GDIS 2022

UNIVERSAL SPACE OF PARAMETERS \mathcal{F}_n AND THE MODULI SPACE $\overline{\mathcal{M}}(0, n)$

Svjetlana Terzić

ABSTRACT. The canonical action of the compact torus T^n on the complex Grassmann manifold $G_{n,2}$ of two-dimensional complex subspaces in \mathbb{C}^n is an important and widely known example of a Hamiltonian action on a symplectic manifold. The study of this action naturally leads to problems of dynamical systems theory and the study of the orbit space $G_{n,2}/T^n$ is closely related to the problems on integrals of the correspinding dynamical systems. In the focus of our talk is going to be a space of parameters for T^n -action on $G_{n,2}$ and the structure of the orbit space of this action.

The moduli space $\overline{\mathcal{M}}(0,n)$ of stable *n*-pointed genus zero curves is the Deligne–Mumford– Grothendieck–Knudsen compactification of the moduli space $\mathcal{M}(0,n)$ of *n*-pointed genus zero curves. The space $\overline{\mathcal{M}}(0,n)$ is proved by Kapranov to coincide with the Chow quotient $G_{n,2}//(\mathbb{C}^*)^n$.

In this talk we present an another approach to the compactification of $\mathcal{M}_{0,n}$ from the point of view of T^n -equivariant topology of $G_{n,2}$ for the canonical compact torus T^n -action. In describing the orbit space $G_{n,2}/T^n$, the main stratum $W_n \subset G_{n,2}$ given by those points from $G_{n,2}$ whose all Plücker coordinates are non-zero, plays a crucial role, as it is an open dense set in $G_{n,2}$ and it belongs to any Plücker chart for $G_{n,2}$. In addition, we earlier proved that $W_n \cong \overset{\circ}{\Delta}_{n,2} \times F_n$, where $\Delta_{n,2}$ is the hypersimplex and $F_n = W_n/(\mathbb{C}^*)^n \subset \mathbb{C}P^N, N = \binom{n-2}{2}$ is an open algebraic manifold. In order to construct a model for the orbit space $G_{n,2}/T^n$ it turns out to be important

In order to construct a model for the orbit space $G_{n,2}/T^n$ it turns out to be important to look for a compactification \mathcal{F}_n for F_n such that any automorphism of F_n induced by the transition maps between the Plücker charts extends to the automorphism of \mathcal{F}_n . Such compactification \mathcal{F}_n we call the universal space of parameters. We obtain the space \mathcal{F}_n by resolving singularities arising in the context of required extensions and by making use of the construction from algebraic geometry known as the wonderful compactification. Finally, we prove that the space \mathcal{F}_n coincides with $\overline{\mathcal{M}}(0, n)$.

The talk is based on the results jointly obtained with Victor M. Buchstaber.

43

University of Montenegro, Montenegro.