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Preface 

The theory of best approximation with respect to the supremum 
norm was established as a bona fide branch of mathematical anal­
ysis mainly by the work of P. L. Chebyshev (1821-1894), who in 
the 1850s studied some of the properties of polynomials with least 
deviation from a given continuous function. Since that time, the 
work of the celebrated Petersburg school of Mathematics - also called 
the Chebyshev school - has had a lasting impact in theoretical and 
applied mathematics and produced students such as A. A. Markov 
(1856-1922). 

The present book contains some of the most important results 
on the analysis of polynomials and their derivatives. Besides the 
fundamental results which are treated with their proofs, the book 
also provides an account of the most recent developments concerning 
extremal properties of polynomials and their derivatives, as well as 
properties of their zeros. An attempt has been made to present the 
material in an integrated and a self-contained fashion. The book 
is intended, not only for the specialist mathematician, but also for 
those researchers in the applied and computational sciences who use 
polynomials as a tool. 

The subject of polynomial inequalities is of course vast. We chose 
to restrict ourselves here only to a few directions. We present some 
striking results (to us at least), but also novel aspects as well as old 
and new results not normally found in book form. On the other hand, 
subjects such as orthogonal polynomials are not included here as such 
(for that subject see the excellent books of G. Szego, G. Freud, T.S. 
Chihara, and P. K. Suetin). 

Some 1200 references have been cited here, including preprints. As 
a rule, we have studied the original sources and in some cases have 
retrieved some forgotten but useful results. The references appear at 
the end of each chapter. At the end of the book we include a symbol 
index, as well as a name and subject index. 

The first chapter reviews some of the classical results on polyno-
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xii PREFACE 

mials of one and several variables. The second chapter provides an 
account of some selected inequalities involving algebraic polynomials 
as well as inequalities with trigonometric polynomials. 

The third chapter studies zeros of polynomials, with emphasis on 
the distribution of zeros of the algebraic polynomials, the Sendov-
Uieff conjecture, as well as bounds for the zeros and their number 
in certain domains. We also consider the Enestrom-Kakeya theorem 
and its various generalizations. 

Chapter 4 treats inequalities connected with trigonometric sums. 
Besides of the classical results of L. Fejer, T. H. Gronwall, D. Jack­
son, W . H . Young, W. W. Rogosinski and G. Szego, we give a special 
emphasis to the analysis of positivity and monotonicity of certain 
trigonometric sums and some related orthogonal polynomial sums. 
In particular, we point out an inequality of R. Askey and G. Gasper 
which was the final step in L. de Branges's remarkable proof (1984) 
of the Bieberbach conjecture (1916). 

The fifth and sixth chapters are devoted to extremal problems for 
polynomials. 

In Chapter 5 we investigate the extremal problems for polyno­
mials and their coefficients, (which, as is known, are suggestive of 
results in a much more general context!) starting by the classical 
results of P. L. Chebyshev, A. A. Markov, E.J. Remez, S.N. Bern­
stein, A . N . Korkin and E . I . Zolotarev, which are basic to approxi­
mation theory. In particular, we study polynomials with minimal 17 
norm, many generalizations of such polynomials, estimates for coef­
ficients of polynomials in LT" norm with prescribed zeros, extremal 
problems in mixed norms, as well as G. Szego's and related extremal 
problems. Section 5.2 treats incomplete polynomials introduced in 
1976 by G.G. Lorentz and weighted polynomial inequalities, includ­
ing extremal problems with exponential weights and L T inequalities 
for Freud weights. Section 5.3 is devoted to extremal problems and 
inequalities of Nikol'skn type. 

Inequalities of Markov and Bernstein-type are fundamental for the 
proof of many inverse theorems in polynomial approximation the­
ory. Frequently further progress in inverse theorems has depended on 
first obtaining a corresponding generalization or analog of Markov's 
and Bernstein's inequalities. There are many results on Markov's 
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PREFACE 

and Bernstein's theorems and their generalizations. In Chapter 6 we 
consider such problems involving additional other classical results of 
Markov and Bernstein. In Section 6.2 we study the corresponding 
extremal problems on restricted classes of polynomials, and finally, 
in Section 6.3, we conclude with the extremal problems in a circle on 
the complex plane. 

The final chapter provides some selected applications of polynomi­
als. There are applications to least squares approximation with con­
straints, to vectorial and simultaneous approximations and to com­
puter aided geometric design (CAGD) so much in vogue today. We 
also study the Bernstein conjecture of 1913, which was settled nega­
tively in 1985 by R. S. Varga and A. J. Carpenter. 

Finally, we wish to thank Professors R. Askey, B. Bojanov, R. Z. 
Djordjevic, G. Gasper, A. Guessab, L j . M . Kocic, I .Z . Milovanovic, 
P. Nevai, M . Tomic, R. S. Varga, who read parts of the manuscript of 
the book and provided some very useful comments. Thanks also go 
to Professor A. W. Goodman who kindly donated to us his collection 
of papers on the theory of polynomials and to Professor Lj . M . Kocic 
who wrote Section 7.4 dealing with computer aided geometric design. 
We also wish to thank Professor D. Carmocolias for his assistance in 
proofreading the manuscript in English. 

Last but not least our very special thanks are due to our families 
for their ever-lasting support and encouragement. 

I t is a pleasure to acknowledge the superb assistance that the staff 
of World Scientific Publishing Co. has provided. 

Nis/Belgrade/Athens 
March 1994 

Gradimir V. Milovanovic 
Dragoslav S. Mitrinovic 
Themistocles M . Rassias 

 T
op

ic
s 

in
 P

ol
yn

om
ia

ls
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 2

11
.2

10
.7

6.
6 

on
 0

8/
15

/1
4.

 F
or

 p
er

so
na

l u
se

 o
nl

y.




