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Preface

In this book we collect several recent results on special classes of polynomi-
als. We mostly focus to classes of polynomials related to classical orthogonal
polynomials. These classes are named as polynomials of Legendre, Gegen-
bauer, Chebyshev, Hermite, Laguerre, Jacobsthal, Jacobsthal — Lucas, Fi-
bonacci, Pell, Pell — Lucas, Morgan — Voyce. Corresponding numbers are
frequently investigated. We present new relations, explicit representations
and generating functions.

We are not able to collect all results in this topic, so we reduce material
to subjects of our own interest.
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Chapter 1

Standard classes of
polynomials

1.1 Bernoulli and Euler polynomials

1.1.1 Introductory remarks

In 1713 Jacob Bernoulli introduced one infinite sequence of numbers in an
elementary way. Bernoulli’s results appeared in his work “Ars conjectandi”
for the first time. These numbers are known as Bernoulli numbers. Bernoulli
investigated sums of the form

Sp(n):1P+2P+3P+...+nP_

He obtained the result that these numbers can be written in the form of the
following polynomials

1 1 1/p _ 1/p _
Sp(n) = ——nPt 4 —nP 4 — () AP~ 4 — (T ) BnP T3 4L
pln) = g Ao ) AnT g ) B
whose coefficients contain the sequence of rational numbers
1 1 1 1
A=-, B=——, C=—, D=——,....
6’ 30 42’ 30

Later, Euler [23] investigated the same problem independently of Ber-
noulli. Euler also introduced the sequence of rational numbers A, B, C, D,
... . In the work “Introductio in analusin infinitorum”, 1748, Euler noticed
the connection between infinite sums

111 on

s(2n):ﬁ+ﬁ+3ﬁ+-~:anw
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and rational coefficients «,, which contain the same sequence of numbers A,
B, C, D, ... . Euler [23] obtained interesting results, showing that these
numbers are contained in coefficients of the series expansion of functions
x +— cotx, x — tanzx, x — 1/sinz. Euler admitted Bernoulli’s priority
in this subject and named these rational numbers as Bernoulli numbers. It
was shown that these numbers have lots of applications, so they became the
subject of study of many mathematicians (Jacobi, Carlitz [9], Delange [13],
Dilcher [17], [18] , [19], Rakocevié¢ [97], etc.).

In the same time properties and applications of Bernoulli polynomials
Sp(n) are investigated. We can say that Bernoulli polynomials form a special
class of polynomials because of their great applicability. The most important
applications of these polynomials are in theory of finite differences, analytic
number theory and lots of applications in classical analysis.

1.1.2 Bernoulli polynomials

The coefficient B, of the Teylor expansion of the function ¢ — g(t)
=t/(e! — 1), i.e.,

t B
9t = 5 = > n—?t". (1.2.1)
n=0

Numbers B,, are rational. Namely, we have

1 1 1 1
By =1, 31:—57 By=—, By=—, Bs=—, ...,

and By =0, for all k£ > 1.

Remark 1.1.1. Bernoulli numbers B,, can be expressed by the following
Euler’s formula

2(2k)!

B = (-1 o C(28) (1.2.2)
where
=1
(=Y  ®)>1)
n=1

is the Riemann zeta function. Thus, according to (1.2.2), we can conclude
that the following holds:

(=1)*1By, >0 forall k>1.
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Bernoulli polynomials By, (z) are defined as

J’_
tetx _ f Bn(-’ﬂ) "y
et —1 vt n! '

By (1.2.1) and (1.2.3) we have

et *2” Bu +ZOO (tz)"
et—1 e —1 n! n! ’

n=0 n=0
hence
+<>o +oo n
=33 ke e
kl(n —
n=0 n=0 k=0
+oo n n
—zz( )Bw o
n=0 k=0 )

According to the last equalities we obtain

By(z) = zn: (Z) Bra™*

Using (1.2.4) we find

1 1
By(z) =1, Bi(z )—x—i, Bg(x):xQ—x—i—g,
B(ﬂ:‘):l‘3—§l‘2—|—ll‘ B4(x)::L‘4—2:L‘3+;v2—i
’ 27 T 27 307
5 ) 1
B5(x):x5—§x4—|—3x3—6x, etc

Differentiating both sides of (1.2.3) with respect to x, we get

+0o0

t2 . , n
T R
et —1°¢ _ZB"(x)n!’

and obtain the equality
Bl () =nB,_1(z).

We put z = 0 and x = 1, respectively, in (1.2.3) to obtain

t 1
- 5t = ZBn(O)t”
n=2

(1.2.3)

(1.2.4)

(1.2.5)
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and
tet +o00
_ n
- —1—|—§t—ZBn(l)t
n=2
Since .
t 1 te 1
—1+-t= —1— =t
et —1 + 2 et —1 27
we have

B, (1) — B,(0) =0, i.e., By(1) = B,(0).
Using (1.2.3) again, we get
+o00

Z(Bn(l‘ + 1) — Bn(x))tn ¢ (e(;r+1)t . em)

et —1
—~ nl e

+oo n—1

x
= tel® = nzz:l T t".
Comparing the coefficients with respect to t", we establish the relation
Bp(z+1) = By(z) =nz" !, n=0,1,... . (1.2.6)
From (1.2.6) it follows that
B,(1—z)=(-1)"By(x). (1.2.7)

Notice that
Bgn(l — (E) = Bgn(x)

is an immediate consequence of the equality (1.2.7).
We put = 1/2 + z and obtain

Bon (; + z) — B <; _ z> . (1.2.8)

Using (1.2.8) we can determine the values of Bernoulli polynomials of the
even degree in the interval (1/2,1), if these values are known in the interval
(0,1/2). The geometric interpretation of the equation (1.2.8) is that the
curve y = Ba,(x) is symmetric with respect to the line x = 1/2 in the
interval (0,1).

The differentiation of (1.2.8) implies

1 1
Bon—1 <2 + Z> = —DBop1 <2 - Z> ;
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and we conclude that Bernoulli polynomials of the odd degree are symmetric
with respect to the point (1/2,0).
We put z = 1/2 in (1.2.8) and obtain

Boy—1(1) = —B2,-1(0).

Hence, Bernoulli numbers of the odd index are equal to zero.
If m > 1, then the following equality can be proved

—_

m—

By(x+m) = By(z) =n ) (x+j)"".
j=0

Since

+o00
" te(t(a?+1) tetw
B )= = = ¢
T;) (@ )n! et —1 et —1°

= o\ X gm
-(Snef) (25)

n=0

it follows that

Bz +1)=Y" (Z) B(z). (1.2.9)
k=0
Some particular values of Bernoulli polynomials are given below:

B, (0) = B,(1) = By; (1.2.10)

1
B, <2> =2 -1)B, (n>2); (1.2.11)

1 1 —2k+1 —2k+1
By (z) =3 (1 _9 ) (1 ~3 ) Boy. (1.2.12)
Also, for k > 1 the following holds
1

(=1)*Bgg_1(x) >0 when 0<uz< 5 (1.2.13)

We also consider the Fourier expansion of Bernoulli polynomials By, (z).
Namely, for 0 <z <1 and k£ > 1 we have

“+o0o
Ba(w) = (1)1 (22(73’;3; o)

v=1

— X sin(2nve
Bog—1(z) = (_1)k2((227l:)2k—13! Z ,/(22k—1 ) :

v=1
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The last formula can be used for determining the sums of alternating
series of the form:

f (_1)k+1 B 7Lz Jio (_1)k+1 B 777r4 e
K127 Kt 7207 ’
k=1 k=1

The integration of the equality (1.2.5) in the interval [z,y], using (1.2.9),

implies
Yy _
/ Bn(t) dt — Bn-i—l(y) Bn—i—l(x) )

n—+1

If y = 2+ 1, then using (1.2.6) we can get the following particular case

z+1
/ Bp(t) dt = 2™

Also, the following equality holds

Il
—
|
—_
~—
3
—_

1
/ Bo(t) B (t) dt

0
Using the functional equation

F/2)+ f(1=1)/2) =27V f@)  (k=0,1,...)

Haruki and Rassias [56] proved the following integral representations of
Bernoulli polynomials:

2k(2k —1) [1 _ylog(z? — 2z cos(2ma) + 1)
_ k 2k—2
Boi(a) = (—1) 7(2@% / (log x) . dzx,
22k +1) [1 sin(27a)
B = (—F / log )% d
2k1(a) = (=1) (2m)2k+1 [y (log ) x? — 2z cos(2ma) + 1 “

where a is a real number satisfying 0 < a < 1.
If @ = 0, then previous representations reduce to

— 1 (0] — X
2au0) = ()Y [ iogapr =0 g ey
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1.1.3 Euler polynomials

Euler numbers E,, are defined by the expansion

+oo
2 ZEn .
m — Oﬁt . (1.3.1)
n=

According to (1.3.1) we have
E[) = 1, E2 = —1, E4 = 5, E6 == —61, Eg == 1385,€tC.

Notice that Fq;,_1 =0 for all k£ > 1.
Euler polynomials E,(x) are defined by the expansion

2etr IR E,(z)
= —t" 1.3.2
et +1 ;) n! ( )

From (1.3.1) and (1.3.2) we conclude

+
2’0 En(x)tn _ 2 2 o@=1/2)t
n! et +1 et/2 1+ e—t/2 ’
n=0
i.e.,

KR E(x),y ([ RE, t") (KR (z—)"
>t =l w2 )
n=0 n=0 n=0

which implies the equality

O HEI

Putting x = 1/2 we get the equality

1

Differentiating (1.3.2) with respect to x, we obtain

+
2te” f E;L(x)tn

et+1 n!
n=0

which implies
El(z) =nE,_1(z). (1.3.3)



8 CHAPTER 1. STANDARD CLASSES OF POLYNOMIALS

Using (1.3.2) again, we find
400
Z(E(x+1)+E() —me,

n=0

and we conclude that
E.(x+ 1)+ E,(z) = 22".

Similarly, putting 1 — z instead of x, (1.3.2) becomes

1 — ) m
6t +1 Z
Since the left side of the previous equality can be represented in the form

et+1 e t4+1
n=0

_ — +
2elete 271" i E,(x) (=)™

n!
we obtain the equality
E,(1—z)=(-1)"E,(z).

It can be proved that Euler polynomials satisfy the following integral equa-
tions

)

Y E, -E,
/ En(t) dt +1(y7)l s +1(z)

1
| BB de = (1 ()

n+m-+2-

Remark 1.1.2. Numbers B, and FE, appear in the series expansion of
functions z — cot z and z — sec z:

1z 23 20 (-1 122n By,
tp=-__-_ _Z _ ... ._ n—1_ ..
COEET T34 a5 en)y (2] <),
2 n
5 6126 ~1)"E
SeCZ—l—i-Z——i-i—l- o ._|_()72”22"+... (‘Z‘<7T/2).

2 720 T (2n)!
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Remark 1.1.3. Among the properties mentioned above, it is important to
emphasize that Bernoulli and Euler numbers, B,, and FE,, are closely con-
nected with the divisibility properties in cyclic fields ([8], [9]). Corresponding
polynomials B, (z) and E,(x) have an important role in number theory and
in classical analysis. Namely, lots of theoretical applications of Bernoulli and
Euler polynomials are connected with their arithmetic properties. However,
these polynomials can be applied in other areas. Thus, Gautschi and Milo-
vanovié¢ [53] considered the construction of the Gaussian quadrature formulae
on the interval (0,+o00) with respect to the weight functions which appear
in (1.2.1), (1.2.3) and (1.3.2). These formulae can be applied in summing
slowly convergent series.

1.1.4 Zeros of Bernoulli and Euler polynomials

Important results concerning the investigation of zeros of polynomials B, (z)
and E,(z) can be found in the paper of Dilcher [19]. More about this subject
will be considered in the next chapter.

Dilcher [19] proved that all zeros of Bernoulli polynomials By (z 4+ 1/2)
have modules less then (n — 2)/27 for n > 129. In [19] the author gave the
proof of this result for n > 200, and then extended this result to generalized
Bernoulli polynomials and Euler polynomials (as a particular case).

In this chapter we consider classical Bernoulli polynomials By, (x). Using
(1.2.10), (1.2.5) and the Taylor expansion, we have

B, <z + ;) = g) (?) (2"7 — 1) B;z" .

Let n = 2k + ¢, where ¢ = 0 or € = 1, depending on the fact that n is
even or odd. Since 277 —1 =0 for j = 1, and Boji1 = 0for j > 1, it follows

that i
1 . n » i
B, (z + 2) =z ]Z:% <2j> (2177 — 1) B2k 9, (1.4.1)

If we define the function
ko in
- L o ki
falz) = Z <2j> (2179 — 1) (—1)! Byja* 7,
3=0
then
B, (z + ) = 25(=1)F f(z), ©=—2% (1.4.2)
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If we define
(2m)2* (n—2)°
gn(z) == 2(n — 2)2k fn A2 o
= aén)zk + agn)zk*1 4t agcn_)lz + ag"”), (1.4.3)
then
o _mn=1) =21 w2 o

For j = 0 we have aé") = 1/2. Since (see (1.2.2))

k1 2(2k)!
(271‘)%

we can present (1.4.4) in the following way

) _nn—1)---(n—2j+1)

By, = (1)

C(2k),

G e R (1.45)
where
Sgj = (1— 21_2]) Z m~H = Z(—l)m_lm_ZJ.
m=1 m=1

The next result is a generalization of Carlitz’s [9] and Spira’s [102] results.

Theorem 1.1.1. For n > 1, the polynomial By(z) does not have non-real
zeros in the set
1 —a <Re(z) <a,

where o = 1.1577035.
Also, the following statement holds.

Theorem 1.1.2. All zeros of the polynomial B, (z) are contained in the disc

z— ;’ < y/n(n—1)/24.

Proof. Applying Theorem 1.1.1 to the polynomial (1.4.3), i.e.,

gn(2) = a(()n)zk +- 4 a,(gn),

using the fact the the sequence {ag.n)/ aﬁ)l }; is increasing, and from (1.4.5)

we have
) _n(n—=1) =*

L' =22 6
By equalities (1.4.1) and (1.4.3) the proof of this Theorem follows. O
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Dilcher [19] dedicated lots of his investigations to sets which do not con-
tain zeros of polynomials By, (), as well as polynomials E,(z). We point
out the following two results.

Theorem 1.1.3. If k > 3 then the polynomial Bay(x) does not have any
zero between 1 and 7/6.

Proof. According to equalities (1.2.12) and (1.2.6) we conclude that

1 1
Bop [ =) = Boi | = | + 2k672FH1
2k (6) 2%k (6) +

where By, (1) = By (see (1.2.10)).

If k is odd, then By > 0, so By (7/6) and Bg(1) have the same sign.
Suppose that k is even. Then By, < 0. We shall show that By (7/6) < 0,
ie.,

<22’H _ 1) <32’H _ 1) Boj, + 4k < 0, (1.4.6)

But we know that Bg < —1/30 if k is even and k > 2. It is easy to verify
that the inequality (1.4.6) holds for all £ > 4. Hence, By (1) and Ba(7/6)
have the same sign for all k > 3, i.e., Bog(z) does not have any zero between
1 and 7/6, or has at least two zeros between 1 and 7/6. By induction we
show that the polynomial Bgg(x) does not have any zero in the interval

(1,7/6). O

We focus our investigation to sets where the Bernoulli polynomial B, (x)
(m > n), does not have any zero.
Applying the Taylor expansion to the polynomial B, (z + iy) for x > 1,
y > 0, we get
n

Bu(w +iy) = 3 <?> Bj(x)(iy)" 7 =) (”) Boj () (iy)"

=0 2j<n 2j

o> (sz-l)B%‘f'l(l’)(iy)"?jl.

2j+1<n

.

For the polynomial B, (x +iy) the following statement holds (see [19]).
Theorem 1.1.4. Let n > 200 and x > 1 such that (a) y > 1 and

2 1/(n—1) 2
(CC - 1)2 +y2 < <7Td (ni 1)) (n 1) e47ry/(n71)7

3222 2me
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where d = 1/4 — 1/2e=4" = 0.249998256, or
(b) 0<y<1and

< Z(gﬂ)i%/?n—l/? v o
—\5 2me’
Then By (z +iy) # 0.

Corollary 1.1.1. The Bernoulli polynomial B, (z) does not have any non-
real zero in the set

1—0.0709vn — 1 < Re(z) < 0.0709v/n — 1.

Corollary 1.1.2. B, (z +1/2) # 0 holds for all n if z = x + 1y belongs to a
parabolic set

1\2
x>0 1 (IL‘—I—2> < Dly|,
where D = 0.0315843.
We state some other Dilcher’s [19] results.

Theorem 1.1.5. For n > 200, the Bernoulli polynomial By (z + 1/2) does
not have any zero in the parabolic set

0.193 .
w< ==yl (z=2+iy).

Theorem 1.1.6. For n > 200, the Euler polynomial E,(z 4+ 1/2) does not
have any zero in the parabolic set

1.1.5 Real zeros of Bernoulli polynomials

According to relations

1 1
Bon—1 (Z + 2) = —Ban-1 <Z + 2)

and
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it follows that for n > 1 the polynomial Bsg,41 has three zeros: x = 0,
1/2, 1. We shall prove that these points are the only zeros of the Bernoulli
polynomial of the odd degree in the interval 0 < z < 1.

We use D to denote the standard differentiation operator (D = d/dx,
D™ =d™/dz™).

If the polynomial Bg,yi(z) has at least four zeros in the interval
0 < z < 1, then the polynomial D Bg,1(z) has at least three zeros in
the interior if this interval, and the polynomial D? By, ,1(z) has at least two
zeros in the same interval. Since

D? Bypy1(z) = (2n + 1)(2n)Bay,_1 (),

we conclude that the polynomial Bs,_i1(x) has at least four zeros in the
interval 0 < z < 1. In the same way, according to the equality

D? By, _1(z) = (2n — 1)(2n — 2) By, _3(z),

it follows that Ba,_3(z) must have at least four zeros in the interval
0 < 2z < 1. Thus, we get the conclusion that the polynomial Bz(x) must
have at least four zeros in the interval 0 < & < 1, which is not possible, since
the degree of the polynomial Bs(z) is equal to three. Hence, the polynomial
Bay,t1(x) can have only three zeros in the interval 0 < x < 1, and these
zeros are x = 0, 1/2 and 1.
Since
D Bgn(w) = 2nB2n,1(x),
and knowing that the polynomial Ba,_1(x) does not have any zero in the

interval 0 < = < 1/2, it follows that Ba,(z) can not have more than one zero
in the interval 0 < z < 1/2. However, since

D B2n+1 (CC) = (2n + 1)Bgn($),
holds, according to the equality
Bop11(0) = Bayq1(1/2) = 0,

it follows that the polynomial By, (z) has at least one zero in the interval
0 < x < 1/2. Since it can not have more then one zero, we conclude that
the polynomial Bs,(z) has only one zero in the interval 0 < z < 1/2. Since
the polynomial Bs,(z) is symmetric with respect to the line x = 1/2 in
the interval (0,1), it follows that this polynomial has one more zero in the
interval 1/2 <z < 1.

Hence, the Bernoulli polynomial of the even degree has two zeros z1 and
xg in the interval 0 < 2 < 1 and these zeros belong to intervals 0 < x1 < 1/2
and 1/2 < z9 < 1.
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1.2 Orthogonal polynomials

1.2.1 Moment—functional and orthogonality

Orthogonal polynomials represent an important class of polynomials. In
this book we shall consider various classes of generalizations of orthogonal
polynomials. Hence, this section is devoted to basic properties of orthogonal
polynomials. Classical orthogonal polynomials are also considered.

Definition 1.2.1. The function = — p(x), which is defined on a bounded
interval (a,b), is a weighted function if it satisfies the following conditions
on (a,b):

b
p(x) >0 (z€(ab), 0< / p(x)dr < +oo. (2.1.1)
If the interval (a, b) is unbounded, for example one of the following types:
(—OO,b), (CL,—‘rOO), (—OO,—i—OO),

then it is required that integrals

b
Ck :/ 2p(x)de (k=1,2,...) (2.1.2)

are absolutely convergent.

Integrals cj, which appear in (2.1.2), are called moments of the weighted
function p.

Let L?(a,b) denote the set of all real functions, which are integrable on
the set (a,b) with respect to the measure du(x) = p(z)dz. Here x — p(z) is
a weighted function on (a,b). We use (+,-) to denote the scalar product in
L*(a,b), defined as

b
(f.9) = / p(@)f(@)g()de (f,9 € L3(a,b). (2.1.3)

Two functions are orthogonal if (f,g) = 0.

Definition 1.2.2. The sequence {Qy}x of polynomials is orthogonal in the
interval (a,b) with respect to the weighted function z — p(x), if it is ortho-
gonal with respect to the scalar product defined with (2.1.3).
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Orthogonal polynomials can be defined in a more general way. Let P de-
note the set of all algebraic polynomials, let {C} }x be a sequence of complex
numbers and let IL : P — R denote the linear functional defined by

Lz* =C, (k=0,1,2,...),
L(aP(z) + BQ(x)] = aL[P(z)] + SLIQ(z)] (o, B € C,P,Q €P).

Then we say that L is the moment—functional determined by the sequence
{Ck}r. We say that Cy is the moment of the order equal to k. Notice that
it is easy to verify that L is linear.

Definition 1.2.3. The sequence of polynomials {Qg} is orthogonal with
respect to the moment—functional I, if the following is satisfied:

(1) dg(Qk) =k;

(2) LIQuQa] = 0 for k # n;

(3) L[Q%] # 0. for all k,n € Ny.

Conditions (2) and (3) in the previous definition can be replaced by the
condition

and 0, is the Kronecker delta.
Notice that orthogonal polynomials with respect to the moment-functio-
nal L, which is defined as

b
Lif] = (f.1) = / p(f)f(@)dz (f €P),

are exactly orthogonal polynomials described in Definition 2.1.2.
The following statement can be proved by induction on n.

Theorem 1.2.1. Let {Q}r denote the set of orthogonal polynomials with
respect to the moment—functional I.. Then every polynomial P of degree n
can be represented as

P(z) = axQx(x),
k=0

where coefficients oy, are give as
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1.2.2 Properties of orthogonal polynomials

Let {@n}nen, denote the sequence of polynomials, which are orthogonal on
the interval (a,b) with respect to the weighted function x — p(x).

Theorem 1.2.2. All zeros of the polynomial Q,, n > 1, are real, different
and contained in the interval (a,b).

Proof. From the orthogonality

b
0= / p(2)Qu(a)de (QeQo) (k=12...)

_ 1
~ Qo(w)

we conclude that the polynomial Qg (z) change the sign in at least one point
form the interval (a,b). Suppose that x1,..., 2, (m < k) are real zeros of
the odd order of the polynomial Q(x), which are contained in (a, b). Define

the polynomial P(x) as
P(z) = Qr(z)w(x),

where w(z) = (z — 1)+ (x — xy,). Since the polynomial w(x) can be

represented by
m
= a;Qi(x)
i=0

we have

b m
[ p@)P@yds = (@) = Y- i@ Q)
a =0

ie.,

o) = 0, (m < k),
Qe ) {amkr% (m = F).

On the other hand, notice that the polynomial P(x) does not change the
sign in the set (a,b). Thus, it follows that (Qx,w) # 0.
We conclude that we must have m = k and the proof is completed. [

Orthogonal polynomials satisfy the three term recurrence relation.

Theorem 1.2.3. The following three term recurrence relation follows for
the sequence {Qn}tn:

Qn+1(x) - (Oénl‘ + ﬂn)Qn(gj) + ’YnQn—l(x) =0, (221)

where ay,, Pn, Yn aT€ constants.
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Proof. We can take «, such that the degree of the polynomial
R, () = Qn+1(x) — anz@Qp(x) is equal to n. From Theorem 2.1.4 this
polynomial can be represented as

Rn(x) = QnJrl (:E) - anl'Qn(m) = ﬁnQn(x) - Z'Yijfl(l')-
j=1

Now we have

(Qn+1, Qi) — an(Qn, 2Qi) = Bn(Qn, Qi) — Z%’(Qj—h Qi)

j=1

If 0 < i < n—2, using the orthogonality of the sequence {@Q), }, we conclude
that v; =0 (j =1,...,n—1). Hence, the last formula reduce to (2.2.1). O

Since dg @, = n, we can write
QH(IE) = anxn + bnl'n_l —+ ...

Coefficients «,, and 3, from (2.2.1) can be determined by formulae

n bot1  bn
ap =t B = a, ( . ) (n € N). (2.2.2)

an an+1 an

In order to determine ~,, we start with the recurrence relation

Qn(x) - (an—lx + /Bn—l)Qn—l(x) + VnQn—Q(x) =0. (223)

Multiplying (2.2.3) by p(z)Qn(z), integrating from a to b, then using
the orthogonality of the sequence {@Qp}nen,, we get

b
HQnH2 = Oln—l/ p(2)xQp—1(2)Qn(z)dx.

Similarly, multiplying (2.2.1) with p(z)@Q,—1(x) and then integrating
from a to b, we get the equality

b
an / ()2 Q1 (1)@ (2)d — 7| Qur || = 0.

From the last two equalities we obtain

A )2_an+1an1(||czn|r ) -
%_an1<llQn1H =72 Q) (2.24)

If the leading coefficient of the polynomial @Q,(z) is equal to 1, then
the polynomial @, (z) is called monic. For these polynomials the following
statement holds.
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Theorem 1.2.4. For the monic sequence of orthogonal polynomials {Qn}n
the following recurrence relation holds:

Qn—i—l(x) = (.73 - 5n)Qn(x) - ’YnQn—l(w), (2.2.5)
where By and v, are real constants and ~y, > 0.

Proof. The last relation (2.2.5) is an immediate consequence of the relation
(2.2.2). Namely, since a,, = 1, from (2.2.2) and (2.2.4) we get

Qull \?
Oénzla Bn:bn_anrl’ Tn = (H!) ’1’“ > 0.

O]

The three term recurrence relation (2.2.3) is fundamental in constructive
theory of orthogonal polynomials. Three important reasons are mentioned
below.

1° The sequence of orthogonal polynomial {@Qy, }nen, can be easily gene-
rated provided that sequences {f,} and {7,} are known.

2° Coefficients 7, given in (2.2.4) determine the norm of polynomials @Qy,:

b
1Qull? = / () Qn(2)?dz = 3071 -+,

where we take v = ¢y = fabp(ac)dx.

3° Coefficients (, and =, form a symmetric three-diagonal matrix, so
called Jacobi matrix, which is important in construction of Gauss quadrature
formulae for numerical integration.

1.2.3 The Stieltjes procedure

Let {Qn}nen, be the monic set of orthogonal polynomials in the interval
(@, b) with respect to the weighted function z — p(z). Coeflicients 5, and
~n, from the recurrence relation (2.2.4) can be easily expressed in the form

_ (2Qn, Qn) B
Bn—i@m%) (n=0,1,2,...),

(Qn, Qn)

Vn:—(Qn—laQn—l) (n=1,2,...),
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i.e.,
2
ffpp 2)2Qn (x )Z(Z’f (n=0,1,2,...), (2.3.1)
2)2d
= ffpp . )2; (n=1,2,...), (2.3.2)
n— 1

where vy = f;p(ac)d:v

Namely, Stieltjes proved that the recurrence relation (2.2.3) and formu-
lae (2.3.1) and (2.3.2) can be successively applied to generate polynomials
Q1(x), Q2(x),... . The procedure of alternating applications of formulae
(2.3.1) and (2.3.2) and the recurrence relation (2.2.3) is known as the Stielt-
jes procedure.

1.2.4 Classical orthogonal polynomials

Classical orthogonal polynomials form one special class of orthogonal poly-
nomials. They are solutions of some problems in mathematical physics,
quantum mechanics, and especially in approximation theory and numerical
integration. We present the definition and the most important properties of
classical orthogonal polynomials.

Definition 1.2.4. Let {Qy}nen, be the sequence of orthogonal polynomi-
als in (a,b) with respect to the weighted function = — p(z). Polynomials
{Qn }nen, are called classical, if the weighted function satisfies the differen-
tial equation

(A(z)p(x)) = B(z)p(z), (2.4.1)
where x — B(z) is the polynomial of the degree 1, and the function
x +— A(x), depending of a and b, has the form

(x —a)(b—x), aand b are finite ,

Alz) T — a, a is finite and b = +o0,
€Tr) =
b—u, a = —oo and b is finite,
1, a=—00, b=+00.

The weighted function of classical orthogonal polynomials satisfies the
conditions

lim zmA(z)p(x) =0 i lim 2™A(x)p(z) = 0. (2.4.2)

r—a™t T—b—
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Solving the differential equation (2.4.1) we obtain

where C' is an arbitrary constant. Namely, with respect to the choice of a
and b we have

(b—2)%(z —a)®, a and b are finite,
(x —a)®e™, a is finite, b = 400,
p(x) = _ e
(b—m)te ", a = —oo, b is finite,
exp{f d:v}, a= —00, b= 400,
where
_ B() __B(ag)
R — L A= b—a L
s=B(a)—1, t=—-B(b) — 1, B(zx) =rz+gq. (2.4.3)

If a is finite, the boundary conditions (2.4.2) require B(a) > 0; if b is
finite, then (2.4.2) require B(b) < 0; also r = B'(z) < 0 must hold.

However, if a and b are both finite, then a condition r = B'(z) < 0 is a
corollary of the first two conditions.

The interval (a,b) can be mapped into one of intervals (—1,1), (0, 4+00),
(—00,4+00) by a linear function. Hence, we can take the weighted function
p(x) to be equal, respectively to one of the following;:

z— (1—2)%(1 +x)°, x> x’e ", T e

Parameters «, § and s must obey conditions (according to (2.4.2) and
(2.4.3))
a>-1, pg>-1, s>-1.

We have three essentially different cases.
1° Let p(x) = (1 —2)*(1+ )% and (a,b) = (—1,1). Then A(z) = 1 — 22 and

1 d

B(x) = m%(zﬁl(z)p(x)) =f-a—(a+p+2)u

Corresponding orthogonal polynomials are called Jacobi polynomials and

they are denoted by pled (x)

1.1. Legendre polynomials P,(z) (a= g =0),

. Special cases of Jacobi polynomials follow:
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1.2. Chebyshev polynomials of the first kind 7,,(z) (o= =—1/2),
1.3. Chebyshev polynomials of the second kind S, (z) (« =5 =1/2),
1.4. Gegenbauer polynomials Gp(z) (a == \—1/2).
2° Let p(z) = ¢~ and (a,b) = (0,400). Then A(x) =z and B(z) =
1+ s —x. Corresponding orthogonal polynomials are called generalized
Laguerre polynomials and they are denoted by L?(x). For s = 0 these
polynomials are known as Laguerre polynomials L, (z).
3° Let p(z) = e and (a,b) = (—00,+00). Then A(z) = 1 and
B(x) = —2z. Corresponding orthogonal polynomials are called Hermite
polynomials and they are denoted by H,(x).
Characteristics of Jacobi P\*" (x), Laguerre L; (z) and Hermite Hy(z)
polynomials are given in the following table.

Classification of classical orthogonal polynomials

(a,0) p(z) Az) B(z) On(@)
(-1,1) | (-2 +2)’ [1-22— | B-a—(a+8+2)z | P (x)
(0, +00) e T 1+s—zx I (2)

(—00, +00) e 1 —9z H,(z)

Theorem 1.2.5. Classical orthogonal polynomials {Qy }n satisfy the formula

Co

@n(z) = p(x) dz™

(A(z)p(z)) (n=0,1,...), (2.4.4)

where C,, are non-zero constants.

The formula (2.4.4) is called the Rodrigues formula.
One way to choose constants C), is the following

(=n" (a,8)
S for P, " (),

Cn=191 for LS (x),
(=)™ for Hy(x).
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Constants C,, for Gegenbauer polynomials G7(x), for Chebyshev polynomi-
als of the first kind T,,(z) and for Chebyshev polynomials of the second kind
Sp(x), respectively, are taken as follows:

GMo) = G Pea) (o= A= 1/2),
T,(0) = g P )
.(0) = SRR,
where
(= s(s41) - (s4n—1) = LY (0 i the gamma function).

I'(s)
Let {Qn}n be classical orthogonal polynomials in the interval (a,b).

Theorem 1.2.6. The polynomial x — Qn(z) is one particular solution of
the linear homogenous differential equation of the second order

L(y) = A(z)y"(z) + B(z)y'(z) + Ay = 0, (2.4.5)
where
An = —n <;(n —1)A"(0) + B'(O)) (n € Np). (2.4.6)

Using (2.4.5) and (2.4.6) we find, respectively, the following differential
equations

(1—2%)y" — (2A+ Dzy +n(n+2\)y =0,
(1—2%)y" — 22y + n(n+ 1)y =0,
(1—a%)y" —ay +n*y =0,

(1—2?)y" = 3zy' +n(n+2)y =0,

xy’ +(1+s—2)y +ny=0,

y" = 2xy +2ny =0,

corresponding to the polynomials G (), Py (), Ty (), Sp(z), L (x), Hy(z).

n
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1.2.5 Generating function

We begin with a general definition of the generating function.

Definition 1.2.5. The function (x,t) — F(x,t) is called the generating
function for the class of polynomials {@Qp}nen, if, for some small ¢, the
following holds:

Fla,t) = Z Qg(x) %7
n=0 n ’

where C), are normalization constants. In the case of classical orthogonal
polynomials, C), is given in the Rodrigues formula (2.4.4).

Classical orthogonal polynomials can be defined as coefficients of Taylor
expansion of certain generating functions. Generating functions of Gegen-
bauer, Laguerre and Hermite polynomials, respectively, are given as follows:

(1=2xt+1) =) Gha)t",
n=0

—(s —lix —T - S tn

(1 — ) (Hhemtw/lime) — ZLn(w)m,
n=0

o0
20t = Z H, (x)t".
n=0

Using previous relations, we easily find the three term recurrence relation as
well as the explicit representation of Gegenbauer polynomials, i.e.,

nGr(z) =2\ +n —1)Gh_1(z) — (n+2) — 2)Gr_,(x),

with starting values G3(z) = 1 and G7(x) = 2\

RN < PRSIV C) P
Gh(z) = kzo(_l) m(%) .

Notice that Legendre polynomials P, (x) are a special case of Gegenbauer
polynomials, i.e, P,(z) = Gy 2(:0) Hence, the corresponding recurrence
relation is

nP,(x) =xz(2n —1)P—1(z) — (n — 1) Py—2(x), Py(x) =1, Pi(z)==z.
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The explicit representation of Legendre polynomials is

[n/2]
Pate) = 31— e
k=0

Classical Chebyshev polynomials of the second kind S, (z) and of the
first kind T,,(z) are also special cases of Gegenbauer polynomials. Precisely,
we have S, (z) = GL(z) and G(x) = 2/nT,,(z). Thus, the following repre-
sentations hold:

) — k[ k )2k
)= (")
and 2l
To(z) = % Z(— )kn ﬁ A (n ; k) (22)" % To(z) = 1.

k=0
Similarly, we find the three term recurrence relation for Laguerre poly-
nomials

nt1(2) = 2n+ s+ 1 —2)Ly(x) —n(n +s) L, (2),
Li(x)=1, Li(x)=s+1-—=,

and Hermite polynomials
nH,(x) =2xH,_1(x) — 2H,—2(z), Ho(z) =1, Hi(x) = 2.

From corresponding generating functions we have representations

n

Li(z) =Y (~1)" (Z) (s+ K + 1)_pa®,

k=0
/2] 94 \n—2k

Hy(z) = Z(—l)kkf(n)_%)!'
k=0

Remark 1.2.1. Chebyshev polynomials T, (z) and S,(z) are special cases
of Gegenbauer polynomials, i.e.,
GMz) 2

li =T, =1,2,... =G,
)\11{%) A n n(x> (n )< )7 Sn(x) GTL<$)7

so we easily find three term recurrence relations and explicit representations.
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1.3 Gegenbauer polynomials and generalizations

1.3.1 Properties of Gegenbauer polynomials

Gegenbauer polynomials G\(z) are classical polynomials orthogonal on the
interval (—1,1) with respect to the weight function z +— (1 — x?)*~1/2
(A > —1/2). We presented general properties of the orthogonal polynomials
in the previous section. Here we shall mention the most important properties
of Gegenbauer polynomials.

Polynomials G\(z) are defined by the following expansion:

+oo
GMa,t) = (1 -2zt +£2) 7 =D G (2)t". (3.1.1)
n=0

The function G*(z,t) is the generating function of polynomials G (z) .
Corresponding three term recurrence relation is

nGMz) = 2z(A+n—1)Ghr_1(z) — (n+ 2\ — 2)G)_,(z), (3.1.2)

for n > 2, where G}(z) =1, Gi(z) =2)\z.
Hence, starting from (3.1.2) with the initial values Gj(z) = 1 and
G () = 2z, we easily generate the sequence of polynomials {G(x)}:

Gy(z) = 1,

G1(z) = 2\,

@) = D2y -

ey = B2 (2ap — 2o,

Gi(z) = (2?4(2@4 - (2?3(2@2 + (;?2 . etc.

By the series expansion of the generating function G;(x) in powers of t,
and then comparing the coefficients with respect to ¢, we get the represen-

tation
[n/2]

Nn—k _
G(z) = _pye Mk ynoan 3.1.3
o) = L1 g 2o (313)

Gegenbauer polynomials Gq’; (z) can be represented in several ways. For
example, we can start from the equality

2(p2 _ =A
Gz, t) = (1 — at)~ 2 <1 - M) ,
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and obtain the representation (Rainville [96])

[n/2] _
- (2)\)n$n Zk(xQ _ 1)k
Gu(@) = kl(n — 2k)1228(\/2)),"

k=0

Using the well-known result for Jacobi polynomials (see [96]) and the
equality
2\ )n, 11
M) = 2 p{=3Ad) ).

(A+3), "
we get the following representations:
(2z) 11—z
Gh(z) = ] oy (—n, 20+ A+ 35 )

B - (2N\) etk x — 1\k
_Zk!(n—k)!(t\—yé)k( 2 )

k=0
(z) = (2M)n <$ + 1)n2F1 (—n, 1 A—n; A+ L E)

A

Cn n! 2 2 2z +1
_i (2)\)n()\+%)n (w—l)k<x+1)n*k
SR = R A+ 5), (A F3), 2 2 ’

IR 29 n n 1 12?1

Ga(w) = e (=5 =5 g 5 )

Aoy (20, n n n 1 g

Go(x) = py (22) 2F1<—§, §+§71—n—)\,x ),

where o F] is a hypergeometric function, defined as

+oo
2F1((1, b7 & .Z‘) = Z (C]?"(CC(;)kaka
k=0

where a, b, ¢ are real parameters and ¢ #0,—1,—-2,... .

The Rodrigues formula for Gegenbauer polynomials is

—1)™(20),, B . o
G,)%(ZL’) _ 251”' z)\(+ 1)) (1 N $2) /\+1/2D (1 _ $2) +A 1/2’
: 2/n

where D denotes the standard differentiation operator (D = d/dx).

Remark 1.3.1. Some other representations of Gegenbauer polynomials can
be found, for example, in [6], [14], [75], [94], [96], [100], [107].
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Let G*(x,t) be the function defined in (3.1.1). The next theorem gives
some differential-difference relations for polynomials G} ().

Theorem 1.3.1. Gegenbauer polynomials G(x) satisfy the following equa-
lities

D™ GMz) = 2™(N)n G (z), D™= T (3.1.4)

nGa(r) = DGh(z) — DG () (n>1); (3.1.5)

DG, (z) = (n+2\)Gp(x) + 2D G (); (3.1.6)

2\Gp(z) =D Gy y(z) —22DGp(x) + DGp_(z) (n>1);  (3.1.7)

[(n-2)/2]

DG z)=2 Y (A+n—1-2kG) | o) (3.1.8)
k=0

(n+ 20) G (z) = 2\ (forl(x) - ng_l(x)) : (3.1.9)
1

GEHL2 () = T DF G1/?(z); (3.1.10)

DF Pryi(e) = 2k =111 > Py(2)Py(x) - Py, (), (3.1.11)

i1+ Figgr1=n

where Py, (x) is the Legendre polynomial.

We omit the proof of this theorem. In the next section we shall give the
proof of the corresponding theorem for generalized Gegenbauer polynomials
Pp.m (), which reduce to polynomials G;(z) for m = 2. Notice that Popov
[95] proved the equality (3.1.11).

1.3.2 Generalizations of Gegenbauer polynomials

In 1921 Humbert [95] defined the class of polynomials {Hﬁ\L,m}neNo using the
generating function

oo
(1 —mat+ ™)=Y T (2)t". (3.2.1)
n=0

Differentiating (3.2.1) with respect to ¢, and then comparing coefficients with
respect to t", we obtain the recurrence relation

(n+ DI, (@) — ma(n + NI, (2) = (0 — mA = m)ID) 4 () = 0.
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For m = 21in (3.2.1), we obtain the generating function of the Gegenbauer
polynomials. Also, we can see that Pincherle’s polynomials P,(x) are a
special case of Humbert’s polynomials.

Namely, the following holds (see [81],[25])

GM(x) = T} 5(z) and Pu(z) = 11, 5% (2).

n,3

Later, Gould [54] investigated the class of generalized Humbert polyno-
mials P,(m,z,y,p,C), which are defined as

(C —mat+yt™)P = Z P,(m,z,y,p,C)t" (m >1). (3.2.2)

n=0

From (3.2.2), we get the recurrence relation
CnP, —m(n—1—=p)lzPy 1+ (n—m—mp)yPom=0 (n=2m=1),

where the notation P, = P, (m,z,y,p,C) is introduced.

Horadam and Pethe [67] investigated polynomials p)(x), which are as-
sociated to Gegenbauer polynomials G)(z). Namely, writing polynomi-
als G)(x) horizontally with respect to the powers of x, and then taking
sums along the growing diagonals, Horadam and Pethe obtained polynomi-
als p)\(z), whose generating function is

“+oo
(122t +£2) =) "ph(x)t" . (3.2.3)
n=1
Remark 1.3.2. Some special cases of polynomials p)\(z) are investigated in

papers of Horadam ([57], [58]) and Jaiswal [70].

Comparing (3.2.1) and (3.2.3), it can be seen that polynomials {p)(z)}
are a special case of Humbert polynomials {H;\lm(x)}, i.e., the following

equality holds:
A \ [2z
pn+1(x) = Hn,3 (§>

We can be seen that polynomials G/\(z) are a special case of generalized
Humbert polynomials P, i.e., G} (z) = Pn(2,2,1, =\, 1).
Polynomials {pq’)’m(x)} are investigated in the paper [82]. These poly-

nomials are defined as 5
T
pq)%,m(m) = Hﬁ,m (E) .
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Further, we point out the most important properties of these polynomi-
als.
The generating function is given as

+o0
G (x,t) = (1= 2zt ™) =) "p) . (x) " (3.2.4)
n=0

It can easily be seen that polynomials G)\(z), P)(x), P.(z) are closely
connected with polynomials pﬁ‘Lm(x) Namely, the following equalities hold:

)
p7)23(37) :PQH(Q’?)’
x) = Pp(m,2x/m,1, -\, 1),

x) = (%))\Pn(m, x,m/2, =\, m/2).

By the series expansion of the function G, (z,t) = (1 — 2zt +t™)™ in
powers of t, and then comparing coefficients with respect to t", we get the
representation

o (/\)n—(m—l)k
Pom(@) =Y (—l)km(%)n‘m’“. (3.2.5)

Differentiating both sides of (3.2.4) with respect to ¢ and comparing the
corresponding coefficients, for n > m > 1 we get

M (%) = 20X+ = Dpp_y () = (n+mA = m)py_p (), (3.2.6)
with starting values

o () = ()\)'n(Qx)", n=0,1,...,m—1.
’ n!

The recurrence relation (3.2.6) for corresponding monic polynomials ﬁﬁm(x)

1S
ﬁi\z,m(x) = xﬁi\z—l,m(l‘) - bnﬁf\z—m,m(x)’ n>m21,

with starting values ﬁﬁ;m(x) =z", n=0,1,...,m— 1, where

(-1 n+mA-1)
(m—=1)! 27"A+n—m)p

by = (3.2.7)



30 CHAPTER 1. STANDARD CLASSES OF POLYNOMIALS

It is interesting to consider the relation between two terms of the sequence
of coefficients {b, }.

Namely, by (3.2.7), we find that the following holds ([25])
b1 nl(n+1+m(\—1)) (m—1)12™(A+n—m)

by 27(m— DA +n+1—mm (n—l)l(n—i—m()\—l);ﬂ
_ m+mA—=1)+1n(A+n—m)

(n+mA=1)(A+n)
Remark 1.3.3. We can obtain polynomials pf:bm(a:) in the following cons-

tructive way, so called the “repeated diagonal process”. We describe this
process. Polynomials

[n/m]
Prm(@) = D ap (k)(22)" 7,
k=0
where o)
n—(m—1)k
@y (k) = (—1)F

kl(n —mk)!’
are written horizontally, one below another, likewise it is shown in Table
3.2.1.

Table 3.2.1

n P (@)

0 1

1 2z

9 (/;)!2 (2)2

m G o) - Sy
m+1| Bl ogymtt - G2 (22)
m+2 | Pl (202 - G (22)2

M n—k—(m—1)k
A — (-1 k Mnk—(m-1) _ A >1
a (k) ( ) k'(n—k—mk)' an,m—i—l(k)v m =1,
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summing along growing diagonals yields polynomials

by
Po,m+1(x) =1,

by
pl,m+1($) =2z,

P (@) = 2 20y,
Photmele) = oth oyt - G,
Prut2,mt(T) = m( )yt — (1?2(293), etc.

Let pp,.(z) =0 for k < 0.

31

In the following theorem we present several important properties of poly-

nomials pf:bm(ar) As a particular case, these properties hold for classical

Gegenbauer polynomials G ().

Theorem 1.3.2. Polynomials pq’;’m satisfy the following equalities

D* P g () = 28 (N PN (2); 3.2.8)
2np7)7\,,m<x) = 2$Dpn,m( ) - mng—m—&-l,m(x); 329)
mDpﬁﬂm(:c) =2(n+ m/\)p;\lm(x) +2z(m —1) ng,m@?); (3.2.10)
2)‘p;\z,m(x) = Dp2+1,m(‘r) - 237Dp2,m($) + Dp;\zfm+l,m(x); (3211)

[(n—m)/m]
ng,m(‘r) =2 Z <)‘ +n—-1- mk)pz—l—mk,m(x)

k=0
[(n—m)/m]
+(m=-2) > DD i 1).m ()5 (3.2.12)
k=0
AP (%) — MR, () = g (2); (3.2.13)
(n +mA)pp () = mApp s () = 2(m — DAzpy ] (); (3.2.14)
k+1/2 1

Pa (@) = kD DF py/ 2 (2); (3.2.15)

D p /i@ =@ =11 >~ pl%(@)plf? (2),  (32.16)

i1+ tigpr1=n

1/2

where py'm(x) is a polynomial associated with the Legendre polynomial.
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Proof. Differentiating the polynomial pf‘l +km(m) one by one k-times, we
obtain

- (Mngk—(m-1)j iy
Dk A _ —1)7 n m—1)) 2k T L]

_ i WA+ ) (m—1)j
= 2 T gy
"Nk ().

Notice that (3.2.8) is an immediate corollary of the last equalities.
Differentiating the function G7,(x,t) with respect to ¢ and x, we get

(22)" ™

N

oG (1)
Qp——m
! ot

OG (1)

Ox =0

(23@ - mtm_l)

Now, according to (3.2.4), we obtain the equality (3.2.9).

Now, differentiating (3.2.6) and changing n by n+ 1, we get the equality
(3.2.10).

The equality (3.2.11) can be proved differentiating the equality (3.2.4)
with respect to x, and comparing the corresponding coefficients.

Multiplying (3.2.9) by A 4+ n, we get

(22)(A+1) Dpp () = 20(A + 1))y 1 ()
+m(A+n) Dpﬁﬂ_m,m(l‘). (3.2.17)

Using (3.2.6), and changing n by n + 1, we get the equality
(n+ D1 m(@) = 200+ )P (2) + 22(A +0) D)y, ()
—(mA=1)+n+1)Dpp 1 (@),  (3.2.18)
Next, from (3.2.17) and (3.2.18) we obtain
20\ + 2)pp () = D Py g g (2) — (m = 1) Dpp_p, ()

We change n, respectively, by n+ 1, n —m, n — 2m, ..., n — mk, where
k < [(n —m)/m]. Thus, the last equation generate the following system of
equations:
200 + 1 — 1= mE)Dp_1 o ()
= D Py (@) = (M = 1) D P 1) 0 (2)- (3.2.19)
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Summing the obtained equalities (3.2.19) we get (3.2.12).
Using the representation (3.2.5) we easily obtain the equality (3.2.13).
For A =1/2, from (3.2.5) we get the polynomial

[n/m]
pif@) = Y (-1p S L 20 DD g,

2 gt i~ mj)]

Hence, differentiating p}/ 7271(.%') one by one k-times, we get
D pif2 () =

{(n—k)/m] |
S (a2 2m DI o kemi (39,90

= gl (n — k — mj)l2n—k=(m-1)j

Since

(
k+1/2 (R 1/2)n 1)k -
Plim@ = 2, (Y =10 — kgl 2

_ k 1/2

form (3.2.20) we conclude that (3.2.15) holds.
Now, differentiating (3.2.4) with respect to x, one by one k-times, we get

kA

W = (2 — DG (x, )2+, (3.2.21)
Since

(G (w, 1))+ = Zka:z/fkm )tk (3.2.22)

from (3.2.21) and (3.2.22), we conclude that (3.2.16) holds. Thus, Theorem
3.2.1 is proved. O

Corollary 1.3.1. Form m = 2 equalities (3.2.8)~(3.2.16) correspond to
Gegenbauer polynomials G ().

Corollary 1.3.2. Form =1 equalities (3.2.10)—(3.2.16) correspond to poly-
nomials p;\l’l(x). Namely, these equalities, respectively, reduce to the follo-
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wing:

2)\172,1@ =Dppi14(2),
2)\]?2,1(1‘ = DP7AL+1,1(33) + (1 —2z) Dpig(l‘)a
n—1
Dpﬁ,l(fU) =2 Z()\ +n—1-=Fk)pp_ 1 p1(z)
k=0
n—1
- Z Dpi\z—l—k,l(x% n=1,
k=0

npp 1 (z) = M2z — 1)172’3,1(93)7
(n+ A)p) 1 (z) = Aoy (),

n,l

k+1/2 1 1/2
P ) = Gy D i (),

DFp2 @) =k-D > pf@) 2 ().

Piggg,l
i1+~--+ik+1:n

1.3.3 The differential equation

We prove one more important property for polynomials pﬁm(az) Namely,
we find a differential equation which has the polynomial pf‘bm(as) as one of

its solutions. In order to prove this result we define the sequence {f,}"_,
and operators A and F.

Let {f-}"'_, be the sequence defined as f, = f(r), where

)= (nt) (n—t%—m()\—i—t))m_l.

m

Let A and FE, respectively, denote the finite difference operator and the
translation operator (the shift operator), defined as (see also Milovanovi¢,

Djordjevié [78])
AfT:fT+1_fT7 Efr = fri1,
Dy =fr OFf= 0 (D) B = frke
The following result holds.
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Theorem 1.3.3. The polynomial pﬁ;m(x) s one particular solution of the
homogenous differential equation of the m-th order

)(x) + Z asz®y®)(z) =0, (3.3.1)
s=0
with coefficients
2am
aszsl—mA fo (s=0,1,....,m). (3.3.2)

Proof. From (3.2.5) we get

(n— s)/m]

S TS )n m—1)k n—m
2D A (x) = e s(—rr)Lk) (20)"—mk (3.3.3)
k=0
and
D™ (.CI?) _ pz_:l(_l)k (A)"—(m—l)k 2m(2x)n—m(k+1) (3 3 4)
Pam() = El(n —m(k+1))! ’ o
k=0
where

p=I[n-s)/m], s<q p—1=[n—-s)/m], s>q¢ ¢=0,1,....m—1.

Taking (3.3.3) and (3.3.4) in the differential equation (3.3.1), and com-
paring the corresponding coefficients we get equalities:

i (n — mk‘> slag = 27k + 1 — (m — Dk)m_1, (3.3.5)

S
s=0

k=0,1,...,p—1, and

B

(n —Smp> slas=2"pA+n—(m—1)p)m-1. (3.3.6)
s=0

The equality (3.3.6) can be presented as

i() 2" o =2t <A+ +mq>m_1.

S=

Since (1 + A)ify = Elfy = f; = f(q), it follows that the equality (3.3.6)
holds.
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The equality (3.3.5) can also be presented as

> (n _Smk> A® fo= fo—mk (k=0,1,...,p—1). (3.3.7)

s=0

The formula (3.3.7) is an interpolation formula for the function f(¢) in
the point ¢ = n — mk. The degree of the polynomial f(¢) is equal to m,
and the interpolation formula is constructed in m + 1 points. Hence, the
interpolation formula coincides with the polynomial. It follows that the
equality (3.3.5) holds. O

Taking m = 1,2, 3, respectively, from (3.3.1) we get differential equations:

(1—2z)y'(x) + 2ny(z) = 0,
(1= 2%)y"(z) = (22 + Day/(x) + n(n + 20)y(z) = 0,

<1 - 323:3> y"(z) — 19—6(2)\ + 3)z%y" (z)

27
N %(371(71 F2A+1) — (3 +2)(3\ + 5))ay/ (2)
+ %n(n + 3N (n+3X+ 3)y(x) = 0.

These equations, respectively, correspond to polynomials pf‘b’l(:n), G\ (),
A
pn,S (:U)
For A = 1/2 the second equation becomes
(1—2%)y" — 22y +n(n+1)y =0,
and corresponds to Legendre polynomials; for A = 1 this equation becomes

(1—2%)y" =32y +n(n+2)y =0,

and one solution of this equation is S, (z), the Chebyshev polynomial of the
second kind; for a A = 0 we get the differential equation

(1—2?)y" — 2y +n’y =0,

which corresponds to T, (x), the Chebyshev polynomial of the first kind.
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1.3.4 Polynomials in a parameter A

We can consider the Gegenbauer polynomials G(x) as the function of a
parameter A, and this polynomial can be represented in the form (see [85])

n

Gh(x) = gin(@)N, (3.4.1)
j=1

where g;n(x) (j = 1,2,...,n) are polynomials of the degree equal to n.

Polynomials g;,(z) (j = 1,2,...,n) can be represented in the form
Mn(5) gl .
. — (_1\"—J __n—k n—2k
gin(T) = (=1) kz_o Hn %)!(%) . (3.4.2)

Here M,(j) = min([n/2],n — j) and S are Stirling numbers of the first
kind, defined as

™ :x(x—l)--~(x—n—|—1):ZS,gj)xj.

j=1
For j =1, from (3.4.2) we get the equality
2
gin(z) = ﬁTn(w) (3.4.3)

Using the generating function G*(z,t) of Gegenbauer polynomials
G(x), the following equality can be proved:

i 1
gom(z) =2 ﬁ(az)ETn,j(x). (3.4.4)
j=1

The generating function of polynomials g; () is (see [120] )

[e.9]

og’ (1 — 2xt +t2
(B S g (3.4.5)
’ n=0

Starting from (3.4.5) and from the generating function

o Tn(z)
—1/2log(1 — 2zt +7) = Y~
n

n=1
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of Chebyshev polynomials T),(x) (see Wrigge [120]) we obtain

logj(l _ 2xt+t2) _ (—l)j jS Z (T“fo) 132(1')) t”7

n=j i1+---+ij:n

i.e.,

gj,n(x)zgj‘ > <T“.($)-~T”,('x>). (3.4.6)

Polynomials g, (z) can also be expressed in terms of symmetric functions
(see [85]).

Similarly, we can consider polynomials py ,,(x). Wrigge ([120]) investi-
gated polynomials p;\Lm(:c) as functions of the parameter A. The polynomial
Pj.m(2) has the representation

Do (@) =Y hjm(z) - M. (3.4.7)

Thus, from (3.4.7) and (3.2.5) we get the explicit representation of poly-
nomials hjn(x), j =1,2,---,n, ie.,

My (j (4)

) S
, — (—1)"J _q1ymk _“n=(m=Dk o \n—mk
hjn(z) = (=1) k:O( 1) k!(n_mk)!(%) : (3.4.8)

where My,(j) = min([n/ml], [(n — j)/(m —1)]).
Expanding the function G, (z,t) (given in (3.2.4)) in powers of A, and
then using (3.4.8), we obtain

(_1)j j m S n
i log? (1 — 2zt +t™) = Zhjvn(:c)t .
n=j

Remark 1.3.4. More details about polynomials h;,(z), j = 1,2,...,n, can
be found in the paper of Milovanovi¢ and Marinkovi¢ [85].

1.3.5 Polynomials induced by polynomials p; ,,(z)

In this section we consider polynomials Qg\’,n’q’)‘) (t), which are induced by
generalized Gegenbauer polynomials p;\Lm(:c) (see [84]). In order to de-
fine polynomials Qg{,n’q’)‘)(t), let n = mN + ¢, where N = [n/m] and
qgef{0,1,...,m—1}.
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The explicit representation of polynomials p,’)m(m‘) now has the form

N
_ mN+q (m—1)k mN+qg—mk
= 2
wherefrom we obtain
P () = (22)1QN M (1), (3.5.1)
where (22)™ = t, and
( >\ . N+q—(m-1)k
m,q, m q—(m— n—k
t . 3.5.2
@n ;) k:' mN + q —mk)! ( )

If £ =0, then

I'A+ N +gq)
TN + 1D (g + 1)

From (3.5.1), (3.5.2) and the recurrence relation

QM (0) = (-1

A A A
npn,m(x) = 2$()‘ +n— 1)pn—1,m($) - (n + m(A - 1))pn—m,m(x)7
we can prove the next statement.

Theorem 1.3.4. Polynomials QN o /\)( t)

relations:
Forqe{l,2,...,m—1},

satisfy the following recurrence

(mN +@)Q ™ (1) = A+ mN +q - DRV (1)
= (mN +q+mO - DRYEYE. (353

For g =0,

mNQW N () = (A +mN - QTN (1)
—m(N + = 1)U w). (3.5.4)

Using the well-known equality (see [25])
D*pp g (@) = 25 (Vo b (),

we can prove the next statement.
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Theorem 1.3.5. Polynomials Q ) ( ) (A > —1/2) satisfy the recurrence
relations:

For0<qg<m—2,
(q+ DRV (#) + mt DY (1) = AQ M (1),
Forq=m —1,
mD QYL (1) = 2 ().
Also, the following statement holds.
Theorem 1.3.6. Polynomials Q%n’q’)‘)(t) (A > —1/2, m > 3) satisfy the

recurrence relations:
For0<qg<m-—-3

(g+1)(qg+ Z)Q%n,q—i-l)\) () +m(m+q+1)tD Q%ﬂ,q-&-&)\) (1)

+ m22D? (m q+2,0) (t) = (\)a S\?fn q7>\+2)( £).

Forg=m — 2
m(m — )DLV (@) +m D2 QUL (1) = (1N 2 (v).
Forgq=m-—1
mD QYY) +mHQ Y () = (@8 ().

The recurrence relation for polynomials Q ’q”\)( t) is proved in [84],
where parameters m, ¢ and A are fixed. Precisely, the next statement is
valid.

Theorem 1.3.7. Polynomials Qg\?l’q’)‘) (t) satisfy the (m—+1)-term recurrence
relation

m,q,\) m,q,\
ZAquQN.;_ql Z() BN,thSV I )(t)a

where coefficients Bng and A;ng (1 = 0,1,...,m) depend on parameters
m, q and \.
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1.3.6 Special cases

We consider polynomials Q ood )‘)( t) for A = 1 and A = 0, as well as polynomi-

als induced by Gegenbauer polynomials G (z) and Chebyshev polynomials
T (z).
1° A = 1. Recurrence relations (3.5.3) and (3.5.4), respectively, become

Q) = Q1) - Qi) (1<q<m-1)

and
m,0,1 m,m—1,1 m,0,1
QYD () = 1TV () — QY (1) (g =0).

a1 (t) satisfy the recurrence relation

- m m m,q,
> (7 )akist i = e o,
=0

Polynomials Q

2° XA = 0. We introduce polynomials Qx,n’q’o) (t) in the following way

(m:qyo) (t)

(m,q,0) 0\ _ 1 N

7q7

These polynomials Q ( ) (0 < g < m—1) satisfy the recurrence relation

S (m(N + 1) +q>( )@Sﬁ‘i%( ) = (mN + Qim0 p)

1=0

For m = 2 we obtain polynomials QN’q 0)( t), ¢ = 0,1, which are di-
rectly connected with Chebyshev polynomials of the first kind 7}, (x). These
polynomials satisfy the following relations (see [24])

(2,1,0)

Ton(x) = NQ]\?OO (t) and Tonyi(z) = (2N+1)tQNH ()7

where t = (2z)2.
Gegenbauer polynomials G (z) and polynomials Q m.gA) (t) satisfies the
relations

Gin(x) = Q™M) and Gy (2) = 220)QN" M (),

for t = (22)2.
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1.3.7 Distribution of zeros

Some numerical examinations related to the distribution of zeros of induced
polynomials Qx,n’q’)‘) (t) are established. We investigated fixed values of
parameters m, N,q, \. These values imply the degree of the polynomial
n = mN + q. The following cases are considered:

1° The case A\ = 1/2, for m € {3,4,5,6,7,8}, N € {1,2,3,...,15},
qge{0,1,...,7}, ne {3,4,...,127}.

2° The case A = 0; other parameters are the same as in the case A = 1/2.

3° The case A = —0,49990; other parameters are given by: m = 3,
N e{1,2,...,10}, g € {0,1,2}, n € {3,4,...,32}.

4° The case A = 10; other parameters are the same as in the case 3°.

From results obtained by numerlcal investigation, we notice some cha-

racteristic properties of polynomials Q oo ’\)( t) (see [25]). Thus, we get the
following conclusions.

1. All zeros of polynomials Q ) ( ) (A > —1/2) are real and contained
in the interval (0,2™).

2. Two near-by terms of the sequence of polynomials {QS\T’q’/\) (t)} have
the property that zeros of one polynomial are separated by zeros of the other
polynomial, i.e.,

<ty <th <ty <- - <ty <ty <thy
is satisfied, where ¢1,t9,...,tn are zeros of the polynomial Q ma:A) (t), and
th,th, ..., ty . are zeros of the polynomial QN ma:A) (1).

3. Zeros of the polynomial Q g (t) are separated by zeros of the

polynomial Q ma+1A) (t).

Remark 1.3.5. Some numerical results which illustrate previous conclu-
sions, can be found in [25] and [83].

Theorem 1.3.8. The polynomial Q ’q’)‘)( t) (A > —1/2) has no negative
real zeros.

Proof. From (3.5.2) we get

N
Q(mq/\ _ NZ mN+q (m—1)k Nk
k!(q

— +m(N —k))!



1.3. GEGENBAUER POLYNOMIALS AND GENERALIZATIONS 43

Notice that all coefficients on the right side have the same signa. Hence, the

polynomial QS\T’q’A)(t) has no negative zeros. O

According to a great number of numerical results, obtained for concrete

values of parameters m, N and ¢, we formulate the following conjecture.

Conjecture (a) All zeros of the polynomial Q%n’q’)‘) (t) are real, mutually

different and contained in the interval (0,2™).
(b) All zeros of the polynomial pﬁm(az) are contained in the unit disc.
If (a) is true, then we prove that (b) holds. Let (a) be true. Then

0<t<2™ e, 0<(22)™<2™,
and |z| < 1.

Remark 1.3.6. Since ¢t = (2x)™, from any zero ti,ts,...,tx of the poly-
nomial Q%n’q’)‘) (t), we get the m-th zero of the polynomial p;\L,m(x). Hence,
zeros of the polynomial pﬁm(x) are contained in concentric circles of the

radius r; = om © = 1,...,[n/m], i.e., m-zeros are contained in N concentric

circles.

Previous results, which concern the distribution of zeros of polynomials
p;\%m(:z), are illustrated for polynomials: pﬂ?g(a:), pg5’8(:p) and p}l{i(az).

1.3.8 Generalizations of Dilcher polynomials

In this section we consider Dilcher polynomials, which are connected to
classical Gegenbauer polynomials. Dilcher (see [17]) considered polynomials

{fé)"y) (2)}, defined by

GO (zt) = (1 — A+ 2+ 22+ X227V = Z FM (), (3.8.1)
n>0

where v > 1/2 and A > 0.

Obviously, the degree of the polynomial fﬁ"'/(z) is equal to 2n. Com-
paring (3.8.1) with the generating function G¥ of Gegenbauer polynomials
(see [25], [96]), we get the following equality

2
fT(L)\,V)(Z) :Zn)\n/QG,;L <1+Z+Z > .

Qﬁz
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Using the recurrence relation for Gegenbauer polynomials
nGy(z) =2z(v+n—1)G; 1 (z) = (n+2(v = 1))Gy_5(x), n=m,

with starting values Gg(z) = 1, GY(z) = 2wz, we get fé\’y(z) = 1,
ff"”(z) =v(l+ 2+ 2?%) and

e = (

v—1

v 1) (1+ 2+ 22 (2) - (1+2 >f2’f2(z)'

Polynomials f,(f"”)(z) are self-inversive (see [17], [18], [19]), i.e

) = 2 (1)

z

Hence, polynomials f,(f"”)(z) can be represented in the form
FMN ) = Oyt Oz o+ O 2™ + O 2" e O™,

where CT)L‘Z = C’i‘ik
The most important results form [17] are related to determining coeffi-
cients C;‘Z Thus, the following formulae are obtained

)/ sSL(v+n—s
I'(v) 2, (=N s(!(n — 25)!)

s=0

AV
Cn,k -

[((n—k—2s)/2]

2j—|—k><n—2s>
X . . 9
; < J 2j +k

and
o 1 [(n—k)/Q](_)\)s n—k—s\ I'(v+n—s) pn—h=29)
kT (v) — s Eln —k—s)! ’
where
m/2 _
(m) /2] 27\ (m\ (k+j !
B = () o) :
= \J/\2)\
If 32 = —1, then we can prove that the following formula holds:

B = (VB IR G 1/ VB),
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wherefrom we conclude that coefficients C;\Z obey the representation

o (2k)' : n—
C’f)L\,k - P(V)k!(_“/g) F

where

[n—k)/2) ,\\ s
— M\’ T(v+n-—s) 2
o= Sz:(:) <3> sl(n +k — 2s)! Gy sl i/V'3).

Dilcher’s idea is used in [28], where polynomials { fr(L)},f )(z)} are defined
and investigated. These polynomials are a generalization of polynomials
fT)L‘ ’V)(z), i.e., the following equality holds:

F () = F(z).

Polynomials { f,(i}’,l; )(z)} are determined by the expansion
F(z,t) = (1= (142 + 25t + Amt™) " Z FA ()t (3.8.2)

Comparing (3.8.2) with (3.2.4), we obtain

1+z—|—z2>
2V \z '

Using the recurrence relation (see [25], [81])

FOD () = 2mA/mpr ( (3.8.3)

MPpm(2) = 22(v +n = D)pn_1,m(2) = (0 +m)v = 1)pj_py i (2), 1 >m,

with starting values

pl;L,m(Z): (I:L)'n(2z)n7 n:(),l,...,m—l,

and also using (3.8.3), we get the following recurrence relation

14 n-— 1 )‘71/
806 = (1422 W+ A )
-1 Y
B (1 N m(l/n )) A (), n > m, (3.8.4)
with starting values

()\V)() (n)!n(1+z+z2)n’ n:(),].,...,m—l.

n,m
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Changing z by 1/z in (3.8.3), we get
106 =210 (1),

z

and we conclude that the polynomial fy(fnl{ )(z) is self-inversive. Hence, the

polynomial fr(b)}rf )(z) (whose degree is equal to 2n) can be represented in the
form

124 1% )‘7 )"
FO ) = o) + P e - ()2
) g A 2, (3.8.5)

Using (3.8.4) we easily prove that coefficients p 7", appearing in the

formula (3.8.5), satisfy the recurrence relation

(Aw) _ v—1 (Av) () ()
Ppr = <1 + ) (pnq,kq TPk T pnfl,kJrl)

(Av)
n,k

n
-1
B (1 B m(l/ )) )‘pg\—,l;r)t o N >m, (386)
n I’
where p;/?,;”) = pfj‘_l’,z
The most important results from [28] are related to determining coeffi-
cients pg"'/). One such result is contained in the following theorem.
Theorem 1.3.9. Coefficients pg\;:) are given by the formula
—k
p(/\’y) _ 1 [(nz)/m](_)\)sF(V +n—(m—1)s)
ko I(n — |
n I'v) = sl(n —ms)!
[((n—k—ms)/2] .
n—ms\ (2j+k
X ) ) . 3.8.7
jzo (27 + k) < J ) 387

Proof. Using the explicit representation (see [22])

A ) S
v _ _1\k n—(m— n—mk
Pnle) = 3 (=1 i

and (3.8.3), we obtain
142+ 22
A\v) _n n/m, v
fn,m (Z) z"A pn,m< 2)\1/mz >

[n/m]

(l/)n—(m—l)s 2N —
— _1 S 1 n—ms mSAS.
§< )s!(n—ms)!( tat2) :
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The formula (3.8.7) follows from the last equalities and from the formula

m/2]

(1+z+22)r=gz’”[; <mi2j> (g__i) (r € N).

The next two results are related to coefficients p&’:).

Theorem 1.3.10. Coefficients pg‘,’:) can be expressed by the following for-
mula
n—k)/m

oy
Pri =

} 14
(—A)s (TL —k— (m — 1)5) k'( ( )nf(mfl)s B(nfkfms)

— s n—k—(m—1)s) * ’

where

[r/2] 27\ [ + V)
B’g):jzo<j><2j> <<k9 >> |

Theorem 1.3.11. Coefficients pﬁl)‘,’:) are given by the formula

(Aw) _ 1 [(n—zk):/m] (=) [7"2/:2} (_%)j (12;T)j 22
k+1 sHkN2( !

Pk n—k —ms)! 4 J! T(k+3j)

j=0 Jj=0

where r =n — k — ms.

1.3.9 Special cases

We consider some special cases of polynomials f,i‘ryn(z)

1° For m = 2 the formula (3.8.7) corresponds to the polynomial fT(L)"V)(z)
(see [16]) and reduces to

(A\v) s
Puk = T0) (=) Sl = 25)
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If z =1, then we get the formula
(W) () _ yn/2 < 3 ) 3.9.1
£ kz_:np o (3.9.1)

2° From (3.9.1), for m = 2 and v = 1 we obtain

R

where S, (z) is the Chebyshev polynomial of the second kind.
From (3.8.3), for x = 1 we obtain

)\ V) 3
— )\n/m v )
-3 tin (373)

k=—n

Several interesting properties of polynomials fﬁ\ﬁl(z) are given in the
following theorem.

Theorem 1.3.12. Polynomials f,s/\nf)(z) satisfy the following equalities:
D fA(=) = A0 (o)

|
DF fO (2) = 2 F Oy,

o (n—k)7mm
1 v
(n—l—mu)f(’\”)( ) =mv ,(Lj\r’,;’)(z)—u(m—l) —;z\/—tz fr(L)\1)m( );
_ !
) - S S () o

2D fO)(2) = nzD [0 (2) + nfn,ﬁ@ (2)-

Corollary 1.3.3. For m = 2 previous equalities correspond to Dilcher poly-
nomials f,g)"'/)(z).

We get one more interesting result for polynomials fT(L)‘WlL’ )(z).
Let z — g(z) be a differentiable function which is different from zero.
Then the following equality holds:

-1
M) () = g (nz +22°g7 ' D{g} — 2°D* —nzD{g*}g "
n

+22D*{gtg " + 22 D{g} D{g"}) {gf) (2)}.



Chapter 2

Horadam polynomials and
generalizations

2.1 Horadam polynomials

2.1.1 Introductory remarks

In the paper [58] Horadam investigated polynomials A4, (x) and By, (z), which
are defined by the recurrence relations

Ap(z) = prAn_1(x) + qAn—2(x), Ao(z) =0, Ai(z) =1, (1.1.1)
and
By (z) = pxBp_1(z) + ¢Bn—2(x), Bo(z) =2, Bi(z) = =x. (1.1.2)

Obviously, polynomials A, (z) and B,,(x) include large families of polyno-
mials obeying interesting properties, such as three term recurrence relation
and homogenous differential equation of the second order. A. F. Horadam
investigated several representatives of these polynomials. Sometimes Ho-
radam’s collaborators took part in these investigations. This is the reason
for the title of this chapter.

For some fixed values of parameters p and ¢ we have the following classes
of polynomials:

1. for p =1 and ¢ = =2, A,(x) are Fermat polynomials of the first kind;

2. for p =1 and ¢ = —2, B,(z) are Fermat polynomials of the second
kind;

49
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3. for p =2 and ¢ = —1, A, (x) are Chebyshev polynomials of the second
kind;

4. for p=2 and g = 1, A,(x) are Pell polynomials;

5. for p =2 and ¢ = 1, B, (x) are Pell-Lucas polynomials;

6. for p=1and ¢ = 1, A, (z) are Fibonacci polynomials.

Using standard methods, from relations (1.1.1) and (1.1.2) we find gene-
rating functions of the polynomials A, (z) and B, (x), respectively:

F(z,t) = (1 —pat — qt?)t = Z Ap(z)t" (1.1.3)
n=0
and )
1+qt =
Glx,t) = ——— = B, (z)t". 1.1.4
0:0) = 1= g = 2 B (11.4)

Expanding the function F(z,t) from (1.1.3) in powers of ¢, then compa-
ring coefficients with ¢"*, we obtain the following explicit representation

2L BN

An(z) = qkik!(n TS (pa)" ",
k=0

We can prove that the polynomial x — A, (x) is one particular solution
of the linear homogenous differential equation of the second order

2 2 2
b” o n 3P ;D
1+ — + — - — +2)y = 0. 1.1.5
< 4q$ ) Yy 1q Ty 4qn(n )y ( )

The differential equation (1.1.5) reduces to several particular forms, de-
pending on the choice of p and q.
Thus we find:

1 3 1
<1 - 8w2) y' =gy +gnln+2)y =0, p=1,q¢=-2

(1—-2*)y" =32y +n(n+2)y=0, p=2, ¢=—1;

4 4 4
(1+2%)y" +3zy' —n(n+2)y =0, p=2, ¢=1.

1 3 1
(1—1—1‘2) y'+zy — n(n+2)y=0, p=1, ¢=1

These differential equations, respectively, correspond to the Fermat polyno-
mial of the first kind, the Chebyshev polynomial of the second kind, the
Fibonacci polynomial and the Pell polynomial.
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2.1.2 Pell and Pell-Lucas polynomials

Now, we are interested in Pell and Pell-Lucas polynomials. We mentioned
before that Pell polynomials P,(z) and Pell-Lucas polynomials Q(z) ,
respectively, a special cases of polynomials A, (z) and B, (z), taking p = 2
and g = 1.

Thus, we have the following recurrence relations for polynomials P, (z)
and Qn(z) (see [62]):

P,(z) =2zP,_1(x) + Py—2(x), n>2, Py(z) =0, Pi(z)=1, (1.2.1)
and

Qn(z) =22Qn_1(x) + Qn-2(x), n >2, Qo(z) =2, Qi(z) =2x. (1.2.2)

Hence, we find:

0 0 2

1 1 2z

2 2 (22)% +2

3 (22)% +1 (2z)% + 3(2z)

4 (2z)% + 2(2z) (22)* +4(2z)% + 2

51 (22)* +3(22)2 +1 | (22)° + 5(22)3 + 5(27)

From (1.2.1) and (1.2.2) we notice that the following formula holds
Qn(z) = Pyy1(z) + Ppo1(x). (1.2.3)

If z = 1, then we get: P,(1) = P, the n*-Pell number; Q,(1) =
Q. the n''-Pell-Lucas number; P,(1/2) = F, the n'’-Fibonacci number;
Qn(1/2) = L, the n'"-Lucas number. We also notice that P,(x/2) = F,(x)
is the Fibonacci polynomial, and @, (x/2) = L,(z) is the Lucas polynomial.

However, taking p =2 and ¢ = 1 in (1.1.3) and (1.1.4), and using (1.1.1)
and (1.1.2), we find generating functions for Pell and Pell-Lucas polynomials:

o0
> Popr(@)t” = (1 - 2xt — 7)1,
n=0

and
o

Z Qi1 (2)t" = (22 + 2t)(1 — 22t — %)~ L.
n=0
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Starting from generating functions and using standard methods we ob-
tain representations of polynomials P, (x) and Q,(x):

[(n-1)/2]
(n l]:j 1) (2x)n72k71

k=0

and

(L IR
9 n—2k'
Zn—k( k )“C)

k=0

We mention some very interesting properties of Pell and Pell-Lucas poly-
nomials. These properties concern the relationship between these polyno-
mials and Chebyshev polynomials of the first kind 7),(x) and of the second
kind S, (), as well as Gegenbauer polynomials G\(x).

Let i2 = —1 and let polynomials P,(x) and @Q,(z), respectively, be given
by (1.2.1) and (1.2.2). Then the following equalities are satisfied:

Py(w) = (=i)" ' Spo1(ix)  and  Qu(z) = 2(~1)"Tp(iz).

Hence, polynomials P,(z) and @,(z) are modified Chebyshev polynomials
with the complex variable. From (1.1.3) we obtain the relation

Pry(iz) + Pp(iz) = Qn (i),
wherefrom we conclude:
Sp(ix) — Sp—2(ix) = 2T, (iz).
Since the equalities
Sp(xz) =GL(z) and T,(x)=2/nG°(x)
are satisfied, we get that equalities :
Py(x) = (=0)" Gy (iz),  Qu(z) = n(=i)"Gyliz) (n>1)

are also valid.
We can easily prove that the following equalities are also satisfied:

Fi=Gy(i/2) =1, F,=(=0)""'Gp_1(i/2),
Lo =2G%(i/2) =2, L,=2(-i)"G,°(i/2).
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2.1.3 Convolutions of Pell and Pell-Lucas polynomials

Further investigations of Pell and Pell-Lucas polynomials a presented ac-

cording to papers of Horadam and Mahon (see [64], [65]). Horadam and

Mahon defined the k-th convolutions of Pell polynomials Pflk) (z), Pell-Lucas

polynomials Q%k) (z) and mixed Pell polynomials W,(nba’b) (z). We present pro-

perties which are related to further generalizations of these polynomials.
Polynomials p¥ () are defined by (see [26], [64]):

,

n k
ZIPZ( ) PS D (2), k=1,
n k
P®(z) = lez V@) P D), k>2,
;R- @) PP (@), 0<m <k —1,

where PO(O) (x) = Pp(x), Pék) (x) =0.
The corresponding generating function is given by

(1 — 22t — ¢2)~ b+ = Z ) (). (1.3.1)

The second class of polynomials lek) (z) is defined as

ZQ QU @), k=1, QV(x) = Qula),

wherefrom we find the generating function
2x + 2t k+1 e )
<m) = Qi)™ (1.3.2)
n=0

Starting from (1.3.1) and (1.3.2), respectively, we obtain the following
explicit formulas of the polynomials Pflk)(ac) and Qg,,k) (x), respectively:

[(n—1)/2]
P(k) (k’ +n ; 1-— T‘> <n —1-— T‘> (2:1:)”727471

r

*M

and

n—1
k) .CI?) — 2k+1 Z <k_: 1)xk+1_TPT(Lk)7'($)‘
r=0
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Notice that the following equalities hold:

Ghiz) =P V(@) (2 =-1),

where G (z) is the Gegenbauer polynomial (A = k);
PY) (2) = Pu(2,2,—1, = (k + 1), 1),

where P,(m,z,y,p,C) is the Humbert polynomial defined by ([66])

(C = mat+yt™)? =3 Po(m,,y,p,C)"  (m > 1),

n=0

It is also interesting to consider the combination of polynomials P,(Lk) (x)
and lek)(x) ([65]). Thus, the notion of the mixed Pell convolution, as well
as the convolution of the convolution are introduced. The mixed Pell con-
volution (™" (z) is defined by the expansion

> b

@by, v (22421
> i (@)t = 0= 20t = @) a+b>1. (1.3.3)
n=0

We obtain the representation of the polynomials 7T7(La’b) (z):
2 (b (a0)
(@,b) () = 9b=d T )b @h gy, 1.3.4
@ =293 () (13.4)

Notice that polynomials p (z) and Q%k) (z) are special cases of the

polynomials et (z). Namely, for b =0 and a = k, from (1.3.3) we get

750 (z) = PED (), (1.3.5)

ie.,

T (@) = Pu(z), m29(x) = BV(2).

n n

If a =0 and b=k, from (1.3.3) we also get
(@) = QT (@), (13.6)

ie.,

w00 (@) = Qulo), T0(@) = QD (w).
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For j =0 from (1.3.4) and using (1.3.5) we get the following representa-
tion of polynomials m® b)( )E

(ab _2bz () b— zP a+b 1)( ). (1.3.6")

Using (1.3.1), (1.3.2) and the definition of polynomials PT(lk)(az), we find
that hold the following relation

ZP“ QU (@) (a>1,b>1).

Now, differentiating (1.3.3) with respect to t and then comparing coeffi-
cients with t", we get the recurrence relation

nwé‘l’ﬁ) (z) = 2bm @ (1) 4 (a4 b)r @0+ (). (1.3.7)

Using the equality

(2z+2t)7t 2z 42t)° (2z + 2t)*
(1 — 22t — 12)20+20 (1 — 2t — 2)atb (1 — 2pt — {2)bFa’

we get the convolution of the convolution, i.e.,

rlatbath)( Z b njl (). (1.3.8)

Thus, for b = a in (1.3.8), follows formula
2a2a Z,]Taa) n(ial) z(x)

Taking b = 0 in (1.3.8), from (1.3.5) and (1.3.6) we obtain two represen-
tations of polynomials i )( ):

aa) Zﬂ_a(] n(:_al) Z(x)zz ( )Q£LCL+11 Z( )
i=1

For a = 0 and b = k + 1, from equalities (1.3.6) and (1.3.6”) we get the

formula .
+
rOk+D) () — _ okt1 Z (k + 1) (),



56 CHAPTER 2. HORADAM POLYNOMIALS

which is one representation of polynomials Qgﬁ) ().
In the next section we investigate generalizations of Pell and Pell-Lucas
polynomials. We also mention ordinary Pell and Pell-Lucas polynomials.
Notice that the Fibonacci polynomial F,(x) is a particular case of the
polynomial P,(x), i.e., the following equality holds:

P, (g) = Fy(2).

Also, it is easy to see that the Lucas polynomial L, (z) is a particular case
of the polynomial @, (), i.e.,

0 ()=o)

However, for z = 1 we obtain well-known numerical sequences:

P,(1) = P,, Pell sequence,
Qn(l) =Q,, Pell-Lucas sequence,

)
r(}

1
Qn () = L,, Lucas sequence.

> = F,,, Fibonacci sequence,

2.1.4 Generalizations of the Fibonacci and Lucas
polynomials

In the note [49] we consider two sequences of the polynomials, {U,(lk,)n(x)}

and {Vélﬁ,)l(az)}, where k is a nonnegative integer and m is a positive integer.

Some special cases of these polynomials are known Fibonacci and Lucas

polynomials, for m = 2, and polynomials Uikg (x) and Vn(g) (), which are

considered in the papers [39] and [45]. In [45] we consider the polynomials
(k) (k)

nm(2) and Vi (x), at first for m = 4 and then for arbitrary m.

The polynomials U,, y, () and V;, ,,, (x) are defined by recurrence relations
([39], [45]):

Upm(x) = 2Up—1m(x) + Up—mm(x), n>m, (1.4.1)
with Uy m(z) =0, Upm(z) =271, n=1,2,...,m — 1; and

Vam (@) = 2V m(2) + Vaemm(z), n>m, (1.4.2)
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with Vom(z) =2, Vim(z) =2", n=1,...,m —1, m > 2 and z is a real
variable. In this case corresponding generating functions are given by:

Um(t) = ZUnm (1.4.3)

l—xt—tm

m 2—uat
Vi) = Zvnm . (1.4.4)

It is easy to get the next equality
Vam () = Ung1im(2) + Unpi—mm(z), n>m —1.

We denote by Ur(ka)n(:r) and V,g%(x), respectively, derivatives of the k"
order of polynomials Uy, ,,(x) and V, m(2), i.e.,

UEL ) = L U@ and V@) = L (Vi)
n,m .%'k n,m n,m = gk Lem .

For given real z, we take complex numbers a1, as, ..., q;,, such that
they satisfy:

Zal—m Z%%—O Z ooy =0,

1<J 1<j<k
Q= (1) (1,7, k € {1,2,...,m}). (1.4.5)

For m = 4, equalities (1.4.5) yield:

Zaz =, Zalaj =0, Z a;ojay =0, ajopazay = —1, (1.4.6)
1<j 1<j<k
for 7,5,k € {1,2,3,4)}.
If m = 2, then we obtain exactly the Fibonacci and Lucas polynomials.
If m = 3, then polynomials U, ( g and Vé 3)( ) were considered in papers [39]
and [45].

2.1.5 Polynomials Uflki(x)

)

In this section we investigate polynomials U, (k )( ), which are a special case

of polynomials. From (1.4.1), for m = 4, we get

Upa(z) = 2Up—14(x) + Up—a4(z), n>m, (1.5.1)
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with the initial values Up4(z) = 0, Uy 4(z) = 1, Uss(x)z, Uss(x) = 22

Hence, by (1.4.3), we have that U*(t) is the corresponding generating
function

U4(t) = - _xt_t4 ZUM : (1.5.2)

Differentiating both side of (1.5.2) k times with respect to z, we obtain

k'tk+1
Ui(t) = i~ ZU (1.5.3)

Now, we prove the following result.

Theorem 2.1.1. For a nonnegative integer k the following holds:

ak,‘l

4 _
Ug(t) = (ozlAl )k+1 Z (1 — aqt) k+1 i

k (I2-

k! k,i
+ (g A2,)F+T ; (1 — agt)k+1—

k 3
k! ay ;
+ ’ -
(a3 A3, )+ ; (1 — agt)ht1=i
k
k! dy
+ T g (1.5.4)
(o Afg)FH = (1 — agt)k 11
where
3at — 2037 + 1
10 = Afolar) = — ok )
a3z — 302 — 3
Al = Afy(ap) = — oA s )
T
4 3
o, —aox + 3
Aly = Alp(ar) = — az )
I
1
13 = Afs(ar) 1
I
i [5/2]5-21
, k+1 - E+1\[(j—1—s
o= o (T -2 (T (0
j=11=0 s=0

: <l>< o) S (AT ) (AT (AT a iy, (1.5.5)
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r=1,2,3,4.

Proof. Using the equalities (1.4.6), we get

tk—i—l tk—l—l

(1— 2t — 9~ (1= art)F (1 — agt)F (1 — agt)F (1 — agt )L
k 1 k 2

- Y i + Y e

1 _ Oélt k+1 i prd (1 _ a2t)k+17i

1=0

k az k ai
, K
+ Z 1 _ Oé3t k+1—z + Z 1 _ Oé4t k+1 —i° (1'5'6)

1= z:O
Multiplying the both sides of (1.5.6) with
oz]f+1(1 _ aQt)kJrl(l _ a3t)k+1(1 _ Oz4t)k+1,
we get the following equality

(alt)kJrl
(1 — agt)k+t
= alfH (A% + Ah(l — alt) + A%Q(l — alt)2 + A%3(1 — 04115)3)]%rl
X Z = alt k+1—z + (1), (1.5.7)

(®1(t) is an analytic function at the point ¢ = a; ', t is a complex variable
and x is a real constant). From the other side, we see that:

(O[lt k+1
( — t (1 — it )k+1 (

i <k + 1> (1 — ayt) B0, (1.5.8)
=0

Cklt 1)k‘+1

SO

k+1

k41 , el

> ( , )(—1)1(1 — apt) D)

1=0 v

— oMt (Al + An(l — agt) + Aly(1 — at)? + Aly(1 — agt)®)™!
1

X Z Oqt k‘+1 i + ‘1>1(t)
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kE+1 5 1 .
kK+1\/7\ /! . . s 4s
=a’f“ZZZ( () (] cator ity b gy
j=0 1=0 s=0
k 1
l +s
Oélt +J Z 1_a1tk+1 z+q)1()
=0

Because the Laurent series is unique at the point t = 041_1 for the function
(aqt) =R+ (1 — alt)_(k+1), from the last equality, and

l+j+s:=3,j—l:=5—-2l—s,

we get
k+1
1 k + 1 —1
S0 (T - an -
=0
k+1 5 521 .
E+1\[(j—1—-s\/[I s R
allc—i-l ZZ( . )< ; ><>(A1)k+1 ]+l+(A1)] 2l
7=01=0 s=0
< (AR ALY e+ i)

Comparing the coefficients with respect to (1—a;t)~*+1=9  we find that:

4 k1 J B 1) (5 =1\ (1
(_1)1(A1 )z k+1 «
(A%o)kﬂﬂ ](A%O)HS(Ah)jlefs(A%z)lfs(A%:),)SA%C,z‘—j-

Hence, for
k+10 A1 \k+14i—j g1 _ 1
Qa; (A ) A ak@ —jo

we get

oty (T -

i [3/215-2 PN |
2. ( ) ( ! ) <S> (Alo) " (AL 7 (A1) (A1) 0
j=0 1=0

s=0
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It follows that
i [5/2]5-21
i i k+1 kE+1\/j—1—s\/[I
()-SR0
j=11=0 s=0
(A%0>I+S(A%1)] Ql(Ab)l S<A13)Salle,ifj'

In the similar way, we find the remaining coefficients aj,;, r =1,2,3,4:

aj,; = (=1)"(Afp) <k+1) zz:[jz/:Z]jz:m(kH_l)( i ><i)

j=11=0 s=0

l l -
x (Afg) (AT 2 (A7)~ (ATs) ag -

Coefficients A},, Al;, Aj,, Al; can be computed from the following
equalities

Alg+ AL (1—art) + Aly(1—at)? + Al (1—ant)® = (1—aot) (1 —ast) (1 —aut)

and using (1.4.6).
In the similar way, we find the remaining coefficients A7, A7;, A7y, Als,
r=2,3,4. O

2.1.6 Polynomials U,Skr)n(x)

First, we investigate polynomials Uék)n(x) Differentiating (1.4.3), k-times
with respect to x, we obtain

k'tk+1

Uh(t) = oty ZU’“) (1.6.1)

Theorem 2.1.2. Let k be a nonnegative integer, and let m be a positive
integer, m > 2. Then

J
akz

m k
Urt) =y 2 kH; T (1.6.2)

j=1\%

where:
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Ay + AL (1= agt) + A, (1 — ayt)® + +A1m (1= at)™!
= (1 — Ozlt)(l — azt) e (1 — aj_lt)(l — Oéj.:,.ﬁ) e (1 — amt),
and i, ..., 0y, satisfy the equalities (1.4.5);

af,; = (—1)i(Aﬂl'O)i<’f er 1) _

>3 S () ()
S=1ja=0  jm_1=0 \ J1 J2 Jm—1
(A‘{o)jﬁmﬂm_l (A]) 7 (A{,m—l)jm_lai,i—jl’
i=1,2,...,m. (1.6.3)
Proof. From (1.6.1) and (1.4.5) we obtain:

k 1
tk+1 tk+1 Ak ;

(1 —xt —tm)k+l - (1 — o)kl (1 — ayy )R H1 = iz; W
k 2 k
Akl A?@
+Z (1 — aot)kt1—i ' +Z (1 — apt)F+1° (1.6.4)

i=

Multiplying (1.6.4) with a¥T1(1 — agt)**! ... (1 — ay,t)¥+!, we have the
following equality

()
(1 — aqt)k+l 1
(A fo+ Al (1 —ait) + Afy (1 — ant)? + -+ A] mo1(1— a1t)m_1)k+1 X
k 1
ZL*‘M) (1.6.5)
i=0 (1 — agt)k+i=i

(®(t) is an analytic function at t = a;'; t is a complex variable; = is a
real constant.) The left side of the equality (1.6.5) can be rewritten in the
following form:

(Oélt)k+1

k+1
(1 — alt)k“ )

= ((1 — Oélt)_l —1

k+1
=Y (-1) (k + 1) (1 — ayt)~RH1=9), (1.6.6)
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The right side of the same equality is

k+1 J1 Jm—2 k—|—1 W _] . . ' ‘ ‘
a3 Y3 () () (et
: ]1 Jm—2
Jj1=0351=0 Jm—1
k Al

1 .mf j ++ "mf kl
X (Al syt (1= agt)Prttimes Z; a0 (167)

First taking

kLAl EFLTi= 31A1 = akl —ji» and J1+ g2+t Gme1 =

comparing coefficients with respect to (1 — ayt)~#*+1=9  and then using

(1.6.6) and (1.6.7), we obtain coefficients aj ,. Similarly, we compute other
coefficients, aii, i=12, . jm—1- d

2.1.7 Some interesting identities

In this section we prove some identities, for the generalized polynomials
Uy(Lk,%( ) and V<k) (z). For m = 2, these identities correspond to Fibonacci
and Lucas polynomials. For m = 3, these identities correspond to the gene-
ralized polynomials, which are considered in [39] and [45].

Lemma 2.1.1. For positive integers m, n, such that n > m > 2, the
following hold:

n m—1
1
Z Ul,m(x) = E Z Un+2—m+j,m(x) -1], (1.7.1)
i=0 =0
n 1 m—1
Vvi,m<m) = ; Vn—i—?—m—‘rj,m(x) -1], (172)
=0 =0
" n
Z < >$ hr+ (m—1)t, m( ) = hrern,m(x)’ (173)
1=0
~ (n n,.n
7‘+mi,m(x) = (_1) x hr+(m71)n,m(w)7 (174)
=0

where hpm () = Upm(z) or hpm(x) = Vi m(z).
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Proof. We use the induction on n. It is easy to see that (1.7.1) is satisfied for
n = 1. Suppose that the equality (1.7.1) is valid for n, then (for n =: n+1):

S
+
—
3
—

1
Z Uz,m(x) = E Un+2—m+j,m(x) -1]+ Un—l—l,m(x)
=0 j=0
1 m—1
- Un+2—m+jm(x) =1+ 2Upi1m(x)
j=0
1 m—1
= — Un+3fm+j,m($) -1
z \ =

Hence, the equality (1.7.1) holds for any positive integer n.

The equality (1.7.2) can be proved in a similar way, using the recurrence
relation (1.4.2).

Suppose that (1.7.3) holds for n. Then, taking the value n + 1, from
instead n. from (1.4.1) and (1.4.2), we get:

hr—i—m(n—f—l),m(x) = $hr+mn+m71,m($) + hr+mn,m($)

= Z ( ) hr—i—(m l)im(‘r) + xhr+mn+mfl,m(x)

)xhr—i-m 17,m —|—JJZ< )xhr+m 1+(m— 1)7,m($)
n+1

)55 Pt (m—1)i;m (T) + Z < >$ihr+(m1)i,m(x)

< > ( ))xihr+<m—1>i,m<x)+hr,m(x)

+xn+ hr—i—(m 1)(n+1),m( )

n+1\ ., n+1
> hr+(m 1)1m(x)+( 0 )hr,m(x)

n+1
+ < >h7~+(m—1)(n+1),m($)

n

2
it
(
("

n

=1

n

=1
n+1

n+1
n+1\ .,
:E ( i )xh'r—l-(m—l)i,m(x)'
=0
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Now, we have proved the equality (1.7.3).
Suppose that (1.7.4) is correct for n. Then

(_

n+1h

_

)n—i—l r+(m—1)(n+1),m($) = (_1)n+1xn (xhr—i-m—l—&-(m—l)n,m (1:))

(_1)n+1xn(hr+m+(m—1)n,m (l‘) - hr+(m—1)n,m (.%'))

(_1)n+1xnhr+m+(m n, m(w) + (_1)nwnhr+(m Dn, m(x)

= Zn:( 1)+ <Z>hr+m (i+1),m(T) + Z < ) r+mi,m(T)
e (1) + (")) i (@) + B (2)

+ (_1)n+1hr+m(n+l),m(x)
i(n+1
(T s o)

x

I
T 3
M=

O

Theorem 2.1.3. For positive integers m, n, such that n > m > 2, the
following equalities hold:

3

Z = Ué’fBQ_mHm kZUk 2 k>1. (1.7.5)
7=0
m—1
ZVk) VA tim k:ZV(’c b k>1. (1.7.6)
7=0
(k k
( )( N EDHED ) = W), (77)
= 0] 0
( > 7"+mzm
(-1) Z(j)(n—wr Dja" R D (@), (1.7.8)
=0
where hym(x) = Upm(2) o1 hym = Vi ().

Proof. Differentiating both sides of equalities (1.7.1) and (1.7.2), on =z,
k—times, we obtain equalities (1.7.5) and (1.7.6). Using induction on k, we
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prove (1.7.7). If kK = 0, then (1.7.7) becomes

n

n .
hr+mn,m($) = Z <i>xlhr+(m—l)i,m($)a

=0

so, we get the equality (1.7.7). Suppose that (1.7.7) holds for k£ (k > 0).
Then, for k£ := k4 1, we get

D (@) = Z i (”) (’j) L (@HnE @)

i=0 §=0
n k
n\ (k _
_ (G+1) 7, (k=3) (5) p, (k+1=7)
=23 (1)) (@5 o)+ @R, )
1=0 j=0
=ikﬂ VCE ) @ORED (@)
i £ i)\j—1 r+(m—1)i,m
=0 j=1
- (1) (K i) () , (k413)
+ZZ i)\ (") r+(m71)z’7m(x)
=0 5
n k
-3y <n> (k 1>( )(])h(k—i-l ) +Z< ) 2ih k—i-l) ()
- i r+(m— 1zm r+(m—1)i,m
=0 j=1

_l’_
J
) k+ r+(m—1)i,m(93)
n k+1
n\ (k41N i) (k+1-5)
S Ol e

So, we have proved the equality (1.7.7). Similarly, we can get the equality
(1.7.8). O

Further, we prove some equalities, using generating functions (1.4.3) and
(1.4.4). Precisely, if we differentiate (2.1.4), k—times with respect to x, then
we obtain

. k1R (1 4 ™) e .
Vi (t) = 0=t = )t = PRAACITAS (1.7.9)
n=0

Using (1.6.1) and (1.7.9), we can easily prove the following theorem.
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Theorem 2.1.4. For integers m, k, r, such that m > 2, and k, r > 0, the

following hold:

m m kr! m
U ()U(t) = mUk+r+l(t)>
m P
U (t)V™(t) = ﬁUk—&—l(t)v
" " klr! m _ m—
VitV () = mvk+r+l(t P, (k> 1),
klr!
UV (t) = 7= Vitr 1 (), (r k2 1),

RS s

VROVE) = e (2 = 2V ),

VmEV™(t) = (267 — 2)2UT ().

(1.7.10)
(1.7.11)
(1.7.12)
(1.7.13)

(1.7.14)
(1.7.15)

The following result is an immediate consequence of the Theorem 2.2.3:

Theorem 2.1.5. Let m, n, k be integers, such that n > m > 2 and k > 0.

Then

_ klr! U(k+r+1)(x)’

(ktr+1) e

NE
=
3=
~—

8
S—
Iz
3
~—
S—

=0
(k) oy L (h+1) (o oo(kt)

ZZ:; Ui,m(x)Vn—z,m(x) k1 (QUn+1,m(x) xUn,m (@) )
SN ") B Elr! (k-+r+1) (k+r+1)
pa ‘/i,m (m)vn—z,m(x) - (kﬁ 4+ 1)| (Vn-i—l,m (‘7}) + Vn+1—m,m

Zn: U(k) (QZ)V(T) (x) — klr! V(k+r+1)(x) (7, > 1)

g i,m n—i,m (k:—l—r—i—l)' n,m ) = )
() oy 1 k41) (o (k1)

Do Vi )Vacsn () = g (2@ -Vt @),

> Vim(@)Vaim(@) = AU, (@) — 42U, (@) + 22U, (@),

(1.7.16)

(1.7.17)

().

(1.7.18)

(1.7.19)

(1.7.20)

Proof. Comparing coefficients with respect to " in equalities (1.7.10)—(1.7.15),

respectively, we obtain equalities (1.7.16)-(1.7.21).

O]
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Corollary 2.1.1. The equalities (1.7.10)-(1.7.21), for m = 2 and m = 3,
correspond to the Fibonacci and Lucas polynomials, and to those considered
in [39] and [45].

Moreover, in paper [46] the polynomials f,, ,,(x) and I, »,(z) are defined
by

fam (@) = 2 fu1,m(T) + fo—mm(z), n>m, (1.7.22)
with fom(z) = 2" for n =1,2,...,m, and

Lo (z) = Tlp—1.m(x) + ln—mm(x), n>m, (1.7.23)
with I, (z) = 2", forn =1,2,...,m.

Remark 2.1.1. From the relations (1.7.22) and (1.7.23), we can see that

fr2(z) = Fy(z) (Fibonacci polynomials)
ln2(z) =Ly

fns(x) = Up(x) (see [45])

ln3(x) = Vp(x) (see [45]).

(z) (Lucas polynomials)

The explicit representations of these polynomials are

O =1 = DR g
frm(z) = ]Eo ( i ) T 7, (1.7.24)
[n/m] . .
oo N o (m=2)j (n—(m=1)7\ o
bnm(2) = jEZO n—(m=1)j ( ; > . (1.7.25)

For x = 1 in (1.7.24) and (1.7.25), we get two sequences of numbers
{fnm} and {l,,,n}. So we have (see [45]):

k .

—1-(m-1

fn,m(k)=2<” (m )J>, n=1,2,...,0<k<[(n—1)/m],
j=0 J

which are the incomplete generalized Fibonacci numbers, and

k

zn7m<k>=2W(”@W>, n=1,2..., 0< k< [n/ml,

- (m—1); j

which are the incomplete generalized Lucas numbers.
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For these incomplete numbers the generating functions R} (t) and S} ()
are received:

RE(t): =Y frm()t/
j=0
A tm
= ¢mk+l mo__ 1.7.26
<1—t—tm (1—t)k+1(1—t—tm))’ ( )
where .
Am = fmk,m + Z ti(fmk+i,m - fmk+i71,m); (1727)
i=1
and
S = lem(G)Y
j=0
B tm(2 —t)
= {mk - 1.7.28
(1—t—tm (1—t)k+1(1—t—tm)>’ ( )
where )
Bm = lmkfl,m + Z ti(lkari,m - lkarifl,m)- (1729)
i=1

Remark 2.1.2. For m = 2 in (1.7.26) and (1.7.27), we get the generating
function for incomplete Fibonacci numbers (see [94]), and, for m = 2 in
(1.7.28) and (1.7.29), we get the generating function for incomplete Lucas
numbers (see [94]).

The generalized Fibonacci numbers are considered in [47], also. Namely,
in [47] the numbers C), 3(a,b,r) are studied and also Cy 4(a,b,c,r), which
are some generalizations of the well-known Fibonacci numbers.

2.1.8 The sequence {C, 5(r)}

In the paper [47] we introduce the sequence {C}, 3(a,b,7)} as

Cpa(a,b,r) =Cp_13(a,b,r) + Cp_gz(a,b,r)+r, n>3, (1.8.1)

with initial values:
Cos(a,b,r) =b—a—r, Ci3(a,b,r) =a, Ca3z(a,b,r) =0>, where r is a

constant.
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Recall that the sequence {Cy, 3(a, b, )} were studied in (Zh. Zhang [122]).

Observe that the sequences {C), 3(a, b, )}, defined by (1.8.1), are genera-
lization of the sequences {Cy,(a,b,r)}. Further, we use the shorter notation
{C)3} instead {C)p, 3(a,b,7)}.

The purpose of the note [46] is to establish some properties of {Cy, 3} by
using methods similar to Zh. Zhang, [122].

First, we introduce the following operators:

I will be the identity operator;

FE represents the shift operator;

E; is the 7i'" coordinate” operator (i = 1,2);

V = I —2E, + Ey:

Vi=1—-FE|+2Ey;

Vo =1+ 4F; + Es;

V3 =1+4E; 4 2Es.

Also, we use the notation

ny n!
i,7)  iljl(n—i—j)

Now, by using the identity

n n Z
@rorar =23 (M)(" T Jawer o= 0 (" )ave
i=0 j=0 i+j+l=n bl
we get respectively:
n
V"t = (z J)( 1) 2’E’E§7 (1.8.2)
i+j+l=n "’
n
Vi = (z >( )2JE1E%, (1.8.3)
i+j+l=n »J
n
Vy = (z >4 ElEg, (1.8.4)
i+j+l=n »J
Vi = ( )22’+3E’E]. (1.8.5)
i+j+l=n b

Namely, when we apply the operators in (1.8.2)—(1.8.5) to any function
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f(i,7), we get respectively:

g(n, k) =V"f(0,k) = fli, 7+ k);

)

2") Fi,5+h);
)
)

i+j+l=n J
g(n, k) =V3f(0,k) = A (i, j + k);
i+j+l=n Z’]
g(n, k) = V5£(0,k) = " )22 g+ k).
1,]
i+j+l=n
Lemma 2.1.2.
Ck3+2Ck-13 + Cki73 = 4Ck 443, (1.8.6)
Crz=Ci13+ Ci_23— Ci_53, (1.8.7)
Cr3z=2Ck-13—2Ck_43+ Cp_173, (1.8.8)

where k is a nonnegative integer.

Proof. Using relation (1.8.1), we get

Ck3+2Ck113+ Cki73 = Cry33 — Cri23 — 7
+2(Cr143 — C433 — 1) + Cry63 + Crras + 7
= 3Ck+4,3 — Ck+33 — Crr23 — 27 + Cii6.3
=3Ck443 — Cry33 — 2r — Crq23 + Cry53 + Cryz3z +r
=3Ckta3 — 7 — Crq23 + Crgaz + Cryoz + 7
= 4Ck143-

Hence, it follows that (1.8.6) is true.
Again, using recurrence relation (1.8.1), it is easy to prove equalities

(1.8.7) and (1.8.8). ]
Theorem 2.1.6.
n 1—2n
C4n+k,3 = Z <Z ‘>2 2 Ci+7(j+l<:),37 (1.8.9)
i+j+l=n »J
n n i—n
(=D)"Coymrz= Y (l .>2 Clit7(j+k),3) (1.8.10)
i+j+H=n

where n and k are nonnegative integers.
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Proof. Let f(i,j) = (—1)!Cri43. Then
V1f(i,j) = (=1)" (Critjs + Crizr+js + 2074 j+1,3)
= (=1)"4C7i 14443 = AE3 f (4, ).
Thus, we get
g(n,k) = VI f(0,k) = 4" E3" £(0, k).
Moreover, by (1.8.3), we have
n n 1]
4 C4n+k,3 = ‘ Z (Z,]) (—1) 2]C7i+k+j,3-
i+j+l=n
Or, if f(i,7) = (—1)iC’i+7j73, then
Vf(i,5) = (1) (Cis7j3 + 2Cit14753 + Citrj+7,3)
= (=1)'4Cy1a4753 = 4B (i, ).

Hence, from (1.8.2), we get

4"E{mF(0,k) = Z <2n> (—1)'27 f(i,j + k)

i+j+l=n »J

n .
- > ()FCurms
i+j+l=n »J

Namely, we get the following identity
n n %
"Conpres = Y ( .>2 Cit7(j+k),3-
i+j+l=n ’

Now, let g(i,7) = (—1)'Cyi+j3. Applying the operator Vo to g(i,j), we
get

V29(i,5) = (=1)" (Cait7j3 — 4Cuivat7;3 + Caitrjt7,3)
= (~1)" (=2)Cluitrjers = 2B g(i, j).
So,
(—2)"E}*9(0,k) = V3g(0,k) = (—2)"Cry7is

n .
= Z <Z ->4ZC4i+7(j+k:),3-



2.1. HORADAM POLYNOMIALS 73

Hence, it follows that

n )
(—1)nCn+7k73: Z ( .>221 C4i+7(j+k),3'

i+j+l=n b
O
Corollary 2.1.2. For k=0 in (1.8.9) and (1.8.10), we get respectively:
o\ gi—2n
Cinz = Z <z .>2 Cit7j 3
i+j+l=n »J
n o\ i
(~)"Cns= ) <Z ->2Z "Clait 3,
i+j+l=n »J
where n is a nonnegative integer.
Theorem 2.1.7.
n ..
"Chpins = Y <Z .)(—1)12jc7i+j+k,37 (1.8.11)
i+j+l=n »J
(=) "Crnsrs = 3 <@ .><—1)%22z+ﬂc4i+j+k,3, (1.8.12)
i+j+l=n »J

where n and k are nonnegative integers.

P?"OOf. Let f(Z,j) = (—l)iC7i+j73. Then

(=1)" (Critj3 + Crizriis + 2C7itj+1,3)
(—1)" (4C7i3 4153 — Crivjrrs + Crivrria)
(=1)'4C7i 44443 = AES f(i, ).

vlf(zvj)

It follows that
?f(07 k) = 4nE§nf(07 k) = 4n04n+k,3-

By (1.8.3), we have

n .
4"Chpgr3 = Z ( ‘>2zc7i+j+k,3-
it+j+H=n "’
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Let g(i,j) = (=1)'Cai+j3. Then

V39(i,j) = (=1)" (Caitj3 — 4Cuivarjs + 2Caitj+1.3)
(—=1)" (4C4i+j+a3 — Caivjirs — 4Cuivatj3)
(—=1)"(=1)Clitjr7s = (—1)E3g(i, j).
From the other side, by (1.8.5), we get
59(0,k) = (=1)"E5"9(0,k) = (=1)"Ch7n3

= Z ( .)222+](_1)104i+j+k,3-

1
i+j+=n »J

O

Corollary 2.1.3. If k=0 in (1.8.11) and (1.8.12), then we obtain respec-
tively

n .
"Cing= Y ( .)(—112jc7i+j,37

i, ]
Crng= ) (z '>(—1)Z+"22”J04i+j,37

where n is a nonnegative integer.

Proposition 1. If a sequence {X,,} satisfies the relations

Xn=Xpn-1+Xpn2—Xpn5 n=5,
Xn=2Xp1—-2Xpg+Xpn-17, n=>T,

then the operators

I=E'4+FE?_-FE5,
I=2E"'—2E*4+F7,

are the identity operators. Hence, we get the following identity operators

In(: I) _ Z (Zn> (_1)n—i—jE—5n+4i+3j’ (1813)
i+j+l=n "J
M=1)= Z <inj>(_1)i2i+jE—7n+3j+6i’ (1.8.14)

i+j+l=n
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when n is a nonnegative integer. Applying the operators in (1.8.13) and
(1.8.14) to sequences { X5+ } and { X7, }, where n and k are nonnegative
integers, we get

n i
Xonih = Y < '>(_1)" I Xaivzjths

i
i+j+l=n »J

Xintk = Z < .>(_1)121+]X6i+3j+k-

7
i+j+l=n »J

Theorem 2.1.8. Let n and k be any nonnegative integers. Then

n s
05n+l<:,3 = Z <7, > (_1)71 ! ]C4i+3j+k73> (1.8.15)
it+j+l=n »J
Crnik3 = Z (z .)(_1)Z2l+jc6i+3j+k,3- (1.8.16)
i+j+l=n J

Proof. The proof of the last theorem can be realized by using Lemma 2.1.2
and Proposition 1. O

Corollary 2.1.4. If k=0, then (1.8.15) and (1.8.16) become the following
equalities respectively:

Csn3 = Z (.n.>(—1)”ij04i+3j,3,

1
itjri=n \7
Crnz = § (=) Cuiys3j3,
i+j+l=n

if n is a nonnegative integer.

2.1.9 The sequence {C,4(r)}
Motivated by recent works (see [47], [48]) investigating the sequence
Cn2(a,b,r)=Cro and Cps(a,b,r)=Cps,

we introduce in [48] the sequence {Cy 4(a,b,c,7) = Cp 4} by the following
recurrence relation

Cna=Cpn1a+Cpga+r (1.9.1)
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(n>4; Cou=c—b—a—r, Ciy=a, Coy =b, C34 = c), where r is a
constant.

A =1+2E| + Ey + Ej3,
Ay =1+2FE)+ Ey + Es,
Ay =1+ Ey + E + 2E3,
As =1+ 2E; + Ey — Fj3.

We shall also make use of the following notation

n B n!
i,j, k) iljlkl(n—i—j— k)
Now, by setting m = 4 in the familiar identity:
n! , ,
(a1 + -4 am)" = Z T !alll---a%’lf,

) - [EIEEE
11+ +im=n ! m

where n is a nonnegative integer, we easily derive the following special
case
b A" = aN kdn—z—]—k‘
(a+b+c+d) Z <z’j,k:>a c

itj+k+l=n

Thus we obtain the following operators:

A" = Z < k) 2V ELEIEY, (1.9.2)
i+j+k+l=n s
z+]+k+l n

Al = ( nk>2kE1EJE3, (1.9.4)
z+g+k+l n \D s

Al = < " )2@ (oo N0 (1.9.5)

3 L 1+~2+3- e

z+j+k+l n 17‘]’

By applying the operators given by (1.9.2) to (1.9.5) to a function f (i, j, k),
we have

gp(n,0,m) = AP f(i,5,k) (p=0,1,2,3; Ao =A).

We begin by proving the following result.



2.1. HORADAM POLYNOMIALS
Lemma 2.1.3. The following relations hold true:
Cra+2Ck114 — Cry6a + Crroa = 3Ck54, .
Cn’4 = Cn_1,4 + Cn_3,4 — Cn_7,4 (n > 7) (1.9.
Proof. Using the recurrence relation (1.9.1), we get
Cra +2Ck114 — Crg64 + Cryoa
= Crya4 — Crq3a — 7 +2(Cry54 — Crgaa —7) — Crysa
— Cry24 =7+ Cryga+ Crysa+7
= 20454 — 7 — Cpq34 — 21 — Cpyo4 + Crgp4 + Cpyza + 1
=2Ck154 — 71— Ciy24+ Cry54+ Cryoa+r
= 3Ck+5.4,
which yields the relation (1.9.6).
In a similar way, we can prove the relation (1.9.7).

Theorem 2.1.9. The following series representations hold true:

7

3n05n+m,4 = Z <Z k> C’91—1—6]—l—k—|-m 4, (198)
i+j+k+l=n >
n i
— Z ik 2'( Ci 95+ 6k-+m.4s (1.9.9)
n z
= Z ik 2'Citm+6j+9k,45 (1.9.10)
i+j+k+l=n e
n
= Z ik 2 Cli49j-+k+mid» (1.9.11)
i+j+k+l=n 7
n
= ik 2'Cifm+0j+6k4- (1.9.12)
i+j+k+l=n 7

Proof. Let '
f(i,53,k) = (=1)? Coit6jtk,4-
Then, by applying the operator As to f(i, j, k), we get
Ao f(i, g, k) =
(=1)? (Coit6j+k,4 + 209i6j+k+1,4 + Coit6j+k+9.4 — Coit6jtkr6.4)
= (=1)7 -3 Coitejrh+54
=3 E3f(i,j,k),
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so that we have

n n n
AL £(0,0,m) = 5 (z _ k:) 2°Coir6j1h4ma = 3" Chntm.a,
i+jt+k+l=n ')

which establishes the series representation (1.9.8). Moreover, by applying
the operator Az to the function

f(i,5,k) = Citojteka,
we find that
Asf(i,j, k) = Citojrera + 2Cir149j16k4 + Cirojrert9.4 — Citoj16k+64
=3-Citojyekisa = 3f(i+5,4,k) =3 E{ f(i,j, k).
This leads us to the following series representation:
n . i
3"Csntma = ’ Z <z’,j, k:) 2'(=1)"" Cipm49j+6k,45

i+j+k+s=n

which proves (1.9.9).
Next, by applying the operator A to the function

fli 3. k) = (=1 Citejon,,

we get '
Af(i,§,k) = (—1)7 - 3 Ciygjrontsa = 3 EL f(i, 4, k).

Hence we obtain

n n n 7
Af(0,0,m) = 3"EY" £(0,0,m) = E < . k>2 Cit65+9k+m.4,
i+j+k+s=n b
J

which readily yields
3"Csnyma = | Z <Z,Z k) 2'Cliy 6j4+0k-+m -
itjt+k+s=n
Finally, we apply the operator Ay to the function given by
fi, 4, k) = (=1)'Coiyoj k-
We thus find that

Aof(i,j.k) =3 (1) Coirojrh+sa = 3 E3f(i, 4, k).
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Hence we have
AL f(iyj, k) = 3"E3" f(i, 5, k)
or, equivalently,
AL f(0,0,m) = 3"E3" £(0,0,m) = 3" Csptm.a-
By setting
£, 5, k) = (=1)*Ciyoj+6ra
we obtain
Af(i,j, k) = 3E7 f (i, j, k),

which yields
A"f(0,0,m) = 3"Cspima-

Thus we have completed the proof of Theorem 2.1.9. O

Corollary 2.1.5 below is an immediate consequence of Theorem 2.1.9
when m = 0.

Corollary 2.1.5. The following relations hold true:

2" Co; 6k

3nC5n,4 = <’L L

i+7 +k+s n

z+]+k+s n <
= <Z 1 2'Cit6j+9k.4
z+J+k+s n D
= < 2/ Ci9jha
1,7,k
]+k s=n
= 2'Ciy9j46k,4-
(17 ,k) 1+97+6k,

Proposition 2. If the sequence {Y,,} satisfies the following relation:
Yo=Y 1+Yy3—-Yn 7 (’/L > 7)7

then
I=E'4+E3-ET,

is identity operator.
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So
I = (I") = _1\n—t—J 77n+6z+4j. 9.
(") | E <i,j>( 1) E (1.9.13)
i+j+k=n

Furthermore, for the sequence {Y7,},

n s
Yoo = I{Ym} = ) (2 ,)(—1)” I Yitag, (1.9.14)
i+jt+k=n »J
n s
Yenim = I{Yonim} = > <Z )(—1)” I Ygitaj4m. (1.9.15)
i+j+k=n 'J

Proof. The proof of Proposition 2 is much akin to that of Proposition 2. The
details may be omitted. ]

Theorem 2.1.10. The following relations hold true:

n . .
Crna = Z < ->(_1)n_2_]06i+4j,47

)
i+j+k=n ]

n R
Crnima= Y ( .)(—1)" I Citajrmia,

)
i+j+k=n &

where n and m are any nonnegative integers.

2.2 (Generalizations of Pell, Pell-Lucas and Fermat
polynomials

In this section we define and investigate the following polynomials: the k-th
convolution of generalized Pell polynomials denoted by {P,&’Ql(a;)}, the k-th

convolution of generalized Pell-Lucas polynomials denoted by {Q%kzn(:v)},
mixed Pell convolutions {77,({?,’2) (z)}. Pell polynomials P,(x) and the k-th

convolution Pﬁk) (z) of Pell polynomials are particular cases of polynomials

Pf(bkr)n(x) Pell-Lucas polynomials @, (z) and the k-th convolution Qgﬂ) (x) of
Pell-Lucas polynomials are particular cases of polynomials Q;@n ().

2.2.1 Polynomials P} (r) and QF ()

Polynomials {Pyg% ()} (m,k € N;m > 1) are defined by the expansion ([26])
Fz,t)=(1—2xt—t")" D =3"p

(
n
n=0

k)

m

(z)t". (2.1.1)
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Differentiating both sides of (2.1.1), with respect to ¢, then comparing
coefficients with ¢", we get the recurrence relation

k
nP®) (2) = 2z(n + k)Pé_)L

n,m

k
m(@) + (mk + n)PT(L,)mm(:U), (2.1.2)
(k+1),
n!
Expanding the function F(x,t), given in (2.1.1), in powers of ¢, then
comparing coefficients with ", we obtain the representation

k)

for Pikl)’m(:v) =0, PT(L,m(x) = (2z)", n=0,1,...,m— 1.

[n/m]

P,(L{Cm(;p) = Z (kj—:-(;)ﬁ—r(nr‘r;;'lh (Qx)n—mj‘ (2'1‘3)

J=0

Remark 2.2.1. Horadam polynomials PP (x) are a particular case of poly-

nomials PT(Lk,%(az) Precisely, the following equality holds

p¥) (z) = PP (x).

n,2
Hence, for m = 2 the recurrence relation (2.1.2) reduces to

nP® () = 2e(n + k) PY, (2) + 2k +n) P,y (2),

n

with starting values Pﬁki) () =0 and Pék) (x) =1.

If m =2 and k = 0, then from (2.1.2) we obtain the recurrence relation
of Pell polynomials P, (x).

Remark 2.2.2. If m = 2, then from the representation (2.1.3) we get the
: : (k) (Y.
representation of polynomials Py’ (x):

[n/2]
T
Py = S G4 Dy
(=) jzoj!(”—2j)!( )

If m = 2 and k = 0, then from (2.1.3) we obtain the representation for
polynomials P, (z):
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We can prove that the polynomial P,S’%(x) is one particular solution of
linear homogenous differential equation of the m-th order

y(m) + Z asxsy(s) = 07 (214)
s=0
with coefficients
2m .
a5 =——=Afo (s=0,1,...,m) (2.1.5)
and tmk+1+1)
n—t+mrk+1+
)= (1) )
m m—1

Remark 2.2.3. For m = 2, using (2.1.5) we get that the differential equation
(2.1.4) becomes

(1 +22)y" + (2k + 3)zy — n(n + 2k + 2)y = 0.

This equation corresponds to the polynomial P,Ek) (z).
For m = 2 and k = 0 the differential equation (2.1.4) reduces to

(1+22)y" + 32y —n(n+2)y = 0.
The last equation corresponds to the Pell polynomial P, (z).
On the other hand, polynomials {Qg?n(x)} are defined by
2z 4 2tm—1 \ M1 &
Glo,t) = [ = = (k) (2)¢" 2.1.6
(z,1) <1 —2:ct—tm> %Q”’m(x) ’ (2.1.6)

for Q(k) (x) =2.

—1m
Using (2.1.6) we get the representation
k+1
k+1 ik
At =20y (M o) (2.1.7)
j=0

If n > m, using (2.1.6) again we obtain the recurrence relation
P () = 2(k + M@y (#) + (mh+ W)@ (2)
+2m -1k +1QW Y (x). (2.1.8)

n+l—m,m

Notice that the polynomials Q,(f,)n(x) satisfy a four term recurrence re-
lation. On the contrary, polynomials @, (z) do not satisfy any four term
recurrence relation.
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Remark 2.2.4. If m = 2, then from (2.1.7) we get the representation for
polynomials lek) (x):

k+1

E+1 (K

QP() =21y ( ' )x’f“ TP ().
=0

For m = 2 from (2.1.8) we obtain the recurrence relation for polynomials
(k‘)( .

n Q) (@) = 20k + mQW, () + 2k + 1)Ly (x)
+ok+ 1)Q% V(@)

Conclusion. If m = 2, then

P (z) = P®(z)  (Horadam, Mahon ),
Qgﬁ%(fﬂ) = QW (x) (Horadam, Mahon ),
P)(x) = P,(x) (Pell polynomial) ,
Q\)(x) = Qu(z) (Horadam, Mahon) .

2.2.2 Mixed convolutions

We introduce and consider polynomials {m(ﬁ;f;) (x)} (see [27]), which are a

generalization of both polynomials {P,(Lkr)n(x)} and polynomials {Q;kzn(x)}
It is also clear that polynomials {wﬁg;z) (z)} are a generalization of Pell and
Pell-Lucas polynomials.

Polynomials {m(f;z) ()} are defined by the expansion

2z +2tm1)" &
O(x,t) = = 70 ()", 221
00 = g — e = ) (22,1

for a + b > 1. The polynomial ﬂé?;g) (z) is not defined, a and b are

nonnegative integers.
For n > m from (2.2.1) we get the recurrence relation
nleb) (z) = 2b(m — l)wﬁiﬁlfg’z(x) —2z(a+ b)ﬁﬁfjﬁ;ﬁ?(z)

+ma+ b)) (@), (2.2.2)
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Notice that (2.2.2) is a four term recurrence relation, as it was the case
with polynomials Q,(f,)n(x)
From (2.2.1) we get the following explicit formula

b—j
w203 (U ) @ 22
=0

Remark 2.2.5. For m = 2 from (2.2.2) we obtain the recurrence relation

for the polynomials et (x) (see [64]):

nﬂ.SLa,b) (I‘) — 2bﬂ_£a:rl,bfl)( ) 2x(a + b)ﬂ' a 1,b) (I‘)

n—

+2(a+ b)Y @), n>2

For m = 2 the formula (2.2.3) is the explicit representation of polynomi-

W0 ()

als m

b—j
ﬂ_rsla,b)(l‘) :2b—jz (bf3> b—j—i flatb J,J)( ).
]
j=0

Comparing generating functions, we conclude that polynomials chgl(x)

and polynomials Qq({“)n( ) are particular cases of polynomials 7r( ; )( ). These
polynomials are related in the following way:

i (x) = PV (@), (2.2.4)
and
708 (z) = QD (w). (2.2.5)

Using the function ®(x,t) given in (2.2.1), we can find other representa-

tions of polynomials wﬁl m) (z). Thus, we find the representation

b
7 ab
:2b2(>b ;trg)n (z)

=20 (b> bip@tl () (j=0, beN).
0

n—i(m—1),m

If b = a, then the recurrence relation (2.2.2) becomes

&9 (2) = 2a(m — Va0 (@) + darr L (2)
(CLJrl,(l) ("L’) .

+ 2amm, "y,
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If m = 2, from this relation we get the result (Horadam [64])
nr(@ (z) = 2a7T£LCL_+11’a_1)( )+ 4a:mr(a+l 2 (x)
+ dar @) ().
Using the equality
(22 + 2tm~1)b - 2z + 2tm— e (2p 4 2¢m)atd
(1 — 2zt — tm)atb (1 — 2zt —tm)bte (1 — 2zt — tm)2a+207
and (2.2.1), we obtain

(zwmw) (z wSz;;?mt”) LS plotbat) (g0
n=0 n=0

n=0

Multiplying series on the left side we obtain

3 platbath) gy = 3 ( T ’2m<x>w,§’;‘?<x>> "
n=0 \k=0

n=0
Comparing coefficients with t" in the last equality we get

(a+b a+b Zﬂ-n km (b a)<x)' (226)

The representation (2.2.6) is a convolutlon of convolutions.
If b = a, then from (2.2.6) we get the representation
n
r2a20)(z) = Y 79 (@)m (@),
k=0

If b =0, using (2.2.3) and (2.2.4), from (2.2.6) we get

2< D (@)@ V().

Forj=0,a=0,b=k+ 1, k: € N, from (2.2.3), (2.2.4) and (2.2.5) we
obtain the representation
k+1

QW 2’““2(“ Dt p O, o)

For m = 2 from the last equality we get the representation of polynomials
(k)( ) (Horadam, Mahon [65], Djordjevié [25])

Q) (z) = 2k+11§ <k+1> k1 zP(k)( )

]
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2.2.3 Generalizations of Fermat polynomials

At the beginning of this section we mentioned that for p = 1 and
g = —2 the polynomial A, (x), which is defined by (1.1.1), becomes the
Fermat polynomials of the first kind and will be denoted by A, (z). Thus,
we get the recurrence relation

Ap(z) = 2An—1(x) — 24,-2(x), Ao(x) =0, Ai(x) =1. (2.3.0)

For p = 1 and ¢ = —2 the polynomial B,,(z), which is defined by (1.1.2),
becomes the Fermat polynomial of the second kind and will be denoted by
B (z).

Hence, the recurrence relation for Fermat polynomials of the second kind
is

B, (xz) = 2Bp—1(x) — 2Bp—2(z), Bo(z) =2, Bi(z) = =x.

We can derive lots of properties for polynomials A, (x) and By, (z), which
are similar to those for Pell and Pell-Lucas polynomials.

Now we consider generalized polynomials, which can be reduced to Fer-
mat polynomials A, (z) and B,(x).

The following three classes of polynomials {a%k,)n(a:)}, {bg%)n(x)} and
{c,(f,%)(x)} are investigated in [26]. Polynomials a,(lk,)n(x) and bgkzn(x), res-
pectively, are generalizations of Fermat polynomials of the first kind A, (x),
and Fermat polynomials of the second kind By, (z) (see [57]). Here we accept
the notation A, (z) for the Fermat polynomial of the first kind and By, (z)
for the Fermat polynomial of the second kind.

Polynomials {a%k,)n(x)} (k=0,1,2,...) are defined as (see [26])

a®) (x) = Py(m,z/m,2,—(k+1),1),

n,m
where P, is the Humbert polynomials (see [81]). Hence, the generating
function for these polynomials is given by

Fn(z,t) = (1 — ot +2t™) ") =3 " a() (2)t". (2.3.1)
n=0

Fermat polynomials are a particular case of these polynomials, i.e., the fo-
llowing equality holds
0
a)(@) = Ay(a).
Since the generating function Fy,(z,t) is given in (2.3.1) we easily get the
explicit representation
[n/m]
(k4 1) (-1 .
aB () = 3 (o Dot s sy (239)

v — il(n — mi)!
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as well as the recurrence relation for n > m:

nall), (z) = x(n+ k)a(k) (x) —2(n+ mk)a%k_)m’m(x), (2.3.3)

n, n—1,m
with starting values

kE+1
a(()kgl(:v) =0, o (x)= (—i_i‘)nx”, n=12,...,m—1.
Differentiating (2.3.2) one-by-one s-times, with respect to x, we obtain
the equality (see Gould [54])
D*alf),(x) = (k+ 1)) (@), n>s.

s¥n—s,m

(k)

Now it is easy to prove the following: the polynomial z — anm(z) is a
particular solution of the homogenous differential equation of the m-th order

m
Y™+ aaty® =0, (2.3.4)
s=0
where coefficients a5 (s = 0,1,...,m) can be computed as
L NNY (2.3.5)
%= o) 0 o

and

O = fo= (n—1) <nt+m(kz+1+t)> R

m
Using (2.3.5), we easily compute coefficients ag, a1, am:

1 (n+m(k+1)>
ag=—n|———= :
2m m—1

m

1 -1 k+2 1 k+1
a1:2(n_1>(” - mik+ >> _ L (”+m(+>) |
m m m_l 2m m me1

1 (m— 1)’”‘1
Qm =——— | —— .
2m m

For m = 2, using (2.3.5) we get that the differential equation (2.3.4)
reduces to

1 2%
( . 81:2) Y — ;3337/4- %(n+2k+2)y —0,
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which, for m = 2 and k = 0, becomes

Lo\ w 3 , 1 _
<1 8x>y 8$y+8(n+2)y—0,

and correspond to the Fermat polynomial A, (z).

Polynomials bn’fq)n (x) are defined by the expansion (see [26])
1 — 9pm k+1 o0 *
m ) = - n. 2.3.
G () <1 i 2tm> ;)bw(x)t (2.3.6)

Fermat polynomials B, (z) are a particular case of these polynomials.
Precisely, the following equality holds:

by (%) = Bn(x).

Expanding the function Gy, (z,t) from (2.3.6) in powers of ¢, then com-
paring coefficients with t", we get the explicit representation

k+1
bA) (x) =z<—z>f(’€f1)a;k_>m,m<x>. (23.7)

. 1
=0

For m =2 and k =0, in (2.3.7) we obtain
0 0 0
() = ap(x) = 20, 5(2).

Hence, we get the well-known relation between Fermat polynomials A, (z)
and By, (x):
B, (x) = Ap(x) — 24, —2(x).

We can also investigate combinations of polynomials aé’f)n (z) and b,(lk%l(x),

similarly as in the case of Pell and Pell-Lucas polynomials.
We consider the class of polynomials {cg{i’,z) ()}, which we call mixed
Fermat convolutions. Particular cases of these polynomials are Fermat poly-

nomials A, (x) and B, (z). Hence, Fermat polynomials obey the same pro-
perties as polynomials cgf,;)(:c)
Polynomials {cﬁffr? (z)} are defined by the generating function ®(z,t) in
the following way (]26])
_ (1 — 2tm)r _ = (s,7r) n
D(x,t) = A=t g 2y — 2 O (z)t", (2.3.8)

n=0
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for s+7r > 1.
Several transformations of the function ®(z,¢) from (2.3.8) lead to vari-

ous representations of polynomials {csf,:l) (x)}. Some of these representations
are proved in the following theorem.

Theorem 2.2.1. Polynomials {CSTCL) (x)} obey the representations:
r—j .
(s,7) _ _9)i =17 (T"f‘Sfjaj) . 2
Cn,m (‘T) ;( ) < i Cn—mz,m ($)7 ( 39)

Zan @ V(@) (2.3.10)

csmd(x) = (=2)’ C) a7t ) (@); (2.3.11)

1=0

Proof. Expanding the function ®(z,t) in powers of ¢, we obtain

ch o (1 — 2tm)r—J < 1—2tm )j
e T (1=t + 2am)y I \ T —at o+ 2
co T—J
=3 (-2 (r - > e (@,
n=0 1=0

Comparing coefficients with ¢t in the last equality, we get the represen-
tation (2.3.9). Using (2.3.8) again, we get (2.3.10).
Using (2.3.1) and (2.3.8), we find

B, 1) = (1= 26™)"(1 — at + 24™) "+

_ (1—2tm)r+ _ 1_2tm inrsl)
T8 )
(1 —axt +2t™m) o
+5—1
-3 (S (et
n=0 \i=0
wherefrom the representation (2.3.11) follows. ]

Using standard methods, from (2.3.8), the following statement can be
proved.

Theorem 2.2.2. For n > m polynomials {c(s )( )} satisfy the relation

neli) (@) = —2mre ™ (@) 4+ a(r 4 s)ey ) (2)
—2m(r + s)cST 0 (@), (2.3.12)
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Moreover, differentiating the function ®(z,t) with respect to x, one-by-
one k-times, we obtain the equality

DR () = (r+ 8)cCHE (@), n> ke (2.3.13)

n,m n—k,m

Some particular cases

In this section we mention several special cases of mixed Fermat polyno-
mials. Precisely, we prove the connection between polynomials cs;z) (x) and
ordinary Fermat polynomials A, (z) and B,(x).

Since

(1—2tm)rts (1 =2™)" (1 —2t™)8
(1 — ot + 2tm)2r+2s (1 — gt + 2tm)r+s (1 — wt + 2tm)r+s’

then, using (2.3.8), we obtain equalities

chs’;f’yﬂ)(a})tn — < Cﬁi;;)(x)tn> . <Z c%ﬂ(l‘)tn)

n=0 n=0 n=0
— Z (Z cn“,zm(x)cgni)(fv)) t",
n=0 \k=0

wherefrom we immediately get the equality

) (@) = 3 e (@) (@), (2.3.14)
k=0

If r = s, then (2.3.14) reduces to

C(25,25) (w) — C(Svs) (x)c(&s) (x)

n,m n—k,m k,m
k=0
For r =0 in (2.3.11) we get (see [26])
S (@) = aly (@), (2.3.15)

and for s = 0 we obtain

O (@) = b0 (). (2.3.16)
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Using (2.3.1), equalities (2.3.15) and (2.3.16) become

Dkag;zl)(l‘) — (S)ka(s-&-k—l)(x)’ for =0,

n—k,m

and
Dkbg:;zl)(x) = (T)kc(k’r) (x), for s=0.

n—k,m

Taking » = 0 in (2.3.9) and (2.3.16) we get

an(S’O) (m)c(o’r) (x) = —2msc(s+1’7871) ()

n

n—k,m k,m n—m,m
k=0
(s+1.s) (s+1,5)
+ 2wsc, _q , (x) — dmsc, ) 0 (@)

For j = s =0 and r = k+ 1 form (2.3.9) and (2.3.16) we get the
representation

k+1
(k+ 1Y\ (k)
pk) — _9Yi (k)
o) =32 (* Tl o)
=0
and for j =r =0 and s = k + 1 we get the representation
k+1
(k+1
(k) — _9)i (k)
othe) = 3 (")l o)
2.2.4 Numerical sequences

Polynomials {R, n(z)} and {r,m(x)}, respectively, are defined by
(see [26])

(o]
(1—pat—gt™) ' = Rym(2)t", m>1, (2.4.1)
n=0
and -
= Y @)t
— =N T ra)tt, m>1. (2.4.2)
1 — pzt — qt™ o

Comparing generation functions for polynomials A, (x) and Ry, ,,,(x), we
conclude that polynomials A, (z) are a special case of Ry, ,,(z). Namely, the
following equality holds

Ry 2(z) = Ap(z).

Also, polynomials By, (x) are a particular case of polynomials ry, y,(z). Pre-
cisely, the following equality holds

rn2(2) = By(z).
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From (2.4.1) and (2.4.2), respectively, we obtain recurrence relations
Rym(x) = prRy—1m(x) + qRy—mm(z), n>m, (2.4.3)
for R_1m(z) =0, Rym(z) = (px)", n=0,1,...,m—1, and
Tnm () = Pxrp—1.m(x) + @rn—mm(z), n>m, (2.4.4)

for 7o m(x) = 2,y m(z) = (px)"*, n=1,2,...,m—1.

Polynomials Ry, ,,,(x) and 7, ,(x) reduce to the following polynomials,
taking particular values for p and g:
1. for p=2 and ¢ =1, R, 2(x) are Pell polynomials;
2. for p=2and g =1, rp2(x) are Pell-Lucas polynomials;
3. for p=1and ¢ = —2, R, 2(z) are Fermat polynomials of the first
kind;
4. for p =1 and ¢ = —2, 1, 2(x) are Fermat polynomials of the second
kind;
5. for p = 2 and ¢ = —1, R, 2(z) are Chebyshev polynomials of the
second kind;
6. for p = 2 and ¢ = —1, r,2(z) are Chebyshev polynomials of the
first kind (rg2(z) = 1);
7. for p=1and ¢ =1, Ry, 2(x) are Fibonacci polynomials.
It is possible to prove that the polynomial x — Ry, »,(2) is one particular
solution of the homogenous differential equation of the m-th order

y™ +3 " aay® =0, (2.4.5)
s=0

for as (s =0,1,...,m) given by

m

A* fo. (2.4.6)

as = — '
mgqs!

This result can be proved in the same way as the analogous result is
proved in [76].
For m =1,2,3, from (2.4.5) and (2.4.6) we get differential equations

(1+px> y — Lny =0,
q q

2 2 2
AN N A
< + qm)y + Ty n(n+2)y ,
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4p3 3\ m 20]?3 2 p3 /
1+ — —_— - — -3
( + 27qw >y + 9 %y gqn(n )xy
p3

For particular values of p and g we can find differential equations for Pell,
Fermat polynomials of the first kind, Chebyshev polynomials of the second
kind and Fibonacci polynomials.

It is also interesting to consider numerical sequences {R, ,(3)} and
{rnm(3)} for p =1 and ¢ = —2. From the recurrence relation (2.4.1), for
m =2, p=1and ¢ = —2, we get the difference equation (see also [26])

Ru2(3) = 3Rp_15(3) — 2Rn_22(3), (2.4.7)

with staring values Ry2(3) =0, R12(3) = 1.
The solution of the equation (2.4.7) is given by

Rpa(3)=2" — 1.
Now, for m = 3, p=1 and ¢ = —2 we obtain
R, 3(3) = 3R,-13(3) — 2R, —33(3), (2.4.8)
with starting values Ro3(3) =0, R13(3) =1, R23(3) = 3.
The solution of the difference equation (2.4.8) is given by

Roa(3) = % (~2+ @+ VA - V), nz0

Similarly, for m = 4 we get
Rn74(3) = 3Rn_174(3) — 2Rn_474(3), n >4, (2.4.9)

with starting values Rp4(3) =0, R14(3) =1, R24(3) =3, R34(3) =09.
Solving the equation (2.4.9) we find that

Rn74(3) =C1+ Cgkig + Cgkg + 04]{2,

where

1
ki =1, k2:3<2+ 6/53—1-3\/2014- \3/53—3\/201>,

k3=é<(—1+z‘x/§)3 53 4+ 3v/201 — (1 +iv/3) 53—3\/2071+4>,
k4:é<(—1+i\/§)3 53 — 3v/201 — (1 +iV/3)\ 53+3¢207+4).
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Coefficients C'1, Cy, C3 and Cy are solutions of the system of equations
Ci+Co+C3+Cy =0, Ci+Coky+ Csks+ Chky =1,
Cy + Cok3 + C3k2 + Cyk? =3, Oy + Coks 4 C3k3 4+ Cuk3 = 9.

Similarly, for p = 1 and ¢ = —2 we get numerical sequences {r,2(3)},
{rn3(3)}, {rn4(3)}. Namely, for m = 2, m = 3 and m = 4, respectively,
from (2.4.2) we obtain difference equations:

1. For m = 2 we get the equation
Tn,2(3) = 3rn—12(3) — 2r,—22(3), 102(3) =2, 112(3) =3,
whose solution is given by

rm2(3)=2"+1 (n>0).

2. For m = 3 we get the equation

Tn,3(3) = 3rn_13(3) — 2r,—33(3), n >3, (2.4.10)

with 793(3) =2, r13(3) =3, r23(3) = 9.

The solution of the equation (2.4.10) is given as

nﬁ@):é(2+@+w@ﬂ1+¢®"+@—w@x1—¢$ﬂ.

3. For m = 4 we get the equation
Tna(3) = 3rp—1,4(3) — 2rpn—1.4(3), (2.4.11)
with starting values
r04(3) =2, 11.4(3) = 3, roa(3) =9, r34(3) = 27. (2.4.12)
The solution of the equation (2.4.11) is given by
rna(3) = C1 + Caky + C3ky + Caky,

where

kl =1 )
1

b__3<2+-V%3+3V2mf+@%3—3va>,
1

k3:6<(1+iv®353+3Vm1u+¢¢$3533 m1+4>,
1

k4—6<@4+4¢®353—3vW — (14iV3)\/53+3 m1+%>



Chapter 3

Morgan—Voyce and
Jacobsthal polynomials

3.1 Generalizations of Morgan—Voyce polynomials

3.1.1 Introductory remarks

In this chapter we investigate a large class of polynomials {Up m(p, ¢; )},
which depends on parameters m, p and ¢. Particular cases of these poly-
nomials are the following: polynomials {U,(p, ¢;x)} introduced by André-
Jeannin in [3] and [4], Fibonacci polynomials F,(z) and Pell polynomials
P,(z) (see [60] and [61]), Fermat polynomials of the first kind ®,(z) (see
[25] and [43]), Morgan—Voyce polynomials By, (z) (see [58], [84] and [89]),
Chebyshev polynomials of the second kind S, (x), and polynomials ¢, (z)
introduced by Djordjevi¢ in [33]. Actually, polynomials Uy, ., (p, q; ) are
related with particular cases in the following way:

Un,2(07 —1;2) = Fp(x),
Un2(0,—1;2z) = Py(x),
Un2(0,2;2) = ®,(x),
Un+12(2,1;z) = By(x),
Un2(0,1;2z) = Sy, (z),

Uns(p,¢;7) = ¢n(p, ¢; ).

95
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3.1.2 Polynomials U, »(p, q; x)

In this section we consider polynomials U, (p,¢;x), which are introduced
by André-Jeannin (see [2], [3]). We mention several interesting properties
of these polynomials, which are related to the investigation of generalized
polynomials U, (p, ¢; ).

Polynomials U, (p, ¢; z) are defined by the recurrence relation

Un(p,q;%) = (x + p)Un—1(p, ¢; ) — qUn—2(p, ¢; ), n > 2, (1.2.1)

where Uy(p,q;z) = 0 and U;i(p,q;x) = 1; here p and g are arbitrary real
parameters (g # 0).

Using the induction on n, we can prove the existence of the sequence of
numbers {c,, (P, ¢) }k>0,n>0, such that the following representation holds

Un+1 P, 4T chk D, q ) (122)
k>0

where ¢, 1,(p,q) = 0 for k > n and ¢, n(p,q) =1, n > 0.

Let o and B be complex numbers, such that o+ 5 = p and af = q.

Comparing coefficients with z*, from (1.2.1) and (1.2.2) we get the rela-
tion

Cnj = Cn—1k—1 + aCp1 ) + B(Cn_1k — aCp_1}) (1.2.3)

where we use the convention ¢, ;, instead of ¢, x(p, ¢); we shall also use this
convention in the future.

Using (1.2.3), we can prove the following statement.

Theorem 3.1.1. For alln > 1 and k > 1, the following holds:

n—1

11—
Cnk = Ben1p+ Y eip

1=0

=acp_1k+ Y B g (1.2.4)
=0

Notice that in the case of Fibonacci polynomials, p = 0, ¢ = —1,
a=—f =1, than (1.2.4) becomes

n—1
k= —Cp—1k t+ E Ci k—1

1—
= Cp— lk+z n ZCzk—1~
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In the case of Morgan—Voyce polynomials of the second kind, p = 2,
qg=1, a = =1, the relation (1.2.4) becomes

n—1
k=Cn-1k+ Z Cik—1-
i=0

Interesting results in the paper (see [4]) are related to determination of
coefficients ¢, ,(p, ¢). Thus, the following statement holds.

Theorem 3.1.2. For alln >0 and k >0, (n,k € N), the following holds:

k(P g) = Y (k Z Z) <k ZJ> o', (1.2.5)

i+j=n—k

where

Zaijzo if s<0.

i+j=s

Proof. We use the following notations: U, (z) instead of U, (p,q; ) and cp
instead of ¢, k(p,q). Let

t)=> Unsi(2)t
n=0

be the generating function of the polynomials U, (z). Thus, using (1.2.1),
we find that

wherefrom we get
fl,t) =1 — (z+p)t+q) " (1.2.6)
Then, from (1.2.6) we conclude that

(k1R (1 — (z + p)t + qt?)~*+D) ) S Ul ()
n>0

:ZUgi)l Z n+k+1 )t

n>k n>0

is satisfied. For « = 0, using the fact ¢pq4 1 = AN (0)/k!, we obtain

n+k+1

(1 —pt+qt?)~FD =N " g it (1.2.7)
n>0
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Expanding the left side of (1.2.7) in powers of ¢, then using equalities
a+ B =pand af = q, we get

AV LAY
Cnrkk(P @) = D ( : ) < f >a B
S J
i+j=n
Now we conclude
enk(pa) = Y <:k >< P >aﬁf
i+j=n—k
Thus, the proof is completed. O

We mention the following two particular cases of (1.2.5).
1° If p? = 4q, then o = 3, and the formula (1.2.5) reduces to

n+k+1\ . (n+k+1 L
k(P q) <2k+1) <2k+1>@/)

If p=2and ¢ = 1, we get the well-known formula (see [110] )

N nr k1,
Bn(x)zz< 9% 4+ 1 )x .
k=0

If p =0, then from o = —f and (1.2.7) we get

(1 —pt+ qt2)f(k+1) — (1 + th)f(k+1) — Z(_l)n <’I’L + k> qnth’

k
n>0
wherefrom we obtain the following equalities:
n+k
Con+kk(0,q) = (—1)"< " >qn and

Contk+1,k(0,9) =0, (n >0,k >0).

Previous equalities can be written as

k
Cpn—2k—1 =0, for n—2k—-12>0.

—k
Cpn—2k = (—1)k<n >qk, for n—2k >0,
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Now, using (1.2.2) we get

n/2 L
Unt1(0,q;7) = Z(—l)k< L )qkw”_%-

k=0
If ¢ = —1, then the last formula is the representation of Fibonacci polyno-
mials:
[n/2] n—k
Foyi(z) = kz—o ( 1 )xn_%

For ¢ = 1 we have the representation of Chebyshev polynomials of the second
kind, i.e.,

n/2 B
Spi1(z) = Ups1(0, 15 2) = Z(_l)k<” ) k) (22)7*,

k=0

3.1.3 Polynomials U, ,,(p, ¢; )

Polynomials Uy, i (p, ¢; ), where p and g are real parameters (¢ # 0), are
defined in [35] by the following recurrence relation

Unm(®,¢;2) = ( +p)Un—1,m(0, ¢ ) — QUn—mm(p,¢;x), n>m, (1.3.1)
for Upm(p,q;2) =0, Upm(p,q;2) = ( +p)" Ln=1,2,...,m— 1.

Let aq, a9, ..., ay be real or complex numbers such that:
m
Zai =p, Zaiaj =0,..., araz---aym=(—1)"q. (1.3.2)
i=1 i<j

In this section we use a shorter notation Uy, n,(z) instead of Uy, (p, ¢; ).
Naturally, sometimes it will be necessary to use a complete notation.
From (1.3.1) we find several terms of the sequence of polynomials U, ,, (z):
UO,m(:E) = 07 Ul,m(x) = 1a UQ,m(m) =T +p>
Usin(2) = (x + )% ...\ Unm(z) = (z +p)" 7,
Un+im(z) = (x+p)™ —q. (1.3.3)

From (1.3.3) and (1.3.1), by induction on n, we conclude that there exists
a sequence {cp (P, q)}n>0k>0 such that the following representation holds:

Uni1m(®) = cnr(p,q)at, (1.3.4)
k>0
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where ¢, 1(p,q) = 0 for n <k, cpn(p,q) = 1.

The most important result in [35] is concerned to the determination of
coefficients ¢, 1 (p, q). Several formulae of this kind are proved in [35]. Some
of these formulae follow.

Now, from (1.3.4) and (1.3.1) we get the relation

Cn k(D @) = cn—1k—1(0, @) + Pen—1£(P, @) — GCr—m k(P q), (1.3.5)

forn >m,k > 1.
Using standard methods, from the recurrence relation (1.3.1), we find
the generating function f(x,t) of polynomials Uy, ,,,(x):

flz,t) =(1—(x+p)t+q™)” ZUnHm . (1.3.6)
n>0

We formulate the following result.

Theorem 3.1.3. For every k > 0 the following holds:

(1 —pt+qt™) " =3"d, 1 (p,)t", (1.3.7)
n>0
where
[n/m]
dnk(p,q) = Z (=1)"q"gn ge;m(r)p" ™", (1.3.8)
r=0
and

o= ()

Proof. Differentiating (1.3.6) one-by-one k-times, with respect to z, we get

(k
R (1= (a4 p)t+gt™) " FD =30 (@)
n>0

Now, for = 0 we obtain

Lok [
n,k(p7 q) = HU'r(z—‘r)l—l—k,m(p?q; O) = HU’r(L-‘r)l—‘rhm(O’ Q7p)
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Expanding the left side of (1.3.7) in powers of ¢ we obtain
Z dn 1o (p, )" = (1 — pt + qtm)—(k+1)

n>0
k —I—?’L) n m—1\"
= Z R t (p —t 1)

n>0
[n/m]
=D " (1) ¢ gnpm ()"
n>0 r=0

where

o G !

Comparing coefficients with t", from the last equalities we get the formula
(1.3.8). Thus, the statement is proved. O

Theorem 3.1.4. The following formula holds:
[(n—k)/m]

ek 0) = D> (=1)q g (r)p" . (1.3.9)
r=0

Proof. First, from the recurrence relation (1.3.1) we get

Un+1,m(P, ;%) = Ungp1,m(0, ¢3¢ + p). (1.3.10)
Now, using (1.3.4) and (1.3.10), we get

1 &
ke (P, @) = qungk,m(p, ¢:0) = dn 1 (p, @) (1.3.11)

So, from (1.3.11) and (1.3.8) we obtain the formula
[(n—Fk)/m]

k(P @) = dn ki) = D (1) q Gn k()" F
r=0

This equality is actually the same as the formula (1.3.9). O

Using the Taylor formula and (1.3.4) we find that

cn (D, q) = k,Uéﬁl m(0,4;p). (1.3.12)

Differentiating both sides of (1.3.12) in p, where ¢ is fixed, we get the
following formula
1 8cn,k (p7 Q)
E+1  o9p

Cn,k+1(p7 Q) =
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3.1.4 Particular cases

Remark 3.1.1. For m = 2 the equality (1.3.9) reduces to

)/ n—r\(n—k—-r
D DI T G it

which is obtained in [4].
For m = 3 the equality (1.3.9) becomes the following formula, which is
originally obtained in [35]:

n—k)/3)

((
n—2r\[/n—k—2r\ ,_i_a.
enk(Pa) = Y (—1)’"(17"( i )< . )p” ks

r=0

The equivalent form of this formula is

(n=k)/3 3\ /20
S D D (el [ G P

r=0

Notice that for & = 0 the equality (1.3.9) reduces to the equality

o/ o
cn,o(p,q)ZZ(—l)’”q’”(n (m=1)

>pnmr = Un-l—l,m(pa q; O)
r=0

r

On the other hand, using (1.3.2) we see that coefficients ¢, 1 (p, ¢) can be
expressed in terms of parameters aq, as, ..., a,,. Hence, the following result
holds.

Theorem 3.1.5. The following formula is valid

k+i ktim\ 5
k)= Y ( k1>< B >a11~--amm. (1.4.1)

i1+ +Him=n—k

where 3, ;g aij =0 if s <O0.

Proof. Using (1.3.2), from (1.3.7) we get

Z dmk(pa Q)tn = (1 — pt + qtm)f(k+1)
n>0
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Thus, we obtain the equality
kE+i1\ (k+1i - -
S =3 3 ()M )ai el
n>0 n>0 i1+ +im=n

Now, (1.4.1) follows easily. O

Next, we consider particular cases of the equality (1.4.1).
1. For m = 2 we have the equality (see [2])

E4+i\ (k+7\ i
n (P, q) = | Z ( N ) < N )ala;. (1.4.2)
i+j=n—k
If p? = 4q, then a = §3, and the formula (1.4.2) becomes (see [4])

n+k+1\ , . [(n+k+1 L
n ; frd n — 2TL .
Cn k(D) q) (2k+1) <2k+1>(p/)

If p=2 and ¢ = —1, then we get the well-known formula ([110])
" nt k1 e
By, = " )
(z) kz_o( 2% + 1 )x

where B, (x) is the Morgan—Voyce polynomial.
If p =0, then & = —f and the formula (1.4.2) reduces to

Cn,n—Qk;(O, q) = (_l)k <n ; k

Cn,n72k71(07 q) =0, n—-2k-12>0.

)qk, n—2k >0,

In this case we have the representation

(n/2 .
Unt1(0,¢; ) = Z(—l)k< " )qu”_’“-

For ¢ = —1 this representation reduces to the representation of Fibonacci
polynomials

2
Foi(z) = Z ( . )xn2k‘

k=0
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For ¢ = 1 the same representation reduces to the representation of Chebyshev
polynomials of the second kind

/2 B
Sp1(@) = Unga (0, L) = Y (=1)F <n . k) (22)" 2.

k=0
2. For m = 3 we have the formula (see [33])
enk(prq) = Z ( N )( N )( N )a1a2a3. (1.4.3)
i+j+s=n—k
If oy = ag # asg, then from (1.3.2) it follows

2 P
ap =aq = ——, Q3= —

S 27q = 4p°.
3 3 q=4p

So, from (1.4.3), we obtain the following formula (see [33])
2k +1+9\ (k+7 p\n—k
eok(pa) = Y (=12 ( . )( . ‘7) (§> .
i+j=n—k L J

3. For k = 0 the equality (1.4.1) becomes

o) = Y aftai - = Untim(p, ¢; 0).

11t tim=n

3.1.5 Diagonal polynomials

A.F. Horadam frequently used the diagonal method for constructing poly-
nomials. The similar method for obtaining polynomials pﬁm(:ﬁ) is described
in Chapter I. We use this method to obtain polynomials f, ,(x):

n/m

[n/m]
frv1m(z) = Z cn—k k(D Q)xk, (1.5.1)
k=0

with fom(x) = 0. Let coefficients {c,, 1 (p, ¢)} be given in the following table:
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Table 1.5.1

n\k 0 1 2 m—1| m | m+1
1 1 0 0 0 0 0
2 D 1 0 0 0 0
3 p? 2p 1 0 0 0
m—1 pmf2 (m - )pm73 (m2—2)pm74 0 0 0
m p" | (m—1)pm2 (mgl)pm_?’ 1 0 0
m+1| p™ mp™ 1 (y)p" mp 1 0

fom(x) =0, fim(@) =1, fom(z)=np,
fam(@) =p* + 2, fam(z)=p°+ 2pa.

following result.

Then, from the Table 1.5.1, summing along rising diagonals, we get

(1.5.2)

Next, from (1.5.1) and (1.5.2) by the induction on n we can prove the

Theorem 3.1.6. For n > m— 1 polynomials fr, m(z) satisfy the recurrence
relation

fn+1,m($) = pfn,m(m) + ﬂffn—l,m(x) - an+1—m,m($)-

(1.5.3)

Remark 3.1.2. For m = 2 the relation (1.5.3) reduces to the relation proved
by André-Jeannin (see [2])

frt12(x) = pfa2(®) + (2 — q) fo-12(2).

Jn3(@) = pfn13(x) + 2 fr23(x) — qfn33(x),

where we put n + 1 instead of n.

Also, from (1.5.3) and m = 3, we obtain the relation (see [34])
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Finally, we consider one specific class of polynomials {U, (x)}, which are
defined by the recurrence relation (see [34])

Up(z) = (z +p)Up-1(z) — qUp—2(x) + rUp—_3(z), n > 3. (1.5.4)

So, using (1.5.4), we get the generating function
[ee)
F(x,t)=(1— (z+pt+qt* —rt?) 1 = Z Up+1(z)t".
n=0

Again, from (1.5.4) by the induction on n we conclude that there exists
a sequence {cy k(p, q)}, such that the following representation holds:

n

Un+1 (LU) = Z Cn,k(pu q, T)‘rku

k=0
where coefficients ¢, (p, q,r) are determined by
D enkk(p @)t = (1= pt+qt* —rt®) Y, (1.5.5)
n>0
Let a, 8 and v be real or complex parameters, such that
atf+y=p af+tay+pPy=gq, aby=r.
Let « = 8 =+ = p/3. Then

Then, using (1.5.5), we obtain
_ 3k+2+n\ /p\»
ZC +k,k(p;q77’) ( a ) Z 3k+2 3
n>0 n>0

Hence we get

2k+2+n\ /p\nF

Ifa=p=~v=1 (e p=qg=3,r=1), then coefficients (1.5.6) become
coefficients of generalized Morgan—Voyce polynomials B} () (see [33], [34]),

i.e., we get
n
n+ 2k +2
Bl(z) = Z ( Sk 4+ 2 >ﬂ?k
k=0
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3.1.6 Generalizations of Morgan—Voyce polynomials

Two classes of polynomials {Rg% (z)} and {an (z) are defined and investi-
gated in [34]. Particular cases of these polynomials are the following: poly-

nomials P."” (x) (see [2]), polynomials QY (x) (see [61]), classical Morgan—
Voyce polynomials b,(x) and By (z) (see [2], [5], [110]). Hence, it is natural
to say that polynomials Pfl%(x) and ngﬂ(aﬂ) are generalizations of classical
Morgan—Voyce polynomials by, (z) and By (x).

First we define and consider polynomials P,g%(:c), and in a special case
we have Morgan—Voyce polynomials b, (z) and By, (z).

3.1.7 Polynomials P\),(z) and Q). (x)
Polynomials P,sr,)n(az) are defined by the recurrence relation

P, (x) = 2P,

) (@) = Py (@) + P @), n=m, (LT
with starting values

PW (x)=1+nr, n=0,1,...,m—1, Pg’%(x):1+mr+x.

n,m
Hence, we obtain the first m + 2 terms of the sequence { P7(LT,)n(x)}
P (z) =1, P{")(x) = 1+r,...,PL), (x) = 1 +mr +z,
PyEI-)s—lm(iﬁ) =1+ (m+1r+3+r)z. (1.7.2)

Starting from (1.7.2), by induction on n we conclude that there exists a
sequence {bg?ﬁ}nzo,kzoa such that the following representation holds:

[n/m]
P (@) = bat, (L7.3)
k=0

where bT(:L =0 for k < [n/m)].
In the case k = 0 we have the equality

b") = P\ (0). (1.7.4)

n, n,

For x =0, in (1.7.1) and (1.7.4) we get the difference equation

o) = 2

n—1,

o b0 n=2m>1, (1.7.5)
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with the starting values bg:()) =1, bgf()) = 14 r. The solution of the difference
equation (1.7.5) is given by

b)) =1+nr, n>0. (1.7.6)

n,

Now, from (1.7.1) and (1.7.3) we obtain the recurrence relation

bﬁj} =27, - bﬁfzz,k + b)) n=>m, k=1 (1.7.7)

n—1, n—m,k—1’
The following statement holds.

Theorem 3.1.7. Coefficients bgi satisfy the relation

)

=00+ S0 nzm, k> (1.7.8)
s=0

Proof. A straightforward computation shows that (1.7.8) holds for all
n = 0,1,...,m — 1. Let (1.7.8) be true for any n (n > m). Then, for
n + 1 using (1.7.7) we get

bg}rl,k = 2653@ - bgzl,k + bfﬁrl—m,k—l

= bggﬁ + bgﬁl,k + Z bi’,}i_l + bg?rl—m,k—l - bfzrll,k:

s=0
n+l—m

_ (M (r
- bn,k + Z bs,k—l'
s=0
Now, (1.7.8) is an immediate consequence of previous equalities. ]

It is important to mention that coefficients bgi can be expressed in terms
of parameters n, k, m and r, and it is precisely formulated in the following
theorem.

Theorem 3.1.8. Coefficients bfgC are given by the formula

b0 = (n - (Zbk_ 2)k> + r(n _Q(km;f)k), (1.7.9)

where (P) =0 for s> p.
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Proof. Using (1.7.5) we conclude that the formula (1.7.9) is valid for k£ = 0,
as well as in the case n = 0,1,...,m — 1 since now we also have & = 0.
Suppose that the formula (1.7.9) is valid for n — 1 (n > m). Then, using
(1.7.7), we get

b(ik = 2b£:21,k - bng,k: + b(r) 1= Tnk T TYnk;

n n—m,k
where
_s n—1—(m-=2)k\ (n—-2-(m-2)k
Tk = % + 1 2%
—m — -2k -1
L (rm— m=2(k—1)
2k — 2
and

o (n—1—(m—-2)k
y”’k2< 2% + 1 >

Using the well-known formula
-1 -1
")) 0)
S s—1 ]
we obtain

n—(m-—2)k n—(m-—2)k
:vmk—( (2k ) ) and Z/n,k—< 2(k—|—1 ) )

Hence, the formula (1.7.9) is valid for every n € N. O

We mention some particular cases.
For m = 1 and r = 0, then for m = 1 and r = 1, from (1.7.9) we get
coefficients

0 _ n+k p( _ n+k L n+k\ (n+1+k
wk o\ 2k )0 R\ 2k 2k+1)  \ 2k+1 )
These coefficients, respectively, correspond to Morgan—Voyce polynomials

bp(z) of the first kind and B, (z) of the second kind (see [61]). Thus, we
have the following representations

" In+k " n+1+k
bn+1<w>=2< o )xk and B"“(”’”):Z( 2% + 1 >xk

k=0 k=0
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It is easy to verify that coefficients bELOL and bSI)C satisfy the relation (see [34]):

1)
n,k

So, for m = 1, it follows (see [110])

B, (x) — Bp—2(x) = by(x) + bp—1(x).

(0) 0)

1
by g — bgz—)Q,k = bn,k + bq(q,_Lka n>2. (1.7.10)

Furthermore, Morgan—Voyce polynomials are a special case of polynomi-
als Rg#? (x) (see [40]), which are defined as

RUW(z) = 2RV (2) — RUY) () + 2RV, (x), n>m,
for
RUM(x) = (n+1)r+u, n=0,1,...,m—2, R (2)=mr+u+uz.

One representation of these polynomials is

[n/m]
R ()= Y et ak,
k=0

where

(r) _ (n—(m—=2)k n+1—(m—2)k n—(m—2)k
cn+1,k_u< 2]'(7 +r 2IC+1 + 2]{;—1 .

Notice that:

RV (2) = busa(x), RUV(@) = Bua(e), RGP (2) = P, (@),

n,

Remark 3.1.3. The sequence w,, = Pég)(l) satisfies the recurrence relation
Wy, = 3wp_1 — wp—2 (see [4]). On other hand, the sequence {Fsy,}, where F,
denotes the usual Fibonacci number, satisfies the same relation. From this,
it is easily verified that

P (1) = Fopta + (r — 1) Fap = Fapiy + rFap.

n,2

Also, we have (see [4])

PY(1) = Fon, P,(l,lg)(l) = Fant2,

n,2

P(2)(1) = F2n+2 + FQn — L2n+1>

n,2

where L,, is the usual Lucas number.
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Similarly, we can define polynomials Q,(fzn(x)
Namely, the polynomials {ngn(x)} are defined (see [34]) in the following
way

QU (@) =200 (@) = QW4 (@) +2QY) (@), n=m,  (L7.11)

with starting values

Q

g,zn(m)=2+nr, n=0,1,....,m—1,
Q)

'm(T) =2+ mr+ . (1.7.12)

It can be shown (as in the case of polynomials Pér,)n(:c)) that there exists a

sequence {dg?{}, such that the following representation holds

fn/m]
QU (x) = d)at, (1.7.13)
k=0

where d,(;:% =1forn>1and dﬁ{j% =2 for n=0.
For £k = 0 we have
diy = QU (0). (1.7.14)

Hence, we conclude that the difference equation

df;% =2\, — dfﬁzo (n > 2), (1.7.15)

holds, with starting values
d((]f()) =2 and dgf()) =2+
A solution of the difference equation (1.7.15) is, obviously,
A7) =2+ nr, n>0. (1.7.16)
Also, from (1.7.11) we get the relation

dh =2d,  —d,, +dV (n>m, m>1, k>1). (L7.17)

n—m,k—1

Comparing coefficients df:;g and bggﬁ we obtain the equality

dl) =6 40 n=0,1,..m—1.

Therefore, the following result can be proved by the induction on n.
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Theorem 3.1.9. Coefficients dg;{: are given by the formula

=i+,
_(n—(m—-2)k n—1—(m-—2)k n—(m-—2)k
_( 2% >+( 2% T w1 )

Alternatively,

i = n_(nli_l)k <n : 12_k (—ml_ 2>k> * T<n _2(1em+_12)k>'

For m =1 and k > 0 we have the equality (see [110])
d(r)—ﬁ n—1+k Y n+k
mh e\ 2k—1 2k+1)

Remark 3.1.4. For m =1 and « = 1, we have the sequence v, = Q(T) (1).

n,l
This sequence satisfies the recurrence relation v, = 3v,_1 — v_9. Also, it

holds the relation v, = PT(Lrl) (1) + P£?171(1). Furthermore, it can prove that
holds (see [61])
vn = Lon + 1B, QU1 (1) = 2P0 (1),

n,1

r

Comparing coeflicients of the polynomial Py,)n(x) i Qn}n(x), it easily
verified that (see [33])

(z)+P" (2), n>1.

n—1m

x) = P

n,m

O
o
37

Also, it easily verified that

Qi (x) = P{h(x) — By(x).

n,

For m =1 the last equality reduces to

QY (x) = PV (z) — PYy(x) = Bus1(2) — Buos (@),

which is originally proved in Horadam’s paper [61].

Hence, the polynomial Q%O)(x) has the representation

" n/n—-1+k
Q%O)@):Zk( 2% — 1 )ka'

k=1
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3.2 Generalizations of Jacobsthal polynomials

3.2.1 Introductory remarks

Most parts of our investigation are concerned to generalized Jacobsthal and
Jacobsthal-Lucas polynomials. For the convenient of the reader, we mention
important properties of ordinary Jacobsthal polynomials J,,(z) and ordinary
Jacobsthal-Lucas polynomials j, ().

Polynomials J,,(z) and j,(z) are defined by (see [62])

Into(x) = Jpyi1(x) + 22d,(z), Jo(z) =0, Ji(x) =1, (2.1.1)

Jn+2(x) = Jn+1(z) + 2240 (2), Jo(2) =2, ji(z) = 2. (2.1.2)

Remark 3.2.1. Observe that J,(1/2) = F,, and j,(1/2) = L, respectively,
are the n'* Fibonacci and Lucas numbers.

Using (2.1.1) and (2.1.2) we obtain the following generating functions:
(1—t—2xt?)~ ZJ )L

and

(14 4at)(1 —t — 22t%) 71 Z]n i

wherefrom we get the following explicit representations

(n—1)/2]
n—1—k
=3 ("7 e

and

Jn(@) = [nf — (n . k) (22)*.

k=0
The following formulae are interesting:

Zn:Ji(x) — J”“éw)_l’ Z]Z M’

T 2x

n(2) = Jni1(2) + 22 Jn 1 (2),
In(2) + Jn (@) = 2Jn41(2).
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3.2.2 Polynomials J,, ,,(z) and j, . (z)

In this section we define two classes of polynomials {J,, m(2)} and {jnm(z)}.
For m = 2 these polynomials, respectively, reduces to Jacobsthal J,(x),
and, Jacosthal-Lucas polynomials j,(z). Hence, for m = 2 all properties
known for generalized polynomials remain valid for polynomials J,(z) and

Polynomials {Jp, m(x)} are defined by the recurrence relation (see [36])

Inm(x) = In—1m(x) + 22 —pm(z), n>m, (2.2.1)
with starting values Jom(z) =0, Jym(z) =1, n =1,,...,m — 1. Polyno-
mials {jnm(x)} are defined by

Inm () = Jn—1,m(x) + 22jp—mm(x), n>m, (2.2.2)
with starting values jom(z) =2, jom(z) =1,n=1,...,m—1.

These polynomials are called generalized Jacobsthal polynomials. Poly-
nomials J,, o(z) and jy, 2(z) are investigated in [61]. For m =2 and z = 1 we
get sequences of numbers: Jacobsthal numbers {.J,2(1)} and Jacobsthal-
Lucas numbers {j,2(1)} (see [62]).

We consider characteristic properties of generalized polynomials Jj, ,,, ()
and jn m (), as well as characteristics of new classes of polynomials { F;, ,,, (x) }
and {fn m(z)}, which will be defined later. At the same time we consider
polynomials J,, y,(z) and jy, m(z). Using relations (2.2.1), (2.2.2) and the
well-known method we get generating functions F'(z,t) and G(x,t), respec-
tively (see [36], [37]):

1 > _
F(a,t) = == = 2 Jam(@t", (2:2.3)
n=1
and -
1+ 4gtm—1 . _
G(@,) = Ty g = 2 Jam(@E" (2:2.4)
n=1

So, using (2.2.3) and (2.2.4) we get explicit representations of these poly-

nomials:
(-2l n—1—(m-1)k i
Inm(x) = 2 ( L >(2af) , (2.2.5)
and )
} _nmn—(m—Q)k: n—(m-—1)k
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Remark 3.2.2. For m = 2in (2.2.5) and (2.2.6) we get the explicit formulae
for J,,(z) and j,(z) (see [62]):

=172 ,
= ("7 )er

and

Jn(@) = [nz/z} - ﬁ - (n . k) (22",

k=0
Let D = d/dx be the differentiation operator and let DF Inm(x) =
Mon (@), i.e., DX fnm (@) = jilon ().

The following statement holds.

Theorem 3.2.1. The following equalities hold:
jnﬂl(x) = Jmm(l’) =+ 4an+1—m,m(x); (227)

T (@) = I8, @)+ 2R (@) 4 220

n—m,m n—m,m

(2), k>1;  (2.2.8)
i® @) =P @)+ 4k (@) 4ed ) (@) (2.2.9)

n+l—-m,m

38 (@) = 3% (@) + 28580 (@) 2P @) k> 1 (2.2.10)

= 1
Z Ji(,lfv)z(x)Jﬁi,m(x) = <tm_1(k‘ +s+1) (k ;: S)) Jé’fntsﬂ)(x);

=0
(2.2.11)
() () R S R
i (@) I m (@ o x); 2.2.12
2 im (@) Jn—im (@) = 2t st ()™ (x) ( )
) ©, (2-1)° (st
( ) = J ; 2.2.13
" . Jn+m7m(l') — 1
Z Jim() = ST S (2.2.14)
=1
- 'n m,m -1
3 i) = I T2 @1 (2.2.15)

2z
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Proof. From the definitions (2.2.1) and (2.2.2), we can see that (2.2.7) is
true.

To prove (2.2.8), (2.2.9) and (2.2.10), we are going to use (2.2.1) and
(2.2.2). Namely, differentiating (2.2.1), (2.2.2) and (2.2.5), k-times, with
respect to x, we obtained required equalities (2.2.8), (2.2.9) and (2.2.10).
Similarly, using functions F'(z,t) and G(x,t), we obtain equalities (2.2.11)—
(2.2.13). m

Remark 3.2.3. For m = 1, m = 2 and m = 3, respectively, we obtain
polynomials (see [62]):

In1(z) = Dn(),  Jni(z) = dn(z),
In2(2) = Jn(®),  jn2(@) = jnlz),
ng(l’) = Rn(x)a jn,3(x) = 7’n(x)

For s = 0 in (2.2.11) and for £k = 0 in (2.2.12), respectively, we have
equalities

I @) i) = (267 (k4 1)) ()

n
i,m
1=0
and
— 1—
_ AT T e

2(S+1) n,m (1.)7

(0)

where Jpm(x) = Jpm(2).

Hence, we conclude that for m = 1,2,3, equalities (2.2.7)—(2.2.15), res-
pectively, reduce to corresponding equalities for polynomials D, (x), d,(x),
Jn(2), jn(z), Rn() and ().

3.2.3 Polynomials F, ,,(z) and f, ()

We define and consider two more classes of polynomials (see [35]) {Fy m(z)}
and { fnm(z)}. These polynomials are defined by

Fom(x) = Fo_im(x) +20F,_pmm(z) +3, n>m, (2.3.1)
with Fom(z) =0, Fym(z) =1, n=1,2,...,m —1; and

fam (@) = facim(x) + 22 fr—mm(z) +5, n>m, (2.3.2)
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with starting values fom(z) =0, fom(z) =1, n=1,2,...,m—1.
From (2.3.1) we find leading m + 3 terms of the sequence {F), n,(z)}:

Fom(z) =0, Fim(x)=1,...,Fh_1m(x) =1,
Fom(@) =4, Fupym(z) =742z, Fyiom(z) =10+ 4x.

Then, from (2.3.2) we obtain

fO,m(x) :05 fl,m(ﬁ) — 1)"')fm—l,m($) - ]-7
frm(2) =6, fopim(z) =114 22, frirom(x) =16 + 4z.

Theorem 3.2.2. For polynomials Fy, m(z) and fnm(x), respectively the
following representations are valid:

[n/m]
Fn—l-i—m,m(x) = Jn—l-i—m,m(a:) +3 Z <n - (m N 1)r> (Q‘T)T? (233)

and

fatimn@) = Tocsiman() +5 3 ( - )>(2x)r, (2.3.4)

Proof. According to the recurrence relation (2.3.1) we know that the formula
(2.3.3) is valid for n = 1. Suppose that this formula is valid for some n
(n > 1). Then, for n + 1, we have:

Fn+m,m($) = Fo-1+m, m(z) + 22 F, m( )+3

[n/m]
—1)r ,
= n71+mm +3Z ( r4+1 )(21‘)—1—
[(n—m+1)/m}
n+l—m—(m—1)r ,
2¢ | Jom(z) + 3 ZO ( i1 )(2.@) +3

[(n+1)/m]
B n+1l—(m-—1r ,
= n+m,m($) +3 TEZO < rl ) (2$) .

Hence, the formula is valid for every n € N.
Similarly, by the induction on n we prove that the formula (2.3.4) is
valid. O
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The following interesting relation between polynomials Fy, ,,,(x), Jp m(z),
fnm(z) and Jy, (x) can be proved.

Theorem 3.2.3. The following formulae hold:

2$Fn,m(x) = Jner,m( ) + 2Jn+1m — 2z Z In— zm - a

233fn,m($) = Jn+m,m( ) + 4Jn+1 m — 2z Z In— zm - 5.

Immediately, we obtain the following equality

Frm () = Fom(z) = ‘Mlvm—(gj)_:[7

x
which implies the well-known equality (see [62])
fulz) — Fo(z) = ’”rl(x)

Differentiating polynomials in (2.2.5) and (2.2.6) in x, we get polynomials
Jélm( ) and j( ) m(z), respectively, whose representations are given as:

[(n—1)/m)]
LEICEDY R (235)
and
» _["/m]% — (m =2k (n—(m— DK, 030
iher = 2w n = (U e ese)

where J(l) (x) —37(117)71(:6) =0,n=0,1,...,m— 1L
Now, taking = = 1 in (2.3.5) and (2.3.6), respectively, we get sequences

{J}llq)n(l)} and { j,,(f%l(l)} We call these sequences the generalized Jacobsthal
induced sequence (derived sequence) and the generalized Jacobsthal-Lucas
induced sequence (derived sequence) (see [36]).

Next, we use the notation H, , instead of J,(Llr)n(l) and K., instead of
(1)

For the convenience of the reader, we introduce the following notations.
Sequences {J, n(2)}, {J,glr)n(a:)} and {H} ,} are presented in Table 2.3.1,

and sequences {jn.m ()}, {]7(117)71(:10)} and {K .} are presented in Table 2.3.2.
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Table 2.3.1
(1) 1
n Jn,m(x) Jn,m(-r) Hn,m
0 0 0 0
1 1 0 0
2 1 0 0
m—1 1 0 0
m 1 0 0
m+ 1 1+ 2z 2 2
m+ 2 1+4z 4 4
m+ 3 1+ 6z 6 6
2m — 1 14+2(m—1)x 2(m —1) 2(m—1)
2m 14 2ma 2m 2m
2m+1 | 1+2(m+ Dz +42? | 2(m+1)+8z | 2m + 10
2m +2 | 1+2(m +2)x + 1222 | 2(m + 2) + 24z | 2m + 28
Table 2.3.2
n (@) i @) K
0 2 0 0
1 1 0 0
2 1 0 0
m—1 1 0 0
m 1+4x 4 4
m+ 1 1+ 62 6 6
m+ 2 1+ 8 8 8
2m — 1 1+2(m+1)x 2(m+1) 2(m+1)
2m 1+2(m+2)x+822 | 2(m+2)+ 162 | 2m + 20
2m +1 | 1+2(m + 3)x + 2022 | 2(m + 3) + 40z | 2m + 46
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So, from Table 2.3.1 and Table 2.3.2, by the induction on n we find that

jn,m(x) = Jn,m(x) + 4xJn+1,m(m)
= Jnt1,m(2) + 221 —mm (). (2.3.7)

Further, we investigate induced sequences (derived sequences) {Jn 7)n( )}

{Jn,m( )}, as well as the sequences of numbers {H, .} and {K}, ,,}.
Let the function F(x,t) be given as in (2.2.3). Differentiating F'(x,t) in
x we get the generating function of polynomials {JY(LIT),L ()} in the form

2tm+1

Z IO (x = 0=z (2.3.8)

In the same way, starting from (2.2.4) we get the generating function of

polynomials { qu{%@(m)} in the form

. 2t"M(2 —t)
E (1) no_
. Ojn’m(z)t (1 —t— 2002 (2.3.9)

Taking x = 1 in (2.3.8) and (2.3.9), respectively, we obtain generating
functions of numerical sequences {H, .} and {K}, ,}. Hence, we have

th—‘rl

Z = 0o (2.3.10)

and

n o 2UM(2 1)
Z ot =0tz (2.3.11)

For better understandlng of properties of sequences {H, ,,} and {K}} .},
we mention characteristic properties of numerical sequences {J, (1)} and
{Jn.m(1)}. Further, we use notations {.J,, », } and {jn m }, respectively, instead
of Jn,m(l) and jn,m(l)‘

Taking z = 1 in (2.1.1) and (2.1.2), respectively, we get numerical se-
quences {Jy, m} and {jnm}. Starting from the definition of these sequences,
using properties which are proved for polynomials J, ,,(x) and jy, m(z), we
can prove that these sequences obey the following equalities:

Jnm = Jnm + 4dnt1—-mm = Int1,m + 2Jnt1—mm;
Jnt1,m + Inm = 3Int1m + 4Int2—mm — Jnm;
Jnt1m = Jaym = 4Int2-mm + Jam — Int1,m;
Jnttm = 2Jnm = 4dny2—mm + 2Jdnm — 3Jnt1m;
Inm + Jnym = 2ng1,m-
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For m = 2 these equalities become (see [63])

Jn = Jnt1 + 2Jn-1,
jn-i-l +jn = 3(Jn+1 + Jn)a
Jnt1 = Jn = 9Jn — Jnq1,
Jn1 = 20 = 3(2J5 — Jnt1),
In 4+ Jn = 2Jn41.
Here we use notations J,, 2 = J, and jp2 = j,. Similarly, from the

definition of numerical sequences H}Lm and K,%}m, we get that H}Lm satisfies
the relation

H;Lym = H?i—l,m + 2H711—m7m + 2Jnfm,m, nz=m (2.3.12)
with starting values H%m =0,n=0,1,...,m — 1. Also, corresponding
relation for K,%m is given by

KTlLym = K%—l,m + 2K7i—m,m + 2jnfm,m> n>m, (2.3.13)

with K}, =0,n=0,1,...,m—1.
Using known properties of polynomials Jy, ,,(x) and j, m(z), we easily
verify the following equalities:

Ky =Hyp+4H) o+ 4dn—mm, 1 >m— 1, (2.3.14)

Ky + Hpy o =2H) 1 . (2.3.15)
As a special case, for m = 2 equalities (2.3.12)—(2.3.15), respectively,
become (see also [68]):
Hyyp = Hypy + 2H, + 2,
K111+2 = K7lz+1 + 2K711 + 2Jn,
Ky = Hyyq +4H, +4Jy,
K+ 1Y =2,

Interesting properties of numerical sequences H}%m and K}Lm are given
in the following theorem (see [36]).

Theorem 3.2.4. Numerical sequences H%L’m and K}L’m satisfy

n
1

Z Hl{m = i(HTILer,m - Jn+m7m + 1), (2316)

=0
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Z - n+m m jn-i—m,m + 1)7 (2317)
Hp o +2(m = D)H), = 2nJp m, (2.3.18)
Ky =2(n 42— m)Jnt1—mm — 2(m — 2)H} e (2.3.19)

Proof. Differentiating (2.2.14) and (2.2.15) in z, then substituting = 1, we
easily verify equalities (2.3.16) and (2.3.17). Equalities (2.3.18) and (2.3.19)

can be proved using representations of polynomials Jélgn(x) and j,(llr)n(:r),
taking z = 1. O

Corollary 3.2.1. If m = 2, than equalities (2.5.16)—(2.5.19), respectively,
become (see [68]):

n
1
ZHzl = §(H71L+2 — Jny2 + 1)a

n
1 .
ZKz'l = §(K71L+2 = Jnt2 + 1),

H1 rio F2H! =2nJ,,
K} =2nJ, 1.

Finally, we mention one more generalization.

Taking x = 1 in (2 2.6) and (2 2.8), respectively, we obtain numerical se-
quences {Jy(bkr)n} ={H; .} and { Jn, m} = { mt For k =1 these sequences
reduce to the Well—known sequences { H, m} and {K} )

Namely, differentiating F'(z,t), which given by (2.2.3), with respect to
x, k—times, one-by—one, we get

mm T (1=t — 2qtm)ktT

next, for x = 1, we get the numerical sequence H,’f’m with generating function

Z Hk tn B 2kk!tmk+1
(1 —t—2¢m)k+l”
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Similarly, differentiating (2.2.4), k—times, with respect to x, next taking
x = 1, we obtain the sequence Kfim with generating function (see [36])

oo

2kk1(2 — ¢)pmk
SRk, = 2 REZ O
= (1—t—2tm)ktl

Numerical sequences {Hﬁm} and {Kﬁm} satisfy the relations

Hs,m = Hrlffl,m + 2kH’r]§:’r1n,m + QHVIffm,ma k>1,n=>m,
Ks»m = stlvm + 2kK7]§:7%n,m + 2K1]§7m,m7 k Z 17 n 2 m— 17

Ky = Hy gy + ARHN o A 4AH s K21, 02> m— 1,

n+l—-mm

3.2.4 Polynomials related to generalized
Chebyshev polynomials

In the paper (G. B. Djordjevic, [49]) we study several classes of polyno-
mials, which are related to the Chebyshev, Morgan—Voyce, Horadam and
Jacobsthal polynomials. Thus we unify some of well-known results.

Namely, classes of Chebyshev polynomials are well-known. There are
many classes of polynomials which are related to the Chebyshev polynomials.
We first define polynomials which will be investigated in the paper [49]. The
main aim is to define classes of polynomials which include, as special cases,
some well-known classes of polynomials. Then, we prove some properties of
new polynomials, and thus justify the motivation for introducing them.

The generalized Chebyshev polynomials €2, () and Vj, ,,(2) we intro-
duce here ([49]) as follows (z is a real variable):

Qo () = 2Qp_1m(2) = Quemm(x), n>m, n,m €N, (2.4.1)
with Qp m(z) =2", n=1,2,...,m—1; Qpym(z) =2 -2, and,

Vam(x) = aVop_im(x) = Voemm(z), n>m, n,meN, (2.4.2)
with Vi, m(z) = 2", n=12,....m—1; Vi) =2m -1

Using standard methods, we find that

Fr(t) = (1—t™) (1 —at+ ™)' = i@n,m(x)tn (2.4.3)

n=1
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and
GM(t)=(L—at+t") ' = Vom(a)t” (2.4.4)
n=1

are generating functions of polynomials Q,, ,,,(x) and V;, ,,(x), respectively.
By (2.4.3) and (2.4.4), we get the following explicit formulas:

fn/m]
_ _pen = (m =2k fn—(m =1k
Qo () = kzzo( 1) n—(m—l)k( . ) . (245)
fn/m] o
Vam(@) = ) (—U’“(n (k Uk) &k, (2.4.6)
k=0

For m = 2, these polynomials become the modified Chebyshev polyno-
mials ( [119]).
Next, we introduce the family of polynomials { P, ,(z)} by:

Ppm(x) =xPy—1m(z) + 2Py—mm(2) — Po—2mm(x), n > 2m, (2.4.7)

for n,m € N.
For m =1, (2.4.7) becomes (see [119])

P, (z)=(x+2)Py_1(x) — Pp_a(z), n>2,
for every P € {b, B,c,C}, where:

bp =1, by =x+ 1, (Morgan—Voyce polynomials)
By =1, B; =z + 2, (Morgan—Voyce polynomials)
co =1, ey =z + 3, (Horadam polynomials)

Co =2, C; =z +2, (Horadam polynomials).

The generalized Jacobsthal J;, ,,,(x) and Jacobsthal-Lucas jy m,(x) poly-
nomials (see [36], G.B. Djordjevi¢, Srivastava, [51]) are given by recurrence
relations, respectively, (2.2.1) and (2.2.2):

Inm(x) = In—1m(x) + 20p—mm(z), n>m, n,meN; (2.4.8)
with initial values
Jom(x) =0, Jym(z)=1, n=12,...,m—1;
and by

Jnm () = Jn—1.m(x) + 22Jp—mm(x), n>m, n,meN, (2.4.9)
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with
J’O,m(l‘) =2, jn,m(l“) =1, n=12,....,m—1.

By (2.4.8) and (2.4.9), we find the following explicit formulas ((2.2.5),
(2.2.6)):

[n/m]
o) — n—(m-—1)k o)
Tt 1,m() 2 ( . )(2 )", (2.4.10)
by — (- n—(m-—
Jnm(T) = 2 M( ( ) 1)k> (2z)*. (2.4.11)

First, we investigate the relationship between the Chebyshev polynomials
and polynomials P, 3(z). Next, we consider a general class of polynomials
that include polynomials by, (2), Bnm (), cnm(x) and Cpp(x). Also, we
investigate the relationship between the Chebyshev and Jacobsthal polyno-
mials, and, we consider mixed convolutions of the Chebyshev type.

3.2.5 Polynomials P, 3(z) and Chebyshev polynomials

Obviously, the polynomials P, 3(z) satisfy the following recurrence relation
Pn,g(l’) = l’Pnfl,g(l') + 2Pn,3’3(1‘) - Pn76,3($)7 n > 6, (2.5.1)

where P, 3(x) € {bn3(z), Bp3(x),cn3(z),Cp3(z)}, with the following sets
of initial values, respectively:

bus(z) =1, bis(z) =z, bag(x) = 22, byz(x) = 2 + 1,
bysg(x) = x* + 3z, bs3(x) = 2 + 5a*;

Bno(x) =1, Bis(x) =z, Bas(zx) =22 Bss(z)=a2>+2,
Bys(x) = x* + 4z, Bs3z(x) = 2° + 62;

co3(r) =1, c13(x) =z, co3(z) = 2%, c33(x) = 2° +3,
ca3(w) = 2t + 52, c53(x) = 2 + Ta?;

Cos(z) =2, Cr3(z) =z, Ca3(z) = 2%, Cy3(x) = 2° +2,
Cus(x) = 2* + 4z, Csa(x) = 2° + 62°.

Now, we prove the following result.
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Theorem 3.2.5. Using previous notations,
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the following identities are

fulfilled:

(—D)"xcnsz(—2%) = Qonr16(x), n>0; (2.5.2)

(—1)"Cr3(—2%) = Qape(x), n>0; (2.5.3)

(=1)"bns(—2%) = Vang(z), n>0; (2.5.4)

(-1 )ann,s(— %) = Vony16(z), n>0; (2.5.5)

cnt33(7) — en3(x) = Cpyza(x), n>0; (2.5.6)

bnt3,3(%) + bn3(z) = Cnyzs(x), n=0; (2.5.7)

133(x) — Cp3(z) = xepq23(x), n>0; (2.5.8)

(90) + B3 3(2) = cng(x), 1 >3; (2.5.9)

n3(%) — Bnog3(z) = Cps(z), n=>6 (2.5.10)

Proof. We prove theorem using the induction on n. The equality (2.5.3) is
satisfied for n = 1, by (2.4.1). Suppose that (2.5.3) holds for n — 1 instead
of n (n > 1). Then, using (2.5.1), we get:

(_1)n n,3(—SL‘2) = (—1)” (—l’2cn_173(—$2) + QCn_373(—£C2) — Cn_gyg(—x
= (—1)”7{%20”_173(—132) — 2(—1)"73071_3,3(—.732) — (—1)”766'”_673(—%
= 2%Qoy-26 — 22, -6.6(2) — Qon_12,6()

=2 (Qon—1,6(x) + Qop—76(z)) +
+ Qon_g,6(x) — 2Q2p—76(2)
= 3o 6(x) + 2Q2n—6,6(7) — 20Q02,—1,6(7)

(an’ﬁ (33) — $92n71,6 (l’))

= Qop6(x) + 2 (Qone(x) + Qon—s6(z) — 2Q2p—16(2))

= Qop6(x).

2))

It easy to verify the equality (2.5.4) for n = 1 and n = 2, from initial

Then, from (2.5.1), we

values. Suppose that (2.5.4) holds for n (n > 2).
have:

(=)™ bpgr3(—2%) = (1) (=a”bp3(—

= 2% ((=1)"bn3(—2?)) — 2(=1)"?by_23(—2%) — (-1
= 2% Van 6() — 2Von—a.6(x) — Van—106(z)

2%) + 20,2 3(—

)n75bn_573(_$2)

=2 (Vant1,6(z) + Van—s6(x)) — 2Vap—a6(z) + Van—a6(z) — 2Van—_s56(z)

= zVopi1,6(T) —
= Vani2,6(2).

‘/2n74,6 (Cl?)

2%) — bp_33(—

x2))
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We immediately prove the equality (2.5.6) for n = 1 and n = 2. Suppose
that (2.5.6) holds for n (n > 2). So, for n + 1 instead of n, it follows that

Chnt4,3(2) = 2Cny33(2) + 2Cn41,3(2)
= @ (ent33(2) — en3(@)) + 2 (ent1,3(x) — cn—23(x))
— cn—23(x) + cpn—s3(2)
= xept33(x) — xen3(T) + 2¢n413(x) — 3en—23(x) + cn_s3(2)
= zcnt33(x) + 2en413(x) — (wep3(x) + 2¢p—23()) — cp_2,3(x)
+ cnos53(x) = veny33(x) + 2ep113(x) — cn—23(x) — cny1,3(2)

= Cn+4,3(90) - Cn+1,3(f€)-

In a similar way, we also can prove equalities (2.5.2), (2.5.5), (2.5.7)—(2.5.10).
O

3.2.6 General polynomials

The family of polynomials {P;, ,,(z)}, which is given by (2.4.7), for differ-
ent initial values produces special polynomials: by m(2), Bpm(2), chm(x),
Ch,m(z). These special polynomials obey the following properties.

Theorem 3.2.6. Using previous notations, for all n > m, n € N,
m € 2N + 1 the following hold:

(— 1)nxcn m(—x ) = Qony1, om (), (2.6.1)
(=1)"Crnm ( %) = Qonam (), (2.6.2)
(=1)"bp,m (=) = Vapom(2), (2.6.3)
(-1 nl’B nm (— 932) = Vant1,2m(2), (2.6.4)
Cntmm(T) = cam() = Cpymm(T), (2.6.5)
bntm,m(T) + bn m(T) = Crgmm (), (2.6.6)

Crtmm(T) = Cpm(T) = TCnim—1,m (), (2.6.7)

Bitmm(z) + Bn m(T) = cnymm(x), (2.6.8)
Bpm(x) — Bp—omm(x) = Cym(z), n>2m, (2.6.9)

Proof. Suppose that the equality (2.6.1) holds for n —1 instead of n (n > 1).
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Then, by (2.4.7) we get that the following is satisfied:

(_1)n$cn,m(_x2) =

(=D)"z (—xQCn_Lm(—xQ) + 2 mm(—2%) — cn_2m7m(—x2))
= 22 ((—1)"_1xcn,1’m(—a:2)) + 2(—1)"‘(—1)"_mxcn,m7m(—x2)

— (1) (=) epgmm(—2?)
= 2%Q9n—1.2m(2) — 225 —2m+1.2m(—2?) — Qop—amr1.2m(—2%)
=z (Q2n2m + D2n—2m,2m)

— 2 (2Q2n—2m,2m (%) — Qon—am+1,2m(2)) — Q2n—am+1,2m ()

= 2Q2n.2m () — 2Q2n—2m 2m () + Q2n—am+1,2m ()
= Qont1,2m(2) + Qan—2m+1,2m(x) — 2Q2n—2m 2m () + Qon—am+1,2m(x)
= Qont1.2m(7) — Qn—dms1,2m(2) + Q2n—ami1,2m(T)

= Qopt1,2m(2).

Next, suppose that (2.6.9) holds for n — 1 instead of n (n > 1). Then,
by (2.4.7) we get:

Crm(z) = 2Cp1m(x) + 20— m () — Crn—2m,m(z)
=7 (anl,m(x) - Bn7172m,m(x)) +2 (anm,m(x) - an2m,m($))
— Bn—2mm (z) + Bn—amm (z)
=2Bp_1m(x) —2Bn_1—2mm () + 2Bp—mm(x) — 2Bp_3m,m(x)
— Br—omm(2) + Bn—amm(x)
= Bpm(x) — 2Bp—mm () + Bp—2mm(x) — Bn—amm(x) + 2Bp_3m m(x)
— Bp—amm () + 2Bp—mm(x) — 2By _3m.m (%) — Bp—2mm () + Bn—amm(x)
= Bpm(x) — Bp—om.m(2).

In a similar way, equalities (2.6.2)—(2.6.8) can be proved. O

Corollary 3.2.2. If we exchange x by iz in Theorem 3.2.6 (i = —1), then
we obtain the following identities:

(—1)" (i) cnm(2?) = Qant1,2m (i);
(=1)"Crm(2?) = Q2n2m (i);
(=1)"bpm(2?) = Vanom (i2);
(=1)"(iz) Ba,m(z*) = Van41,2m (i).
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3.2.7 Chebyshev and Jacobsthal polynomials

Here we discover connections between polynomials €2, ,,,(x) and V;, ,(z) on
one side, and polynomials .J,, ,,(z) and jy, m(2) on the other side.

Theorem 3.2.7. For alln > m (n,m € N), the following hold:

Vam () = 2" Jns1m (—(21‘m)_1) , (2.7.1)
Qn,m($) = $n]n,m(a7) (_(me)—l)'

Proof. By explicit representations (2.4.6) and (2.4.10), we have:

[n/m]
i (@) <o 3 (M7 ) (o

k=0

= Vim(z).

Hence, (2.7.1) is proved. Next, from (2.4.5) and (2.4.11), we obtain
(2.7.2) as follows:

[n/m]
i — (2™ -1 — " n_(m_Q)k n_(m_l)k - M —1\F
(o)) = 32 R (M) (2
[n/m]
— _ kn_(m_2)k n_(m_l)k xn—mk
_kZ:D( 2 n—(m—l)k( k )
= Qpm(2).

We also prove the following result.

Theorem 3.2.8. For alln > m (n,m € N), the following hold:

Qont12m(2) = 27" o1 0m (—(227™)71) 5 (2.7.3)
Qon om () = 2" jan 2m (—(22°™) 1) ; (2.7.4)
Vonam(2) = 22" Jont1.0m (—(22°™) 1) ; (2.7.5)

Vont1,2m () = 2" Jani2.9m (—(2:E2m)_1) . (2.7.6)
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Proof. By (2.4.9) and (2.4.5), we obtain
x2nj2n,2m (_(21:2771)—1)

n[n/m] 2n — (2m —2)k (2n — (2m — 1)k a1\ k
S e k) e
[n/m] 2n — (2m — 2)k (2n — (2m — D)k 9, om
- kzzo(—l)kgn_(zm_mk( k )xz .
= Qopom ().

So, the equality (2.7.4) is proved.
Next, by (2.4.6) and (2.4.8), we get:

«772n+1<]2n+2,2m (_(2x2m)71)

[n/m]
3 (11 om0 gy

[n/m] k (2’]’L —|— 1 — 2m — 1)]€> $2n+1—2mk

= V2n+1 om (@

)-
Hence, the relation (2.7.6) holds. Equalities (2.7.3) and (2.7.5) can be
proved similarly.
O

It is easy to prove the following statement.
Theorem 3.2.9. For alln >2m (n € N, m € 2N + 1) the following hold:

Cnm(=2?) = (=1)"2 joni1,2m (— (2x2m)*1) ; (2.7.7)

Crm(—2%) = (=1)"2" janom (—(22°™) ") ; (2.7.8)

b (—2?) = (1) Jont1,2m (—(22%™) 1) ; (2.7.9)

Bpn(—2%) = (=1)"0*" Janr2.0m (—(22°™) 7). (2.7.10)
Corollary 3.2.3. Taking = instead of —x?, the relations (2.7.7)-(2.7.10)
become:

Cnm (T) = 2" fong1,2m ((22™)71)
Crm(z) = 2" jon om ((23:’")*1) :
(2) = 2" Jons1,2m ((22™) 1)
() = 2" Jans2,2m ((22™) 7).
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Here we prove one more result.

Theorem 3.2.10. Forr > 1 and n > m (n,m,r € N), the following hold:

- if T, i n
S0 (1) e ion@) = D) (2701)
=0
n n N
> <i>hr+mi,m(g;) = 2" Ryt (m—1ymm (T), (2.7.12)
=0

where hpm () = Qym(x) or hpm(z) = Vim(z).

Proof. It easy to prove the equality (2.7.11) for n = 1. Suppose that (2.7.11)
holds for n (n > 1). Then, from (2.4.1) and (2.4.2), we get:

hr+m(n+1),m (‘r)

~—

- hr+mn,m (1')

n
l'z ( >$hr+m 1+(m— 1)zm(x)

- (—1)”2(—1)@' (G Emm———r

= whr—&—m 14+mn, m(x

n+1 . n .
L MC Vil (R ST

3

RCD DVl () P ST

1=0
+ xn—’—lhr—i-(m—l)(n-l—l),m(x) - (_1)nhr+(m—1)-0,m(w)
n+1

y n+1\ ;
i Z < . >$ hr-i—(m—l)i,m(x)

= (_ )n+ hr—&—m(n—&—l),m(m)'

The relation (2.7.12) can be proved similarly. O
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3.2.8 Mixed convolutions of the Chebyshev type

We introduce and study polynomials V;' . (z), which are the rth—convolutions
of polynomials V,, ,, (7). We also study polynomials €2} ,, (), which are the
st"—convolutions of Qnm(z). Finally, we investigate polynomials vy, (),
which are the mixed convolutions of the Chebyshev type, where r and s are
nonnegative integers with r +s > 1, where m,n € N.

Polynomials V7', (x) are defined by the following generating function

GP(t) = (L—at+ ™)~ =N "yr (), (2.8.1)

n=1

Hence, using standard methods, we get the following recurrence relation
nVom(@) =z(r+n)Vy,(2) = (n+mr)V ., (2). (2.8.2)

By expanding G7"'(t) in a power series of ¢, we get:

(1=t 4 ¢7) "0+ = i <_(r ) 1)> (—t)"(z — " 1)"

- i (r -Tf;!l)! Z": (Z) (g

:i (—1)’“(7“;;(71%ﬁ)})kx"—mkt”. (2.8.3)

Now, using the following equalities (see [44]):
(DFr + V1) . (z=m)*
(n —mk)! k!
_ CDREDTIRE 4 D) (27
)

(=7 = M) m—np(=1)m*nl Kl
— (r 4 D™ (Z1), (58 (57", (z=m)*
nl(m — 1)(m=1k (;;":?)k (lr_nz_ln>k m—ﬂ%:q—n)}C k!
(r+1n (T (28 ("7, mm ™

in (2.8.3), we get the following formula

n —n l—n m—1-n._z~"m™
2"(r+ 1), T T e B T
r _ (m—1)
V:n,,m(x) - | mmel —r—m l—r—mn m—2—r—mn (284)
iz m—1’ m—1 """ m—1
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So, for m =2 and r = 0 in (2.8.4), we obtain the following formula

—n

—n l-n.4
Va(z) = 2" Fy [m’ . ’“”2;]

since V0o Ix) = V,, ().
The sth—convolutions Q3 . (x) we define by

FM(t) = (1 —t™)(1 — ot + ™)~ = ZQ (2.8.5)

Hence, we find that polynomials €27, ,, (x) satisfy the recurrence relation
anm,m( ) = .%‘(TL + S) n— lm( ) - 2m(8 + 1)9781 mm(w)
Also, from (2.8.5), we find the following formula

[n/m]
Q) = 3 ( jl)vs (@), (2.87)

=0
Mixed convolutions vy, (x) are defined by

smp) = L=t Zv (2.8.8)
(1 — ot + tm)r+s+2 o

From (2.8.8) we get the following formulas:

Sm(t) _ (1 o tm)s—O—l 1
(L=t tm)stl (1 — at 4 pm)rl

= <Z ﬂi,m(x)t"> (Z V,;m(a;)tn>
n=1 n=1
= Z (Z be—k,m(x)vlg:m(ﬁ)> ",

y (2.8.8), using the well-known manner, we obtain the recurrence rela-

tion

nops(x) = x(r+ s+ 20175 (2) = m(s + Do T N )

—m(r+s+ 2)v;f17’im(:c)
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Again from (2.8.8) we find that

o0

D g (o)t = myst Z Vibstl (a (2.8.9)

n=1

Furthermore, for r = s in (2.8.9), we get the following representation

[n/m]
i = Y G0 (T e esa)

k=1

Hence, for s = 0 (and respectively for r = 0), we have:

v,@?n(:v) =V, m(7), the rth-convolutions of V;, ;,,(2); (2.8.11)
gin(a:) = Qp ,(z), sth-convolutions of Oy, m(7).. (2.8.12)

Thus, for m = 2 in (2.8.11) and (2.8.12), we get, respectively:
v;%(a:) = V'(x), the r*"convolutions of Vj,(z); and vg‘;(:c) = Qf (x), the

sth—convolutions of Q,(x).

3.2.9 Incomplete generalized Jacobsthal
and Jacobsthal-Lucas numbers

In the paper G. B. Djordjevic, H. M. Srivastava [51] we present a syste-
matic investigation of the incomplete generalized Jacobsthal numbers and
the incomplete generalized Jacobsthal-Lucas numbers. The main results,
which we derive in [51], involve the generating functions of these incomplete
numbers.

Recently, Djordjevi¢ ([36], [37]) considered four interesting classes of
polynomials: the generalized Jacobsthal polynomials J;, ,,(x), the general-
ized Jacobsthal-Lucas polynomials jy n,,(z), and their associated polynomials
Fpm(x) and fp ;m(x). These polynomials are defined by following recurrence
relations, (2.2.1), (2.2.3), (2.3.1) and (2.3.2):

Inm(x) = Jn—1m(x) + 22— m(2) (2.9.1)
(n>m; mneN; Jom(z) =0, Jym(x) =1, forn=1,...,m—1),
]n,m(‘r) = jnfl,m(f) + ijnfm,m(x) (292)

(n>m; nmeN; jom(x) =2, jom(z)=1, forn=1,...,m—1),

Fom(x) =Fp_1m(x) +20F,_pm(z) +3 (2.9.3)
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mn>m; nmeN; Fyp(r) =0, Fum(z)=1, forn=1,...,m—1),

fam () = fa—1,m(2) + 22 fommm(z) + 5 (2.9.4)

m>m; nmeN; fom(x) =0, fam(x)=1, forn=1,...,m—1).
Explicit representations for these four classes of polynomials are given
by (2.2.5), (2.2.6), (2.3.3) and (2.3.4), respectively:

[(n—1)/m]
Jam(@) =Y (" -1 _im - 1)T) (22)", (2.9.5)
r=0
[n/m]
, B n—(m-—2k(n—(m-1)k &
Jnm(T) = 2 W (- 1)k< L >(2x) : (2.9.10)
[(n—m+1)/m]
Fom(t) = Jom(@) +3 Y (" e 1; (m - 1)T) (22)", (2.9.11)
r=0
[(n—m+1)/m]
Fam(@) = Jom(z)+5 Y (n mm 1; (m - DT) (22)", (2.9.12)
r=0
respectively.

By setting x = 1 in relations (2.9.1)—(2.9.4), we obtain the generalized
Jacobsthal numbers

e Dl (m—1)r
Tnn = Jnm(1) = > ( . >2’”, (2.9.13)
r=0

and the generalized Jacobsthal-Lucas numbers
[n/m]
, , n—(m-—2)r(n—(m-1)r
nom = Jnm(1) = _ 2", 2.9.14
DS sl (R (29.14)
and their associated numbers

Fom:=Fym(l) = Jym(1)

r

13 (2.9.15)

r=0
fn,m L= fn,m(l) = Jn,m(l)

r

+5 (2.9.16)

r=0
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Particular cases of these numbers are the so—called Jacobsthal numbers
Jn and Jacobsthal-Lucas numbers j,, which were investigated earlier by
Horadam [63].

Motivated essentially by work Pintér and Srivastava [94], we aim in [51] at
introducing (and investigating the generating functions of) the analogously
incomplete version of each of these four classes of numbers.

First, we begin by defining the incomplete generalized Jacobsthal num-

bers J,]f’m, for m,n € N, by
" n—1 (m—1)r n—1
k —i-im-= r -
= 2 <k< 2.9.1
R G E (L s DR

r=0

so that, obviously,

Jin0/ml = g (2.9.18)
JFm=0 if 0<n<mk+1, (2.9.19)

and
T it = Jmkti—1m  for 1=1,....m. (2.9.20)

The following known result will be required in our investigation of the
generating function of such incomplete numbers as the incomplete genera-
lized Jacobsthal numbers Jlim defined by (2.9.17).

Lemma 3.2.1. (see [94]) Let {sp}22, be a complex sequence satisfying the
following nonhomogeneous recurrence relation:

Sp = Sn—1+28—m +1n (n>m; n,m e N), (2.9.21)

where {ry} is a given complex sequence. Then the generating function S(t)
of the sequence {sn} is

m—1
S(t) = <80 —ro+ > (s — s — 1) + G(t)) (1—t—2t™)71 (2.9.22)

where G(t) is the generating function of the sequence {ry}.

Our first result on generating function is contained in Theorem below.
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Theorem 3.2.11. The generating function of the incomplete generalized
Jeobsthal numbers J,’im (k € NU{0}) is given by

:=§:ngﬂ
-1
: [(1 ™)1 — t)'““} . (2.9.23)

Proof. From (2.9.1) (with z = 1) and (2.9.17), we get

k
Fon = s =2 =32 (")
’ r
r=0
r n—2—(m-—1)r b n—1—-m-—(m-1)r
> )7 -3 ( )7
r —~ r

:i<n—1— m—1)r >2T i(n—Q—im—l)r)QT
r=0 r=0
_§5<”—2;1—1)>T
¢ <n—1—£m—1)r>2r_§:<n—2—7§m—1)7“)2r_1
r=0 r=1
_Tzi;<n—2;_(rr{—1)r>27,_(n—Q—(mk—l)(k‘—l—l))QkH
i n—2—(m-1)r n—2—(m-1)r -
:_;K Qﬁ 1))+< 27E 1))}2
1<n—2—(mk—1)(k+1)>2k+l+zk:(n—l—(m—l)r)zr
(m—1

r=0 "
_Til<n—1—£m—1)r>2r+l_i<n—l— m )7‘)27,

r=1

L (n - (mk— 1)(k + 1))2,6+1
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:_<n—1—mk—(m—1)k)2k+1

1—m—(m—1
=—(" m = (m =Dk s, (2.9.24)
n—1—m-—mk
where n > m + 1+ mk; k € Np.
Next, in view of (2.9.19) and (2.9.20), we set

k k k

S0 = Jmk:Jrl,m? S1 = Jmk+2,m7 <y Sm—1 = Jmk+m,m

and

_ 7k
Sn = mk+n+1,m"
Suppose also that

n—m-+k
ro=ri=---=rp_1=0 and rn:QkH( )
n—m
Then, for the generating function G(t) of the sequence {r,,}, we can show

that
2k+1tm

(1 — )kt

Thus, in view of the above lemma, the generating function S¥ (¢) of the
sequence {sy} satisfies the following relationship:

G(t) =

2k+1tm
(1 —¢t)ktt
m—1 2k+1tm

_ l
- mk,m(k) + ; 3 (Jmk+l,m - mk+l—17m) + m

SE(H)(1 —t — 2t™) +

Hence, we conclude that
R (t) = tmFTLGE (1).
This completes the proof of Theorem 3.2.11. O

Corollary 3.2.4. The incomplete Jacobsthal numbers J*¥ (k € Ng) are
defined by

k
k & n—1-7\_,
= = g 2
g, Jn’2 ( . )

r=0

(OSkS [”;1]; nEN—{1}>
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and the corresponding generating function is given by (2.9.23) when m = 2,
that is, by

R§ — t2k+1 [JQk + t(J2k+1 _ JQk)(]- _ t)k+1 _ 2k+1t2]

: [(1 —t—2t%)(1 — t)kﬂ} o (2.9.25)

For the incomplete generalized Jacobsthal-Lucas numbers jﬁm defined
by (2.9.14)

k
T n—(m-—2)r(n—(m-1r\_,
D= T A ——— 2 2.9.2
Inm rz:(:)n(ml)r< r (2.9.26)
(0§k< [ﬁ]; m,neN),
m
we now prove the following generating function.

Theorem 3.2.12. The generating function of the incomplete gemeralized
Jacobsthal-Lucas numbers j’&m (k € Ny) is given by

oo
WAW) = 3 it = 7
r=0

m—1
[(jmk—l,m + Z tl(jmk+l—1,m - jmk—l—l—?,m)) (1 - t)k—H - 2k+1tm(2 - t)
=1

- [(1 -2y (1 - t)k“} - (2.9.27)

Proof. First of all, it follows from definition (2.9.26) that

G = G, (2.9.28)
Jrm =0 (0<n<mk), (2.9.29)

and
Fhkrtm = Jmkti—1m  (=1,...,m). (2.9.30)

Thus, just as in our derivation of (2.9.24), we can apply (2.9.2) and
(2.9.14) (with x = 1) in order to obtain

. . . n—m+2k/n—m-+k
T~ n-tm = Zin—mm = —n_m+k< >2’“+1. (2.9.31)

n—m
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Let
S0 = jmk:—l,ma S1 = jmkz,ma sy Sm—1 = jmk—}—m,ma
and
Sn = Jmk+nt+lm-
Suppose also that

— 2k — k
Fo=r = =1 =0 and rn:nm+<n m+ >2k+1.

n—m+k n—m
Then, the generating function G(t) of the sequence {r,} is given by

| 2ktym(2 — )
G = —q e

Hence, the generating function of the sequence {s,} satisfies relation
(2.9.27), which leads us to Theorem 3.2.12. O

Corollary 3.2.5. For the incomplete Jacobsthal-Lucas numbers j’;’Q, the
generating function is given by (2.9.27) when m = 2, that is, by

Wy (t) = t* [(j%—l + t(jor — Jor—1))(1 — t)FT — 2kF12(2 t)]
1
Ja—t—2)a-p]

Now, for a natural number k, the incomplete numbers Fffm correspon-
ding to the numbers F), ;,, in (2.9.15) are defined by

k
n—m+1—(m—1)r
Fﬁ,m:JS,m‘i‘?’Z( T+1( ) >2r7
r—0

1
(0 <k< [”m] S myn € N) : (2.9.32)

where
F,'fm = Jﬁ,m =0, (n<m+mk).

Theorem 3.2.13. The generating function of the incomplete numbers FT’f’m
(k € No) is given by t™*+18k (+) where

m—1
S7krz(t) = ka,m + Z tl(kaJrl,m - ka+l1,m)] (1 —t- 2tm)_l
=1

3tm(1 — )b+l —oktlgm (] ¢ 4 3¢l

(1—t—2tm)(1 — t)k+2 (2.9.33)
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Proof. Our proof of Theorem 3.2.13 is much akin to those of Theorem 3.2.11
and Theorem 3.2.12 above. Here, we let
_k _
80 - ka{»l’m - ka,’n’H
81 = Fr]fzk+2.m = IPmk+1my - -
Sm—1 = F77kwk+m7m = ka—i—m—l,ma
k
Sp = ka+n+1,m'

Suppose also that

ro=r1=-"+rm-1=0
and
- (n—m%—kz)zkﬂ+3(n—m+2+k>2k+1.
n—m n—m-+k

Then, by using the standard method based upon the above lemma, we
can prove that

o0
ok +lgm (1 —t 4 3tm—1)
n __

Let S¥ (t) be the generating function of F,]fm Then, it follows that

SE(t)=sg+tsg+ - +sut" ...,
tSE () =tso+ 2514+ -+t 51+ ...,
2AMSE (1) = 2™so 4+ 2" sy 4+ 2 S+
and
G(t) :T0+7“1t+"'+7"ntn+....
The generating function t™**+1S* (1) asserted by Theorem 3.2.12 would now
result easily. O
Corollary 3.2.6. For the incomplete numbers Fff’Q defined by (2.9.32) with
m = 2, the generating function is given by
tQk—HSSJ(t) — t2k+1-

[For, + t(Fopg1 — Fop)] (1 — £)FF2 4 3t2(1 — t)F+2 — 2k+142(1 — ¢ 4 3¢2)
(1 —t—2t2)(1 — t)k+2

(2.9.34)
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Finally, the incomplete numbers jﬁ}m (k € Np) corresponding to the
numbers f;, ,, in (2.9.16) are defined by

k
n+1l—-—m-—(m-—1)r
fﬁ,szﬁ,m+BZ( 7“+1( : )2’“
r=0

(0 <k< [”ﬂ; 1]) . (2.9.35)

Theorem 3.2.14. The incomplete numbers ff,fm (k € No) have the following
generating function:

m—1
WT’fl(t) = tmk+1 [fmk,m + Z tl(fkarl,m - fkarll,m)] (1 -t - 2tm)71
=1
5tm(1 o t)k+1 o 2k+1tm(1 —t 5tm—1)

tkarl .
+ (1=t —2tm)(1 — 1)F 12

(2.9.36)

Proof. Here, we set

k
80 = fmk+17m = fmk,m7

k
S1 = fmk+2,m = fmk+1,m7

_ rk _f
Sm—l,m = Jmk4+mm — Jmk+m—1,m>

k
Sp = fmk+n+1,m = fkarn,M'

We also suppose that

ro=7r1=""="m-1=0
and
p = okl n—m+k 5. okt n—2m+2+k .
n—m n—2m-+1

Then, by using the known method based upon the above lemma, we find

that k+1 ( 1)
8T ML — ¢t + 5™
G(t) - (1 _ t)k+2

is the generating function of the sequence {r,}. Theorem 3.2.14 now follows
easily. O




Chapter 4

Classes of Hermite and
Laguerre polynomials

4.1 Generalized Hermite polynomials

4.1.1 Introductory remarks

Classical Hermite polynomials H,(z), which are orthogonal on the real axis
with respect to the weight function z — e~*", can be generalized in several
directions. These generalizations retain some properties of classical ortho-
gonal polynomials. In this section we consider so called generalized Hermite
polynomials {h;\lm(x)}, which are defined by the generating function

+oo
F(x,t) = 0ot — Z hf{ym(x)t”, (1.1.1)
n=0

where A and p are real parameters, m is natural number. Notice that the
parameter p is not explicitly mentioned in the notation of the polynomial
hip ().

For m = 2 and p = 2 polynomials k), (z) reduce to Hy(z,\)/n!,
where H,(z,)\) is the Hermite polynomial with the parameter A\. For
A =1, b}, 5(x) = Hy(x)/n!, where Hy () is the classical Hermite polynomial.
For p = 2, polynomials k) () are investigated in [32], and polynomials
hy, m(ma/p) are investigated in [109]. It is clear that properties which can
be proved for generalized polynomials {h;, ,,(x)} also hold in a special case:
the case of classical Hermite polynomials H,,(x).

143
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4.1.2 Properties of polynomials h) ()

Using the known methods, from (1.1.1), we obtain the recurrence relation

Wiy i (2) = XpL)h 1 () = XY (2), 10>, (1.2.1)
with starting values h), ,,,(z) = (Apz)™/n!, n=0,1,...,m — 1.

The series expansion of the function F'(z,t) in the powers of ¢, and com-
paring the coefficients with respects to t", we find the explicit representation

[n/m] —(m— —
AT (m 1)k(px)n mk
A E k
s () = — (=1) El(n —mk)! (12:2)

Notice that for m = p =2 and A = 1, from (1.2.1) we get the recurrence
relation for Hermite polynomials H,(z), i.e.,

nH,(x) =2xH,_1(x) — 2H,—2(z), n>2,
with starting values Ho(z) = 1, H1(z) = 2z, and (1.2.2) becomes

20 n—2k
Ha(e) = Z(_l)kkg(n)— 2k)!

which represents the representation of classical Hermite polynomials.
Let D denote the standard differentiation operator, i.e., D = d/dx and
DF = ¢k /dxz*. We state some properties of the generalized polynomials

i ()

Theorem 4.1.1. The following equalities hold:

D* by (@) = (PA) h)_ g (); (1.2.3)
prhy () = (pr) D by () +mD Ay gy 1 () (1.2.4)
o) _ IS hl > 2): 1.2
nl kzzo y n—mk,m(x) (TTL_ )» ( . 5)
[n/m] myk
n 1—wu
k=0
n,m € Yy) = k! n—mk,m xT). 2.
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Proof. Differentiating the polynomial h;\Lm(:v) (see (1.2.2)) with respect to
x one by one s-times, we get

D* iy () = (PA)* By g (),
and the equality (1.2.3) follows.

Differentiating both sides of (1.2.1) in x, we obtain the equality (1.2.4).
For A =1, from (1.1.1) it follows that

“+o00
xt—t" n
eP = E b m ()"
n=0
i.e.

“+o0o
e = "N " hyy ()"
n=0

By the series expansion with respect to ¢ and comparing coefficients with
respect to t", we get the equality (1.2.5).

We can prove the equality (1.2.6) in a similar way.

Also, for A =1, from (1.1.1) it follows that

p(xz+y)t—t™ Zhnm z +y)t

Hence, we have

ep(ﬂﬁer)t e Z hn m x + y
Since
epa:t—tm . epyt _ Z ntn Z h
n=0
- (py)k n
= Z k! h}L—k,m(‘/L‘)t )

n=0

it follows (1.2.7). O

In the case of classical Hermite polynomials equalities (1.2.3)—(1.2.7),
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respectively, become (see [32]):

D" hy o(x) = 26h), 4 (2);
2”’%11,2(33) = (2$)Dh711,2(33) + 2Dhi—1,2(1’);

[n/2]

2x)" 1

(n,) = Hh}%%g(x),
k=0
[n/2] Nk

n 1—wu
U h#z(x/u) = Z ( %l ) h}L—zm(l’),
k=0
hn 2(17 + y) = ( ]€|) hn—?k,2($)a

k=0

where hl ,(z) = Hy(z)/n!.

We prove that the polynomial h;\hm(m) satisfy the homogenous differential
equation of the m-th order. From (1.2.4), using (1.2.1) we get the following
statement.

Theorem 4.1.2. The polynomial h;, ,,(x) is a particular solution of the
homogenous differential equation of the m-th order

(m) p" m—1_ /1 p" m—1 _
ym = —\N"" ey + — A" ny = 0. (1.2.8)
m m

Remark 4.1.1. If m = p =2 and A = 1, then the differential equation
(1.2.8) reduces to the equation

y" — 2y’ + 2ny = 0,

which corresponds to the Hermite polynomial H,,(x).

4.1.3 Polynomials with two parameters

Dilcher [17] considered polynomials £ "(2), defined by the generating func-

tion
“+o00

GM(z,t) = (1= (L+z+ 22+ AP =D ¥ ()t
n=0
Comparing this function with the generating function of Gegenbauer poly-
nomials G (z),

+o0
(1 =2zt +2)7 =) Gu(2)t",
n=0
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we get

1 2
1X¥(2) = Xr/2n G < tats ) .

2\5\2

From the recurrence relation for Gegenbauer polynomials
nGp(z) = 22(n+v —1)Gy_1(2) = (n+2(v = 1))G;_»(2),

with the starting values G§j(z) = 1 and GY(z) = 2vx, we have fé"”(z) =1,

f‘”(z) =v(l1+2z+2%), and, for n > 2

M (z) = (1+VT_1>(1+2+22)f2’f1(z)— (1+2VT_1))\22 AV (2). (1.3.1)

Notice that the polynomial f; "(2) satisfies the equality

2(2) =2 (L)),

meaning that this polynomial is self-inversive (see [MMR, p. 16-18]). Since
the degree of this polynomial is 2n, the polynomial fr)[ " (2) can be represented
as

A,V AV AV 1 2
2t (z) = eyl ezt ot ey A 2

From (1.3.1), we can prove that coefficients cz’l,; satisfy the recurrence
relation

A v=1y o A A vy o
Cke = (1 T ) (Cnljl,k—l +e et Cnill,k—&-l) - (1 +2— >>‘Cn112,k’

A,V
n,—k*
Important results in [17] are related to the investigation of coefficients

where CQZ =c
c;:Z One of those results is the following theorem:

Theorem 4.1.3. The following equality holds

Y [(n_zk)m(_)\)sf‘(u +n—s) [(n_ki%)m <2j + k) (n — 2s>.
kT (v) sl(n — 2s)! J 2]+ k

5=0 j=0
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4.1.4 Generalized polynomials with the parameter \

We mentioned before that there are several ways to generalize Hermite poly-
nomials. Here we generalize Hermite polynomials using one Dilcher’s idea
(see [42]).

We define polynomials {H\(z)} by

“+oo
€(1+z+z2)t—)\zmtm — Z Hfl‘(z)tn (1.4‘1)
n=0

is used in [43].
Comparing (1.4.1) with the generating function of polynomials A, s, (2)
(Pnan(2) = Py gn (2))

we verify that the following equality holds

(1.4.2)

1 2
HMz) = 2/, <+Z+Z>

2\L/m
From the recurrence relation (see (1.2.1) for A = 1)
Nhpm(2) = 22hp—1m(2) — Mhp—mm(z), n>m,

with the starting values hy, ., (2) = (22)"/n!, 0 < n < m — 1, we find the
recurrence relation of polynomials H)(z),

nHMNz) = (1424 2)H) [ (2) —mAz"H) , (2), n>m,
with the starting values

(1+z+22)"

H)(z) = =

(n=0,1,...,m—1).

Notice that the following equality holds for the polynomial H;)(z)
Hy(z) = 2*"H;(1/2),

which means that this polynomial is self-inversive also. The degree of the
polynomial H)(z) is equal to 2n and it can be represented in the following
way

H)N2) = C’;Z\’n + Cri\,n—lz +-- 4 C’fl"oz” + C’,’Z\Jz"+1 +-- 4 C’é?nz%. (1.4.3)
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It is easy to verify that coeflicients C’Q ;. are connected by the recurrence
relation

1 m
Cﬁxzz;; Co g1+ Cp ik +Cnipin __;;Acﬁ—mk’ (1.4.4)

where C:{k; = Cé ey
The most important results related to coefficients Cé i We prove below.

Theorem 4.1.4. The following equality
[(n—k)/m] [(n—k—ms)/2] ,
A (=) n—ms\ (25 +k
Ck = Sz:;) sl(n —ms)! jzo <2j+k:> <k+j (1.4.5)

holds for coefficients Cé\,k'

Proof. From the representation (see [30])

[n/m] . (2$)n—m8
finm (@) = Z (=1) sl(n —ms)!
s=0
and (1.4.2), we get
[n/m] ms 2\n—ms
Ary 2T (14 2+ 27)
Hy(z) = Y (=) Ao (1.4.6)
s=0

Using the expansion

Q+z+2%)" = ‘T i(;) <Z>32ji:izpb£ <pij> <§_2]3>

p=0  j=0

where 7 is a positive integer, and (1.4.6) for r = n — ms, we find

[n/m] M 2(n—ms) [p/2] n—ms p—17J
ALY A P ) B
Hp(z) = 3 (=) s!l(n —ms)! 2 - (p—j><p—2j>

5=0 =0 =0
ie.,
ZIEED D gl =
n = — sl(n — ms)!

[((n—k—ms)/2]

n—ms n—k—j—ms
. Z (n—k—j—ms)(n—k—Qj—ms)’

j=0
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where Z) =0 for k <0.
Again, from (1.4.6) and

n—ms n—k—j—ms\ (n—ms\[(2j+k
n—k—j—ms)\n—k—2j—ms) \2j+k k+34 )’
we get the formula (1.4.5). O

Theorem 4.1.5. The following formula holds

[((n—k)/m] (n—k—ms)
A s(n—k—(m-—1)s By
= — 1.4.
Cnk Z (=4 < s kEl(n—k—(m—1)s)!’ (14.7)

s=0
- SEE)T e

J=0

where

Proof. Using (1.4.7) and (1.4.8) we get

X

[(n—k)/m]
(=A)*(n—k—(m—1)s)!
Z (n—Fk—ms)lkl(n—k— (m—1)s)!

[((n—k—ms)/2]

s=0

(25)(n — k — ms)!5lk!

2 G- h -2 mel(k )
- pord sl(n — ms)! = k+2j k+3)

Comparing the obtained equalities with (1.4.5), we conclude that the
statement is valid. O

Similarly, we can prove the next statement.

Theorem 4.1.6. The following formula holds

nk slkl(in —k —ms)! <= jl(k+1); \ 2/;\ 2 )’

s= 3:0

where r =n — k —ms.
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4.1.5 Special cases and distribution of zeros

If m = 2, then polynomials H,(z) can be expressed in terms of classical
Hermite polynomials

2
HA) = e, (R R,
n: z

In this case the formula (1.4.5) reduces to
o [(n—zk:)ﬂ] (—)* [(n—/§8)/2} n—2s\ [2j+k
s sln-2s) 0 2k k)
On the other hand, if z =1 then (1.4.3) becomes
g 3
A _ yn/m

> Cha= N (50 )
k=—n
Also, if m = 2 then the last equality becomes
Y Coy )\”/QH ;
= n,k 2)\1/2

From the equality (1.4.2) and the formula (see [30])

[n/m]
(2z)" 1
k=0
we get
[n/m] |
(1+2+2%)" A m
a0 e "Hp i (2)-
k=0

Similarly, from the relation (see [30])

[n/m] k
n (1 B m)
U hpm (%) = I;O TThn—mk,m(x)

and the equality (1.4.2), we find

[n/m]
(0 N (SRS - I e
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We shall consider monic polynomials lEI}L(z) separately, which are ob-
tained for m =2 and X =1. For 1 <n <5, respectively, we have

Hl(z) =1+ 2+ 22

Th(2) = 1422 4 2% + 223 + 24,

Hi(z) = 14324 2% +32° + 25,

T1(z) =1+ 42 — 222 — 823 — 524 — 825 — 225 + 427 + 28,

T1(2) =145z — 522 —3023—1524—292° — 1525 -3027 — 5284527+ 210.

Theorem 4.1.7. All zeros of the polynomial I:[%(z), n > 2, are simple and
located in the unit circle |z| = 1 and the real axis. If n = 1, then zeros are
determined as zf = (=14 v/3)/2.

1 3
H:{Qfl, —2<.Ty<2}

denote the set of all zeros of the Hermite polynomial H,(x). It is known
that these zeros are simple, and zeros different from 0 are irrational. We
split the set H into the union of the following two sets:

Proof. Let

1 3
Hc—{—2<$y<2} and HR:H\Hc.

Let z,, v = 1,...,2n, denote zeros of the polynomial fI}L(z) For these
zeros we introduce the notation 2z, v = 1,...,n. According to (1.4.2), these
zeros can be expressed as

2t = % [2$V—1:I: 41’12,—41'1,—3], v=1,...,n.
Notice that the equality z, 2, = 1 holds. Obviously, if 422 — 4z, — 3 < 0,
ie, —1/2 < z, < 3/2, then zeros are complex and contained in the unit
circle. If 437,% —4x, —3 > 0, then these zeros are real and have the same sign.

For n = 1 the result is obvious (z; = 0).

Let n > 2 and let C' denote the set of all zeros of the polynomial fI}L (2)
which are contained in the unit circle. Let R denote the set of all zeros which
are contained in the real axis. Obviously, if x, € H¢ then zF € C, but if
r, € Hg then zF € R.
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To complete the proof it is enough to show that Ho and Hi are non-
empty sets. Since for n > 2 (see [120]),

9 \ /2
(22/4-1) , n isodd,

( 21/2 )1/2 ,
, n is even,

min |z, | =
v

2n+1

we conclude that min |z, | < 3/2 for some n > 2, i.e., the least among zeroes
14

x, belongs to the set C.
Similarly, using the estimation for the greatest zero (see [120])

1/2

n—1

max |z, | > ( ) ;o n=>2,
v 2

we conclude that there exists one zero, say x,, such that

n—1 1 1

Hence, z, € R. ]

4.1.6 The Rodrigues type formula

It is well-known that the Rodrigues formula holds for classical Hermite poly-
nomials. For generalized polynomials hy, y,(z) we shall prove similar result
(see [41]).

Let A =1 and A}, (x) = hpm(x). We shall prove that these polyno-
mials obey the formula of the Rodrigues type.

Theorem 4.1.8. Let f € C*°(—o0,+00) and f(x) # 0. Then the polyno-
mial hy, () has the representation

1 1 m—1 ' n
P (2) = @l (JZ(:) a; D7> fx), n>0 m>1, (1.6.1)

and coefficients aj, j = 0,1,...,m — 1, can be computed as the following:
m—2
_ m (m = k)i m—1—k k
a0 = pr iy 30 S DK (@) DR/ £ (),
k=0 '
m = (m — k)i

T 2 DR (@) DR (1 £ ),
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forj=1,....m—2, and

—1)m
Am—1 = (pdmj)l
Proof. From (1.2.3) for s = m and A = 1, and from the recurrence relation
(1.2.1), we have

Nhm () = prhp—1,m(z) — Mhp—mm(x)
m

F ])Tn_1 hn_:l’m(.'ﬂ)

m _
— (m ~ D™ 1) Bt ().

= pxhn—l,m(l‘) -

Hence, we get the formula

1
P m () <p:n - p;n_l Dm_1> hp—1m(x). (1.6.2)

n

Furthermore, from (1.6.2), by the induction on n, we get

m

F@ () =12 (o = D (o)

m

1 m m—1
= (pw - 1 D +pm_15m,k,j) {f(@)hn—1,m(z)},

where

= etk o N~ DI/ (@)

Sm,k,j: Z(m_k)kD f(x)ZﬁDj
— — ik —J)!
= J
Next, by iteration, we obtain
1 mo_. . m "
f(fﬁ)hn,m(fE) = nl (Zm - p1 D +pm_15m,k,j) {f(z)}.

Notice that the formula (1.6.1) is an immediate consequence of previous
results. u

4.1.7 Special cases
1° For f(x) =1, from (1.6.1) we obtain the formula

1 n
b m(z) = <pa: - p:il Dm1> 1,

- on!
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which is proved in [41].
For f(z) =1 and m = p = 2, the formula (1.6.1) implies the equality

H,(z) = (2z — D)"1,

which is proved in [108].
2° If f(x) = €, then the formula (1.6.1) becomes

1 4 2 "
() = ﬁe_lﬂ <~’E (p + p> - pD> e

which, in the case of Hermite polynomials, gives the Rodrigues formula, i.e.,

2

Hy(z) = e * (=1)"D"{e"’}.

3°If f(z) =a" (a>0, a# 1), then formula (1.6.1) implies

m—1 n
1 .
hopm(x) = Ea*“ (Z a; DJ> a”,
! =

with coefficients:

m—2

m _ m—k
ap = pr + —— (loga)™ ! Z(—l)k(k,)ky
p k=0 '
m—2 _
L m—1 k—j (10g a) /
aj =~y (loga)™ ' Y (~1)MI
p P ' (n = J)!
for j=1,2,...,m—2, and
a _ m
7’TL—1 pm_l'

In the case of Hermite polynomials, the last formula becomes

H,(z) = a*xz(2x +loga —D)"a”.
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4.1.8 The operator formula

Let D = d/dx and D™ = d™/dz™ be differentiation operators. We shall
prove that the polynomial hy, ,,(x) obeys an operator formula. For m = 2
this operator formula reduces to the well-known formula for classical Hermite
polynomials.

From the expansion

“+o00
1 (=1)°
exXp <_m Dm) = Z S!pms Dms

p

we can prove the following statement:

Theorem 4.1.9. The following formula holds

hm() = 2 (exp <—;n Dm>> " (1.8.1)

n!

Proof. Applying the operator D™° to 2" we get

On the other hand, we have

00 [n/m)] _
1 L (—]_)5 n! (_1)5pn ms
exp | —— Dm) " = | D LA U — A — L
( pm Z Z

| !
pard S'pms pTL = S'pms
So, we conclude that the operator formula (1.8.1) holds. O]

In the case of classical Hermite polynomials, the formula (1.8.1) becomes

(see (1.2) in [7])
o) =2 (e (-2)) .
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4.1.9 Implications related to generalized polynomials

We shall consider generalized Hermite polynomials Ay, () for p = 2 and
prove some implications. The idea for this consideration of polynomials
hpm () is found in [108].

Lemma 4.1.1. Formulae (1.6.1) and (1.6.2) for polynomials hy, m(x) are
equivalent.

Proof. First, we prove that the formula (1.6.1) implies the formula (1.6.2).
The second part of the statement, i.e., that (1.6.2) implies (1.6.1), follows

from Theorem 1.4.1.
From (1.6.1) it follows

f! m _ m n
finm () = 20— g D" gy S| S
1 m o 11”
_E[%_w—lD |1
1 m —
= [ D i), ez,
where i
m—2 k—j(f—1
—1- D¥J j
Sy = 3 (m — kD) 32
poard — ik —3)!
= j_
Hence, formula (1.6.2) is an immediate consequence of the last equalities.

O]

Lemma 4.1.2. Formulas (1.6.2) and (1.2.1) for polynomials hy, m(z)
are equivalent.

Proof. From the proof of Theorem 1.4.1 it is clear that the formula (1.6.1)
is a consequence of the recurrence relation (1.2.1). We prove that (1.2.1) is
a consequence of (1.6.2).

From the equality (1.6.2), using (1.2.3), we get

m _
W Dm 1 hn_17m(l’)

= 2xhp—1,m () — Mhp—mm(x), n>m>1,

Nhym () = 2Chp—1,m () —

and the recurrence relation (1.2.1) follows. O

Lemma 4.1.3. Let p =2 and A = 1. Then the differential equation (1.2.8)
and the formula (1.6.2) are equivalent.
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Proof. Let p =2 and A = 1. It is easy to see that the differential equation
(1.2.8) is a consequence of the formula (1.6.2). We prove that from the
formula (1.4.2) we can derive the differential equation (1.2.8).
Changing n by n+ 1 in (1.6.2), we get
m
oam—1

(n+ Dhptim(z) = |22 — pm1 P m ().

Now, differentiating by x, we get

m

(n+1)D hy () = 2hpm(z) + 22D hy () — 1

D™ HD hy ()},

and consequently

m _
2(0 + Do () = Zhnm () + |20 = 225 D™ {D ()},
ie.,
m m
2nhp m(x) — 22D by (x) = S D™ hym(z) =0,
which represents the differential equation (1.2.8). O

Lemma 4.1.4. Letp = 2 and A = 1. Then the generating function F(z,t) =
2™ =" and the recurrence relation (1.2.1) are equivalent.

Proof. From the definition of the polynomials Ay, ., (), i.e.,

“+o00
GQZtitm = Z hn,m(x)tn
n=0

it is easy to get the recurrence relation (1.2.1). We prove that F(x,t) =
e?@=1" is a corollary of the recurrence relation (1.2.1). Let F(z,t) be the
generating function of polynomials hy, »,(z), i.e.,

+oo
Fa,t) =Y hom(z)t".
n=0

Differentiating by ¢ and using (1.2.1), we get
F~Y0F/ot) = 20 — mt™ L.
Now, integrating by ¢, in the set [0, ¢], we get
F(z,t) = F(z,0)e2t",

Since F(x,0) = hom(z) = 1, it follows that F(z,t) = 211", 0
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Lemma 4.1.5. The polynomial

2 n—mk
hnm(2) = ) <—1>'“M

is a particular solution of the differential equation (1.2.8).

n

Proof. Let y = 3~ apa™ ¥ be the solution of the differential equation (1.2.8).

k=0
Then we have
n—1 n—m
Dy = Z(n — k)akx”*lfk7 Dmy = Z (n +1—m— k)makxnfmfk'
k=0 k=0

Using the last equality in (1.2.8) we get

n n .
zwrtn—l > (41— E)mag_pma” " =2 (0= kaga" " 2 aga" =0,
k=m =0 —
ie.,
- m m—1
[2m—1 (n+1—=k)mag—m + Qkak} vk Z Qkakmn_k -0
k=0 Pt

So, we obtain

kar =0, k=0,1,2,....,m— 1,
m(n+1—Fk),

o, Ak—m, k> m.

ap =

Taking ag = 2" /n!, by the induction on n, we find

[n/m] —mk
2x)n m
LR |
Y kzz:o (=1) El(n —mk)!

Hence, the equality y = hy m(x) holds. O
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4.2 Polynomials induced by
generalized Hermite polynomials

4.2.1 Polynomials with two parameters

Two parametric families of polynomials { Py%(t)} are considered in [31] and
[83]. Here, the parameters are m € N and ¢ € {0,1,...,m — 1}. These
polynomials are induced by generalized Hermite polynomials, and they are
defined in the following way.

Let n = mN + g, where N = [n/m] and ¢ € {0,1,...,m — 1}. From the
representation

B (2x)nfmk
i () = kzzo S e
N
_ (22)" (N0
= (22)° kzz;)(l)kk:!(mN +q — mk)!
= (22)7Py (1),
where t = (22)™, we get
i N L thk
Py(t) = ’;0(—1) k(g +m(N — k) @1.1)

Obviously, polynomials Py"?(t) depend on parameters m € N and
g €{0,1,...,m — 1}. These polynomials are closely related to polynomials
Bm(z). Starting from the definition of polynomials Py*¢(t), we can prove
the following statement (see [31]):

Theorem 4.2.1. Polynomials Py (t) satisfy recurrence relations:
Fori1<g<m-—1,

(mN + q)PT(t) = PU™ (1) — mPI9 (1),
For g =0,
mNPyO(t) =ty () — mP (0).

For fixed values of parameters m and ¢ polynomials Py"%(t) satisfy the
(m 4+ 1)-term recurrence relation of the form

1=0
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where coefficients Ay (i,q) (i = 0,1,...,m) and Bx(q) depend only on N,
m and ¢q (see [31]).

Explicit expressions for these coefficients are obtained using certain com-
binatorial identities in [79]. To prove the same expression here, we define
powers of the standard back difference operator V by

VOGN:aN, Vay =any —an_1, ViaN :V(Vi_la]v) (iEN).

Then using the Pochhammer symbol (A),, = A(A+1)--- (A+m—1), we can
prove the following result:

Theorem 4.2.2. Polynomials P](Vm’q) (t) satisfy the (m + 1)-term recurrence
relation

Z SVig+mN + Dy Py (1) = tPO(t). (2.1.2)
1=0
Before we prove this theorem, we shall prove an auxiliary result
(see [79]):

Lemma 4.2.1. Letm €N, g€ {0,1,...,m—1}, ay = (¢+mN +1),, and
0 < k< N+1. Then the following equality holds:

N-‘rl k—i 1 (_1)N+1—k

R v =  an_ 2.1.
N+1— ol i Y N T Ny (2.13)

‘“MQ

where G = min(m, N +1 — k).

Proof. Let E be the translation operator (shift operator), which is defined
by Eay = agy1. Since

(I _ v)]\H’l*kaN _ E*(]\H’l*k:)

aN = ag-1,
ie.,
N+1-k
(N+1—k\_,
Z (—1)z< " )VlaN = ag_1,
i=0 !
and Viay = 0 for i > m, we get the equality (2.1.3). O

Notice that

_Jm, for 0<E<N+1—-m
| N+1—k, for N+1-m<k<N+1.
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Proof. Proof of Theorem 4.2.2. Let Bn(q) = 1, An(i,q) = V'ay/i!, and
then use the explicit representation for the polynomial P](Vm’q) (t), given by

m N th
P = kZ:O(—l)N NI ET
The left side of the equality (2.1.3) reduces to
I_ N B AN t*
_gav‘m kzzo(_l) (N+1—k—1)l(q + mk)!

Ntl-m , m (—1)N+1-k=i 1_, 1k
A

= 2 <Z(N+1—k—¢)!'z'!va q+mk)!

k=0 1=0
N+1 <N+1—k (_1)N+1—k—i 1 . ) tk
(

2 (N+1—k—i)l 4

1=0

P> el
|
k=N+2-m q+ mk).

From Lemma 2.1.3 we get

N+1 _
(—1)N+1-k ap_qt*

_ )
L_kzzo (N+1—k)! (q+mk)

Since a1 =(¢q—m+ 1)y =(¢—m+1)(g—m+2)---¢=0 and

ay (g+mk+1)y 1
(¢+mE+1)) (g+mE+1))  (¢+mk)!’
we get
N
(=pN-* it (m,q)
L= . =tPy V().
kZ_O(N—k)! (g + mk)! v ()
The proof is completed, since the the (m 4+ 1)-term recurrence relation is

unique for By, = 1. O

Coefficients An(7,q) in the recurrence relation can be expressed in the

form
. 1 . .

We mention two special cases (m = 2 and m = 3) as an illustration of

the previous result.
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For m = 2 we get

where ¢ =0 or g = 1.

For m = 3 we have

ANn(0,¢) = (¢+3N +1)3 = (¢+3N + 1)(¢+ 3N +2)(¢ + 3N + 3),
An(1,q) = 3(2+ 3q+ 9N + 3¢ + 18Ngq + 2TN?),

AN(2,q9) =27(¢+ 3N — 1),

An(3,q) = 27,

where ¢ € {0,1,2}.

4.2.2 Distribution of zeros

We shall consider zeros of the polynomial

a4 - t*
Pm 2.2.1
kzo N—k)!(q+mk)!’ ( )

where m € N and ¢ € {0,1,...,m — 1}.

Theorem 4.2.3. The polynomial Py %(t), defined by (2.2.1), has only real
and positive zeros.

The proof of this theorem is based on the following Obreskov’s result
(see [91]):

Theorem 4.2.4. Let ap + a1z + - - + apz™ be a polynomial with only real
zeros and let x — f(x) be an entire function of the second kind having no
positive zeros. Then the polynomial

aof(0) + a1 f(D)z + -+ anf(n)z"
has only real zeros.

It is known that an entire function of the second kind can be expressed

in the form
_ —ax —i—bz m 1 J:/an
@) = Ce I(i-2)

n=1
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where C,a,b € R, m € Ny, a, € R (n=1,2,...) and
+00 1
E — < 400.
On
n=1

For details see [MMR, 3.1.6], [87]).

Lemma 4.2.2. Let m € N and q € {0,1,...,m — 1}. Then the function
x +— f(x), defined by

Iz +1)
can be expressed in the form
+o0o
_ — Dz +q\ _((m
_ 4D TT (12 M= DT+ 8\ _(m-1)z+q)/n 999
f(x) = Ae pl( [ . (222)

where A and v are constants (v = 0.57721566. .. is the well-known Euler
constant).

Proof. In 1856 Weierstrass proved the formula

—+00

F(z1+ 5= 11 ((1-72)e).

Applying this formula we get

Tz +1)
f) = F(mz+q+1)

+oco
— eon-veta TT (14 = DEELY —(m-vasan
n+x

n=1

+oo
— actme T (1 N (m—l)f'f+q> o~ ((m=Dz+a)/n
n-+x

n=1
Since m € N and the set of poles of the nominator I'(z + 1) is contained
in the set of poles of the denominator I'(mz+g+1), it follows that the entire
function (2.2.2) has no positive zeros.
Now, consider the polynomial

N N k
(t—1)N = Z (Z) (—1)Nkek = N1 Z(_l)Nk(N—tk:)!k:!’

k=0 k=0



4.2. POLYNOMIALS INDUCED BY GENERALIZED HERMITE 165

whose zeros are obviously real. From Theorem 2.1.5 and

k!

f(k):ma

we conclude that all zeros of the polynomial

_ 1 k!
N (D k(N — k) (mk + q)!tk

are real. This polynomial is equal to the polynomial Py?(¢), which we
have just considered. Changing ¢ with —¢, we conclude that zeros of the
polynomial Py?(t) are positive. O

4.2.3 Polynomials related to the generalized
Hermite polynomials

In [51] we define and then we study the polynomials {he} (z,z;a, 5)}. Next,
we consider the polynomials {H}'(A\)} and {H,7,(\)}. The polynomials
{he¥(z,z;, B)} are an extension of the generalized Hermite polynomials
{hnm(z)} (see [32]).

For the polynomials {he’(z,x;«, 3)} we derive several generating func-
tions and we find an explicit formula in terms of the generalized Lauri-
cella function. Same results are received for the polynomials {H,"(\)} and
{H7, ()}

The main objective of the paper [52] is to introduce and study the follo-
wing further extension of the aforementioned generalizations of the Hermite
polynomials as well as the generalized Hermite polynomials {hy n(z)} (see
32))

{hey m(z, 250, B) bnenyy (M eN={1,2,...,}),

which are defined by means of a generating function in the form:

[n/m] (_1)kzn—mk

Z;)he’g(z,x;a,ﬁ)t” = Z Z maz,n(fﬁ;a,ﬁ)tn

0 k
-1
= Z ) a%,n+mk (I’; «, ﬁ)zntn—i—mk

k
(n,meN, z,z,v,a,8 €C), (2.3.1)
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where C denotes the set of complex numbers and

af (x50, B) = 27 Fe —a/QZ Z —R)e (V)ryi (22)" 0" B0 (2.3.2)

| | 4l
=0 i,j=0 n)rﬂﬂ r 2R

We also investigate the polynomials { H,"(\) fnen, and {H]},(A) }nen, -

Recently, Wiinshe [121] introduced the generalized Hermite polynomials,
associated with functions of parabolic cylinder by

[n/2]

(—1)kn! -~
He!(z) = Z 7/{'(” - 2]{)'@};7”2” %,
= k! !
where
af, =2 "2 Fy(=k,v; —n; 2).
and

Ao = 3 a2

n=0

Next, substituting (2.3.2) into (2.3.1), we get
o0
Z hel (z,x; a, B)t" =

- —D*(=k)r (V)r4 (20)" (£7/2)" (22)" o B/
a/2 r r+1
Z Z Z —n — mk‘ Vrtivj Nl k! ol g

n,k=0 r=01,5=0

S (= e )il
i Z (k+7r){(=n —mk — mr), it
()" (<42 (—at™) ol B

n! 3] TR

n,k,r,i,7=0

(2.3.3)

Now, using the following relation:

(=k=7)r (L D" W)k (me1)r—ij

(k+r)(—n —mk — mr), 4y (n 4+ mk + mr)!

in the last member of (2.3.3), we find that
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Z hel(z,x;a, B)t" =
n=0

6—0‘/2 i (1)n+mk+(m71)r—i7j( )r_t,_l,z tntmk+mr (—:L‘)T
n,m,r,1,7=0 (n—{—mk:—}—mr)' n' ( )kk' r!
(—)" (=)
7! 4!
o3> Wnemkson iy
n,k,r,i,j=0 (1)n+mk+mr
n(_4m/9 k(_ogm\T (NG (2]
T 2 (Zat?) (Za) (2B g 5y
which yields the following generating function:
[o.¢]
Z hel (z,@; 0, B)t" = e 2 FL0T0 X
112001 1.0] s — s e —_m
(mmﬂm ST e S a5 (235)

In the special case, when o« = § = 0, the generating function (2.3.5)
reduces immediately to the following form:

Z he Z ZE 12(?(?00 <[1 . m[iml 7711]7[711/]0 ? 11 ; Zt? _tm/Qa _xtm> )
(2.3.6)
which, for m = 2, yields the relatively simpler result:
Z het(za)t" = Froon (M T w22, —at?) . (28)

Next, we consider some interesting cases of the following family of gene-
rating functions:

n

ZW hey (2, z; o, 3) (,ty) . y#0, bj#0,j=1,...,p
J=1 n

7 )n

(V.0 #€ Zy (j =1,2,...,q); Zg :={0,-1,-2,...}). (2.3.8)
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In the special case, when p = ¢ —1 =1, (2.3.8) yields

)
(CL) —a/2 123:0;0;0;0;0
Z (biz he%(z, e, B)tn =¢ o/ FS:O;O;O;O;O X

2 Byl
la:1,m,m,0,0],[1:1,m,m—1,—1,—1],[»:0,0,1,1,0]:—;—;—;—;—;
< [bzlvmvmvozo]7[Czlvmvmvovo]7[1:1:m:m:070}:7;7§7§7;7; A) ’ (239)
where
m
A= —zt, 5 —at™, —a, =B, (b,c#€ Zy).

Let’s set a = b in (2.3.9). Then we obtain

00 m
§ v . __—a/2 112:0;0;0;0;0

hen(z’x’ a, ﬁ) =e€ / FQ:O;O;O;O;O X
n=0

(©)n
[1:1,m,m—1,—1,—1],[1:0,0,1,1,0],——;—5—;—; —t™
oLy b LT LT LYY L LY Ty Ty Ty T T _ _ m — .
[C:l,m,m,O,O]7[111,m,m,0,0];—;—;—§—;—§ Zt7 2 ’ ot T B ’
which, for ¢ =1, yields

- " /2 722:0;0;0;0;0

v ) _ -« :0;0;0;0;
E hey (2, 7; a, B) € F5.0.0,0:00 X
n=0 ’

[1:1 1,-1,~1],[:0,0,1,1,0] —t"
1,m,m—1,—1,—1],[¢:0,0,1,1,0);—5—;—;—;—; o o

< (151 mm,0,0],[1:1m,m,0,0):—i—i—i—s—; 210 g T = ﬁ) - (2310)

Also, for a:=a+1, b=1and ¢=1 in (2.3.10), we obtain

ooi(a—i—l)n e (z,x; "= K e’ (z,x; o "
. ey pteme et = 3 (1) ek

E )

or

= (a+n "
— /2 173:0,0,0,0,0
E hey(z, 50, 8) — =€ 00000 X

0 n /”L. t ]
n—=

a+1:1,m,m,0,0],[1:1,m,m—1,—-1,—1},[»:0,0,1,1,0],—;—;—;—;—; —tm m
zt, ——, —axt™, —a, —f3
[1:1,m,m,0,0],[1:1,m,m,0,0], === o9 o ’
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4.2.4 Explicit formulas for the polynomials he} , (2, z;, §)

Here we give some explicit representations of the polynomials {h (z, z; «, 8)}.
First we find the following explicit formula by means of (2.3.3)

[n/m] kJrT, b .
(z s o, ) — /2 Z Z T n_( T)T(V)T—H

mk — mr)/(—n)r4itj

r,k=01,7= 0
Zn—mk;—m’r (233)7‘ ai ﬂj
ST o j?’ (2.4.1)
which, in view of the easily derivable elementary identity:
(_k — T) — (_1)mk+(m_1)r(_n)mk+mr
(k+7)(n —mk —mr)! k(1) ’
yields
— 2Z —-n mk-‘,—mr r+i
i) = o Eh 3 5
k,r=01,7=0 T+Z+J
((_1)m+127m/2)k ((_l)mflxzfm)r of B
. ——, (24.2)
k! r! il gl
or, equivalently,
v —a/27" 2:0:0:0;
hel(z,x;a, B) = e a/2Z_ oy Ff:é);(%);g X
0,010,110 ———i— (=11 (=)™ '@
([ nm[i711 0,1],[11:1]'—;—;]—;—; 2,m 7 m aB). (243)

Now, making use of the duplication formula involving the Pochhammer
symbol
Nn=AXA+1)---(A+n—-1):

(=n)2mk+2mr = 4m(k+r)(_n/2)mk+mr((1 = 1)/2)mk+mr (2.4.4)
n (2.4.2), we get the following explicit formula:
hel (z,x;a, B) =

n [M/(2m)] oo

704/22" Z Z =1/ 2) kv mr (1 = 1) /2) mbsmr (V)i

k,r=0 1i,j=0 ( )T+l+]

(_22m71272m)k (_4mz ) i 53
' k! r! a7

(2.4.5)
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or, equivalently,

n
v . _ —a/2” 3:0;0;0;0
hey (2,250, 8) = e / EFLO;O;O;O

[=n/2:m,m,0,0],[(1—n)/2:m,m,0,0]:[:0,1,1,0]:—;—;—;—;
% ( [=n:0,1,1,1]: —5—;—5—; A) (246)

where

Ao 722m—1 —AMg

ZQm

a, B. (2.4.7)

»2m
For m = 1, (2.4.6) and (2.4.7) yield the following interesting explicit
formula

n
v . _ —a/2” 3:0;0;0;0
hen(z,:c, @, B) =e / ﬁ Fl:O;O;O;O
X <[—n/2:1,1,0,0},[[(1—n)/2:1,1,0,0}:[1/:0,1,1,0]:—;—;—;—; _2 _4$ )

If we seta = f =0 in (2.4.2), then we get the following explicit
representation:

hey (z,x) = %7:
I e () ()2 (S
(—n), k! 7! ’

k,r=0
which, for m = 2 immediately yields

[”f (=)o sar(v)y (=272/2)" (—wz2)"

(—n), k! rl

zn
hel(z,x) = ol
" k=0

or

v o [n/2] —n/2 ~(1—n)/2 (V) 72—2 2k; 71‘2_2 r
heyi(z,2) = kzo( /2)k+ (E_n)r)/ Jitr (V)r ( k!/) ( : )"

4.2.5 Polynomials {H™(\)}

In this section we introduce the polynomials {H]*(\)}, related with the
generalized Hermite polynomials, by the following generating function

H(\t) = exp{t —2\t"} = i H (A", (2.5.1)
n=0
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where A € R, m € N and n € NU{0}.

From the relation (2.5.1) and using the known method, we get the follo-
wing recurrence relation

nH™(N) = H™ ,(\) — 2mAH™, (), (2.5.2)

1
AeR, nzm, H*(A\) =1, H'(\) = — n= 1,2,...,m—1).
n!
The explicit representation of the polynomials {H"(\)} is given by

fn/m]
" (—2))F
HIN) =) Kl(n — 131k)!’

k=0

N
v
o

(2.5.3)

By using the recurrence relation (2.5.2) and its corresponding initial val-
ues, we can compute the first few members of the polynomials {H]"(\)}:

HP (V) =1
HP'(\) =1
HY(O) = 3
PO = 5
) =
Hp ) = -2
. 1 2
Hym—1 (%) = @m—1)! (m—1)
. 1 2)
Hyp(A) = em) m

Now we are going to prove the following statement.

Theorem 4.2.5. The relations (2.5.1), (2.5.2) and (2.5.3) are equivalent.

Proof. First, we prove the equivalence of the relations (2.5.1) and (2.5.3).
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Starting from H (A, t), using (2.5.3), we find that

o [ In/m]
)k

H(\t) = ZHQ”(A)t" =2 Z ku (n — mk)! 2
n=0 n=0 =
= Z k' n — mk a

k,n=0

(since n —mk :=n, it holds n :=n+ mk)

I N

n=0 \k=0
=expt-exp{—2At""} = exp {t — 2)\tm} .

Thus, the relation (2.5.2) is the sequel of (2.5.3). It is not hard to prove
that the explicit formula (2.5.3) can be derived from (2.5.1).
If we exploit (2.5.3), we have

(20" (=2))*
kl(n—1—mk) 2m)\k!(n —m — mk)!
(—2X)F (—2X)k+1
TR —1—mk) "R = Dl = mk)!
(=2
N nk:!(n —mk)!’

Hence, we conclude that the relation (2.5.2) is the sequel of (2.5.3).
It is easy to prove that (2.5.3) yields (2.5.2). O

Lemma 4.2.3. The polynomials {H]"(\)}, for 0 < s < [n/m], satisfy the
following formula

DUHT () = (~2)° (n — ms — mAD) {HJ" . ()}, (2.5.4)

dS
drs’
Proof. Differentiating (2.5.1) with respect to A\, we get

where D% =

—2H™ (A\) = DH™()). (2.5.5)

Now, the recurrence relation (2.5.2) becomes
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(A =nH™MA) —mADH]" (). (2.5.6)
Next, differentiating (2.5.6), with respect to A, one-by—one s—times, we
get (2.5.4). O
4.2.6 Connection of the polynomials {H"(\)} and
the hyperbolic functions

In this section we are going to prove the following statement.

Theorem 4.2.6. The polynomials {H)*(\)} satisfy the following equalities:

o0

> HyH VR = sinh (t — 207 (2.6.1)
k=0
> H3E (AR = exp {207} sinh, (2.6.2)
k=0
> H (R = cosh (£ — 207 (2.6.3)
k=0
> H3 (W = exp {—2xt"} cosht. (2.6.4)
k=0

Proof. Using the recurrence relation (2.5.1), we find that

H(\t) =exp{t —2Xxt"}

= H"(\) + HPY O\t 4 HYP V)2 + HPF (O + ... (2.6.5)
H(\, —t) = exp {—t — 2\(—t)™}
= H'(\) — HM(\)t + HY ()2 — HP O 4. (2.6.6)

Hence, for m := 2m, by (2.6.5) and (2.6.6), we have

exp{t — 2X\t*™} + exp {-t- 2/\t2m} =2 Z HIM (Nt
k=0

So we obtain (2.6.4):

exp { —2At*"} cosht = Z HZM (At
k=0
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Now, for m :=2m + 1, by (2.6.5) and (2.6.6), again, we get
exp {t — 2Xt¥™ T} 4 exp {—(t — 2221} Z HE L (\)2k,

that is,

and that’s the wanted equality (2.6.3). Slmﬂarly, we can prove the assertions
(2.6.1) and (2.6.2). O

Corollary 4.2.1. Using the well-known equality cosh? x — sinh® z = 1, and
from (2.6.1)-(2.6.4), we get the following equalities:

0o 2
(Z HI™(N) t2k> (Z a1 ( t2k+1> = exp {—4At*"} and

k=0
k=0 k=0
Theorem 4.2.7. If A1, Xa,..., s are some real numbers and s € N, then

the following equality

S <)\1+)\2+---+)\5>

Sm

= > HPOWHZ () HM(A) (2.6.7)
i1tig+Fis=n

holds.

Proof. Starting from (2.5.1), we find that

H(M\,t)-H ()\2, t)--- ()\S,t)

—ZHm)\ltn ZHm)\2 ZHm n
-y ( S HIOWHD ) - Hgg(m) o

n=0 \i1+--+is=n
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On the other side, we have
H(M\,t)- H(Ag,t) - H(As,t) = exp{st —2(A1 + -+ X))t}
= exp {st —2(st)™ ()\1 + )\2;‘ s )\5) }

=s") HY (M“ﬁ”'HS)t".

n=0 s
So, we conclude that the equality (2.6.7) is correct. O
Corollary 4.2.2. If \j = Ao = -+ = A\s = A, then the equality (2.6.7) yields
A
iy ()= X HEO) ) HEO)
i14+is=n

4.2.7  Polynomials {H,(\)}

First, we are going to introduce the polynomials { H,”;, ()}, which are related
with {H"(\)}, by

r ok
=7 () _Zm, 0<r < [n/m]. (2.7.1)
k=0

Theorem 4.2.8. If x # 1 is any real number, then

1
O(x,t) = ] -exp{t — 2\zt"™} (2.7.2)

— X

is a generating function of the polynomials {H,",,(\)}.

Proof. Suppose that
O(x,t) = > HI(Na"t". (2.7.3)
n=0

Using (2.7.1), we get
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P(z, Z (Z k'((n — rzlk > x"t"

r,n=0
(—20)F | & t"
- Z Ko Z (n —mk)!"
0<k<r<oo n=0

Since n —mk :=j yields n:=mk + j, we have
0 "o 0 Hi+mk 0

N R

n=0 j=0 —0/

Hence
—2\)Fa”
O(x,t) = Z tmk(k'):E -expt
0<k<r<oco ’
—2Xt™)F
= expt . Z gmr

k!
0<k<r<oo

—exptz 2)\tm Zx

1
= -exp{t — 2 xt™},
—x
which evidently proves Theorem 4.2.8. 0

Theorem 4.2.9. The generating function ®(x,t) has the following form

_oN\)ighti
O(x,t) = Y (i‘)j'xtﬁm’. (2.7.4)
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Proof. Using the equality (2.7.2), it follows that

o

> (t — 2\xt™)™
T ~exp{t — 2 xt™} = Z_%:U” . Zon!
2 (=2 )k
= x
(n—k)!
n,k=0

1
bl

I
M8
(]

(n - k) gkt =k=i (2 \ptm)?

i (n—k)!

S
x
Il
o
3 s
Il
> O

xktn*k*i(—Q)\)ixitmi
il(n —k —1)!

o
<.
Il

=)

Il
3
ANE

(_2)\)i$k+itnfk7i+mi
il(n —k —1)!

S
=
a&
Il
o

[
gk

—k—i:=3, n=k+i+})
o \\i ki pmitg
(=2t

ilj!

[
S

=0

&
bl

This completes the proof of Theorem 4.2.9.

4.2.8 A natural generating function

Suppose also that

iz, t)= > HLNa"t"= Y at"[a"t"2(x,1),

0<r<n<oo 0<r<n<oo

where
(o]
O(x,t) =D Hen(Nz"t".
n=0

Then we prove the following statement.

177

(2.8.1)

Theorem 4.2.10. The generating function ®1(x,t) is given explicitly by

1

~exp{—2Azt™} (expt — xexp{xt}).

(2.8.2)
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Proof. Using (2.7.3) and (2.8.1) and since k + i < j 4+ mi yields
kE<j4+ (m-—1)i, we find

) L . j+(m—1)i
(_2)\)zxzt]+mz &
v =y T TS,
',j:O - k=0
z'thrmi 1— xj+1+(m71)i

_Z 21]1 ’ 1—2

1,j=0
1 ( 2)\ % th+mZ & 2)\ x]—l—mz—i—ltj—&—ww
T 12 Z ily! B Z ilg!
,j=0 1,7=0

1 0 (=2 \xt™)t ¢ —2X(zt)™)t  (xt)?
_ SS 2 0SS (G @)

_ 1l ! 1l 1
11—z =0 1! 7! 520 2! !
1
gy (exp {t — 2\xt™} — xexp {—2\z™t"} - exp{zt})
-z
1
=1 P {=2X\zt™} (expt — xexp{xt}).
—x
So, Theorem 4.2.10 is proved. O

4.2.9 A conditional generating function
Now suppose that

®f(z,t) = > H™ (A)z"t"

0<r<n/m<n<oco
= > "t 2t (z, 1), (2.9.1)

0<r<n/m<n<co

where ®(z,t) is given by (2.7.3).
Let’s prove the following assertion.

Theorem 4.2.11. The generating function ®f(x,t), defined by (2.9.1), has
the following form

(1) = - L exp{—22at™) x 4, (2.9.2)
— X
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where
(m—1)/m
A :expt - f_i—l/mx
m—2 i
1miq 1/ 1-iy/m _\ b
( (1— 2 exp {tz m}+z;< (m~— 1) Z|> (2.9.3)

Proof. For 0 < r < [n/m] £ oo and i + k < i+ [j/m] relatively to
0=k < [j/m], and from (2.7.4), we find that

X o y\\iigmit]
P =2 2, @
i,j=0 0<k<j/m
o =0 z'j 1—2z
Z 2)\ i ztmz+] i (_2A)ixi+1+[j/m]tmi+j
- T (=)l — )il
520 (1 —x)ily! 52 (1 — x)ily!
x io.04mi 4] x 1,.04mi [7/m]4g
~ ]' ~ 7! 4!
4,7=0 4,7=0
1 x[]/m]tj
=1, | &P {t =2X\zt™} — zexp {—2\zt™} - Z
j=0 7t
Now, since
ix[j/m]tj
il
=
o / pdpmi pIgmi+l pIgmitm—1
;((mj)! (mj + 1)! (mJ+m—1)!>
O pipmi \/m 00 1/mt)mg+1 2/m ) 2/mt)mj+2
= — +x —t T -_
jgo(mj)! Zo (mj +1)! Zo (mj +2)!

l/mt)m]er 1

(m—1)/m
ot 32) (mj +m —1)!

= exp {txl/m} 4 g~ Hm (exp {txl/m} - 1)
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1/mt
—2/m 1/m| 4 7T
+x <exp {ta: } 1 1 )

1/mt 2/mt2
e (exp {txl/m} —1-= T : 2! )
+ e _|_ :L'_(m_l)/mx
l/mt 2/mt2 (m72)/mtm72
L O I o Tt
(eXp {m } = 2! (m — 2)! )

= exp {tml/m} (1 fgT VMo x*(mfl)/m>
_ (x—l/m LMoy x—(m—l)/m)

¢ (xfl/m Lp2mo Ly x%mﬂ)/m)

2
= (x—l/m LMy x—(m—3>/m>
t3
-5 (xfl/m LMy x%m%)/m)
tm72
__7'%_1/7”
(m—2)!
1— 1 p—l/m M2 . 4
_ 1/m —(m—1-i)/m _ 1) 2
P {m } [ —am " 1—gUm ; (x 1) il
g l/m 1 1 1 = 1—i t
=g [P el 4 3 (i —1) 5
we get
Ol (z,t) = ~exp {—2\zt™} x A,
-
where
A —expt p(m=1)/m
= eX —_

1=z 1m

1

(xl/m(l —z ) exp {ta:l/m} + mz:z (xf(mflfi)/m — 1) 7;) )

In this moment,Theorem 4.2.11 follows easily. O
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Corollary 4.2.3. For m = 2 and m = 3, the generating function ®'(x,t)
becomes, respectively:

1
B (z,1) = T, &XP {—2)\33152} X
expt — L/Z ( 121 — g7 Y exp{tv/a} + 27/ — 1)
P 1—ax—1/2 P
and
Ol (z,t) = 1 ! -exp { —2\zt®} x
-z

[expt — 1_331/5’1/3 (xl/?’ (1 — xil) exp {txl/?’} +2723 141 (:cil/?’ - 1))] .

4.3 Generalizations of Laguerre polynomials

4.3.1 Introductory remarks

Classical Laguerre polynomials L;(z) are orthogonal in the interval
(0, +00) with respect to the weight function x — z°¢~*. For s = 0 these
polynomials become ordinary Laguerre polynomials L (x) = L,(z). Poly-
nomials Lf (x) are defined by the generating function

(1 —t)~(HDe=at/(-1) ZLS : (3.1.1)

Using known methods, from (3.1.1) we get the three term recurrence
relation

nr1() = @2n+s+1—x)ly(x) —n(n+s)Ly_4(x), n=>1,

with starting values L§(z) =1, Li(z) =s+1—z.
Expanding the left side of (3.1.1) in powers of ¢, and then comparing
coefficients with ¢, we obtain the explicit representation
n
n\I'(s+n+1)
LS _ -1 k k
w@) =2 (=) <k> Tstk+1)

k=0

Z”: R+ 1+ Bk g

kl(n — k)!
k=0
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Remark 4.3.1. The polynomial L{(x) has some other representations, for
example (see [113]):

L3 () = I:O (Z ! Z) (_/j)k |

L3 (x) = - D"{a" ey,
n.:
L3 (x) = S(@D4n + s)afe "},
n.
s z"e” 2 nyf, —
Ly(w) = “—= (@ Dsa + 2)"{e 7,

1 n
L3 (z) = EH(xD—x—i-s—i-j)l.
L

It can easily be proved that the polynomial L$ () is a particular solution
of the differential equation

vy + (s+1—z)y +ny=0.
For classical Laguerre polynomials L? (z) the following statement holds.

Theorem 4.3.1. Let g € C°(—00,4+00) and g(x) # 0. Then the following
equality holds:

Ser(R) S (1) e v = o
k=0 =0
Proof. From the well-known equality (see [96])
DLy(x) =D Ly y(z) — Ly (2), n=>1,
we have

D L (z) = (D -1)L;_, (),

n—1

D L (x) = (D —1)°L} (),

n—2

D*L;(x) = (D-1)*L;_y(x), n>k.
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Now, for k = n we get

> (7) D”-k<—1>k> 1}

L5 )

k=0 §=0

3

D" L () = (

—~

Since D" L$ (z) = (—1)"n!, it follows that

i(—nk(;ﬁ) : (n i k) D"RI {g~} D {g} = (—1)"nl.

k=0 Jj=

Example 3.1.1. For g(z) = a® we have
>
k!

k=0

Example 3.1.2. Let g(z) = (1 +2)%, « > —1, a € R\{0}. Then the
following holds:

n—k

I

p= k—j)!

—k . .
z": (1+x)’f"z: (-1 T(a+n+2—-k—j) (1+az)"
! i(n—k— 4)! — - '
per = jl(n —k—j)! Ma+1-7j) e

We shall show that classical Laguerre polynomials Lf(x) can be gene-
ralized in several directions, and all these generalizations retain some of
the well-known properties of classical polynomials. One generalization can
be obtained by introducing polynomials /7, . (x), where n is a nonnegative
integer, m is a natural numbers, and s is an arbitrary constant.

4.3.2  Polynomials /; , (7)

We define polynomials £}, ,,(x) using the expansion
Fo(z,t) = (1 — ™)~ HD gmat/(=t7) ZE (3.2.1)

Notice that for m = 1 polynomials £, ,,(7) reduce to classical Laguerre
polynomials ¢}, ; (z) = L;,(x)/n!.
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Expanding the function F,,(z,t) in powers of ¢, and then comparing
coefficients, we get the representation

[n/m]

s n—m s+n+1—mk n—m

Go(@) =Y (-1) i TRl i gk (3.2.2)
= ! !

For m =1 this representation becomes

o) = (kS

k=0
and corresponds to the polynomial Lf(x)/n!.
Using the equality
M(s+n+1—(m—1)k)

1—mk), =
(s+n+ k) I(s+n+1—mk)

)

the representation (3.2.2) becomes

[n/m] —mk
—akl(s+n+1—(m—1k) a"™
s o __1\n—mk
by () = 1;:0 (1) I(s+n+1—mk) kl(n—mk)

However, using the well-known equality

_ F'(A+n)

(= =55

polynomials £}, ., (z) can be written as
[n/m]

ok ST Dnm—iye - @
s _ —1)" mk .
gnm(‘r) kZ:O (=1) (s+ Dpemr k!l(n —mk)!

n—mk

For m = 1 we get the representation of polynomials L? (z), i.e.,
n
e\ (s+1), k
L (z) = —1)nk — ",
@) =2 (1) (s
=0
Differentiating the generating function F,(x,t) given with (3.2.1), in ¢,

and then comparing coefficients with t", we get the recurrence relation

nly () = (20 +m(s = 1))l 1 (2)

- (n + m(s - 1)) 272m,m($) - 1‘( zfl,m(w)

+(m = D)1 () (7)) (3.2.3)
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If m = 1, then (3.2.3) is the recurrence relation for classical Laguerre
polynomials, i.e.,

Ly(z)=(@2n+s—1-a)L; i(x) = (n—1)(n+s—1)L; »(x).
The following statement can easily be proved.

Theorem 4.3.2. The following equalities hold:

ma2 OFm(x,t m— ma2 OFm(x,t
(1—t )28(t):_m(8+1)t Y-t )2856)
(1 (m = ™) 1)
Dgi,m( ) Df‘; mm(m) - L:L—l,m(m); (324)
[((n—m)/m]
Dgn m(k+1),m ( )_Dgz,m(x) = Z 7S’L—1—mk7m(x)§ (325)
k=0
D™, () = (1) (2); (3.2.6)
n/m) .
Z (_1)n—mk (n - mk)ka7 K
P kn —mk)!

= i: k<s+ 1) n—mk,m (Z)- (3.2.7)

k=0
For m = 1 equalities (3.2.4)—(3.2.7), respectively, reduce to
Dgi,l(‘r) b 11( ) — 4 11( );

Dgnlkl( Zgnlkl Oﬁkgn—l;

D64 (x) = =61 1 (2);

n

ok (=R e R s+1
() e S D S pa(@),
2 kl(n — k)! kz ( k > k1

k=0
where £;, | (x) = L (z)/n!.

4.3.3 Generalization of Panda polynomials

Panda [92] considered two classes of polynomials {g¢(x,r,s)} and
{95 ™ (x,r,s)}. Polynomials ¢&(x,r,s) are defined by the expansion

(1—1t)~° [1$_t8t } Zgnxrs
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where

+o0o
= 27n2n7 o ?é 0.
n=0

We compare these polynomials with R}, (m, x,y,r, s, C), which are defined
as (see [10])

"zt ] =

- m\p — P n
(C mxt—i—yt ) G[(C—mxt—kytm)r ;Rn(W%xavaaSvCﬁ

Notice that the following equality holds:

,,,,C

c — R-¢ 1/(1-s) 0 )
gn(.fC,T,S) :L-n/(l—s) n (T’,JI 9 7T757T)

Two classes of polynomials {g;, ,,(z)} and {hj, ()}, respectively, are
defined as (see [41])

@(m,t):(ltm)cG[(l_tm ] Zgnm (3.3.1)
and
U(x,t) = (1 +tm)_CG[ Ty } Zh (3.3.2)
where .
Glz] :Z(_;!> . (3.3.3)
n=0

Using standard methods and ®(x,t), we get recurrence relations

nGpm (%) =D gy o (2) + (n+ (¢ = 1)m) g ()
+x(mr —1)D gy () (3.3.4)

and
[(n—m)/m]
xD g?i,m (1’) - ngz,m (HZ) = —cam Z gz—mk,m(x>

[(n—m)/m]
— rmx Z D g5 — ke m () (3.3.5)
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Starting from (3.3.1), again, we obtain
D* g5, (@) = (=) gt (), (3.3.6)

where D¥ = d* /dz*.
Expanding the function ®(z,t), in powers of ¢, and then comparing
coefficients with ", we get the explicit representation

[n/m]
i) = 3 (R

Furthermore, using the equality
(Mn =T (A +n)/T(A),
the formula (3.3.7) has two equivalent forms

c b/} rnemkL(c+rn—r(m—1k) =z
Gnm(@) = D (=) L(c+r(n—mk)) klY(n—mk)’

n—mk

k=0

[n/m] _
+ -1 n—r(m— n—mk
i) = 3 (L Do

k=0 ( (T - 1) )n—rmk k'(n — mk)' '

Notice that for m = 1 polynomials gy, ,,(x) reduce to Panda polynomials.

Remark 4.3.2. If m = 1, r = 1 and v, = (—1)"/n!, then polynomials

gr.m(x) become classical Laguerre polynomials, i.e., the following equality
holds

92,1(3«") = —al

Similarly, from (3.3.2) and (3.3.3), we obtain the formula

[n/m]
c _ ryn—mk (C B T‘(TL B mk))k n—mk
k=0

which represents an explicit representation of polynomials hflm(x)
Starting from W(x,t), using the known methods, we get recurrence rela-
tion

nhy, () = 2D hy, (fﬂ) + (m(c+1) =n)hy_p m(2)
Applying operators D = dk/dxk to the function ¥(z,t), we obtain the

equality
DF RS, () = (=) E R ().

n—k,m
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4.3.4 Polynomials gy (v) and A, (z)

Now, we consider two new classes of polynomials {g;,,(%)}neny and
{h () }nen, defined by (see [38])

Foz,t) = (1 — ™)~ e 2t/(=t") Zgnm : (3.4.1)

and

GOz, t) = (14 ™)~ 72t/ (+7) Zh (3.4.2)

Notice that classical Laguerre polynomlals are one special case of poly-
nomials g ., (), i.e., the following equality holds:

La l( )
gn 1(z) = T :

For these polynomials we shall prove several interesting properties, and
relate this polynomials to classical Laguerre polynomials.

Using the known methods, from F*(z,t), we find the following relation

ngz,m(x) - (n - )QZ m, m(x) - am(.qgﬁ_in m(x) gfﬁ%m m(x))
= 2(gn 1 (@) + (m = 1)gity (@), (3.4.3)

1G5,m () = =2(gn—1,m (%) + (M = 1)gn_1_n (7))
+(mla =2) +2n)gp_m n(2) = (M@ = 2) +10)gp_om m(2),  (344)

for n > 2m.

Notice that (3.4.3) and (3.4.4) are not recurrence relation of the standard
type, i.e., these are not three term recurrence relations. Furthermore, in the
case of Laguerre polynomials, these relations become

Ly @) = (n = 1)Lg=1(2) + (a — 2) Ly _; () — a(n — 1) Lj;_(x)
and
Li(e) = @n+a—2—2)L4,(x) — (n—1)(n+a—2)LL y(x), n>2.

So, using well-known methods, from (3.4.1) we get the explicit represen-

tation [n/m]
) n/m 1 n—mia+n—mii n—mi
gnm(w:Z( )" )i,

i!l(n — mi)!

)

1=0
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which, in the case of Laguerre polynomials, reduces to
- A\ (a+n—1); .,
) = Yo (1) G e

T
paar i) il(n—1)!

Differentiating both sides of (3.4.1) in =, one by one k-times, and then
comparing coefficients, we get the differential equality

D* gi o (x) = (—1)Fgety (z), n>k. (3.4.5)

In,m
Combining equalities (3.4.3) and (3.4.4), we get the equality
(n =2 D)gp m(2) =(n —m+x(m = 1) D)gy_p, 1n ()
+ amD(g?LJrlme,m(x) - gg+1fm,m(x))‘

Similarly, from (3.4.2) we obtain

nh%,m(ﬂf) = (m - ]‘)xh(rl;:%fm,m(l‘) - amhzt}’mm(x) - xhztzl,m(x)ﬂ
for n > m, and
nhgz,m(:z:) = l'(m - 1)hz—l—m,m(z) - mh’raz—l,m(m)

- (2’0 +am — zm)th—m,m(x) - (n +am — 2m) %—2m,m (‘T)’
for n > 2m.
Expanding the function G*(x,t) (given with (3.4.2)) in powers of ¢, and
then comparing coefficients, we get the formula

[n/m] —(m—1)i .
a _ (_1)n (m 1)l(a' +n— ml)i n—msi
i m (%) = ; il(n —mi)! v ’

which is the explicit representation of polynomials Ay, ,,(z).

Several equalities of the convolution type will be proved in the following
section.
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4.3.5 Convolution type equalities

In this section we shall prove the following statement.

Theorem 4.3.3. The following equalities hold:
Zgn zm g'Lm y):gi?m(x—i_y)’

[n/m] n—mj Y i—mj

Gom (@ ZZ

1=

(n —i—mj)
Lg2e.(x + y);

jl(n —myj)!

ZDSQZ im (@)D gf L (y) = 62252 (z+y), n > 2s;

ZD’“gn i () DV RE (2) = g3ty (22), n> 2k;

% kl a a
(_1) (,“) gn—k—mim ZgnJriC km (l’),
=0 ’
(*1)17192_k_m¢,m(2$) = (D)"Y netr (@9 (2);
i=0 ' i=0

b
Zgn zm gzm )—gg%(2l‘)

Proof. From (3.4.1) we get

Fo(x,t) - FO(y,t) = (1 — )7 e ()
= Z gol (@ + )t

On the other hand, we have

+o0o n

Fx,t) - Py, t) = D> g i n(@)gn ()"

n=0 i=0

Hence, we conclude that (3.5.1) is true.

(3.5.1)

(3.5.2)

(3.5.3)

(3.5.4)

(3.5.5)

(3.5.6)

(3.5.7)

(3.5.8)
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Now, starting from (3.5.8), we obtain

(1 - tm)72a€fxt/(1ftm 6yt/ (1—t™ Zgnm z+ y

and we get immediately the following

- (R £ ) (o)

First we multiply series on the right side. Comparing coeflicients with
" we obtain the equality (3.5.2).

Next, differentiating the function F*(x,t) (given with (3.4.1)) in z, one
by one s-times, we get

85Fa($7t) s my—a—s —xt/(1—t™)
T T ()1 -t .
8D e

So, it follows

88Fa(x7 t) . 88Fa(y7 t) _ t?s(l - tm)—2a—28€—(x+y)t/(l—tm)

oxs y®
_ ZgQa+2s z + Z/ tn—i—?s.
Since
O°F(w,t) as a( &
s => Y D°gi ;. (x) D% gf (y)t",

n=0 i=0

then we get the equality
Z D® g s () D g2, (y) = 920425 (2 + ),

which represents the equality (3.5.3).
Similarly, differentiating (3.4.1) and (3.4.2) in x, one by one k-times, we
obtain
8kFa kya
(z,1) and 0"G (x,t)7
Ok Ok
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whose product is equal to

+
BkFa(g:,t) akaa (z,1) fg“+k ey

axk n2m
ie.,
+oco n
k k k 2k
DY Drgn (@) DF R, Zgﬁﬁgm 2z)t""
n=0 =0

Hence, we get the equality (3.5.4).
Similarly, we can prove (3.5.5) and (3.5.6).
Multiplying functions F¢(x,t) and F®(x,t) (given in (3.4.1)), we get

F(z,t) - F(x,t) = (1 — ™)~ (ath)g=2at/(1=t™) _ Zga-i-b (20)t

Since

Fo(x,t) - F¥(z,t) = (Zgnm t") (igzm(x)t")
=0
_Zzgn o (% gkm( ),

n=0 k=0
it follows that

Zzgn km gk’m Zga+b

n=0 k=0
The required equality (3.5.7) is an immediate consequence of the last equal-
ity. O

If m = 1, then equality (3.5.2), (3.5.3) and (3.5.7), respectively, become
(see [38]):

7!

n Lafl Lq—l L2a+25 1 T+
ZDS n—i .%‘) DS =& : (y) _ n— 2s ( y)’
(n—1)! i! (n —2s)!

)

L) L @) Let (2
Z(n—i)! i!(): n!( )
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where L¢~1(z) is the Laguerre polynomial.
Similarly, we can prove the following statement:

Theorem 4.3.4. The following equalities hold:

Z ggll,m(xl) .. gf:m(xk) = gf‘L,lTj;'“+ak (T1 4+ xp); (3.5.9)
i1+t ig=n
Z h%l’m(:pl) e h?:’m(xk) = hgbb;t...—kak (1 + -+ xp);
i1t =n

Z Z gz,m(xl) o g;lk,m(l'k) Z h?l,m(xl) T h?k,m(l‘k)

s=0 i1+ +ig=n—s J1t+Fik=s
= Z ggl,2m(21:1)"'ggk,Qm(ka)'

i1t tip=n

In the case of Laguerre polynomials the equality (3.5.9) becomes

Z L?llfl(l‘l) L?:_l(xk) _ L%1+.4.+ak (r1 4+ -+ 1)

i1! ig! n!

i1+ +ip=n
Ifx; ==z =2 and a1 = az = --- = a; = a, then the equality
(3.5.9) reduces to
k
Z gzal,m(x)gzak,m(m) :gn,am(kw)
14 +ip=n
Moreover, for m = 1 this equality becomes

L¢Nx)  LiNw) LR l(ka
3 @) _ (kz)

11! ip! n!
11+-+ig=n 1 k

4.3.6 Polynomials of the Laguerre type

In the note Djordjevi¢, [50] we shall study a class of polynomials { fi'm(z)},
where ¢ is some real number, » € N U {0}, m € N. These polynomials
are defined by the generating function. Also, for these polynomials we find
an explicit representation in the form of the hypergeometric function; some
identities of the convolution type are presented; some special cases are shown.
The special cases of these polynomials are: Panda’s polynomials [42], [92];
the generalized Laguerre polynomials [42], [92]; the sister Celine’s polyno-
mials [11]
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4.3.7 Polynomials f¢" (z)

n,m

Let ¢(u) be a formal power—series expansion

S n (_,rr)n
() =Y ", =y (3.7.1)
n=0
We define the polynomials f'm, () as
my—c —4at — c,r n
n=0

Theorem 4.3.5. The polynomials fy'm(x) satisfy the following relations:

c,r (4rr$)n
nlm(x) = T(r—l—l)mFrmfl X A, (373)
where
o mflfn; 1fcfrn’ ..., rm—c=rn, (—1)m71(47’1x)*i1£7“m)’“m
A= " " 1—c—77:771n 2—c—rn Tmrm—l—c—mg?tm_ )
rm—1 7 rm—1 7 """ rm—1 )
(3.7.4)
[n/m]
n! c+rn—rmk
e’ = (—D’“( )f,i”m (). (3.7.5)
4n(yryn kzzo k k,
Proof. Using (3.7.1) and (3.7.2), we find:
my—c —4at m\—c > (*T’T)n (*4(13)"15"
(1_t ) ¢((1_tm)r>:(1_t ) Z nl (1_tm)rn
n=0
S (4Trx)ntn m\—c—rn
= -t
n=0 ’
= ) = [—c—rn o k
= (Z T > po )t
n=0 k=0
Sy W (e (= )Y
(n —k)! k

n=0 k=0
(n—k—mk:=n, n—k:=n—mk, k<|[n/m])
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_ i WL 1y gy gk <—c —r(n— mk)) .

n=0 k=0 (n B mk)' "
- 0o [n/m] (4Tr)n—mkxn—mk(c + r(n — mk))k m
= El(n — mk)! '
n=0 k=0

Using the well-known equalities ([93])

(C1F (—nh
n—k)! n!

(=D*(@)n

(1—a—mn)’

(@ntk = (@)n(@+n)g, ( » (@) =

we find that

(c+r(n—mk))k  (Or(n—mk)+k _ (—1)mF(—1)mk

(n —mk)! (i) (n —mk)!
(DR () (L= c=rn)pr (1) (=1)me
(1 —C— Tn)(rm—l)k ‘ (_1)ka(c)rn . n!
(=) =Dk — ¢ — 1n) i (=) i
(1 =c—rn)m_ n!
(—=1)m=DF (pm)rmhmmk . A . B
(rm — 1)rm=Dk pl. C

where

A l—c—rn 2—c—rn rm-—c—1rn
- rm % rm & rm .
B:<—n> .<1—”> ..... <m—1—n> 7
m /g m-J m k
c— l1—c—1rn 2—c—1rn m—1—c—rn
B rm—1 ), rm—1 ), rm — 1 -
From the other side, because of the next equality,

- o () =3 e

n=0

it follows
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or (4r"z)"
n,m(‘r) = nl (T+1)mFrm—1X
l—c—rn rm—c—rn. —n m—1-n. (=)™~ 1(47" )™ (rm)™™
rm ’ rm 'm0 om0 (rm—1)rm—1
l—c—rn 2—c—rn rm—1l—c—rn.
rm—1 7 rm—1 7" rm—1 ’

These are the required equalities (3.7.3) and (3.7.4).

Again, from (3.7.1) and (3.7.2), we get:

o0 o0

nyn —r")" m\c+rn c,r n
e R D M A
n=0 ’ n=0

(B (e (S o)

[n/m
n! Z fc+r(n—mk)\ ,cr
n — 1
k=0
which yields the equality (3.7.5) O

4.3.8 Some special cases of f; (7)

If r =1 and m > 1, then (3.7.3) and (3.7.4) become

c,1 (_41,)71
n:m(‘r) = o omFm—1X
m \™M
l-c—n 2—c—n m—c—n. —n l-n m—1-—n (E)
m Y m ) * m ' m? m 7 m 7(1_m)777,71
l—c—n 2—c—n m—1l—c—n.
-1 m-—1" ’ m—1

If m=1and r > 1, then (3.7.3) and (3.7.4) yield

l—c—rn r—l—c—rn.
r—1 " r—1 ’

T\ l—c—rn r—c—rn. L (4rrz) Tt
c,r _ (47" ':U) IS P r ;1 (r_l)r—l
o = h | |
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For r =01in (3.7.2), and ¢(u) = e*, we have

(1 —t™)Cp(—4at) Zf

and hence we get the following equalities:

[eS)
e = (L=t Y fl ()t
n=0

and also

2 (—4x)"t = [c m N L. n

A (5 ()t ) (S o)

n=0 ’ k=0 n=0
oo [n/m] c o
Z <k> f’r?—mk,m (x)tn
n=0 :0

So, we get

W ( ) £ e ()- (3.8.1)

k= 0

For ¢ =01in (3.7.3) and (3.7.4), we get the following formula

or (4r"z)™
n,m(x) - n (r+1)m Frm-1X
1—rn rm—rn. —n m—1-n. (=)™ 4rrz)"mmm
rm " rm Y om Y me ) (rm—1)rm—1
1—rn rm—1-—rn.
rm—17"""7 rm-—1

—4)n
Forc=1,m =2andr = 2, then, v, = ( ') and by (3.7.3) and (3.7.4),
n!

we get the following formula

19 (4:1;.)71 —2n 1-2n 2-2n 3-2n.-—-m 1-—n._ -1
) _ T4 v 4 T 4 v 4 )2 T2 19342
fn,? (1’) B 6F3 —2n 1-2n 2-2n. 12

. 3 )

39173

Note that the generalized Laguerre polynomials are the special case of
the polynomials fnm(z), that is, Ly, (z) = ol (z/4). So, we get the
following representation

n 2—c—n m+l—c—n. —n m—1-n. 7 ™m™m
c x F m ) m m om0 (I-m)m T
n,m | 2mtm—1 2—c—n m—c—n
m—1 ? Y om—1
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For the Laguerre polynomials Lj, | () = Ly,(z), where

Lo cepd TV Z NS e
(1—1t)“exp 1_¢ _nZ:o nxn!v

the following statement holds.

d
Theorem 4.3.6. Let D = . and g € C*®(—o0,+00) and g(x) # 0, then
T

n

>-t(;) Zﬁ (")t g = o (a2

k=0
Proof. Using the known formula ([96])
DLY(x) = DLG_y(2) — L1 (2), n>1,
we get the following equalities:
DLy(x) = (D = Lo, (w),

DLy (z) = (D = 1)*Lj,_y(x),

Hence, for s = n, we obtain that

DUIE () = (fj(—l)k(Z) D"-k) 1

k=0
n n n—k n—k 4 ‘
=St () (" ) o
k=0 = N
Since D"L¢(z) = (—1)"n!, we get

n

> (-1 (Z) g <n i k) D" g D g} = (~1)"nl,

k=0

which leads to (3.8.2). O
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Depending to the chosen functions g(z) and from (3.8.2), we get some
interesting relations.

1° For g(z) = €%, a is any rial number, and ¢~ !(z) = e, we get

az Z (n—F —J :1.

2°If g(z) = (1 4+ 2), for x > —1, a # 0, then we get

n

1—|—x 1 (L4

(1—a—n)jol(a—7+2)  an!

)

M |

(@)nl'(a)

??‘
D

or

n_n—k (—1)7(1 4 x)* (Hg_o(a +1-— z)) <HZ:_§_j_1(a + s)) (4o
Kljl(n — k — 7)! a

3° For g(z) = a”, a > 0 and a # 1, we obtain

ll _ :
et k(n J)

4° For g(x) = z%€”, we have the following formula

1 (n — k — - -4
k=0 j=0 i= =0 kll(n ])'(J l)

i (_1)k+i(—n) 'i(Oé)j n!
ZZ : > xi+lk!z‘!l!(];'+i+l)! T T(a+1)

=
o)
=]
a
@
S
=
Q
|
S
S
m
2
b
o
(05}
@
-+

Z EJ: (=DM (=) _q
4 NG — 1)] '
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5° For g(z) = 2%, >0 and z # 1, a # 0, we obtain

3
1
B

WIS e+ DTl —s)ah
k!j! T

4.3.9 Some identities of the convolution type

Using the following equality

(1— )/ ((1_—4t> @S e, (39.)
n=0

tm)r

and by (3.7.1) and (3.7.2), we get

Z fe/2( Z Z (C/ 2) S/rim( )ntmk—k

n=0 n=0 k=0

oo [n/m]
=2 > (@ (D! (@)

Hence, we get

fﬁ,/%’r(x) = [712/7:”}(_1)1{(022)

Again, by (3.7.1) and (3.7.2), for ¢(u) = e* we find:

FE (). (3.9.2)

n—mk,m

e, (A F Tt Tt >
(=70 (G ) < S s
n=0
that is,
—4xqt
(1—t™)~ o/s o T ce (=™ ¢/s o T=tm)r S0 Z "(xy 4 xg)
hence

(Z /s (g )(Z /s (g > (Z clor (s )

= Z for (@4 a)t”
n=0
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So, we get

So ET @) (@) S () = S (@t aat ). (3.9.3)
i1+ +is=n

Let c=c1+---+c¢ and x = x1 + - - - + zp, then we have, at, on the one
side

A1+ F T = ey
( (1—emy | ) =D S )t

n=0

(1—¢m)~ 7" %g (
and on the other side

(1 — tm)_61_m_0k¢ ( ( tm)
- (Z ;},;Z@Qt”) ..... (Z ﬁ%(a:k)t”>
n=0

n=0

—A4(x1+ -+ mk)t>
1—

=S S ) () |

n=0 \i1++ix=n
Hence we get the following formula

ST S @) e SO () = fOETT (2 44y (3.94)

i1+ tip=n

fry=xo=-=x,= f, then (3.9.3) becomes
s

So g f (@ )s) = fon (@), (3.9.5)

11+ +is=n

where s is a natural number.

For r =0 in (3.7.2), and ¢(u) = €%, we have

oo

(L —"™)"Cp(—dat) = Y fr(@)t",

n=0

whence we get
o

e = (1= )Y fi8 (),

n=0
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and also

2. (—4z)" = [c >

yo A <Z k)(—tW)’“) (Z ,szmw)t“)

n=0 k=0 n=0
oo [n/m] ‘ .

=50 Y ()
n=0 k=0
So, we get

For ¢ =01in (3.7.3) and (3.7.4), we get the following formula

(4r"z)™
13:17;1($) = n (T+1)mFrm—1 X
1—rn Tm —1rn_—n m—1-n (=1)""Y4r"z) "m™
rm 77 rm T om m (rm —1)rm-1

1—rn rm—1—rn

rm—1""" rm—1 "
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