ,

ẏ = u1 sin θ,

θ̇ = u2,

ϕ̇ = −u1

lt
sin ϕ − lru2

lt
cosu2 − u2,

where u1, u2 are controls which correspond to linear and angular velocity of the robot, coordinates
(x, y, θ, ϕ) give the state of the mobile robot with a trailer on the plane. Constants lt > 0, lr ≥ 0 set
the model of connection of mobile robot and trailer [1].

The problem of translation mobile robot with a trailer from one state to another is difficult
task even without cost functional. There are different approaches to solve this problem for some
models, most of them developed for particular models and use their specifics. Our approach is
based on concept of nilpotent approximation, which can be applied to every model of mobile robot
with a trailer. This approach use solution of nilpotent sub-Riemannian problem on the Engel group,
which is given by differential system

ẋ = u1,

ẏ = u2,

ż =
−u1y + u2x

2
,

v̇ = u2
x2 + y2

2

with the boundary conditions

x(0) = y(0) = z(0) = v(0) = 0,

x(t1) = x1, y(t1) = y1, z(t1) = z1, v(t1) = v1

and cost functional
∫ t1

0

√
u2

1 + u2
2 dt → min .

This optimal control problem was recently studied in works [2, 3, 4] and was reduced to solving
a system of algebraic equations. Software for computation of optimal solutions will allow us to
solve the motion planning problem for generic control systems with 4 states and 2 linear inputs via
nilpotent approximation (in particular, for the kinematic model of mobile robot with a trailer).

The work is supported by the Russian Foundation for Basic Research (project no. 16-31-00396).

6



References

[1] Laumond J.-P., Nonholonomic Motion Planning for Mobile Robots. Tutorial notes, 1998,
112 p.

[2] Ardentov A. A., Sachkov Yu. L., Extremal trajectories in nilpotent sub-Riemannian problem
on the Engel group // Sbornik: Mathematics, 2011, vol. 202, no. 11, pp. 1593–1615.

[3] Ardentov A. A., Sachkov Yu. L., Conjugate points in nilpotent sub-Riemannian problem on
the Engel group // Journal of Mathematical Sciences, 2013, vol. 195, no. 3, pp. 369–390.

[4] Ardentov A. A., Sachkov Yu. L., Cut time in sub-riemannian problem on engel group //
ESAIM: COCV, 2015, Vol. 21, no. 4, pp. 958–988.

7



Bifurcation and chaos exhibited by a rattleback lying on 
vibrating surface modified by magnetic force 

 

Jan Awrejcewicz1, Grzegorz Kudra1 
1Department of Automation, Biomechanics and Mechatronics, Lodz University of Technology, 

Lodz, Poland 

The present work concerns the problem of modelling, numerical simulations and analysis of 
bifurcation dynamics of a Celtic stone situated on a vibrating platform. The Celtic stone, also 
known as a wobblestone or a rattleback, usually is a semi-ellipsoidal rigid body lying on a flat and 
horizontal surface.  The important property of the celt is non-coincidence of the principal axes of 
inertia and the principal directions of curvature at the equilibrium contact point. This leads to 
special dynamical properties of the wobblestone, i.e. if it is set in rotational motion around a 
vertical axis, it possess a “preferred“ direction of spin. Dynamics of the celt under assumption of 
rolling without sliding was investigated in the work [1]. In the present work we investigate its 
properties in the case of harmonic motion of the platform. Similar investigations were performed 
and presented in the work [2], but only horizontal motion of the platform was taken into account. 
Here we assume linear (translational) vibrations in any direction. The contact forces are modelled in 
detail based on the work [3]. Moreover, a special additional force acting between the celt and the 
platform is assumed. It can be realized as a force between two permanent magnets. As the 
investigations showed, this force can modify the dynamic characteristics of the celt. It is important 
from the point of view of possible use of the rattleback as energy harvesting system [4]. 

The mechanical concept of the system is presented in Fig. 1. The semi-ellipsoidal body of 
geometry center at the point O and mass center at the point C with relative position described by 
vector k, touches the plane and horizontal surface π at the point A. It is assumed that the platform 
moves translationally with acceleration ܉. The governing equations reads 

( ) ˆ ˆ
s m b

d
m m mg N

dt
+ × = − + + + +v
ω v n n T F F ,    Cd

dt
=r

v ,   ( ) ( ) ( )ˆ ˆ ˆ ˆ
s s r

d
N

dt
+ × = − × + + +ω

B ω Bω r k n T M M


, 

3 1cos sin

cos

d

dt

ψ ω ϕ ω ϕ
θ

−= , 1 3cos sin
d

dt

θ ω ϕ ω ϕ= + , ( )2 1 3tan sin cos
d

dt

ϕ ω θ ω ϕ ω ϕ= + − ,  ( )C + + ⋅ =r r k n 0  (1) 

where m denotes mass of the body, B – tensor of inertia at the mass center, v – local velocity of 
mass center in the reference frame GX1X2X3 attached to the platform, ω – absolute angular velocity 
of the body, ܚ = ܚீ  – vector defining the position of mass center C with respect to the origin G of 
the reference frame GX1X2X3, ܰ  – magnitude of normal component of platform reaction, n – unit 
vector normal to the base,	܂௦	– resulting friction force acting at the point A,  ۻ௦ – friction moment, ۻ – rolling resistance moment,	۴ – magnetic force, ۴ = ݉܉− = ଵ܍(ݐଵ߱)	ଵsinݍ)− ଶ܍(ݐଶ߱)ଶsinݍ+ +  ଷ)݉ – inertia force related to the base motion acting at the܍(ݐଷ߱)	ଷsinݍ
mass center C (܍ is unit vector of axis Xi), ܚ – vector indicating the position of the contact 
point A. The notation  ݀ܝ ⁄ݐ݀  stands for the derivative with respect to time of a vector u in the 
coordinate system GX1X2X3, while ሚ݀ܝ ⁄ݐ݀  denotes the corresponding derivative in the body-fixed 
reference frame Cx1x2x3. The orientation of the body is defined by the following sequence of three 
rotations about the axes of the system Cx1x2x3: x3 (by an angle ψ), x1 (by an angle θ) and x2 (by an 
angle φ). The components of a vector ܝ in the reference frame Cx1x2x3 are denoted as ui  (i=1,2,3). 
The components of tensor of inertia B in the same co-ordinate system are denoted as  =ሾሾܤଵ ଵଶܤ− ଵଷሿܤ− ሾ−ܤଵଶ ଶܤ ଶଷሿܤ− ሾ−ܤଵଷ ଶଷܤ−  ଷሿሿ். The set of equations (1)ܤ
consists of differential and algebraic equations – the last vector expression describes the fact that 
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the point A always lies in the surface π. The contact forces (friction force and moment, rolling 
resistance) are modelled by the use of special approximations suitable for fast and realistic 
numerical simulations [3]. It is assumed that some kind of pair of magnets is mounted inside the 
stone and inside the platform, in such a way that, using some kind of simplification, the pulling 
magnetic force acts between the points C and M and its magnitude can be approximated as ܨ = exp(ܿଵ݈ܨ + ܿଶ݈ଶ ), where lm is distance between the points C and G, while F0, c1 i c2 are 
the parameters. Based on the data concerning two ball magnets, one can assume ܿଵ = −150	mିଵ 
and ܿଶ = 1500	mିଶ. 

 
Fig. 1. The wobblestone. 

In the presented below numerical examples the following parameters have been assumed: ݉ = 0.25	kg, ݃ = 9.81	m/sଶ,	ܤଵ = 0.41 ∙ 10ଷ	kg ∙ mଶ, ܤଶ = 2 ∙ 10ଷ	kg ∙ mଶ, ܤଷ = 3.5 ∙ 10ଷ	kg ∙mଶ, ܤଵଶ = −0.28 ∙ 10ଷ	kg ∙ mଶ, ܤଵଷ = ଶଷܤ = 0, ݇ଵ = ݇ଶ = 0, ݇ଷ = 0.006	m, ܽଵ = 0.08	m, ܽଶ = 0.016	m, ܽଷ = 0.012	m (semi-axes of the ellipsoid), ߤ = 0.2 (friction coefficient), ොܽ = 0.001 m (radius of the contact), ݂ = 0.05	 ොܽ (rolling resistance). The platform is assumed to 
vibrate only in normal direction - ݍଵ = ଶݍ = ଷݍ ,0 = 6	m/sଶ. In Fig. 2 there are presented 
bifurcation diagrams of the system with angular frequency ߱ଷ	of vibrations playing a role of 
bifurcation parameter. One can also observe the influence of the magnetic force on the celt 
dynamics (F0=0 in subfigure (a) and F0=2 N in subfigure (b)), especially in the context of spin 
velocity ߱ଷ and potential use of the celt as energy harvesting system. 

a)  b)  
Fig. 2. Exemplary bifurcation diagrams – for F0=0 (a) and F0=2 N (b) 

Acknowledgments. This work has been supported by the Polish National Science Centre, 
MAESTRO 2, No. 2012/04/A/ST8/00738. 
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The special cases of degeneracy in the stability problem of an 
equilibrium position of a periodic Hamiltonian system 

Boris S. Bardin 
 

Department of Theoretical Mechanics, 
Faculty of Applied Mathematics and Physics 

Moscow Aviation Institute (National Research University) 
 

We deal with the stability problem of an equilibrium position of a periodic Hamiltonian 
system with one degree of freedom. Hamiltonian is analytic in a small neighborhood of the 
equilibrium position and its normal form starts from terms of a certain order N (N>2). Usually, the 
stability character of the equilibrium depends only on nonzero terms of the lowest order N (N >2) 
in the Hamiltonian normal form. If the stability question cannot be solved by taking into account the 
terms of order N, then we say that case of degeneracy takes place. In such a situation it is necessary 
to consider terms of order higher than N to solve the stability problem.  

We represent general theorems of stability and instability, which allow to solve stability 
problem  for almost all cases of degeneracy. We show how to use the above theorems in order to 
obtain new stability criteria for some special cases of degeneracy. We also discuss a gap in the 
proof of Sokolskii theorem on stability. 

 
The work is carried out at  the cost of the grant of the Russian Scientific Foundation  

(project  № 14-21-00068)  at the Moscow Aviation Institute (National Research University). 
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The integrable case of M. Adler and P. van Moerbeke – thirty
years later: spectral curve, first integrals and bifurcation

diagram

Eketerina O. Biryucheva1, Sergey V. Sokolov2 and Pavel E. Ryabov2,3

1 Lomonosov Moscow State University, Moscow, Russia
2 Institute for Machines Science RAS, Moscow, Russia

3 Financial University under Government of the Russian Federation, Moscow, Russia

In 2016 it is 30 years since M. Adler and P. van Moerbeke discovered the general case of
integrability on the Lie algebra so(4). An explicit form of the additional integral was presented in
the original paper [1]. Later Reyman and Semenov-Tian-Shansky [2], with the help of a special
algebra g2, gave the Lax representation L̇(λ) = [L(λ), A(λ)]. Other additional integrals different
from that in [1] were presented by Bolsinov and Borisov [3] and V. Sokolov [4].

From the mechanical point of view the case of M. Adler and P. van Moerbeke can be reduced
to the system governed by the Lamb-Poincare-Zhukovskii equations

Ṁ = M × ∂H

∂M
, Ṡ = S × ∂H

∂S
(1)

which describe the motion of a rigid body with an ellipsoidal cavity filled by a perfect incom-
pressible vortical fluid around a fixed point. Here the 3-dimensional vector M denotes the angular
momentum of the ’body+fluid’ system and the components of S are proportional to the fluid’s
vorticity.

The Hamiltonian H is the kinetic energy of the ’body+fluid’ system expressed in terms of
(M ,S)

H = (M , AM ) + 2(M , BS) + (S, CS).

Here A,B and C are diagonal 3 × 3 matrices which read

A = diag [α2
2α

2
3, α

2
1α

2
3, α

2
1α

2
2] ;

B = diag [(α1 − α2)(α3 − α1)α2α3, (α2 − α1)(α3 − α2)α1α3, (α3 − α1)(α2 − α3)α1α2] ;
C = diag [α2α3(α2α3 − 4α2

1), α1α3(α1α3 − 4α2
2), α1α2(α1α2 − 4α2

3)] .

Besides the energy integral H , the equations (1) always have the geometric integrals

F1 = (M ,M ), F2 = (S,S),

which are the Casimir functions with respect to the Lie-Poisson bracket

{Mi,Mj} = εijkMk, {Mi, Sj} = 0, {Si, Sj} =
1

3
εijkSk.

On the common level
Pa,b = {F1 = a2, F2 = b2} ∼= S2 × S2

the induced Lie-Poisson bracket is non-degenerate and the system (1) restricted to this level gives
an integrable Hamiltonian system with two degrees of freedom and with an additional integral K
of the form

K = 3
∑

i,j

αi(αj − αi)MjSjS
2
i +

∑

i

(αi − αj)(αi − αk)MiS
3
i −

−(M ,M )
∑

i

[αjαkMiSi + 2(α2
j + α2

k)S
2
i ].
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If α1 + α2 + α3 = 0, then the integral K is in involution with Hamiltonian H .
It is well known that the invariants of the matrix TrL(λ)k are first integrals. This integrals gen-

erate a momentum map F . At present we do not have a general theorem that links the structure of
the bifurcation diagram (the image of the critical points of the momentum map) to the discriminant
set of the algebraic curve Γ(λ, μ) = det(L(λ) − μI). However as we can see from the study of
specific mechanical systems [5], [6] such a link exists and it can be used as a hypothesis for the
derivation of the equations of bifurcation diagram (with a subsequent proof of sufficiency).

Here, for the M. Adler and P. van Moerbeke case, we explicitly present the spectral curve
Γ(λ, μ). This enables us upon the inspection of the curves singularities to find the bifurcation di-
agram of the momentum map F . Here we also discuss the phase topology of that Hamiltonian
system. In particular we find the bifurcation diagram of the momentum map and explore bifurca-
tions of the Liouville tori. An example of the bifurcation diagram is presented in Fig. 1.

��
�

��
�

�

�
�

��
�

��
�

��
� C

2

2B

2B

2A

2A 2A

h

k

Fig. 1. Bifurcation diagram

This work is supported by the grants of RFBR Nos. 14-01-00119, 16-01-00170 and 16-01-
00809 and also by grant of RFBR and Volgograd Region Authorities No 15-41-02049.
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The dynamics of vortex sources in a deformation flow

Ivan A. Bizyaev, Alexey V. Borisov and Ivan S. Mamaev

Institute of Computer Science, Udmurt State University, Izhevsk, Russia

In the classical hydrodynamics, the problem of the interaction of n point vortices in an ideal
fluid on a plane and a sphere is well understood. Its distinctive feature is that the equations of
motion of point vortices are represented in Hamiltonian form. Along with the above-mentioned
model of point vortices, hydrodynamics uses other, more general, vortex models. Historically, the
very first model was that of A. A. Fridman and P.Ya.Polubarinova [1] featuring the interaction of
more complex point singularities combining vortex properties and the properties of sources and
sinks, namely, the model of vortex sources. This paper is concerned with the dynamics of vortex
sources in a deformation flow.

The equations of motion of n vortex sources in a deformation flow have the form

ẋi = − 1

2π

n∑

j �=i

Γj(yi − yj) − Kj(xi − xj)

(xi − xj)2 + (yi − yj)2
+ byi,

ẏi =
1

2π

n∑

j �=i

Γj(xi − xj) + Kj(yi − yj)

(xi − xj)2 + (yi − yj)2
− axi,

(1)

where i = 1, .., n.
The system (1) preserves the standard invariant measure:

μ =
n∏

i=1

dxidyi.

However, in the general case it is not Hamiltonian. Let us define the vector fields ux and uy,
corresponding to the shifts along the axes Ox and Oy

ux =
n∑

i=1

∂

∂xi

, uy =
n∑

i=1

∂

∂yi

, (2)

and denote the vector field of the system (1) by u. These vector fields form a solvable Lie algebra
with respect to commutation operations:

[ux,u] = −auy, [uy,u] = bux, [ux,uy] = 0. (3)

Hence, according to the Lie theorem, one can reduce the order of the system (1) by two by
choosing the integrals (2) as new variables.

The case of two vortex sources is shown to be integrable by quadratures. In addition, the
relative equilibria (of the reduced system) are examined in detail and it is shown that in this case
the trajectory of vortex sources is an ellipse.

References
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Degenerate billiards  
 

Sergey Bolotin  
 

Moscow Steklov Mathematical Institute, Russia  
University of Wisconsin, USA  

 
  In an ordinary billiard trajectories of a Hamiltonian system  are elastically reflected  when 
colliding with a hypersurface (scatterer).  If the scatterer is a submanifold of codimension more 
than one, then collisions  are rare.  Trajectories with infinite number of collisions form a lower 
dimensional dynamical system.  Degenerate billiards appear as limits of ordinary billiards and  
and as limits of systems of light bodies in celestial mechanics. 
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Stability analysis, singularities and topology of integrable
systems

Alexey Bolsinov

Loughborough University, UK

In the theory of integrable systems, there are two popular topics:
1) Topology of integrable systems, which studies stability of equilibria and periodic trajectories,

bifurcations of Liouville tori, singularities and their invari- ants, topological obstructions to the
integrability and so on.

2) Theory of compatible Poisson brackets, which studies one of the most in- teresting mecha-
nisms for integrability based on the existence of a bi-Hamiltonian representation.

The aim of the talk is to to construct a bridge between these two areas and to explain how
singularities of bi-Hamiltonian systems are related to algebraic properties of compatible Poisson
brackets. This bridge provides new stability analysis methods for a wide class of integrable systems.
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The Kovalevskaya top and its generalizations

Alexey Borisov, Ivan Mamaev

Udmurt State University, Izhevsk, Russia

We consider two issues concerning the idea of generalizing the classical system discovered by
Kovalevskaya in rigid body dynamics.

One of the generalizations implies the possibility of introducing various additive terms which
preserve the integrability of the classical Kovalevskaya case. This issue is considered in relation to
the possibility of using quaternions in the description of rigid body dynamics and various more gen-
eral problems involving the Kovalevskaya case (the Semenov–Tian-Shansky system and additive
terms introduced by Sokolov and Yehia). The origin of these additive terms is explained.

The second generalization of the Kovalevskaya case is related to the development of Zhukovsky’s
idea of describing rigid body dynamics in the space of constant negative curvature, that is, in the
Lobachevsky space. A form of the Euler–Poisson equations in these spaces is obtained and analogs
of the classical integrable systems for this case are presented. In a particular case, a noncompact
version of the Kovalevskaya case is considered and its differences from the classical case are dis-
cussed.
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Electromagnetic waves in conformal actions of the group  
SU(2, 2) on a dimensional flat model of the space-time 

 

Francisco Bulnes  

Department in Mathematics and Engineering, TESCHA , Chalco, Mexico 
 

 

The ultra-hyperbolic wave equation is satisfied using the Penrose integral over ).(3 CP  

But,considering the Lie group ),2,2(SU we can consider conformal theories of gauge fields as 

electromagnetic fields to measure other fields as gravity [1]. In both directions of a light cone 
appear the auto-dual Maxwell fields of positive frequency and negative frequency on M (the 
space-time) respectively that go being added in each time to each orbit. This corresponds to 
partial waves expansions in 2-dimensions considering the causal structure of the space-time given  
by these light cones in a 2-dimensional flat model of the space-time [2]. 

 

Fig. 1. Electromagnetic waves in conformal actions of the group ),2,2(SU on a −2 dimensional flat model of 
the space-time. The ultra-hyperbolic wave equation is satisfied. In both sides of axis Y, appear the auto-dual 
Maxwell fields of positive frequency and negative frequency on M, respectively that go being added in each 
time to each orbit. This corresponds to partial waves expansions in 2-dimensions. 
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Planar homogeneous potentials and Lotka Voltera systems

Thierry Combot

University of Burgundy, Dijon, France

Given an integrable rational planar potential, we can build a family of integrable potentials
through rotation and dilatation. Taking singular limits, we can build limit potentials which are also
integrable. These potentials have a special new homogeneity property: the potential gets multiplied
after a rotation. We can build an analogue of Darboux points and integrability conditions similar
to the Morales Ramis table. Some of these are bihomogeneous, and after a variable change are
planar quadratic vector fields, Lotka Volterra systems. Thanks to M.Ollagnier classification of
such integrable vector fields, this allows to build new integrability conditions for homogeneous
potentials. There exists a relation between the eigenvalues of Hessian at Darboux points, however
this relation does not always hold. We will prove that this relation in fact always hold except in few
cases which are already known to be integrable. This opens the possibility to classify all integrable
homogeneous polynomial potentials. Joint work with A.Maciejewski.
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Four-dimensional generalization of the Grioli precession

Vladimir Dragović1,2 and Borislav Gajić 1

1 Mathematical Institute SANU, Belgrade, Serbia
2 The Department of Mathematical Sciences, The University of Texas at Dallas, USA

A particular solution of the four-dimensional Lagrange top on e(4) representing a four-dimensional
regular precession is constructed. Using it, a four-dimensional analogue of the Grioli nonvertical
regular precession of an asymmetric heavy rigid body is constructed.
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Twisting somersault and geometric phase 
 

Holger Dullin 
 

University of Sydney, School of Mathematics and Statistics, Sydney, Australia 
 

 The free flight of a springboard diver can be modelled by a non-rigid body, or a system 
of coupled rigid bodies. Given the shape change of the body we show that an Euler equation 
modified by a vector potential describes the dynamics. We derive the geometric phase for this 
model, and thus obtain a complete understanding of the twisting somersault. The simplest 
possible model is a a ``diver with a rotor’’. This is a rigid body with a rotor attached, and the 
rotor can be switched on at off to control the dynamics. For more realistic models of human 
divers we propose a new dive with more twists then have ever been performed in competition. 
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On the dynamics of a tripod sliding on a smooth surface

Nadezhda Erdakova, Ivan Mamaev

Udmurt State University, Izhevsk, Russia

We investigate the dynamics of a body with three point supports (tripod) sliding on a hori-
zontal rough plane. We assume that the body with mass m is dynamically consistent. This
means that one of the principal axes of inertia coincides with the normal to the plane. The
center of mass lies at height h on this axis. The positions of the supports of the body are
determined by three radius vectors ri = (xi, yi,−h), i = 1, 2, 3, respectively.

Figure 1. Rigid body with three point supports (tripod) sliding on a plane. OXY Z is a fixed
coordinate system and Cxyz is a moving coordinate system with origin at the center of the mass.

We assume that the tripod slides under the action of the dry friction law of Amonton-
Coulomb. In this case the equations of motion of this body in the fixed coordinate system
OXY Z can be represented as

Ẋ = vx cosα + vy sin α, Ẏ = −vx sin α + vy cosα, α̇ = ω,

where X and Y are the coordinates of the center of mass, α is the angle of rotation of
the moving coordinate system Cxyz about the fixed coordinate system, vx, vy are the linear
velocity components referred to the axes of Cxyz, and ω is the angular velocity. The velocities
can be determined from the equations

m(v̇x − ωvy) = −f
3∑

i=1

NiVxi, m(v̇y + ωvx) = −f
3∑

i=1

NiVyi, Izω̇ = −f
3∑

i=1

Ni(xiVyi − yiVxi),

Ni are the normal reactions at contact points

N1 = mg
(a2b3 − b2a3)

b1(a2 − a3) + b2(a3 − a1) + b3(a1 − a2)
, N2 = mg

(a3b1 − b3a1)

b1(a2 − a3) + b2(a3 − a1) + b3(a1 − a2)
,

N3 = mg
(a1b2 − b1a2)

b1(a2 − a3) + b2(a3 − a1) + b3(a1 − a2)
, ai = xi − fhVix, bi = yi − fhViy,

Vix =
vx − ωyi√

(vx − ωyi)2 + (vy + ωxi)2
, Viy =

vy + ωxi√
(vx − ωyi)2 + (vy + ωxi)2

,

g is the acceleration of gravity, f is the coefficient of friction, and Iz is the moment of inertia
relative to the axis OZ.

21



To investigate the terminal motion of this system, we use the method of reduction pre-
sented in [1]. We find conditions for the existence of a stable translational motion depending
on the positions of the supports of the body relative to the radius of inertia of the body.
Also, it is shown that the terminal motion of the tripod can be pure rotation, pure sliding,
or rotation and sliding cease simultaneously at the instant of stop.

We obtain trajectories in absolute space for different types of terminal motion and compare
the results with the trajectories obtained in [2] for particular cases of rapid and slow rotation
of the tripod.
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A shortcut to the Kovalevskaya curves

Yuri N. Fedorov

Department of Mathematics, Polytechnic university of Catalonia, Barcelona, Spain

There have already been numerous studies and interpretations of the famous separation of vari-
ables in the integrable top of S. Kovalevskaya.

In this talk we generate the curves of separation of variables for this classical system and its
integrable generalizations. In particular, we will show how the original Kovalevskaya curve of
separation can be obtained, by a simple one-step transformation, from the spectral curve of the
corresponding Lax representation found in [2]. The algorithm works for the general constants of
motion of the top and is based on W. Barth’s description of Prym varieties via pencils of genus 3
curves [1], which was given a further extension in [4, 3]. It also allows us to derive existing and
new curves of separation for the Kovalevskaya gyrostat in one and two force fields.
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Modified LR and L+R systems and rolling spheres

Bozidar Jovanovic

Mathematical institute SANU, Serbia

We introduce a class of dynamical systems having an invariant measure, the modifications of
well known systems on Lie groups: LR and L+R systems. As an example, we study modified
Veselova nonholonomic rigid body problem, considered as a dynamical system on the product
of the Lie algebra so(n) with the Stiefel variety Vn,r, as well as the associated εL+R system on
so(n) × Vn,r. In the 3–dimensional case, these systems model the nonholonomic problems of a
motion of a ball and a rubber ball over a fixed sphere.
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On the control of the displacement of M-block 
 

Alexander P. Ivanov  

 Moscow Institute of Physics and Technology,  
Dolgoprudny, Moscow District, Russia 

 
        Momentum driven blocks (M-blocks) were created in the MIT in the context of solving the 
problem of constructing certain engineering devices during emergencies. The lattices of such 
blocks could be useful for repair bridges or buildings, or raise and reconfigure scaffolding for 
building projects [1]. Such system belongs to the family of mobile devices without external 
actuators: wheels, tracks, etc. A general advantage of these devices is their ability to work in off-
road conditions as well as in the presence of high temperature or pressure. The M-block consists 
of cubic case and a flywheel, equipped with a motor and braking system (Fig. 1). The system is 
initially at rest on a flat surface. At a moment, the motor accelerates the flywheel without moving 
the case. Then the brakes kill the rotation, and in accordance with laws of dynamics, the angular 
momentum of the rotor is transferred to the case. Owing to friction forces, the block shifts in a 
new position or jumps on another block. This trick can be repeated until desirable configuration 
will be achieved. If the axle is parallel to an edge, then the system moves in the orthogonal plane 
[2]. In this paper we suggest that the rotor is inclined to the horizon. It is shown that in this case 
the block rotates around vertical, and when it falls to the ground, its orientation will change. 
Varying the inclination angle, one can transfer the block to any prescribed place. 
    The equations of impulsive motions of M-block were derived in [2], and their basic 
properties were established. The simplest case where the axle of flywheel is parallel to an edge of 
the cube was studied in detail owing the possibility of reduction to 2D formulation. In general 
case analytical solution seems impossible. 
 

                                                                    

 

Fig. 1 The M-Block with its innards exposed and its flywheel 
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Retrograde turn of rolling disk

Yuri L. Karavaev1, Alexander A. Kilin2

1 Kalashnikov Izhevsk State Technical University, Izhevsk, Russia
2 Udmurt State University, Izhevsk, Russia

The dynamics of rolling disk is sufficiently well understood, but some questions remain regard-
ing, for example, the loss of contact of the disk with the surface before it stops [2] or terminal
retrograde turn of rolling disk with a central hole [1]. In the last paper M. A. Jalali et al. [1]
explained the retrograde turn of rings by aerodynamic phenomena due to the presence of a central
hole as opposed to a homogeneous disk. We conducted experiments that show air drag is not a
reason for the retrograde turn of the ring during its rolling. A review of articles in this area has
shown that there is turning effect of the rolling disk and spinning top. In our work we explain the
phenomenon of the retrograde turn of the ring qualitatively within the framework of the model of a
rolling ring with viscous rolling friction. This model is obtained by modification of nonholonomic
model [3] taking into account rolling friction.
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Smale-Williams attractor in a modified Neimark model

Leila Khadzhieva1 and Vyacheslav Kruglov1,2

1 Saratov State University, Saratov, Russia
2 Radioengineering and Electronics Institute of RAS, Saratov Branch, Saratov, Russia

Last years a number of systems with uniformly hyperbolic attractors were introduced [1, 2],
mostly with Smale-Williams solenoid [1, 2]. The operation of these systems is based on a ma-
nipulation with angular variables [1, 2] (e.g. phases of oscillations). The angular variable should
undergo Bernoulli map on each average time interval intrinsic to a system to make Smale-Williams
attractor appear. There are some examples of autonomous systems with hyperbolic attractors [3].
The one in [3] is a minimal four-dimensional system similar to the predator-pray model composed
of two oscillators possessing an attractor of the SmaleWilliams type. The other three examples in
[3] are systems of three coupled oscillators with a heteroclinic cycle. There is also an example of
distributed autonomous system with Smale-Williams attractor in [4].

We introduce an example of autonomous system with Smale-Williams solenoid as an attractor.
The basic idea of its operation follows [3]. The model is composed of two subsystems that are
Neimark systems with “figure-eight” (“double loop”) homoclinics. We consider the coordinates of
subsystems as real and imaginary parts of some complex variable. Due to coupling the argument
of that variable undergoes Bernoulli map each time the trajectory comes close to a saddle.

The equations are:

ẋ = u,

u̇ = (1 − x2 − y2)x +
[
L − (x2 + y2 − 1)

2
]
u + ε(u3 + 3uv2),

ẏ = v,

v̇ = (1 − x2 − y2)y +
[
L − (x2 + y2 − 1)

2
]
v + ε(3u2v − v3),

(1)

where ε is coupling parameter. We rewrite them in complex form:

ż = w,

ẇ = (1 − |z|2)z +
[
L − (1 − |z|2)2

]
w + εw3,

(2)

where z = x + iy and w = u + iv .
Lets explain the principle of its operation. The argument of z is an angular variable θ: z =

C exp(iθ) . When absolute value of z is close to zero (the trajectory is close to a saddle point in
the origin of coordinates) the angular variable triples due to the term εw3 and cubic nonlinearity in
(1− |z|2)z . Thus, the angular variable θ undergoes transformation according to the Bernoulli map
θn+1 = 3θn + const(mod 2π) at each round required for the trajectory to get close to a saddle.

The equations (1) were solved numerically. Fig.1 demonstrates a portrait of attractor of system
(1) (L = 0.32 , ε = 0.02). Fig.2a shows a portrait of attractor in the Poincaré cross-section
(L = 0.32 , ε = 0.02). The cross-section surface is S = x2 + y2 = 1 (in direction of increase of
S). Fig.2b demonstrates an iteration diagram for the angular variable (taken on every successful
cross-section). It is close to iteration diagram of Bernoulli map: while angular variable θ passes
from 0 to 2π, its image passes this interval three times.

Lyapunov exponents of the attractor in Poincaré cross-section were estimated by Benettin algo-
rithm. The full spectrum of Lyapunov exponents for the Poincaré map is

λ1 = 1.041, λ2 = −3.859, λ3 = −5.023.

27



Fig. 1. A portrait of attractor of system (1) (L = 0.32 , ε = 0.02).

Fig. 2. (a) A portrait of attractor in Poincaré cross-section (L = 0.32 , ε = 0.02); (b) an iteration diagram
for angular variable θ (taken on every successful cross-section).

The largest Lyapunov exponent is close to log 3 which is Lyapunov exponent for Bernoulli map.
The rest exponents are negative. That corresponds to attractor of Smale-Williams type embedded
in the three-dimensional state space of the Poincaré map.

The work was supported by RFBR grant No 16-32-00449.
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Controllable two-dimensional motion of a rigid body in an ideal
fluid

Evgenii V. Vetchanin1,2, Alexander A. Kilin2

1 Kalashnikov Izhevsk State Technical University, Izhevsk, Russia
2 Udmurt State University, Izhevsk, Russia
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Fig. 1. A rigid body with two internal
masses and internal rotor

In this paper we consider the controlled plane motion
of a hydrodynamically asymmetric rigid body in an ideal
fluid (see Fig. 1) for a constant magnitude of circula-
tion Γ around the body. The body has mass M and cen-
tral moment of inertia I , carries two material points with
masses m1 and m2, and an internal rotor with mass mr

and central moment of inertia Ir. The motion of the in-
ternal masses is bounded by the body’s shell and is per-
formed along smooth trajectories ρ1 = (ξ1(t), η1(t)) and
ρ2 = (ξ2(t), η2(t)). The material point mi models a cam
if the curve ρi is a circle, and mi models a slider if ρi is a
straight line. The rotor has a circular shape, rotates with
angular velocity Ω(t), its axis of rotation is perpendicular
to the plane of motion and passes through the center of
mass of the rotor. To describe the motion of the body, let
us introduce two Cartesian coordinate systems: a fixed one, Oxy, and a moving one, O1ξη, attached
to the body (see Fig. 1). Point O1 concides with the position of the center of mass of the body-rotor
system. The center of mass of the body is denoted by Ob and the center of mass of the rotor is
denoted by Or. For the system under consideration the following kinematic relations hold [2, 3]:

ẋ = v1 cosα − v2 sinα, ẏ = v1 sinα + v2 cos α, α̇ = ω, (1)

where x and y are the coordinates of the point O1 in absolute space, α is the angle of rotation of
the body, v1, v2 are the components of the velocity of the body referred to the axes of the moving
coordinate system, and ω is the angular velocity of the body.

The equations of motion of the body can be written in the form of Poincaré equations on the
group E(2) [2, 3]

d

dt

(
∂L

∂v1

)
= ω

∂L

∂v2

+ cosα
∂L

∂x
+ sin α

∂L

∂y
,

d

dt

(
∂L

∂v2

)
= −ω

∂L

∂v1
− sinα

∂L

∂x
+ cosα

∂L

∂y
,

d

dt

(
∂L

∂ω

)
= v2

∂L

∂v1

− v1
∂L

∂v2

+
∂L

∂α

(2)

with Lagrangian

L =
1

2
(Aw, w) + (c, w) + (u, w) , (3)
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where

A =

⎛

⎝
a1 0 f
0 a2 g
f g b

⎞

⎠ , u =

⎛

⎜⎝
m1ξ̇1 + m2ξ̇2

m1η̇1 + m2η̇2

m1

(
ξ1η̇1 − ξ̇1η1

)
+ m2

(
ξ2η̇2 − ξ̇2η2

)
+ IrΩ

⎞

⎟⎠

w =

⎛

⎝
v1

v2

ω

⎞

⎠ , c =

⎛

⎝
−λ

2
(x sin α − y cos α)

−λ
2
(x cosα + y sinα)

−χ (x sin α − y cos α) − ζ (x cosα + y sin α)

⎞

⎠

a1 = M + m1 + m2 + mr + λ1, a2 = M + m1 + m2 + mr + λ2,

b = M
(
ξ2
b + η2

b

)
+ m1

(
ξ2
1 + η2

1

)
+ m2

(
ξ2
2 + η2

2

)
+ mr

(
ξ2
r + η2

r

)
+ I + Ir + λ6,

f = −m1η1 − m2η2, g = m1ξ1 + m2ξ2.

Here λ = ρΓ, ζ = ρΓν, χ = ρΓμ, ρ is the density of the fluid, μ, ν are the coefficients associated
with the hydrodynamic asymmetry of the body [1], λ1, λ2 are the added masses, and λ6 is the added
moment of inertia.

Equations (1) and (2) admit the following first integrals [2]:

px =

(
∂L

∂v1
− χ

)
cosα −

(
∂L

∂v2
− ζ

)
sin α +

λ

2
y,

py =

(
∂L

∂v1

− χ

)
sin α +

(
∂L

∂v2

− ζ

)
cos α − λ

2
x,

K = xpy − ypx +
∂L

∂ω
+

λ

2

(
x2 + y2

) − c3.

(4)

At a zero value of circulation the controllability is proved for various combinations of control
elements (two cams, cam and rotor, slider and rotor). For the case of two cams, elementary controls
providing rotation and motion which is on the average rectilinear have been contructed.

The analysis of the free motion is performed at nonzero value of circulation. The controllability
is proved for various control systems (single rotor, arbitrary moving internal mass, cam and rotor,
slider and rotor). It is shown that a drift occurs in the presence of circulation. The drift implies
motion of the body without control. Controls providing a partial compensation of the drift are
derived.
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Analysis of the influence of the rolling friction on the
dynamics of a robot-wheel

Alexander Kilin1, Anton Klekovkin2 and Elena Pivovarova1

1 Udmurt State University, Izhevsk, Russia
2 M.T.Kalashnikov Izhevsk State Technical University, Izhevsk, Russia

In this work we consider the dynamics of a robot-wheel moving by changing the proper
gyrostatic momentum (by using a controlled gyrostat) on a plane in the presence of rolling
friction (see Fig. 1). The problem is considered under the assumption that the center of mass
of the system does not coincide with its geometrical center. Equations of motion describing
the dynamics of the system are derived and the controlled motion (controlled acceleration
and deceleration during the motion in a straight line) of the wheel is considered by giving
the constant angular acceleration of the rotor (gyrostat).

Figure 1. Model of a robot-wheel and photograph of the full-scale specimen.

To prove the applicability of the proposed mathematical model, we develop experimental
methods for investigating the dynamics of the system in the presence of rolling friction and
we conduct experimental research on the controlled motion of the robot-wheel. Theoretical
data and experimental results are compared. It is shown that the theoretical results are in a
good qualitative agreement with the experimental results, but are quantitatively different.

To reduce this difference, we consider several models of rolling friction that take into
account nonuniformity of the coefficient of rolling friction and its dependence on the linear
velocity.
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Precession on a rotating saddle: a gyro force in an inertial frame

Oleg N. Kirillov1, Mark Levi2

1 Russian Academy of Sciences, Steklov Mathematical Institute, Moscow, Russia
2 Department of Mathematics, Pennsylvania State University, University Park, USA.

The existence of Trojan asteroids in a triangular Lagrange libration point on the orbit of Jupiter
is a consequence of the basic fact that a particle can be trapped in the rotating saddle potential. In
the case when the potential is symmetric, the trajectory of the trapped particle in the non-rotating
frame exhibits a slow prograde precession. This somewhat mysterious precession discovered first
in the context of accelerator physics and microwave ion traps has not been explained so far. We
demonstrated that the rapid rotation of the saddle potential creates a weak Lorentz-like (or Coriolis-
like) force, in addition to an effective stabilizing potential, all in the inertial frame. With the use
of a new hodograph transformation and a method of normal form, we found a simplified equation
for the guiding center of the trajectory that coincides with the equation of the Foucault’s pendulum.
In this sense, a particle trapped in the symmetric rotating saddle trap is, effectively, a Foucault’s
pendulum, but in the inertial frame.

Fig. 1. A typical trajectory of a particle trapped by a symmetric rotating saddle (in the stationary frame); its
guiding center; their superposition.
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Model development of a screwless underwater robot

Anton V. Klekovkin1, Ivan S. Mamaev2

1 Izhevsk State Technical University, ul. Studencheskaya, 7, Izhevsk, 426069 Russia
2 Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034 Russia

This work devoted to creation of underwater robot which moves using internal rotors. The
developed design of underwater robot has no moving elements interacting with environment. This
feature minimizes a negative influence on environment and ensures noiseless of robot movement in
fluid.

Despite many discussions about possibility and effectiveness of moving using shift of internal
masses, many last published articles confirm research relevance [1-6]. The moving possibility of a
body on plane using rotors is demonstrated in paper [7]. The results of experimental investigation
of movement by means of gaits for internal rotor are presented in [8]. Also, the feasibility of this
type of motion is shown in practice. The equations of moving body which has 3 internal rotors in
ideal fluid are given in paper [9].

In this paper we suggest the design of screwless underwater robot moving by rotation of internal
rotors for theoretical and experimental investigations.

For experimental research we designed the model of underwater robot that consist of hollow
ellipsoid and 3 internal rotors which have orthogonal axes. The center of mass of the system
coincides with geometrical center of ellipsoid. The equations of motion are given in the form
of classical Kirchhoffs equations. The control is realized by change of rotation speed of internal
rotors, which are set in motion by direct current motors.
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Theoretical and experimental investigation of the motion of a
screwless overwater mobile platform

Anatoliy I. Klenov1,2, Eugenii V. Vetchanin1,2

1 Kalashnikov Izhevsk State Technical University, Izhevsk, Russia.
2 Udmurt State University, Izhevsk, Russia

Currently, water mobile platforms are widely used for monitoring the state of the aquatic envi-
ronment, taking water samples, and others. Sometime it is needed devices that don’t strongly affect
the processes of a medium under investigation. Using a screwless vehicle in similar applications
has a number of constructive and operational advantages: isolation of the operating units from the
liquid, simple design, maneuverability, increased environmental friendliness.

This work is concerned with investigation of the motion of a screwless overwater platform,
moving by means of the change of the center mass of the system. This change is performed by
use of two rotating internal masses. The theoretical possibility of this method of motion has been
proved in [1, 2]. In this paper the results of theoretical and experimental study of the motion
of the screwless overwater platform are presented. The theoretical study is performed within the
framework of theory of an ideal fluid. The experimental study includes determinining the added
masses and the added moment of inertia by the method of towing ([3]), PIV measurements of the
velocity field of the fluid around the moving platform, and determining the trajectory of motion of
the body by using a Motion Capture System.
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Integrability of the Liénard–type equations and non–local
transformations

Nikolay A. Kudryashov1, Dmitry I. Sinelshchikov1
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Russian Federation

In this talk we consider the following family of the Liénard–type equations

yzz + f(y)y2
z + g(y)yz + h(y) = 0, (1)

where f(y), g(y) and h(y) are arbitrary functions. We suppose that functions f(y) and g(y) do not
vanish simultaneously. In the case of f(y) = 0 we have the classical Liénard equation, while for
g(y) = 0 we obtain the quadratic Liénard equation. In the general case, i.e. when f(y) �= 0 and
g(y) �= 0, equation (1) is called mixed Liénard–type equation. Equation (1) has a vast range of
application in physic, mechanics, biology e.t.c. (see, e.g. [1, 2, 3] ). For example, some famous
nonlinear oscillators and planar dynamical systems, such as the Rayleigh equation for bubble dy-
namics and the Van–der Pol equation, belong to family of equations (1). Traveling–wave reduction
of some nonlinear partial differential equations, for instance the Camass–Holm and the K(m,n)
equation, are also members of family of equations (1).

Although family of equations (1) has been intensively studied for several past decades a ques-
tion about constructing general analytical solutions of this equation has not been completely an-
swered yet. In this talk we discuss an approach for finding integrable subclasses of equation (1)
that has been recently proposed in works [4, 5]. The main idea of this approach is to study con-
nections between equation (1) and other nonlinear differential equations, which can be analytically
solved. It is supposed that these connections are given by nonlocal transformations that are gener-
alization of the Sundman transformations (see, e.g. [6, 7]). These transformations have the form

w = F (y), dζ = G(y)dz, FyG �= 0 (2)

where w and ζ are new dependent and independent variables correspondingly.
First of all, we consider the quadratic Liénard equation i.e. equation (1) with g(y) = 0. We show

that with the help of the generalized Sundman transformations this equation can be transformed into
an equation for the elliptic function for arbitrary functions f(y) and h(y). Therefore, the general
solution of (1) with g(y) = 0 can be expressed in terms of the elliptic functions for arbitrary
functions f(y) and h(y). We illustrate our results by constructing several new generals solutions of
both some two–dimensional dynamical systems and traveling–wave reductions of some nonlinear
partial differential equations.

Then we study the classical Liénard equation, that is equation (1) with f(y) = 0. By studying
connections between the classical Liénard equation and some equations of the Painlevé–Gambier
type, which are subcases of (1) at f(y) = 0, we obtain new criteria for the integrability of the
former equation. In other words, we found correlations on functions g(y) and h(y) that allow us
to construct the general analytical solutions of the corresponding classical Liénard equations. We
demonstrate effectiveness of our approach by constructing several new integrable Liénard equations
along with their general solutions.

Finally, we discuss integrability of equation (1) in the case of f(y) �= 0 and g(y) �= 0. It is worth
noting that in this case equation (1) can be mapped into equation (1) with f(y) = 0. Therefore,
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we can use criteria for the integrability of the classical Liénard equation for finding integrable
mixed Liénard–type equations. On the other hand, we can look for new integrability criteria for the
mixed Liénard–type equations with the help of the connections between these equations and some
subcases of equation (1) with f(y) �= 0 and g(y) �= 0 that are of the Painlevé–Gambier type. As a
result, we find some new integrability criteria for the mixed Liénard–type equations. These criteria
can also be used as criteria for the integrability of the classical Liénard equation since this equation
is connected to equation (1) via (2). We demonstrate applications of our approach by constructing
several examples of the integrable mixed Liénard–type equations.

This work was partially supported by grant for the state support of young Russian scientists
6624.2016.1 and by RFBR grant 140100498.
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Modern Lyapunov analysis: Covariant Lyapunov vectors and
structure of invariant manifolds of chaotic attractors

Pavel V. Kuptsov1
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Until the recent times practically applicable Lyapunov analysis of nonlinear systems contained
only the concept of Lyapunov exponents accompanied by the algorithm reported by Benettin et
al. [1] and by Shimada and Nagashima [2]. However it was known that there exist special vectors
that are tangent to expanding and contracting manifolds of trajectories and whose growth (or decay)
exponents are the Lyapunov exponents [3]. These vectors has became available when two groups
reported simultaneously and independently two different algorithms for their computations [4, 5].

Significant progress in applications of covariant Lyapunov vectors has been achieved in compu-
tation of angles between invariant manifolds for numerical verification of hyperbolicity of chaotic
dynamics. Based on the detailed analysis of the vectors computation routines [6], an effective al-
gorithm has been derived that admits the verification of hyperbolicity even for high dimensional
systems [7].

In this talk we review the methods of computation of covariant Lyapunov vectors as well as the
corresponding angles and represent the recent results on extension of these methods to time-delay
systems [8].
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By processing time series obtained from numerical solution of the plane problem for the motion
of a body of elliptic cross-section with gravity in incompressible viscous fluid, a system of ordinary
differential equations is reconstructed for approximate description of the dynamics. The postulated
equations take into account the added masses, the force caused by the circulation of the velocity
field, and the movement resistance forces, and the coefficients in these equations are evaluated
using the least squares method to fit the observable time series data. Correspondence is illustrated
of the finite-dimensional description and simulation based on the Navier – Stokes equations by
portraits of attractors in regular and chaotic regimes. Moreover, the obtained coefficients provide a
glimpse of the real contribution of various effects in the body dynamics.

The model equations in dimensionless variables are of the form

Au̇ = Bvw − Dvw − C|u|u − sin θ, Bv̇ = −Auw + Duw − E|v|v − cos θ,

ẇ = −Guv − H|w|w, θ̇ = w,
(1)

Ẋ = u cos θ − v sin θ, Ẏ = u sin θ + v cos θ. (2)

The coefficients obtained by processing the results of the numerical solution of two-dimensional
problem of the fall of the body of elliptic profile for the semi-axes a=0.486 cm and b = a/6=0.081 cm,
viscosity η=0.001 Pa×s, fluid density ρf=1000 kg / m3 are listed in the Table for variants with dif-
ferent densities of the body ρs.

ρs, kg/m3 1710 2000 2300 2600 2900 3600
A 1.3945 1.3392 1.2581 1.1975 1.1551 1.0388
B 4.7378 3.9290 3.2845 2.7320 2.3245 1.9196
C 0.1069 0.0891 0.0873 0.0850 0.1209 0.1044
D 1.9730 1.8751 1.7952 1.6617 1.6221 1.2957
E 1.7720 1.5770 1.3803 1.3248 1.1254 0.7034
G 0.8681 0.8665 0.8516 0.7893 0.7710 0.5636
H 0.4130 0.3884 0.3163 0.2723 0.2775 0.0073

Figure 1 compares the trajectories of the fall resulting from a two-dimensional numerical so-
lution of the problem with Navier – Stokes equations and within the finite-dimensional model (1),
(2). Figure 2 compares portraits of attractors in the projection on the plane of the variables for the
same modes.

Thus, in this report we have demonstrated a possibility of rather satisfactory approximate de-
scription of the motion of the body of elliptical cross-section under gravity in a fluid using ordinary
differential equations reconstructed on the basis of the processing data from the numerical solution
of the problem with the Navier – Stokes equations. The proposed approach is interesting, in par-
ticular, in relation to the control problems concerning motions of bodies in fluid as the description
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is much easier than the rigorous computations while the degree of quantitative compliance is better
than that in the previously discussed phenomenological models.

Fig. 1. Stroboscopic visualization of the body falling in a fluid: instant positions of the major axis of the
ellipse at successive time points are shown based on the results of numerical simulation with the Navier –
Stokes (NS) and obtained for the model (1), (2) with coefficients from the Table.

Fig. 2. Portraits of attractors in projection onto a plane (Ẋ, Ẏ ) from numerical simulation of the dynamics
with the Navier – Stokes equations (left columns) and from the model (1), (2) (right columns) for different
body densities.

Elaboration of the finite-dimensional model and computations on its base were supported by
RSF grant No 15-12-20035. Computations based on the Navier – Stokes equations to obtain data
for the model reconstructions were carried out under support of the RSF grant No 14-19-01303.
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Slow-fast dynamics of a Duffing type equation: a case of study
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As a representative example of a periodic in time Hamiltonian system in one degree of freedom
with a slow varying parameter we study a system of the Duffing type

ẋ = y, ẏ = − sin θ − x cos θ − x3, θ̇ = ε (1)

with Hamiltonian

H =
y2

2
+

x4

4
+

x2

2
cos θ + x sin θ.

This systems demonstrates all types of the orbit behavior possible for a one and a half degree
of freedom Hamiltonian system. The goal of the talk is to explain this behavior using the tools
available by now in the theory of two dimensional symplectic diffeomorphisms. Of course, it is
not possible to present completely rigorous explanations of the chaotic behavior observed in the
system. No tools exist nowadays that allow to give a more or less satisfactory picture of the motion
in the chaotic zones for a smooth symplectic 2-dimensional diffeomorphism.

The system under the study is rather simple in its form, it is reversible in the phase space R2×S1

and has a minimally possible number of degenerate equilibria of simplest type (parabolic ones) for
the frozen (fast) systems.

This study allowed us to find for the related Poincaré map:

1. The region where there is an eternal adiabatic invariant;

2. A disk-shaped region where the dynamics is chaotic, Lyapunov exponent calculated numer-
ically have appeared positive, this region has infinitely many hyperbolic periodic orbits with
the homo- heterocilic tangles;

3. Existence of relaxation symmetric periodic orbits which some finite time pass near unstable
hyperbolic part of the slow curve, like for canard periodic orbits;

4. Infinitely many bifurcations of symmetric periodic orbits of different types.

To investigate the dynamics we use various tools: the results on the almost integrable normal
form for the Hamiltonian near its almost elliptic slow curve, the Fenichel results on the existence
of hyperbolic slow manifold, blow up technique to represent the orbit transition near the disruption
points, for the case of Hamiltonian system this is intimately connected with different solutions of
the Painlevé-I equation. The talk is based on the results of the paper [1].
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On nilpotent approximations of non-smooth Hamiltonian
systems

Lev Lokutsievskiy1

1 Lomonosov Moscow State University, Moscow, Russia

I plan to discuss a new approach to study non-smooth Hamiltonian systems. Namely, this
approach is based on the fact that nilpotent approximations of such systems are nilpotent-convex
problems of optimal control. The optimal synthesis in these problems forms a half flow on the
phase space and hence can be studied from three different points of view: by methods of dynamical
systems, by topological methods and by methods of convex analysis. This half flow has many
nice properties and some of them can be restored in the original non-smooth Hamiltonian system.
This approach gives very powerful results when the half flow in the corresponding nilpotent-convex
problem has chaotic nature. Another interesting corollary comes from the Lefschetz formula which
allows to prove existence of periodic trajectories of special kind.
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Dynamics of chains in external fields
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We discusses the dynamics of systems of point masses joined by massless rigid roods in the
field of a potential force. General form of equations of motion for such systems is obtained. We
investigate integrability of these equations in a case when the chain moves in constant and linear
field of forces. Moreover, the dynamics of a linear chain of mass points moving around a central
body in an orbit is analysed. The non-integrability of the chain of three masses moving in circular
Kepler orbit around a central body is proven. This was achieved thanks to an analysis of variational
equations along two particular solutions and an investigation of their differential Galois groups.
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Integrability obstructions of certain homogeneous Hamiltonian
systems in 2D curved spaces
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Integrability of natural Hamiltonian systems of the form

H =
1

2

n∑

i=1

p2
i + V (q), q = (q1, . . . , qn), (1)

has been intensively investigated during last decades and significant successes were achieved. Here
q = (q1, . . . , qn) and p = (p1, . . . , pn) are canonical variables in C

2n considered as a symplectic
linear space. It seems that among new methods which have been invented, the most powerful and
efficient are those formulated in the framework of the differential Galois theory. The necessary
conditions for the integrability of a Hamiltonian system in the Liouville sense are given in terms
of properties of the differential Galois group of variational equations obtained by linearisation of
equations of motion in a neighbourhood of a particular solution. The fundamental Morales-Ramis
theorem of this approach says that if a Hamiltonian system is meromorphically integrable in the
Liouville sense in a neighbourhood of a phase curve Γ corresponding to a particular solution, then
the identity component G0 of the differential Galois group G of variational equations along Γ is
Abelian, see e.g. [5].

This approach has been appeared especially successful for the case when potential V (q) is a
homogeneous function of variables q of degree k ∈ Z. While it can be not easy to find a particular
solution necessary for the application the differential Galois methods, for Hamilton systems (1)
with homogeneous potential V (q) some particular solutions can be constructed in a systematic
way. They are built by means of a non-zero solution d ∈ C

n of the non-linear system V ′(d) = d.
Moreover, variational equations along these particular solutions can be transformed into a system of
uncoupling hypergeometric equations depending on the degree of homogeneity k and eigenvalues
λi, for i = 1, . . . , n, of the Hessian V ′′(d). Since differential Galois group of the hypergeometric
equation is well known it was possible to obtain necessary conditions of the integrability of Hamil-
ton systems (1) in the form of arithmetic restrictions on λi that must belong to appropriate sets of
rational numbers depending on k, see e.g. [5]. Later it appeared that between λi some universal
relations exist which improves conditions mentioned in the above papers e.g. [2, 6].

Successful integrability analysis of Hamiltonian systems with homogeneous potentials in flat
Euclidean spaces motivated us to look for systems in curved spaces with similar properties. We
propose two classes of Hamiltonians. The first class of Hamiltonian systems is governed by

H = T + V, T =
1

2
rm−k

(
p2

r +
p2

ϕ

r2

)
, V = rmU(ϕ), (2)

where m and k are integers, k �= 0 and U(ϕ) is a meromorphic function. If we consider (r, ϕ)
as the polar coordinates, then the kinetic energy corresponds to a singular metric on a plane or a
sphere. This is just an example of a natural system which possesses certain common features with
standard systems with homogeneous potentials in the Euclidean plane E

2.
The second class of natural Hamiltonian systems with two degrees of freedom is defined on

T �M 2 where M2 is a two dimensional manifold with a constant curvature metrics. Manifold M2

44



is either sphere S
2, the Euclidean plane E

2, or the hyperbolic plane H
2. In order to consider those

three cases simultaneously we will proceed as e.g. in [1] and we define the following functions

Cκ(x) :=

⎧
⎪⎨

⎪⎩

cos(
√

κx) for κ > 0,

1 for κ = 0,

cosh(
√−κx) for κ < 0,

(3)

Sκ(x) :=

⎧
⎪⎨

⎪⎩

1√
κ

sin(
√

κx) for κ > 0,

x for κ = 0,
1√−κ

sinh(
√−κx) for κ < 0.

(4)

The second class of considered Hamiltonia systems is defined by

H =
1

2

(
p2

r +
p2

ϕ

Sκ(r)2

)
+ V (r, ϕ), V (r, ϕ) = Sk

κ(r)U(ϕ), (5)

where k ∈ Z and U(ϕ) is a meromorphic function of variable ϕ, for details see [3]. This is a natural
Hamiltonian system defined on T �M 2 for the prescribed M2. Notice that the kinetic energy as well
as the potential depends of the curvature κ.

It appears that for both these classes of Hamiltonian systems we can find certain particular
solutions and we are able to perform successfully differential Galois integrability analysis. As result
we obtain that necessary conditions for the integrability put obstructions on admissible values of
the following function

λ := 1 +
U ′′(ϕ0)

kU(ϕ0)
. (6)

where ϕ0 ∈ C satisfies U ′(ϕ0) = 0 and U(ϕ0) �= 0. Some examples of applications of theses
conditions and integrable systems are presented.
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On the stability of two-link trajectory of the parabolic Birkhoff
billiards

Anatoly P. Markeev

A. Ishlinsky Institite for Problems in Mechanics, Russian Academy of Sciences, Moscow, Russia

We study the inertial motion of a material point in a planar domain bounded by two coaxial
parabolas. Inside the domain the point moves along a straight line, the collision with the boundary
curves are assumed to be perfectly elastic. There is a two-link periodic trajectory, for which the
point alternately collides with the boundary parabolas at their vertices, and in the intervals between
collisions it moves along the common axis of the parabolas. We study the nonlinear problem of
stability of the two-link trajectory of the point.

This research was supported by the Russian Foundation for Basic Research (14.01.00380).
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Tracking of lines in spherical images via sub-Riemannian
geodesics on SO(3)
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In some imaging applications (e.g. in retinal imaging) it is natural to model the data by spherical
images. In previous work [3] we proposed a framework for tracking of lines in flat images via sub-
Riemannian geodesics on Lie group SE(2). Here we extend the framework for tracking of lines
in spherical images. This requires a sub-Riemannian manifold structure in a different Lie group,
namely the group SO(3) (consisting of 3D-rotations) acting transitively on the 2-sphere S2.

In order to detect salient lines in these images we consider the problem of minimizing the

functional
l∫

0
C(γ(s))

√
ξ2 + k2

g(s) ds for a curve γ on a sphere with fixed boundary points and

directions. The total length l is free, s denotes the spherical arclength, and kg denotes the geodesic
curvature of γ. Here the analytic external cost C ≥ δ > 0 is obtained from spherical data. We lift
this problem to the sub-Riemannian (SR) problem on Lie group SO(3), and show that the spherical
projection of certain SR-geodesics provides a solution to our curve optimization problem. In fact,
this holds only for the geodesics whose spherical projection does not exhibit a cusp (cf. [4]).

For C = 1 we derive SR-geodesics and evaluate the first cusp time. We show that these curves
have a simpler expression when they are parameterized by spherical arclength rather than by sub-
Riemannian arclength. The case C �= 1 (data-driven SR-geodesics) we solve via a SR Fast March-
ing method. Finally we show an experiment of vessel tracking in a spherical image of the retina,
and study the effect of including the spherical geometry in analysis of vessels curvature.
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I will present the results of our recent paper [2] where we classify and analyze the stability of
all relative equilibria for the two-body problem in the hyperbolic space of dimension 2.

Our contribution is to show that, for the 2-body problem in the hyperbolic plane, the only
relative equilibria arise as conjugation of the so-called “elliptic” and “hyperbolic” relative equilibria
found before in [1]. Moreover, we show that all of the hyperbolic relative equilibria are unstable and
establish necessary and sufficient conditions for nonlinear stability of the elliptic relative equilibria.
Such conditions are given in terms of the ratio of the masses and the hyperbolic distance between
the particles. All of our results are formulated in terms of the intrinsic Riemannian data of the
problem so they are valid in any model of the hyperbolic plane.
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The dynamics of an articulated n-trailer vehicle
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2 Depto. Matemáticas y Mecánica, IIMAS-UNAM, Mexico City, Mexico

We derive the reduced equations of motion for an articulated n-trailer vehicle that moves under
its own inertia on the plane. We show that the energy level surfaces in the reduced space are (n+1)-
tori and we classify the equilibria within them, determining their stability. A thorough description
of the dynamics is given in the case n = 1. The main results of this work were recently published
in [1].

References

[1] Bravo-Doddoli A. and Garcı́a Naranjo L.C., The dynamics of an articulated n-trailer vehicle,
Regular and Chaotic Dynamics, 20, 497–517, (2015).

49
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The reaction-diffusion-mechanics models are the models used to describe self-consistent electro-
mechanical activity in a cardiac muscle. Such models couples two mechanisms of signal spreading
in the tissue: the slow (reaction-diffusion) spreading of electrical excitation and the fast (almost
instantaneous) spreading of mechanical deformations. This coupling may significantly modify the
electrical excitation spreading and corresponding contractile activity with emergence of new spa-
tiotemporal structures and patterns, which modification is not yet completely understood even in
the one-dimensional case of a single muscle fiber. We propose clear convenient model which allows
one to study the electromechanical activity of such a fiber in relation to the mechanical parameters
of fiber fixation (such as stiffness of tissue fixation and the applied mechanical load, which can
be easily controlled in experiments). Using this model, we determine and analyze the physical
origin of the primary dynamical effects which can be caused by electromechanical coupling and
mechanoelectrical feedback in a cardiac tissue.

On the basis of the reaction-diffusion-mechanics model with the self-consistent electromechan-
ical coupling, we have numerically analyzed the emergence of structures and wave propagation in
the excitable contractile fiber for various contraction types (isotonic, isometric, and auxotonic) and
electromechanical coupling strengths. We have identified two main regimes of excitation spreading
along the fiber: (i) the common quasi-steady-state propagation and (ii) the simultaneous ignition of
the major fiber part and have obtained the analytical estimate for the boundary between the regimes
in the parameter space. The uncommon oscillatory regimes have been found for the FitzHugh—
Nagumo-like system: (i) the propagation of the soliton-like waves with the boundary reflections
and (ii) the clusterized self-oscillations. The single space-time localized stimulus has been shown
to be able to induce long-lasting transient activity as a result of the after-excitation effect when the
just excited fiber parts are reexcited due to the electromechanical global coupling. The results ob-
tained demonstrate the wide variety of possible dynamical regimes in the electromechanical activity
of the cardiac tissue and the significant role of the mechanical fixation properties (particularly, the
contraction type), which role should be taken into consideration in similar studies. In experiments
with isolated cardiac fibers and cells, these parameters can be relatively easily controlled, which
opens a way to assess electrical and mechanical parameters of the fibers and cells through analy-
sis of dynamical regimes as dependent on fixation stiffness and external force. In real heart, high
blood pressure and hindered blood flow play similar role to the applied external force and increased
fixation stiffness. Our results provide a hint of how such global (i.e., associated with the large areas
of the heart tissue) parameters can affect the heart electrical and contraction activity.

50



Elliptical billiards with Hooke's potential 

Milena Radnovic 

Mathematical Institute of the Serbian Academy of Sciences and Arts, Beograd, Serbia  

We present a topological description of elliptical billiards with the Hooke's potential, 
using Fomenko invariants. 
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We consider the left-invariant sub-Riemannian structure on the group SH(2) of hyperbolic mo-
tions of the plane. Sub-Riemannian minimizers are solutions to the optimal control problem

ẋ = u1 cosh z, ẏ = u1 sinh z, ż = u2,

q = (x, y, z) ∈ R
3, (u1, u2) ∈ R

2,

q(0) = q0, q(t1) = q1,∫ t1

0

√
u2

1 + u2
2 → min .

Sub-Riemannian geodesics are parameterized by Jacobian elliptic functions. The group of sym-
metries of the problem are described. Local and global optimality of geodesics is characterized.
The cut locus (set of points where geodesics lose optimality) is globally described. A complete
optimal synthesis is constructed.
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We consider the motion of a dynamically asymmetrical ball on a plane in the gravity field. The
center of mass of the ball does not lie on any planes of inertia, and the point of contact of the ball
with the plane is subject to a nonholonomic constraint which forbids slipping. Following [1] we
call such a ball Chaplygin top.

The aim of this study is to investigate the typical scenarios of the appearance and evolution of
strange attractors in the nonholonomic model of Chaplygin top. Our interest in nonholonomic mod-
els is caused by the fact that (as was shown in previous studies [2, 3]) such systems exhibit a wide
variety of new interesting examples of strange attractors that are typical for the three-dimensional
maps [4]. For example, our recent research [5] shows that the nonholonomic model of Chaplygin
top demonstrates the so called “figure-eight” strange attractor, which relates to pseudohyperbolic
strange attractors [4].

Here we show that the nonholonomic model of Chaplygin top demonstrates a comprehensive
variety of scenarios of torus attractors breakup, in particular, in accordance with the mechanism of
Afraimovich-Shilnikov [6], including Feigenbaum cascade inside the synchronization domain, and
via torus doubling cascade [7]. In addition, the model exhibits some typical sequences of bifurca-
tions of regular and chaotic attractors, which include the above basic scenarios of tori destruction
as their stages. One of such metascenarios results in a discrete heteroclinic Shilnikov attractor [4],
Fig. 1.

Fig. 1. a) Discrete heteroclinic Shilnikov attractor; b) heteroclinic cycle.

Another feature of the dynamics of nonholonomic model of Chaplygin top is the presence of a
developed multistability. Evolution of coexisting attractors may here proceed in accordance with
the scenario, which results in a strange attractor, that coincides with the homo-(hetero-)clinical
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structure of saddle limit cycle, which lies on the border of the basins of attraction of initially coex-
isting attractors. One such scenario was found to occur in the model under investigation. It results
in the chaotic ring heteroclinic attractor, Fig. 2.

Fig. 2. a) Ring heteroclinic attractor; b) unstable invariant manifolds of the saddle cycle.

This work was supported by RSF grant No 15-12-20035.
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Whitney smooth families of invariant tori in the reversible
context 2 of KAM theory
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In an overwhelming majority of the works on the reversible KAM theory, the reversing involu-
tion has the form

G1 : (x, y, z) �→ (−x, y,Kz),

where x ∈ Tn = (R/2πZ)n, y ranges in a domain D ⊂ Rm, z ranges in a neighborhood of the
origin of R2p, K is an involutive 2p × 2p matrix with eigenvalues 1 and −1 of multiplicity p each,
and one is looking for invariant n-tori close to the tori {y = const, z = 0}. In this case, the
dimension of the fixed point manifold of the reversing involution (m + p) is no less than half the
phase space codimension of the invariant tori (m + 2p), and such a setup is called the reversible
context 1.

However, nothing prevents one from considering systems reversible with respect to the involu-
tion

G2 : (x, y, z) �→ (−x,−y,Kz),

where now y ranges in a neighborhood of the origin of Rm (m ≥ 1) and the problem is to construct
an invariant n-torus close to the torus {y = 0, z = 0}. Here the dimension of the fixed point
manifold of the reversing involution (p) is smaller than half the phase space codimension of the
invariant torus (m + 2p), and such a setting is referred to as the reversible context 2. Since the
G2-reversible system ẋ = ω, ẏ = a, ż = 0 admits no invariant tori however small a �= 0 is
(the reversibility with respect to G2 does not preclude a drift along the variable y), the reversible
context 2 requires the presence of many external parameters (at least m + 1).

Some preliminary results pertaining to the reversible KAM theory in context 2 were obtained in
our papers [1, 2, 3]. In these works, one deals with analytic families of analytic reversible systems,
the main technical tool is Moser’s modifying terms theory [4], and Cantor families of analytic
invariant tori in the product of the phase space and the parameter space are constructed. According
to the general principles of KAM theory, such families of invariant tori are expected to be smooth in
the sense of Whitney, but this was not proven in [1, 2, 3] (the techniques of [4] are rather limited).

Our new result is as follows. Consider an (n+m+s)-parameter analytic family of G2-reversible
analytic systems

ẋ = ω + ξ(y, z, ω, σ, μ) + f(x, y, z, ω, σ, μ),
ẏ = σ + η(y, z, ω, σ, μ) + g(x, y, z, ω, σ, μ),
ż = Q(ω, μ)z + ζ(y, z, ω, σ, μ) + h(x, y, z, ω, σ, μ).

(1)

Here ω ∈ Rn, σ ∈ Rm, and μ ∈ Rs are external parameters (ω ranges in a neighborhood of some
point ω∗ ∈ Rn while σ and μ range in neighborhoods of the origins of Rm and Rs, respectively), Q
is a 2p × 2p matrix-valued function satisfying the identity KQ(ω, μ) ≡ −Q(ω, μ)K,

ξ = O(|y| + |z|), η = O(|y|2 + |z|2), ζ = O(|y|2 + |z|2 + |σ|2),
and the functions f , g, h are small perturbation terms. It is also assumed that det Q(ω∗, 0) �= 0 and
that the mapping μ �→ Q(ω∗, μ) is a versal unfolding of the matrix Q(ω∗, 0) in the space of 2p× 2p
matrices anti-commuting with K (with respect to the adjoint action of the group of non-singular
2p × 2p matrices commuting with K) [5]. This implies that any 2p × 2p matrix anti-commuting
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with K and sufficiently close to Q(ω∗, 0) is equal to AQ(ω∗, μ)A−1 for a suitable μ close to 0 and
a suitable 2p × 2p matrix A commuting with K and close to the identity matrix.

Then, roughly speaking, the following holds. For any values ω0, μ0 of the external parameters
ω, μ such that the pair (ω0, Q(ω0, μ0)) satisfies a certain Diophantine condition, there are values ω′,
σ′, μ′ (close to ω0, 0, μ0, respectively) of the external parameters ω, σ, μ such that the system (1) at

ω = ω′, σ = σ′, μ = μ′ (2)

after a nearly identical analytic change of variables (x, y, z) �−→ (x′, y′, z′) commuting with G2

takes the form

ẋ′ = ω0 + O(|y′| + |z′|), ẏ′ = O(|y′|2 + |z′|2), ż′ = Q(ω0, μ0)z
′ + O(|y′|2 + |z′|2)

(provided that f , g, h are small enough). Moreover, the values ω′, σ′, μ′ and the coordinate change
(x, y, z) �−→ (x′, y′, z′) depend on ω0, μ0 in a Whitney C∞ way.

In other words, whenever the pair (ω0, Q(ω0, μ0)) meets a suitable Diophantine condition, the
perturbed system (1) at the shifted parameter values (2) possesses an invariant analytic n-torus
{y′ = 0, z′ = 0} with the same frequency vector ω0 and the same normal behavior (characterized
by the matrix Q(ω0, μ0)) as the unperturbed invariant n-torus {y = 0, z = 0} at the parameter
values

ω = ω0, σ = 0, μ = μ0.

All the perturbed invariant n-tori constitute a Whitney C∞ family.
We prove this theorem by reducing it to a special case of the so-called BCHV theorem [6]

concerning the reversible context 1 with singular normal behavior of invariant tori. To carry out
such a reduction, one treats σ as an additional phase space variable (satisfying the equation σ̇ = 0)
and then replaces the equation σ̇ = 0 by the equation σ̇ = Λy where Λ is a new additional external
parameter ranging in a neighborhood of the origin of the space of m × m matrices. The reversing
involution of the augmented phase space is G : (x, y, σ, z) �→ (−x,−y, σ,Kz). The main step in
the proof is to verify that a shift along the parameter Λ vanishes.

The author is grateful to H. Hanßmann for fruitful discussions on the paper [6].
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Classical Hamiltonian systems, Lagrangian manifolds and 
Maslov indices, corresponding to spectra of Schroedinger 

operators with delta-potentials 
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We study spectral series of the Schroedinger operator with delta-type potential on 2D or 3D 
Riemannian spherically symmetric manifold. Lagrangian manifolds, corresponding to these 
series, do not coincide with the standard Liouville tori. We describe topological structure of these 
manifolds as well as Maslov indices, entering quantization conditions. In particular, we study the 
effect of the jump of the Maslov index via passing through the critical values of the multipliers of 
the delta-functions. 
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We consider the dynamics of a system that consists of a circular cylinder interacting with a
vortex filament parallel to the cylinder’s element in an unbounded volume of ideal fluid. The fluid
is assumed to be incompressible and at rest at infinity. The governing equations were first obtained
in [1], while the Hamiltonian form of the equations and their Liouville integrability was established
in [2]. In the gravity field this system was studied in [3] where it was shown to exhibit chaotical
behavior and therefore be no longer integrable.

The paper [4] addresses the topology of the integrable system (a cylinder plus a single vortex).
The fluid’s circulation about the cylinder was assumed to be different from zero. However, it was
specially noted that the case of zero circulation needs a thorough separate treatment.

Thus, this contribution is devoted to the case of zero circulation. We have obtained new intrigu-
ing invariant relations, built up the bifurcation diagram and explored bifurcations of the Liouville
tori.

The work is supported by the grants of RFBR Nos. 16-01-00170 and 16-01-00809.
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It is known that the theory of point vortices adequately describes the trajectory behaviors of
the distributed eddy centers, if these centers are spaced far enough. However, there is a deeper
connection between discrete and continuous approaches. Let us demonstrate this with the example
of the family of two-layer compensated geostrophic vortices.

The analysis of stability with respect to small perturbations of circular contours of unit-radius
vortex patches which compose a two-layer vortex with zero total potential vorticity (a heton) has
shown [1] that this vortex is neutrally stable only if γ < 1.705. Here γ = R/Rd, where R is the
characteristic horizontal scale, and Rd is the so-called Rossby radius of deformation [2]. Figure 1a
shows the curves of neutral stability modes with m belonging to the plane of the parameters (h1, γ)
(h1 is the nondimensional depth of upper layer), so that area of the mode with the corresponding

number is located above each curve h1 = 0.5
[
1 ±

√(
1/2m − L1(γ)

)(
1/2m − Lm(γ)

)]
. Here

Lm(γ) = Km(γ)Im(γ) is the product of Modified Bessel functions of mth order.
We found that there is a direct analogy between the instability criterion of m-th mode of the

distributed circular heton and the transition condition for a system composed of m uniformly dis-
tributed discrete hetons located along the circles of both layers for beginning the infinite type of
motion in the form of m two-layer vortex pairs radially running away.

We can note that:

• If γ is greater then its critical value γm
cr , then the originally vertical m discrete heton axes tilt,

and the newly formed two-layer pairs will move away along radial directions. The finite-core
dipole structures that form as the result of collapse of an unstable finite-size heton behave in
a similar manner.

• The asymptotics γm
cr ∼ m, which implies a linear dependence between the critical values

of stratification parameter γm and the numbers of high unstable modes m, is still valid in
discrete case up to proportionality factor (γm

cr)discr ∼ αm, α ≈ 0.37.

However, one should take into account the fundamental difference between the two models:
for discrete vortices at γ > (γm

cr)discr, a system of m radially scattering pairs always form,
while for a finite-core heton, the value of γm

cr determines only the lower boundary of the do-
main in which the mode with number m becomes unstable, and the conditions of realization
of this mode are not necessarily preferable.

• Nevertheless, this analogy enables a mathematical explanation to be given for the possible
separation mechanism of distributed pairs: for a newly formed vortex pair to start moving
away from the center of the original vortex, it is necessary that its local vorticity center
fall beyond the separatrix bounding the domain of finite motions of the appropriate
system of discrete vortexes.
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Fig. 1. (a) Heton neutral-stability curve on the plane of parameters (h1, γ) of modes with indicated numbers.
Configurations of contours of the top (full lines) and bottom (dashed lines) layers for an unstable heton at
h1 = 0.5 in the specified moments of dimensionless time: (b) γ = 2.4; (c) γ = 4.

Fig. 2. Phase portraits, i. e. isolines of Hamiltonian of system of m vortices, uniformly distributed on
circumferences with the same radius in each layer: m = 2, 3, γ = 1; m = 6, γ = 2. The denotations {1},
{2}, and {3} refer to different types of motion. Square markers show the intersection points of separatrices.
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This paper deals with motion planning for a spherical rolling robot driven by a pendulum
mounted at the center of the spherical shell. A similar problem was considered in [1]. Here in
this paper, it is assumed that the pendulum is actuated by two motors. The full mathematical model
of the robot combines five kinematic equations, describing the evolution of the center of the robot
and its orientation, and the dynamic equations. The latter combines three differential equations for
the angular acceleration of the sphere and four differential equations describing the dynamics of
the pendulum. The total model contains twelve state space equations with two inputs.

It is shown that, contrary to the rolling robots actuated by symmetrical internal rotors[2, 3], the
motion planning problem can be decoupled and solved separately at the levels of kinematics and
dynamics. In particular, when the kinematic reference trajectory is produced by planning a pure
rolling (no spinning) motion, the dynamic equations can be reduced under imposition of virtual
constraints restricting the motion of the pendulum to the vertical plane tangent to the contact path
in the contact plane. The reduced dynamic system, which we call the hoop-pendulum system, has
just two differential equations of the second order, with the generalized coordinates given by the
contact point on the reference contact curve in the plane and the pendulum angle in the vertical
plane tangent to the path. The hoop-pendulum system is underactuated as there is only one control
input—the projection of the control moments onto the vertical plane tangent to the path.

The controllability of the hoop-pendulum system is established and two algorithms for planning
rest-to-rest movements, are proposed. One is based on the optimal control, minimizing the control
effort, and another one is based on the parameterization of the pendulum angle by the second
derivative of the Beta function. The feasibility of the the resulting timing control laws is verified
under simulation for tracing different contact curves (straight lines, circles, generalized Viviani’s
curve and the Loxodrome).

Finally, a backstepping-based feedback tracking controller for the whole configuration of the
spherical robot, comprising both the position and orientation, is proposed. The feasibility for the
backstepping controller is first tested for the hoop-pendulum system, followed by the construction
of a tracking controller for the full mathematical model. The validity of the proposed tracking
controller is demonstrated by establishing the asymptotic stability of the error dynamics. The per-
formance of the controller is verified under simulations for tracking linear and circular motions
respectively.
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Figure 1. A three-bladed screw

In this paper we consider the free fall of a homoge-
neous three-bladed screw consisting of a central solid
sphere and blades whose shape is an oblate ellipsoid
(see Fig. 1). The center of mass of the screw co-
incides with the center of the sphere, and thus the
sum of gravity torque and buoyancy torque about the
center of mass equals zero. The investigation of the
motion is performed within the framework of theories
of an ideal fluid and a viscous fluid.

To describe the motion of the body, two Carte-
sian coordinate systems are introduced: a fixed one,
Oaxyz, and a moving one, Oe1e2e3, attached to the
body (see Fig. 1). The origin O of the moving coor-
dinate system coincides with the center of mass of the
screw. The axis Oe3 of the moving coordinate system
coincides with the helical symmetry axis of the body.

The orientation of the screw blades with respect to the central sphere is determined by
the angle Φ, and the plane Oe1e2 is overlapped maximally at Φ = 0◦ (see Fig. 1), and this
overlapping is minimal at Φ = 90◦ .

The motion of the moving coordinate system relative to the fixed one is governed by the
following kinematic relations [1]:

α̇ = α × Ω, β̇ = β × Ω, γ̇ = γ × Ω,

ẋ = α · V , ẏ = β · V , ż = γ · V ,
(1)

where x, y and z are the coordinates of the point O in absolute space Oaxyz, α, β and γ are
the unit vectors of the fixed coordinate system referred to the moving coordinate system, V
is the velocity of the screw referred to the moving coordinate system, and Ω is the angular
velocity of the screw referred to the moving coordinate system.

The motion of the body in a resisting medium is governed by equations [2]

ṗ = p × Ω − μγ − F s,

Ṁ = M × Ω + p × V − Gs,
(2)

where p = CV + BΩ is the linear momentum, M = BT V +AΩ is the angular momentum,
C = mE + Λ1, A = J + Λ2, m is the mass of the body, J is the tensor of inertia of the
body, Λ1 is the tensor of added masses, Λ2 is the tensor of added moments of inertia, B is
the tensor resulting from the helical symmetry of the body, μ = (ρb − ρf)V g is the weigth
of the body in the fluid, ρb is the density of the body, ρf is the density of the fluid, V is
the volume of the body, g is the standard gravitational acceleration with g ↑↓ Oaz, F s is
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the steady-state drag force, and Gs is the steady-state torque. The viscous drag has been
described by a quadratic law, the drag coefficients have been determined using numerical
simulation of the steady-state motion of the screw in a viscous fluid.

For the case of an ideal fluid (F s = 0, Gs = 0), the stability of uniformly accelerated
rotations is investigated. For the case of a viscous fluid, a chart of Lyapunov exponents and
bifucation trees are computed. Depending on the parameters of the system, quasiperiodic and
chaotic regimes of motion are possible. Examples of simple and chaotic attractors occurring
in the system are shown in Fig. 2. A bifurcation tree and the dependence of Lyapunov
exponents on the angle Φ are shown in Fig. 3
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Figure 2. Projection of (a) a simple attractor and (b) a chaotic attractor onto the subspace {p1p2p3}
at μ = 3, Φ = 45.64◦.
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Figure 3. Bifurcation tree of the variable γ3 at μ = 3.
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Abel equations and Backlund transformations 
 

Andrey Tsyganov 
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The discretization of dynamical systems in an integrability preserving way has been 
widely investigated in the last decades. Potentially, it has a great impact in many different areas, 
such as discrete mathematics, algorithm theory, numerical analysis, statistical mechanics, etc. We 
show how Abel's theory incorporates discretization of the Hamilton-Jacoby equations associated 
with the hyperelliptic and non-hyperelliptic curves. 
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In this paper we study the motion of two point vortices in an external flow consisting of two
components: a shear flow [1] and a flow generated by an acoustic wave [3]. The equations of
motion take the form

dx1

dt
= −Γ2

2π

y1 − y2

l2
,

dy1

dt
=

Γ2

2π

x1 − x2

l2
+ αx1 + V0 cos (ky1 − ωt) ,

dx2

dt
= −Γ1

2π

y2 − y1

l2
,

dy2

dt
=

Γ1

2π

x2 − x1

l2
+ αx2 + V0 cos (ky2 − ωt) ,

(1)

l2 = (x1 − x2)
2 + (y1 − y2)

2,

where xi, yi are the coordinates of the ith vortex (i = 1, 2), Γi is the intensity of the ith vortex
(i = 1, 2), α is the vorticity of the external flow, V0 is the amplitude of oscillation of the fluid
particle velocity under the action of the acoustic wave, and k, ω are the wave number and the
circular frequency of the acoustic wave. The parameters k and ω are related by ω = a · k, where a
is the speed of sound.

Equations (1) admit only one integral of motion

Γ1x1 + Γ2x2 = P = const. (2)

By making a change of variables and rescaling time

R =
k

2

(
(x1 − x2)

2 + (y1 − y2)
2
)1/2

, ϕ = arctan
y1 − y2

x1 − x2

,

S =
k

2
(y1 + y2), τ = ωt, yi = yi − at

and using the integral (2), the system (1) can be written in the form

Ṙ =
α

2ω
R sin 2ϕ − V0

a
sinϕ sin S sin (R sin ϕ) ,

Ṡ = −1 +
Γ2 − Γ1

2π

ω

4Ra2
cosϕ +

α

a(Γ1 + Γ2)

(
P +

Γ2 − Γ1

k
R cos ϕ

)
+

V0

a
cos S cos (R sin ϕ) ,

ϕ̇ =
(Γ1 + Γ2)ω

8πa2R2
+

α

ω
cos2 ϕ − V0

aR
cos ϕ sin S sin (R sin ϕ) .

(3)

The quantity V0/a has the meaning of the Mach number. In the air, with powerful sound waves
creating pain in the ears, the Mach number is about 0.0014 [4].

We note that the classical problem of the motion of two vortices is Hamiltonian and integrable,
and the equations of motion have an invariant measure. The addition of an acoustic wave makes the
system nonintegrable and leads to the loss of the invariant measure, and various attracting regimes
arise in the system.

An example of a Poincaré section is shown in Fig. 1a). The focus f 5
+ appears as a result of

a bifurcation called supercritical reversible pitchfork. Fixed points f10
1+, f10

2+, h10
1 , h10

2 appear as a
result of a saddle-node bifurcation. A fragment of the bifurcation diagram is shown in Fig. 1b).
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Fig. 1. (a) Poincaré section at α = 0, V0/a = 0.202, Γ1 = Γ2 = Γ, κ = Γω
2πa2 = 7.05 (f5

+ is the focus of
order 5, f10

1+, f10
2+ are the foci of order 10, and h10

1 , h10
2 are saddle points of order 10), (b) bifurcation diagram
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Uniform global asymptotic stabilization of nonlinear periodic 
systems by damping control 

 
Vasiliy Zaitsev 

 
Udmurt State University, Izhevsk, Russia 

 
Based on the Lyapunov direct method, we get new sufficient conditions for uniform 

global asymptotic stabilization of nonlinear control systems with periodic coefficients by 
damping control. Effective sufficient conditions for asymptotic stabilization of affine and bilinear 
periodic systems are derived. Corollaries are obtained for bilinear periodic control system with 
the free dynamics defined by a linear Hamiltonian system. Examples are considered. 
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