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Abstract. The coefficients in the three-term recurrence relation for monic

orthogonal polynomials with respect to the Szegő-Bernstein weight functions

wν(x) = W (x)/(c − x)ν , ν ≥ 1, on (−1, 1) are obtained in the explicit form

for all Chebyshev cases, i.e., when W (x) is (1 − x2)∓1/2,
√

(1 + x)/(1 − x)

and
√

(1 − x)/(1 + x). Chebyshev’s method of modified moments is used, as

well as the Mathematica package OrthogonalPolinomials developed in [Facta

Univ. Ser. Math. Inform. 19 (2004), 17-36] and [Math. Balkanica 26 (2012),
169–184].

1. Introduction. In a joint paper with Mastroianni [10] (see also [11, §5.1.7]) we
considered an integration of (2π)-periodic functions on the real line with respect to
an even rational weight function, developing a transformation method for reducing
such integrals to the integration over the finite interval (−1, 1) with respect to
Szegő-Bernstein weight functions

wν(x) =
1

(c− x)ν
1√

1− x2
(ν ≥ 1), (1.1)

where ν ∈ N and c = cosh b, b > 0. For the sequence of monic polynomials
{πk,ν}∞k=0, orthogonal with respect to the weight function wν , which satisfy the
three-term recurrence relation

πk+1,ν(x) = (x− αk)πk,ν(x)− βkπk−1,ν(x), k = 0, 1, . . . , (1.2)

π0,ν(x) = 1, π−1,ν(x) = 0,

the coefficients αk = αk,ν and βk = βk,ν , k = 0, 1, . . ., were determined in [10] in
analytic form for ν = 1, 2, 3. Otherwise, it is well known that the polynomials πk,ν
can be calculated explicitly provided ν < 2k (cf. [15, p. 31]). Also, there is a non-
linear algorithm to produce the recursion coefficients αk,ν and βk,ν for polynomials
πk,ν in terms of ones for the polynomials πk−1,ν . However, such an algorithm is
quite numerically unstable unless c is very close to 1 (cf. [6, p. 102]). In [4] Fischer
and Golub also discussed two numerical algorithms for this purpose. In connection
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with the Kronrod extensions of Gaussian quadrature formulas, Gautschi and No-
taris [9] and Notaris [13] studied weight functions on (−1, 1) consist of any one of
the four Chebyshev weights divided by an arbitrary positive quadratic polynomial
on (−1, 1).

The orthogonal polynomials and their three-term recurrence relation for the gen-
eralized Marchenko-Pastur measure are recently obtained in explicit form, analyt-
ically as well as symbolically using Mathematica, by Gautschi and Milovanović
[8]. Special cases involve Chebyshev polynomials of all four kinds. Otherwise, the
Marchenko-Pastur probability measure is appears in the asymptotic theory of large
random matrices. Here, we also mention a very recent survey paper by Wong and
Zhao [16] on some new developments in asymptotics in the last fifty years, including
the Riemann-Hilbert approach and more than a hundred references. The advan-
tage of this method is that it can be applied to orthogonal polynomials that do not
satisfy any difference or differential equations or have any integral representations.

In this paper we consider the four Chebyshev weight functions modified by the
factor like in (1.1), i.e.,

wTν (x) =
1

(c− x)ν
1√

1− x2
, (1.3)

wUν (x) =
1

(c− x)ν

√
1− x2, (1.4)

wVν (x) =
1

(c− x)ν

√
1 + x

1− x
, (1.5)

wWν (x) =
1

(c− x)ν

√
1− x
1 + x

, (1.6)

where c = cosh b > 1 and ν ≥ 1, and the upper indices correspond to the Cheby-
shev cases of the first (T ), second (U), third (V ), and fourth (W ) kind. Our aim
is to obtain the coefficients in the three-term recurrence relation for the corre-
sponding orthogonal polynomials in a symbolic form. For this purpose we use our
symbolic/variable Mathematica package OrthogonalPolynomials (see [3, 12]).

The paper is organized as follows. In Section 2 we compute the modified moments
for each of cases (1.3), (1.4), (1.5) and (1.6), with respect to the monic Chebyshev
polynomials of the first, second, third and fourth kind, respectively. Section 3 is
devoted to application of methods of modified moments for finding coefficients in the
three-term recurrence relation (1.2). Also, in this section we present the obtained
results for the recurrence coefficients in all four Chebyshev’s cases.

2. Modified moments for Chebyshev’s weights. For calculating recurrence
coefficients in the three-term relation of the form (1.2) we will use the Chebyshev
method of modified moments developed by Gautschi [5] (see also [7, pp. 76–78], [11,
pp. 160–162]).

The modified moments mP
k,ν for the weight functions (1.3), (1.4), (1.5) and (1.6)

are given by

mQ
k,ν =

∫ 1

−1

Q̂k(x)wQν (x) dx, k = 0, 1, . . . , (2.1)
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where the upper index Q ∈ {T,U, V,W}, and Q̂k(x) are monic Chebyshev polyno-
mials satisfying

Q̂k+1(x) = (x− ak)Q̂k(x)− bkQ̂k+1(x), k = 0, 1, . . . ,

Q̂0(x) = 1, Q̂−1(x) = 0,

with the coefficients ak = 0 in all cases, except a0 = 1/2 and −1/2 for the monic

polynomials of the third and fourth kind (V̂k and Ŵk), respectively. For k ≥ 1
the coefficients bk = 1/4 in all cases, except b1 = 1/2 for the monic Chebyshev

polynomials of the first kind T̂k.
Although the coefficient b0 can be arbitrary, it is convenient to take it as

b0 =

∫ 1

−1

wQ0 (x) dx =


π, for Q = T,
π/2, for Q = U,
π, for Q = V,
π, for Q = W.

(2.2)

In the sequel we consider four Chebyshev’s cases. With (λ)k we denote the well
known Pochhammer symbol defined for λ ∈ C by [14]

(λ)k =

{
1, k = 0,

λ(λ+ 1) . . . (λ+ k − 1), k ∈ N.

In terms of well-known Gamma function, it is written as

(λ)k =
Γ(λ+ k)

Γ(λ)
(λ ∈ C \ Z−0 ).

2.1. Chebyshev weight of the first kind.

Theorem 2.1. Let ν ∈ N, b > 0, k ∈ N0,

C(ν, b) =
π

2ν−2(ν − 1)! sinh2ν−1 b
(2.3)

and

qs(k, ν) = (k − ν + 1)s(k + s+ 1)ν−1−s, s = 0, 1, . . . , ν − 1. (2.4)

Then the modified moments (2.1) for the first Chebyshev weight are given by

mT
0,ν =

1

2
C(ν, b)

ν−1∑
s=0

(−1)s
(
ν − 1

s

)
qs(0, ν)e(ν−1−2s)b

and

mT
k,ν = C(ν, b)

e−kb

2k

ν−1∑
s=0

(−1)s
(
ν − 1

s

)
qs(k, ν)e(ν−1−2s)b, k ≥ 1.

Proof. We consider (2.1), when Q = T and Q̂k(x) = T̂k(x). Putting x = cos θ, we

have T̂0(cos θ) = 1 and T̂k(cos θ) = 21−k cos(kθ), as well as

mT
k,ν =

1

2k−1

∫ π

0

cos kθ

(cosh b− cos θ)ν
dθ =

1

2k

∫ π

−π

eikθ

(cosh b− cos θ)ν
dθ (2.5)

for k ≥ 1. For k = 0 an additional factor 1/2 is needed.
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By a change of variables z = eiθ, the integral (2.5) reduces to a complex integral
over the unit circle |z| = 1,

mT
k,ν =

(−1)ν

2k−ν i

∮
|z|=1

zk+ν−1

(z2 − 2 cosh bz + 1)ν
dz,

which can be calculated by the Cauchy Residue Theorem as

mT
k,ν =

(−1)ν

2k−ν i
2πi

1

(ν − 1)!
· dν−1

dzν−1

[
zk+ν−1

(z − eb)ν

]
z=e−b

= C(ν, b)
e−kb

2k

ν−1∑
j=0

(
ν − 1

j

)
(k + j + 1)ν−1−j(ν)je

(ν−1−2j)b
(
1− e−2b

)ν−1−j
,

where C(ν, b) given by (2.3).
Using the binomial expansion(

1− e−2b
)ν−1−j

=

ν−1−j∑
s=0

(−1)s
(
ν − 1− j

s

)
e−2sb

=

ν−1∑
s=j

(−1)s+j
(
ν − 1− j
s− j

)
e−2(s−j)b,

as well as the property in the summation proccess

ν−1∑
j=0

Aj

ν−1∑
s=j

Bj,s =

ν−1∑
s=0

s∑
j=0

AjBj,s,

we obtain that

mT
k,ν = C(ν, b)

e−kb

2k

ν−1∑
s=0

{
s∑
j=0

(−1)j
(
ν − 1

j

)
(k + j + 1)ν−1−j(ν)j

(
ν − 1− j
ν − 1− s

)}

× (−1)se(ν−1−2s)b. (2.6)

For internal sum we have
s∑
j=0

(−1)j
(
ν − 1

j

)
(k + j + 1)ν−1−j(ν)j

(
ν − 1− j
ν − 1− s

)

=

(
ν − 1

s

)
(k + 1)ν−1 2F1(−s, ν; k + 1; 1), (2.7)

where 2F1 is the well-known Gauss hypergeometric function defined by

2F1(a, b; c;x) =

+∞∑
j+0

(a)j(b)j
(c)j

· x
j

j!
.

Since (cf. [1, p. 67])

2F1(−s, ν; k + 1; 1) =
(k + 1− ν)s

(k + 1)s
,

the equality (2.7) becomes
s∑
j=0

(−1)j
(
ν − 1

j

)
(k + j + 1)ν−1−j(ν)j

(
ν − 1− j
ν − 1− s

)
=

(
ν − 1

s

)
qs(k, ν),
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where qs(k, ν) is defined by (2.4).
Finally, (2.6) reduces to

mT
k,ν = C(ν, b)

e−kb

2k

ν−1∑
s=0

(−1)s
(
ν − 1

s

)
qs(k, ν)e(ν−1−2s)b.

It holds for k ≥ 1. As we mentioned before the expression for mT
0,ν requires an

additional factor 1/2.

Remark 1. According to Mastroianni and Milovanović [10, Lemma 3.1] the mo-
ment mT

0,ν can be expressed also in terms of the Legendre polynomials

mT
0,ν =

π

sinhν b
Pν−1(coth b). (2.8)

In order to get connection with the case ν = 0 (Chebyshev weight of the first kind)
it is convenient to put P−1(x) = 1, and then (2.8) gives mT

0,0 = π.

Remark 2. It would be interesting to find a similar form for mT
k,ν if any for

an arbitrary k ∈ N. On the other side, such compact formulas for the modified
moments will not be useful in our computation of the recurrence coefficients, using
the Mathematica package OrthogonalPolynomials [3], [12]. However, formulas
given in Theorem 2.1 are suitable for such a purpose, because they appear as linear
combinations of exponential functions, excluding the constant C(ν, b).

2.2. Chebyshev weight of the second kind.

Theorem 2.2. Let ν ∈ N, b > 0, k ∈ N0, and let C(ν, b) and qs(k, ν) be defined
as in (2.3) and (2.4), respectively. Then the modified moments (2.1) for the second
Chebyshev weight are given for each k ∈ N0 by

mU
k,ν = C(ν, b)

e−kb

2k+2

ν−1∑
s=0

(−1)s
(
ν − 1

s

)[
qs(k, ν)− e−2bqs(k + 2, ν)

]
e(ν−1−2s)b.

Proof. Here we consider (2.1), when Q = U and Q̂k(x) = Ûk(x).

Putting x = cos θ, we have Ûk(cos θ) = 2−k sin(k + 1)θ/ sin θ for each k ≥ 0, so
that

mU
k,ν =

1

2k+1

∫ π

π

sin(k + 1)θ sin θ

(cosh b− cos θ)ν
dθ =

1

2k+2

∫ π

−π

eikθ − ei(k+2)θ

(cosh b− cos θ)ν
dθ,

i.e.,

mU
k,ν =

1

4
mT
k,ν −mT

k+2,ν .

Using Theorem 2.1 we obtain the desired result.

2.3. Chebyshev weight of the third kind.

Theorem 2.3. Let ν ∈ N, b > 0, k ∈ N0, and let C(ν, b) and qs(k, ν) be defined
as in (2.3) and (2.4), respectively. Then the modified moments (2.1) for the third
Chebyshev weight are given for each k ∈ N0 by

mV
k,ν = C(ν, b)

e−kb

2k+1

ν−1∑
s=0

(−1)s
(
ν − 1

s

)[
e−bqs(k + 1, ν) + qs(k, ν)

]
e(ν−1−2s)b.
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Proof. Here we consider (2.1), when Q = V and Q̂k(x) = V̂k(x). Since

V̂k(x) =
1

2k
cos
(
k + 1

2

)
θ

cos 1
2θ

, x = cos θ,

we have

mV
k,ν =

1

2k

∫ π

0

cos
(
k + 1

2

)
θ

cos 1
2θ

√
1 + cos θ

1− cos θ
· sin θ

(cosh b− cos θ)ν
dθ

=
1

2k+1

∫ π

−π

ei(k+1)θ + eikθ

(cosh b− cos θ)ν
dθ,

i.e.,

mV
k,ν = mT

k+1,ν +
1

2
mT
k,ν .

Using Theorem 2.1 we obtain the desired result.

2.4. Chebyshev weight of the forth kind.

Theorem 2.4. Let ν ∈ N, b > 0, k ∈ N0, and let C(ν, b) and qs(k, ν) be defined
as in (2.3) and (2.4), respectively. Then the modified moments (2.1) for the third
Chebyshev weight are given for each k ∈ N0 by

mW
k,ν = C(ν, b)

e−kb

2k+1

ν−1∑
s=0

(−1)s
(
ν − 1

s

)[
qs(k, ν)− e−bqs(k + 1, ν)

]
e(ν−1−2s)b.

Proof. In this case we have

Q̂k(x) = Ŵk(x) =
1

2k
sin
(
k + 1

2

)
θ

sin 1
2θ

, x = cos θ,

and

mW
k,ν =

1

2
mT
k,ν −mT

k+1,ν .

Using Theorem 2.1 we obtain the desired result.

Remark 3. We mention that Ŵk(x) = (−1)kV̂k(−x).

3. Application of Chebyshev method of modified moments. Using the mod-
ified moments given in the previous theorems, we are able to calculate coefficients
in the corresponding recurrence relations of the form (1.2) for monic polynomials
orthogonal on (−1, 1) with respect to the weight functions (1.3), (1.4), (1.5) and
(1.6). In order to get a better stability in numerical construction of orthogonal
polynomials, Walter Gautschi [5, §2.4] proposed the method of modified moments
as a improvement of the original Chebyshev method of moments [2]. These meth-
ods are implemented in recent symbolic/variable-precision software for orthogonal
polynomials (Gautschi’s package in Matlab and our Mathematica package).

In this section we use our Mathematica package OrthogonalPolynomials [3],
[12], which is downloadable from the web site http://www.mi.sanu.ac.rs/~gvm/.

When we have the (modified) moments in (linearized) analytic form, an application
of this package in symbolic mode is very simple. We illustrate it in the case (1.3).

For obtaining the first n recurrence coefficients αk and βk, k = 0, 1, . . . , n − 1,
in (1.2), using Mathematica package OrthogonalPolynomials, in symbolic form
for a given ν (≥ 1) we need the following commands:

http://www.mi.sanu.ac.rs/~gvm/
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<< orthogonalPolynomials‘

aRecurT[n_,v_,b_]:=

Module[{aa,bb,q,alpha,beta,s,k,n,mom,Cvb},

Cvb=Pi/(2^(v-2)(v-1)! Sinh[b]^(2v-1))

q[s_,k_]:=Pochhammer[k-v+1,s] Pochhammer[k+s+1,v-1-s];

aa = Table[0, {k,0,2 n-1}];

bb = Table[If[k == 0,Pi,If[k==1,1/2,1/4]], {k,0,2 n-1}];

mom=Table[If[k == 0,1/2,1] Exp[-k b]/2^k

Sum[(-1)^s Binomial[v-1,s]q[s,k]Exp[(v-1-2s)b],

{s,0,v-1}], {k,0,2n-1}];

{alpha, beta}=aChebyshevAlgorithmModified[mom,aa,bb,

Algorithm -> Symbolic]//Simplify;

beta[[1]]=Cvb beta[[1]];

Return[{alpha, beta}]];

Remark 4. Without loss of generality, the common factor C(ν, b) (Cvb) can be
eliminate (i.e., we can divide all moments by this factor, so that the first moment
be 1). The obtained results should be corrected only in β0 (beta[[1]]), because
β0 = mT

0,ν . This approach is applied in the previous Module.

aChebyshevAlgorithmModified-function returns the sequences of three-term re-
currence coefficients (alpha and beta) of the length n in symbolic form, for a given
sequence of modified moments mod. The sequences aa and bb represent the re-
currence coefficients, in this case, of the monic Chebyshev polynomials of the first
kind.

For other cases (1.4), (1.5) and (1.6), we need only to change the sequences aa,
bb and mod.

In the sequel we present the obtained results for recurrence coefficients in each of
the Chebyshev cases, as well as graphics of the corresponding recurrence coefficients
when b runs over (0, 4) (i.e., when c ∈ (0, 27.31).

3.1. Chebyshev weight of the first kind. We present the obtained results for
the recurrence coefficients αk ≡ αTk,ν and βk ≡ βTk,ν , k = 0, 1, . . ., and ν = 1, . . . , 5.

Case ν = 1

α0 = e−b, α1 = −1

2
e−b, αk = 0 (k ≥ 2);

β0 =
π

sinh b
, β1 =

1

2

(
1− e−2b

)
, βk =

1

4
(k ≥ 2);

Case ν = 2

α0 =
2eb

e2b + 1
, α1 =

1− e2b

e3b + eb
, αk = 0 (k ≥ 2);

β0 =
π cosh b

sinh3 b
, β1 =

e−2b
(
e2b − 1

)3
2 (e2b + 1)

2 , β2 =
1

4

(
1 + e−2b

)
, βk =

1

4
(k ≥ 3);

Case ν = 3

α0 =
3eb
(
e2b + 1

)
e4b + 4e2b + 1

, α1 =
e−3b + 7e−b + 7eb − 3e3b

2
(
e4b + 4e2b + 1

) , α2 = −1

2
e−3b,

αk = 0 (k ≥ 3);
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β0 =
π
(
e−2b + 4 + e2b

)
4 sinh5 b

, β1 =

(
e2b − 1

)4
2 (e4b + 4e2b + 1)

2 ,

β2 =
1

4

(
1 + 3e−2b − 3e−4b − e−6b

)
, βk =

1

4
(k ≥ 3);

Case ν = 4

α0 =
4eb
(
e4b + 3e2b + 1

)
e6b + 9e4b + 9e2b + 1

, α1 = −
2eb
(
1− 4e2b − 14e4b − 4e6b + e8b

)
(e2b + 1) (e4b + 1) (e4b + 8e2b + 1)

,

α2 =
2(1− e2b)

e5b + eb
, αk = 0 (k ≥ 3);

β0 =
π
(
e−3b + 9e−b + 9eb + e3b

)
8 sinh7 b

, β1 =

(
e2b − 1

)4 (
e4b + 1

)
2 (e6b + 9e4b + 9e2b + 1)

2 ,

β2 =
e−4b

(
e2b − 1

)3 (
e2b + 1

) (
e4b + 8e2b + 1

)
4 (e4b + 1)

2 ,

β3 =
1

4

(
1 + e−4b

)
, βk =

1

4
(k ≥ 4);

Case ν = 5

α0 =
5eb
(
e2b + 1

) (
1 + 5e2b + e4b

)
1 + 16e2b + 36e4b + 16e6b + e8b

,

α1 = −
5eb
(
e2b + 1

) (
1− 6e2b − 45e4b − 40e6b − 45e8b − 6e10b + e12b

)
2 (1 + e2b + 6e4b + e6b + e8b) (1 + 16e2b + 36e4b + 16e6b + e8b)

,

α2 =
e−5b

(
1 + e2b + 11e4b + e6b + 16e8b − 10e10b

)
2 (1 + e2b + 6e4b + e6b + e8b)

,

α3 = −1

2
e−5b, αk = 0 (k ≥ 4);

β0 =
π
(
e−4b + 16e−2b + 36 + 16e2b + e4b

)
16 sinh9 b

,

β1 =

(
e2b − 1

)4 (
1 + e2b + 6e4b + e6b + e8b

)
2
(
1 + 16e2b + 36e4b + 16e6b + e8b

)2 ,

β2 =

(
e2b − 1

)4 (
1 + 16e2b + 36e4b + 16e6b + e8b

)
4 (1 + e2b + 6e4b + e6b + e8b)

2 ,

β3 =
1

4

(
1 + 5e−4b − 5e−6b − e−10b

)
, βk =

1

4
(k ≥ 4).

The recurrence coefficients αk, k = 0, 1, 2, . . ., and βk, k = 1, 2, . . ., for ν = 4,
ν = 5 and ν = 10 as functions of b are presented in Figures 1, 2, and 3, respectively.

3.2. Chebyshev weight of the second kind. Here we give the recurrence coef-
ficients αk ≡ αUk,ν and βk ≡ βUk,ν , k = 0, 1, . . ., and ν = 1, . . . , 5.

Case ν = 1

α0 =
1

2
e−b, αk = 0 (k ≥ 1); β0 =

π

2

1− e−2b

sinh b
= e−bπ, βk =

1

4
(k ≥ 1);
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Figure 1. Three-term recurrence coefficients αk (left) and βk
(right) for ν = 4
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Figure 2. Three-term recurrence coefficients αk (left) and βk
(right) for ν = 5
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Figure 3. Three-term recurrence coefficients αk (left) and βk
(right) for ν = 10

Case ν = 2

α0 = e−b, αk = 0 (k ≥ 1);

β0 =
2π

e2b − 1
, β1 =

1

4

(
1− e−2b

)
, βk =

1

4
(k ≥ 2);

Case ν = 3

α0 =
1

2
e−3b

(
3e2b − 1

)
, α1 =

1

2
e−3b, αk = 0 (k ≥ 2);
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β0 =
4πe3b(

e2b − 1
)3 , β1 =

1

4

(
1− e−2b

)3
, βk =

1

4
(k ≥ 2).

Case ν = 4

α0 =
2eb

e2b + 1
, α1 =

2

e3b + eb
, αk = 0 (k ≥ 2);

β0 =
8πe4b

(
e2b + 1

)
(e2b − 1)

5 , β1 =
e−4b

(
e2b − 1

)4
4 (e2b + 1)

2 , β2 =
1

4

(
1− e−4b

)
,

βk =
1

4
(k ≥ 3);

Case ν = 5

α0 =
5eb
(
e2b + 1

)
2 (e4b + 3e2b + 1)

, α1 =
10eb + 4e−b − 3e−3b − e−5b

2
(
e4b + 3e2b + 1

) ,

α2 =
1

2
e−5b, αk = 0 (k ≥ 3);

β0 =
16πe5b

(
e4b + 3e2b + 1

)
(e2b − 1)

7 , β1 =

(
e2b − 1

)4
4 (e4b + 3e2b + 1)

2 ,

β2 =
1

4
e−10b

(
e2b − 1

)3(
e4b + 3e2b + 1

)
, βk =

1

4
(k ≥ 3).

The recurrence coefficients αk, k = 0, 1, 2, . . ., and βk, k = 1, 2, . . ., for ν = 5 and
ν = 10 are presented in Figures 4 and 5, respectively.
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Figure 4. Three-term recurrence coefficients αk (left) and βk
(right) for ν = 5

3.3. Chebyshev weight of the third kind. Here we present the recurrence co-
efficients αk ≡ αVk,ν and βk ≡ βVk,ν , k = 0, 1, . . ., and ν = 1, . . . , 5.

Case ν = 1

α0 =
1

2

(
1 + e−b

)
, αk = 0 (k ≥ 1);

β0 =
2π

eb − 1
, β1 =

1

4

(
1− e−b

)
, βk =

1

4
(k ≥ 2);
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Figure 5. Three-term recurrence coefficients αk (left) and βk
(right) for ν = 10

Case ν = 2

α0 =
1

2

(
1 + 2e−b − e−2b

)
, α1 =

1

2
e−2b, αk = 0 (k ≥ 2);

β0 =
π

2 sinh3 b
e−b
(
1 + eb

)2
, β1 =

1

4
e−4b

(
eb − 1

)3(
eb + 1

)
,

βk =
1

4
(k ≥ 2);

Case ν = 3

α0 =
1

2
e−3b

(
3e2b − 1

)
, α1 =

1

2
e−3b, αk = 0 (k ≥ 2);

β0 =
4πe3b(

e2b − 1
)3 , β1 =

1

4

(
1− e−2b

)3
, βk =

1

4
(k ≥ 2);

Case ν = 4

α0 =
2eb

e2b + 1
, α1 =

2

e3b + eb
, αk = 0 (k ≥ 2);

β0 =
8πe4b

(
e2b + 1

)
(e2b − 1)

5 , β1 =
e−4b

(
e2b − 1

)4
4 (e2b + 1)

2 , β2 =
1

4

(
1− e−4b

)
,

βk =
1

4
(k ≥ 3);

Case ν = 5

α0 =
5eb
(
e2b + 1

)
2 (e4b + 3e2b + 1)

, α1 =
10eb + 4e−b − 3e−3b − e−5b

2
(
e4b + 3e2b + 1

) ,

α2 =
1

2
e−5b, αk = 0 (k ≥ 3);

β0 =
16πe5b

(
e4b + 3e2b + 1

)
(e2b − 1)

7 , β1 =

(
e2b − 1

)4
4 (e4b + 3e2b + 1)

2 ,

β2 =
1

4
e−10b

(
e2b − 1

)3(
e4b + 3e2b + 1

)
, βk =

1

4
(k ≥ 3).

In Figure 6 we display αk, k = 0, 1, 2, . . ., and βk, k = 1, 2, . . ., for ν = 10.
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Figure 6. Three-term recurrence coefficients αk (left) and βk
(right) for ν = 10

3.4. Chebyshev weight of the fourth kind. Finally, we present here the recur-
rence coefficients αk ≡ αWk,ν and βk ≡ βWk,ν , k = 0, 1, . . ., and ν = 1, . . . , 5.

Case ν = 1

α0 =
1

2

(
−1 + e−b

)
, αk = 0 (k ≥ 1);

β0 =
2π

1 + eb
, β1 =

1

4

(
1 + e−b

)
, βk =

1

4
(k ≥ 2);

Case ν = 2

α0 =
1

2

(
e−2b + 2e−b − 1

)
, α1 = −1

2
e−2b, αk = 0 (k ≥ 2);

β0 =
π

2 sinh2 b
e−b
(
eb − 1

)2
, β1 =

1

4
e−4b

(
e2b − 1

)(
1 + eb

)2
,

βk =
1

4
(k ≥ 2);

Case ν = 3

α0 = − e2b − 4eb + 1

2
(
1− eb + e2b

) , α1 = −3

2

1− e−b

1− eb + e2b
, αk = 0 (k ≥ 2);

β0 =
π

4 sinh5 b
e−2b

(
eb − 1

)2(
1− eb + e2b

)
, β1 =

e−3b
(
eb − 1

)3 (
eb + 1

)4
4 (e2b − eb + 1)

2 ,

β2 =
1

4

(
1 + e−3b

)
, βk =

1

4
(k ≥ 2);

Case ν = 4

α0 = − e4b − 6e3b + 6e2b − 6eb + 1

2
(
e4b − 2e3b + 4e2b − 2eb + 1

) ,
α1 =

e−4b − 2e−3b + 4e−2b + 2e−b − 7 + 12eb − 6e2b

2
(
e4b − 2e3b + 4e2b − 2eb + 1

) ,

α2 = −1

2
e−4b, αk = 0 (k ≥ 3);

β0 =
π

8 sinh7 b
e−3b

(
eb − 1

)2(
e4b − 2e3b + 4e2b − 2eb + 1

)
,
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β1 =

(
e2b − 1

)4
4
(
e4b − 2e3b + 4e2b − 2eb + 1

)2 ,
β2 =

1

4

(
1− e−8b − 4e−5b + 4e−3b

)
, βk =

1

4
(k ≥ 3);

Case ν = 5

α0 = −1− 8eb + 14e2b − 24e3b + 14e4b − 8e5b + e6b

2 (1− 3eb + 9e2b − 9e3b + 9e4b − 3e5b + e6b)
,

α1 = −
5e2b

(
2− 8eb + 15e2b − 20e3b + 15e4b − 8e5b + 2e6b

)
2 (1− eb + e2b − e3b + e4b) (1− 3eb + 9e2b − 9e3b + 9e4b − 3e5b + e6b)

,

α2 = −
5e−b

(
eb − 1

)
2 (1− eb + e2b − e3b + e4b)

, αk = 0 (k ≥ 3);

β0 =
π

16 sinh9 b
e−4b

(
eb − 1

)2(
1− 3eb + 9e2b − 9e3b + 9e4b − 3e5b + e6b

)
,

β1 =

(
eb − 1

)4(
eb + 1

)4(
1− eb + e2b − e3b + e4b

)
4
(
1− 3eb + 9e2b − 9e3b + 9e4b − 3e5b + e6b

)2 ,
β2 =

e−5b
(
eb − 1

)3(
eb + 1

)4(
1− 3eb + 9e2b − 9e3b + 9e4b − 3e5b + e6b

)
4
(
1− eb + e2b − e3b + e4b

)2 ,

β3 =
1

4

(
e−5b + 1

)
, βk =

1

4
(k ≥ 4).

Recurrence coefficients αk and βk for ν = 10 are displayed in Figure 7.
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Figure 7. Three-term recurrence coefficients αk (left) and βk
(right) for ν = 10
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type, II, J. Comput. Appl. Math., 29 (1990), 161-169.
[14] H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals,

Elsevier, Inc., Amsterdam, 2012.
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