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Received 19 January 2015; Accepted 24 February 2015

Academic Editor: Alejandro Ortega-Moñux
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A reduction of the originally double step size iteration into the single step length scheme is derived under the proposed condition
that relates two step lengths in the accelerated double step size gradient descent scheme.Theproposed transformation is numerically
tested. Obtained results confirm the substantial progress in comparison with the single step size accelerated gradient descent
method defined in a classical way regarding all analyzed characteristics: number of iterations, CPU time, and number of function
evaluations. Linear convergence of derived method has been proved.

1. Introduction and Background

The SM iteration from [1] is defined by the iterative process

x𝑘+1 = x𝑘 − 𝑡𝑘𝛾
−1

𝑘
g𝑘, (1)

where x𝑘+1 is a new iterative point, x𝑘 is the previous iterative
point, g𝑘 is the gradient vector (search direction), 𝑡𝑘 is a
step length, and 𝛾𝑘 > 0 is the acceleration parameter. In [1]
it is verified that the accelerated gradient SM iteration (1)
outperforms the gradient descent, GD, as well as the Andrei’s
accelerated gradient descent AGD method from [2].

Double direction and double step size accelerated meth-
ods, denoted by ADD and ADSS methods, respectively,
for solving the problems of unconstrained optimization are
presented in [3, 4]. These two algorithms can be generally
formulated through the next merged expression:

x𝑘+1 = x𝑘 + 𝛼𝑘s𝑘 + 𝛽𝑘d𝑘, (2)

where x𝑘 is the previous iterative point and real values 𝛼𝑘
and 𝛽𝑘 denote two step lengths while the vectors s𝑘 and
d𝑘 are two vector directions. The values of step lengths

are determined by backtracking line search techniques. The
gradient is basically used for defining a search direction,
but some new suggestions for deriving a descending vector
direction are given in [3, 5]. Taking the substitutions

s𝑘 = −𝛾

−1

𝑘
g𝑘, 𝛽𝑘 = 𝛼

2

𝑘
, (3)

into (2) produces the ADD iterative scheme from [3]:

x𝑘+1 = x𝑘 − 𝛼𝑘𝛾
−1

𝑘
g𝑘 + 𝛼

2

𝑘
d𝑘, (4)

where 𝛾𝑘 represents the acceleration parameter for the iter-
ation (4). The benefits of the acceleration properties that
arise from the usage of the parameter 𝛾𝑘 are explained in
[3]. The so called nonaccelerated version of ADD method
(NADD method shortly) is defined in order to numerically
verify the acceleration property of the parameter 𝛾𝑘. Three
methods, SM, ADD, and NADD, are numerically compared
in [3]. Results show the enormous efficiency of ADD scheme
in comparison with its nonaccelerated counterpart NADD.
Derivation of the direction vector d𝑘 is explained by the
Algorithm 3.2 in [3]. The ADD outperforms its competitive
SMmethod from [1] with respect to the number of iterations.
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By replacing the vectors s𝑘 and d𝑘 from (2) by −𝛾−1
𝑘
g𝑘 and

−g𝑘, respectively, the next iteration is defined as

x𝑘+1 = x𝑘 − (𝛼𝑘𝛾
−1

𝑘
+ 𝛽𝑘) g𝑘. (5)

The previous scheme is noted as ADSS model and it is
proposed in [4]. In the same paper, a huge improvement in
performances of this accelerated gradient descent method
when compared to the accelerated gradient descent SM
method from [1] is numerically confirmed.

The main contribution of the present paper is a trans-
formation of the double step size iterative scheme (5) for
unconstrained optimization into an appropriate accelerated
single step size scheme (called TADSS shortly). Convergence
properties of the introduced method are investigated. A
special contribution is given by the numerical confirmation
that the TADSS algorithm developed from the double step
size ADSS model (5) is evidently more efficient than the
accelerated SM method obtained in a classical way. Surpris-
ingly, numerical experiments show that the TADSS method
overcomes the initial ADSS method.

The paper is organized in the following way. The reduc-
tion of the double step size ADSS model into the single
step size iteration TADSS and the presentation of defined
accelerated gradient decent model are given in Section 2.
Section 3 contains the convergence analysis of derived algo-
rithm for uniformly convex and strictly convex quadratic
functions. The results of numerical experiments as well as
their comparative analysis of developed method and its
forerunners are illustrated in Section 4.

2. Transformation of ADSS Scheme into
a Single Step Size Iteration

Very advanced numerical results obtained in [4] motivated
further research on this topic. An idea is to investigate
the properties of a single step size method developed as a
reduction of the double step size ADSSmodel.This reduction
is defined by an additional assumption which represents a
trade-off between two step length parameters 𝛼𝑘 and 𝛽𝑘 in
the ADSS scheme:

𝛼𝑘 + 𝛽𝑘 = 1. (6)

Taking into account assumption (6) into expression (5),
which defines the ADSS iteration, leads to the iterative
process

x𝑘+1 = x𝑘 − [𝛼𝑘 (𝛾
−1

𝑘
− 1) + 1] g𝑘. (7)

The iteration (7) is noted as transformed ADSS method, or
shortly TADSS method. Defined TADSS iteration represents
not only a reduction of the double step size ADSS model into
the corresponding single step size method, but also a sort
of modification of the single step size SM iteration from [1].
This modification can be explained as the substitution of the
product 𝑡𝑘𝛾

−1

𝑘
, from the SM iteration (1), by the multiplying

factor 𝛼𝑘(𝛾
−1

𝑘
−1)+1 of the gradient from the TADSS iteration

(7).

For the sake of simplicity, we use the notation 𝜙𝑘 =

𝛼𝑘(𝛾
−1

𝑘
− 1) + 1 whenever it is possible. The value of the

acceleration parameter 𝛾𝑘+1 in (𝑘 + 1)th iteration can be
derived by using Taylor’s expansion, similarly as described in
[1, 3, 4]:

𝑓 (x𝑘+1) ≈ 𝑓 (x𝑘) − g𝑇
𝑘
𝜙𝑘g𝑘 +

1

2

𝜙𝑘g
𝑇

𝑘
∇

2
𝑓 (𝜉) 𝜙𝑘g𝑘. (8)

The vector 𝜉 in (8) satisfies

𝜉 ∈ [x𝑘, x𝑘+1] , 𝜉 = x𝑘 + 𝛿 (x𝑘+1 − x𝑘) = x𝑘 − 𝛿𝜙𝑘g𝑘,

0 ≤ 𝛿 ≤ 1.

(9)

Further, it is reasonable to replace in (8) the Hessian ∇

2
𝑓(𝜉)

by the diagonal matrix 𝛾𝑘+1𝐼, where 𝛾𝑘+1 is an appropriately
chosen real number. This replacement implies

𝑓 (x𝑘+1) ≈ 𝑓 (x𝑘) − 𝜙𝑘

󵄩
󵄩
󵄩
󵄩

g𝑘
󵄩
󵄩
󵄩
󵄩

2
+

1

2

𝜙

2

𝑘
𝛾𝑘+1

󵄩
󵄩
󵄩
󵄩

g𝑘
󵄩
󵄩
󵄩
󵄩

2
. (10)

The relation (10) allows us to compute the acceleration
parameter 𝛾𝑘+1:

𝛾𝑘+1 = 2

𝑓 (x𝑘+1) − 𝑓 (x𝑘) + 𝜙𝑘

󵄩
󵄩
󵄩
󵄩

g𝑘
󵄩
󵄩
󵄩
󵄩

2

𝜙

2

𝑘

󵄩
󵄩
󵄩
󵄩

g𝑘
󵄩
󵄩
󵄩
󵄩

2
. (11)

Next, the natural inequality 𝛾𝑘+1 > 0 is inevitable.
This condition is required in order to fulfill second-order
necessary condition and second-order sufficient condition.
The choice 𝛾𝑘+1 = 1 is reasonable in the case when the
inequality 𝛾𝑘+1 < 0 appears for some 𝑘. This choice produces
the next iterative point as

x𝑘+2 = x𝑘+1 − (𝛼𝑘+1 (1 − 1) + 1) g𝑘+1 = x𝑘+1 − g𝑘+1, (12)

which evidently represents the classical gradient descent step.
We consider now the (𝑘 + 1)th iteration, x𝑘+2, which is

given by

x𝑘+2 = x𝑘+1 − [𝛼𝑘+1 (𝛾
−1

𝑘+1
− 1) + 1] g𝑘+1 = x𝑘+1 − 𝜙𝑘+1g𝑘+1.

(13)

Examine the functionΦ𝑘+1(𝛼):

Φ𝑘+1 (𝛼) = 𝑓 (x𝑘+1) − [𝛼 (𝛾

−1

𝑘+1
− 1) + 1]

󵄩
󵄩
󵄩
󵄩

g𝑘+1
󵄩
󵄩
󵄩
󵄩

2

+

1

2

[𝛼 (𝛾

−1

𝑘+1
− 1) + 1]

2

𝛾𝑘+1

󵄩
󵄩
󵄩
󵄩

g𝑘+1
󵄩
󵄩
󵄩
󵄩

2
,

(14)

defined as the finite part of the Taylor expansion of the
function

𝑓 (x𝑘+1 − [𝛼 (𝛾

−1

𝑘+1
− 1) + 1] g𝑘+1) (15)
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under the assumption 𝛾𝑘+2 = 𝛾𝑘+1. This function is convex
when 𝛾𝑘+1 > 0, and its derivativeΦ𝑘+1(𝛼)

󸀠

𝛼
is calculated in the

following way:

(Φ𝑘+1)
󸀠

𝛼
= − (𝛾

−1

𝑘+1
− 1)

󵄩
󵄩
󵄩
󵄩

g𝑘+1
󵄩
󵄩
󵄩
󵄩

2

+ (𝛼 (𝛾

−1

𝑘+1
− 1) + 1) 𝛾𝑘+1

󵄩
󵄩
󵄩
󵄩

g𝑘+1
󵄩
󵄩
󵄩
󵄩

2
(𝛾

−1

𝑘+1
− 1)

= (𝛾

−1

𝑘+1
− 1) (−1 + (𝛼 (𝛾

−1

𝑘+1
− 1) + 1) 𝛾𝑘+1)

󵄩
󵄩
󵄩
󵄩

g𝑘+1
󵄩
󵄩
󵄩
󵄩

2

= (𝛾

−1

𝑘+1
− 1) (−1 + 𝛼 − 𝛼𝛾𝑘+1 + 𝛾𝑘+1)

󵄩
󵄩
󵄩
󵄩

g𝑘+1
󵄩
󵄩
󵄩
󵄩

2

= (𝛾

−1

𝑘+1
− 1) (𝛼 − 1) (1 − 𝛾𝑘+1)

󵄩
󵄩
󵄩
󵄩

g𝑘+1
󵄩
󵄩
󵄩
󵄩

2

= 𝛾

−1

𝑘+1
(1 − 𝛾𝑘+1)

2
(𝛼 − 1)

󵄩
󵄩
󵄩
󵄩

g𝑘+1
󵄩
󵄩
󵄩
󵄩

2
.

(16)

Since the inequality 𝛾𝑘+1 > 0 is achieved, the following is
valid:

(Φ𝑘+1)
󸀠

𝛼
< 0 ⇐⇒ 𝛼 < 1, (Φ𝑘+1)

󸀠

𝛼
= 0 ⇐⇒ 𝛼 = 1. (17)

Therefore, the function Φ𝑘+1(𝛼) decreases in the case
(Φ𝑘+1)

󸀠

𝛼
< 0 and achieves its ownminimum in the case 𝛼 = 1.

According to the criteria given by (17), desirable values for
𝛼 are within the interval (−∞, 1]. Now, (7) is a kind of the
gradient descent process in the case 𝜙𝑘 = 𝛼𝑘(𝛾

−1

𝑘
− 1) + 1 > 0.

Since 𝛾𝑘 > 0, it is easy to verify the following condition for
the step length 𝛼𝑘:

𝛼𝑘 ≤

𝛾𝑘

𝛾𝑘 − 1

. (18)

Since 𝛾𝑘/(𝛾𝑘−1) > 1 in the case 𝛾𝑘 > 1, this fractional number
is not appropriate upper bound for 𝛼𝑘 in this case. On the
other hand, the inequality 𝛾𝑘/(𝛾𝑘 − 1) < 0 holds in the case
𝛾𝑘 < 1, so that 𝛾𝑘/(𝛾𝑘 − 1) is an appropriate upper bound for
𝛼𝑘 in this case.

Further analysis of (10) in the case 𝛾𝑘 < 1 gives

𝑓 (x𝑘) − 𝑓 (x𝑘+1) ≈ 𝜙𝑘

󵄩
󵄩
󵄩
󵄩

g𝑘
󵄩
󵄩
󵄩
󵄩

2
−

1

2

𝜙

2

𝑘
𝛾𝑘+1

󵄩
󵄩
󵄩
󵄩

g𝑘
󵄩
󵄩
󵄩
󵄩

2
, (19)

which implies

𝑓 (x𝑘+1) < 𝑓 (x𝑘) ⇐⇒ 𝜙𝑘 ≤

2

𝛾𝑘+1

. (20)

Taking into account 𝛾𝑘 < 1, it is not difficult to verify that
the criterion (20) restricts desirable values for 𝛼𝑘 within the
interval

𝛼𝑘 ≤

𝛾𝑘 (2 − 𝛾𝑘+1)

𝛾𝑘+1 (1 − 𝛾𝑘)

. (21)

Final conclusion is that the upper bound for 𝛼𝑘 is defined
in the case 𝛾𝑘 < 1, 𝛾𝑘+1 < 1, as the minimum between the
upper bounds defined in (18) and (21):

𝛼𝑘 ≤ min{
𝛾𝑘

𝛾𝑘 − 1

,

𝛾𝑘 (2 − 𝛾𝑘+1)

𝛾𝑘+1 (1 − 𝛾𝑘)

} . (22)

According to the previous discussion, the iterative step
𝛼𝑘 is derived by the backtracking line search procedure
presented in Algorithm 1.

Algorithm 1 (calculation of the step size𝛼𝑘 by the backtracking
line search which starts from the upper bound defined in
(22)). Requirement: objective function 𝑓(x), the direction d𝑘
of the search at the point x𝑘, and real numbers 0 < 𝜎 < 0.5

and 𝜂 ∈ (𝜎, 1).

(1) Set 𝛼 = min{𝛾𝑘/(𝛾𝑘 − 1), 𝛾𝑘(2 − 𝛾𝑘+1)/𝛾𝑘+1(1 − 𝛾𝑘)}.

(2) While 𝑓(x𝑘 + 𝛼d𝑘) > 𝑓(x𝑘) + 𝜎𝛼g𝑇
𝑘
d𝑘 take 𝛼 := 𝜂𝛼.

(3) Return 𝛼𝑘 = 𝛼.

Finally, the TADSS algorithm of the defined accelerated
gradient descent scheme (7) is presented.

Algorithm 2 (transformed accelerated double step size
method (TADSS method)). Requirement: 0 < 𝜌 < 1, 0 <

𝜏 < 1, x0, 𝛾0 = 1.

(1) Set 𝑘 = 0, compute 𝑓(x0), g0, and take 𝛾0 = 1.

(2) If ‖g𝑘‖ < 𝜖, then go to Step 8; else continue by the next
step.

(3) Find the step size 𝛼𝑘 applying Algorithm 1.

(4) Compute x𝑘+1 using (7).

(5) Determine the scalar 𝛾𝑘+1 using (11).

(6) If 𝛾𝑘+1 < 0 or 𝛾𝑘+1 > 1, then take 𝛾𝑘+1 = 1.

(7) Set 𝑘 := 𝑘 + 1; go to Step 2.

(8) Return x𝑘+1 and 𝑓(x𝑘+1).

3. Convergence of TADSS Scheme

The content of this section is the convergence analysis of
the TADSS method. In the first part of this section a set of
uniformly convex functions is considered. The proofs of the
following statements can be found in [6, 7] and have been
omitted.

Proposition 3 (see [6, 7]). If the function 𝑓 : R𝑛 → R is
twice continuously differentiable and uniformly convex on R𝑛

then

(1) the function 𝑓 has a lower bound on 𝐿0 = {x ∈ R𝑛 |

𝑓(x) ≤ 𝑓(x0)}, where x0 ∈ R𝑛 is available;

(2) the gradient g is Lipschitz continuous in an open convex
set 𝐵 which contains 𝐿0; that is, there exists 𝐿 > 0 such
that

(∀x, y) ∈ 𝐵 󵄩
󵄩
󵄩
󵄩

g (x) − g (y)󵄩󵄩󵄩
󵄩

≤ 𝐿

󵄩
󵄩
󵄩
󵄩

x − y󵄩󵄩󵄩
󵄩

. (23)

Lemma 4. Under the assumptions of Proposition 3 there exist
real numbers𝑚,𝑀 satisfying

0 < 𝑚 ≤ 1 ≤ 𝑀, (24)
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such that 𝑓(x) has a unique minimizer x∗ and

(∀x, y ∈ R
𝑛
) 𝑚

󵄩
󵄩
󵄩
󵄩

y󵄩󵄩󵄩
󵄩

2
≤ y𝑇∇2𝑓 (x) y ≤ 𝑀

󵄩
󵄩
󵄩
󵄩

y󵄩󵄩󵄩
󵄩

2
,

(∀x, y ∈ R
𝑛
)

1

2

𝑚

󵄩
󵄩
󵄩
󵄩

x − x∗󵄩󵄩󵄩
󵄩

2
≤ 𝑓 (x) − 𝑓 (x∗)

≤

1

2

𝑀

󵄩
󵄩
󵄩
󵄩

x − x∗󵄩󵄩󵄩
󵄩

2
,

(∀x, y ∈ R
𝑛
) 𝑚

󵄩
󵄩
󵄩
󵄩

x − y󵄩󵄩󵄩
󵄩

2
≤ (g (x) − g (y))𝑇 (x − y)

≤ 𝑀

󵄩
󵄩
󵄩
󵄩

x − y󵄩󵄩󵄩
󵄩

2
.

(25)

The value of decreasing of analyzed function through
each iteration is given by the next lemma which is restated
and proven in [1].The same estimation can similarly be found
considering iteration (7). Theorem 6 is approved in [1] and
confirms a linear convergence of the constructed method.

Lemma5. For twice continuously differentiable and uniformly
convex function 𝑓 on R𝑛 and for the sequence {x𝑘} generated
by Algorithm (7) the following inequality is valid:

𝑓 (x𝑘) − 𝑓 (x𝑘+1) ≥ 𝜇

󵄩
󵄩
󵄩
󵄩

g𝑘
󵄩
󵄩
󵄩
󵄩

2
, (26)

where

𝜇 = min { 𝜎

𝑀

,

𝜎 (1 − 𝜎)

𝐿

𝛽} . (27)

Theorem 6. If the objective function 𝑓 is twice continuously
differentiable as well as uniformly convex on R𝑛 and the
sequence {x𝑘} is generated by Algorithm 2 then

lim
𝑘→∞

󵄩
󵄩
󵄩
󵄩

g𝑘
󵄩
󵄩
󵄩
󵄩

= 0, (28)

and the sequence {x𝑘} converges to x∗ at least linearly.

In the following review the case of strictly convex
quadratic functions is analyzed. This set of functions is given
by

𝑓 (x) = 1

2

x𝑇𝐴x − b𝑇x. (29)

In the previous expression𝐴 is a real 𝑛×𝑛 symmetric positive
definite matrix and b ∈ R𝑛. It is assumed that the eigenvalues
of the matrix 𝐴 are given and lined as 𝜆1 ≤ 𝜆2 ≤ ⋅ ⋅ ⋅ ≤

𝜆𝑛. Since the convergence for the most gradient methods is
quite difficult to analyze, in many research articles of this
profile convergence analysis is reduced on the set of convex
quadratics [8–10]. The convergence of TADSS method is also
analyzed under similar presumptions.

Lemma 7. By applying the gradient descent method defined
by (7) in which parameters 𝛾𝑘 and 𝛼𝑘 are given by relation
(11) and Algorithm 1 on the strictly convex quadratic function
𝑓 expressed by relation (29) where 𝐴 ∈ R𝑛×𝑛 presents a
symmetric positive definite matrix, the next inequalities hold:

1

2𝜆𝑛

≤ 𝛼𝑘+1 (𝛾
−1

𝑘+1
− 1) + 1 = 𝜙𝑘+1 ≤

1

𝜆1

, (30)

where 𝜆1 and 𝜆𝑛 are, respectively, the smallest and the largest
eigenvalues of 𝐴.

Proof. Considering expression (29), the difference between
function value in the current and the previous point is

𝑓 (x𝑘+1) − 𝑓 (x𝑘) =
1

2

x𝑇
𝑘+1

𝐴x𝑘+1 − b𝑇x𝑘+1 −
1

2

x𝑇
𝑘
𝐴x𝑘 + b𝑇x𝑘.

(31)

Applying expression (7) the following is obtained:

𝑓 (x𝑘+1) − 𝑓 (x𝑘) =
1

2

(x𝑘 − 𝜙𝑘g𝑘)
𝑇
𝐴 (x𝑘 − 𝜙𝑘g𝑘)

− b𝑇 (x𝑘 − 𝜙𝑘g𝑘) −
1

2

x𝑇
𝑘
𝐴x𝑘 + b𝑇x𝑘

= −

1

2

𝜙𝑘g
𝑇

𝑘
𝐴x𝑘 −

1

2

𝜙𝑘x
𝑇

𝑘
𝐴g𝑘 +

1

2

𝜙

2

𝑘
g𝑇
𝑘
𝐴g𝑘

+ 𝜙𝑘b
𝑇g𝑘.

(32)

Using the facts that the gradient of the function (29) is
g𝑘 = 𝐴x𝑘 − b in conjunction with the equality b𝑇g𝑘 = g𝑇

𝑘
b,

one can verify the following:

𝑓 (x𝑘+1) − 𝑓 (x𝑘)

= −

1

2

𝜙𝑘 (g
𝑇

𝑘
𝐴x𝑘 + x𝑇

𝑘
𝐴g𝑘 − 𝜙𝑘g

𝑇

𝑘
𝐴g𝑘 − 2b𝑇g𝑘)

= −

1

2

𝜙𝑘 (g
𝑇

𝑘
(𝐴x𝑘 − b) + g𝑇

𝑘
(𝐴x𝑘 − b) − 𝜙𝑘g

𝑇

𝑘
𝐴g𝑘)

= −𝜙𝑘g
𝑇

𝑘
g𝑘 +

1

2

𝜙

2

𝑘
g𝑇
𝑘
𝐴g𝑘.

(33)

Substituting (33) into (11), the parameter 𝛾𝑘+1 becomes

𝛾𝑘+1 = 2

−𝜙𝑘g𝑇𝑘 g𝑘 + (1/2) 𝜙

2

𝑘
g𝑇
𝑘
𝐴g𝑘 + 𝜙𝑘g𝑇𝑘 g𝑘

𝜙

2

𝑘
g𝑇
𝑘
g𝑘

=

g𝑇
𝑘
𝐴g𝑘

g𝑇
𝑘
g𝑘

.

(34)

The last relation confirms that 𝛾𝑘+1 is the Rayleigh
quotient of the real symmetric matrix 𝐴 at the vector g𝑘, so
the next inequalities hold:

𝜆1 ≤ 𝛾𝑘+1 ≤ 𝜆𝑛, 𝑘 ∈ N, (35)

which combined with the fact that 0 ≤ 𝛼𝑘+1 ≤ 1 prove the
right hand side in (30):

𝜙𝑘+1 = 𝛼𝑘+1 (𝛾
−1

𝑘+1
− 1) + 1 ≤ 𝛾

−1

𝑘+1
− 1 + 1 =

1

𝛾𝑘+1

≤

1

𝜆1

.

(36)

The estimation

𝛼𝑘 >

𝛽 (1 − 𝜎) 𝛾𝑘

𝐿

, (37)

proved in [1], is considered in order to prove the left hand side
of (30). Using the notation adopted in this paper, expression
(37) becomes

𝛼𝑘 >

𝜂 (1 − 𝜎) 𝛾𝑘

𝐿

. (38)
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Inequality (38) and the facts that 𝜂 ∈ (𝜎, 1), 𝜎 ∈ (0, 0.5) and
𝛼𝑘+1 ∈ (0, 1) lead to the following conclusion:

𝜙𝑘+1 = 𝛼𝑘+1 (𝛾
−1

𝑘+1
− 1) + 1 >

𝛼𝑘+1

𝛾𝑘+1

− 𝛼𝑘+1

≥

𝛼𝑘+1

𝛾𝑘+1

≥

𝜂 (1 − 𝜎)

𝐿

≥

(1 − 𝜎)

𝐿

≥

1

2𝐿

.

(39)

In the last estimation, Lipschitz constant 𝐿 can be replaced by
𝜆𝑛. The conclusion that the eigenvalue 𝜆𝑛 of matrix𝐴 has the
property of Lipschitz constant 𝐿 is to be derived from the next
analysis. Since matrix 𝐴 is symmetric and g(x) = 𝐴x − b the
following inequality can be provided:

󵄩
󵄩
󵄩
󵄩

g (x) − g (y)󵄩󵄩󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩

𝐴x − 𝐴y󵄩󵄩󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩

𝐴 (x − y)󵄩󵄩󵄩
󵄩

≤ ‖𝐴‖

󵄩
󵄩
󵄩
󵄩

x − y󵄩󵄩󵄩
󵄩

= 𝜆𝑛

󵄩
󵄩
󵄩
󵄩

x − y󵄩󵄩󵄩
󵄩

.

(40)

Substituting 𝐿 by 𝜆𝑛, inequality (39) becomes

1

2𝜆𝑛

≤ 𝛼𝑘+1 (𝛾
−1

𝑘+1
− 1) + 1, (41)

and this proves the left hand side of inequalities (30).

Remark 8. Comparing the estimations resulting from the
similarly proposed lemma in [1, 3, 4] with the estimation
derived from the previous lemma, considering the TADSS
method, it can be concluded that the estimation provided by
the TADSS scheme involves only the eigenvalues 𝜆1 and 𝜆𝑛

and not the parameter 𝜎 from the backtracking procedure.

Theorem 9. Let the additional assumptions 𝜆𝑛 < 2𝜆1

for the eigenvalues of matrix 𝐴 be imposed and let 𝑓 be
the strictly convex quadratic function given by (29). Assume
{v1, v2, . . . , v𝑛} is the orthonormal eigenvectors of symmetric
positive definite matrix𝐴 and suppose that {x𝑘} is the sequence
of values constructed by Algorithm 2. The gradients of convex
quadratics defined by (29) are g𝑘 = 𝐴x𝑘 − b and can be
expressed as

g𝑘 =
𝑛

∑

𝑖=1

𝑑

𝑘

𝑖
v𝑖, (42)

for some real constants 𝑑𝑘
1
, 𝑑

𝑘

2
, . . . , 𝑑

𝑘

𝑛
and for some integer 𝑘.

Then the application of the gradient descent method (7) on the
goal function (29) satisfies the following two statements:

(𝑑

𝑘+1

𝑖
)

2

≤ 𝛿

2
(𝑑

𝑘

𝑖
)

2

, 𝛿 = max{1 − 𝜆1

2𝜆𝑛

,

𝜆𝑛

𝜆1

− 1} , (43)

lim
𝑘→∞

󵄩
󵄩
󵄩
󵄩

g𝑘
󵄩
󵄩
󵄩
󵄩

= 0. (44)

Proof. Taking into account (7) one can verify

g𝑘+1 = 𝐴 (x𝑘 − 𝜙𝑘g𝑘) − b = g𝑘 − 𝜙𝑘𝐴g𝑘 = (𝐼 − 𝜙𝑘𝐴) g𝑘,
(45)

and by taking (42) we get

g𝑘+1 =
𝑛

∑

𝑖=1

𝑑

𝑘+1

𝑖
v𝑖 =
𝑛

∑

𝑖=1

(1 − 𝜙𝑘𝜆𝑖) 𝑑
𝑘

𝑖
v𝑖. (46)

In order to prove (43), it is enough to show that |1−𝜙𝑘𝜆𝑖| ≤
𝛿. So, two cases have to be analyzed. In the first one, it is
supposed that 𝜆𝑖𝜙𝑘 ≤ 1. Applying (30) leads to

1 > 𝜆𝑖𝜙𝑘 ≥

𝜆1

2𝜆𝑛

󳨐⇒ 1 − 𝜆𝑖𝜙𝑘 ≤ 1 −

𝜆1

2𝜆𝑛

≤ 𝛿. (47)

In the other case, it is assumed that 𝜆𝑖𝜙𝑘 ≥ 1. From this
condition arrives the following conclusion:

1 < 𝜆𝑖𝜙𝑘 ≤ 𝜆𝑛

1

𝜆1

󳨐⇒

󵄨
󵄨
󵄨
󵄨

𝜆𝑖𝜙𝑘 − 1

󵄨
󵄨
󵄨
󵄨

≤

𝜆𝑛

𝜆1

− 1 ≤ 𝛿. (48)

Expression (42) implies

󵄩
󵄩
󵄩
󵄩

g𝑘
󵄩
󵄩
󵄩
󵄩

2
=

𝑛

∑

𝑖=1

(𝑑

𝑘

𝑖
)

2

. (49)

The fact that the parameter 𝛿, from (43), satisfies 0 < 𝛿 < 1

confirms expression (44).

4. Numerical Experience

Numerical results provided by applying the implementation
of TADSS, ADSS, and SM methods on 22 test functions
for unconstrained test problems, proposed in [2, 11], are
presented and investigated. We chose most of the functions
from the set of test functions presented in [3, 4] and, as
proposed in these papers, also investigated the experiments
with a large number of variables in each function: 1000, 2000,
3000, 5000, 7000, 8000, 10000, 15000, 20000, and 30000.The
stopping criteria are the same as in [1, 3, 4]. Backtracking
procedure is developed using the values 𝜎 = 0.0001, 𝜂 = 0.8

of needed parameters.Three main indicators of the efficiency
are observed: number of iterations, CPU time, and number of
function evaluations. First, we compare the performance of
the TADSS scheme with the ADSS method. The reasons for
this selection is obvious: the TADSS scheme presents a one-
step version of ADSS method. Also, the intention to examine
behavior of TADSS and compare it with its forerunner is
natural. Obtained numerical values are displayed in Table 1
and refer to the number of iterative steps, the CPU time
of executions computed in seconds, and the number of
evaluations of the objective function.

Obtained numerical results, generally, confirm advan-
tages in favor of TADSS, considering all three tested indi-
cators. More precise, regarding the number of iterative steps
TADSS shows better results in 17 out of 22 functions, while
ADSS outperforms TADSS in 4 out of 22 experiments and for
the extended three exponential terms function both methods
require the same number of iterations. Results concerning
spanned CPU time confirm that both methods, TADSS and
ADSS, are very fast. In 9 out of 22 cases TADSS is faster than
ADSS, in 2 out of 22 testings ADSS is faster than TADSS, and
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Table 1: Summary of numerical results for TADSS and ADSS tested on 22 large scale test functions.

Test function Number of iterations CPU time Number of function evaluations
TADSS ADSS TADSS ADSS TADSS ADSS

Extended Penalty 40 50 2 4 1280 1780
Raydan 1 466 34 11 4 8504 4844
Diagonal 1 20 37 0 0 335 1448
Diagonal 3 21 49 0 1 417 1048
Generalized Tridiagonal 1 61 77 0 0 431 719
Extended Tridiagonal 1 60 70 0 0 250 420
ExtendedThree Expon. Term 40 40 0 0 400 350
Diagonal 4 40 780 0 0 270 2590
Extended Himmelblau 60 70 0 0 300 480
Quadratic QF1 4953 425 15 0 13738 1755
Extended Quad. Penalty QP1 50 60 0 2 571 841
Extended Quad. Penalty QP2 50 60 0 4 569 843
Quadratic QF2 50 60 0 1 583 836
Extended EP1 186 40 1 0 758 487
Extended Tridiagonal 2 638 80 0 0 2052 420
Arwhead 50 64 0 3 601 1082
Engval1 60 70 0 0 290 460
Quartc 10 70 0 0 30 390
Generalized Quartic 60 70 0 0 250 614
Diagonal 7 189 2201 0 33 566 6633
Diagonal 8 160 2213 1 40 586 6709
Diagonal 9 20 43 0 0 352 3646

Table 2: Average numerical outcomes of 220 testings of each
method among the 22 test functions tried out on 10 numerical
experiments in each iteration.

Average performances TADSS ADSS
Number of iterations 331.09 302.86
CPU time (sec) 1.36 4.18
Number of function evaluations 1506.05 1745.23

even in half of examinations the CPU time of both iterations
equals zero. On the issue of the number of evaluations of an
objective function, TADSS improves ADSS in 17 out of 22
testings and the opposite case appears in 5 out of 22 cases.
Table 2 displays average results of tested values.

According to results displayed in Table 2, it can be
concluded that although TADSS outperforms ADSS in 17
out of 22 testings with regard to the number of iterations,
average results show slight advantage of ADSS on this matter.
Considering the average number of evaluations, there is an
opposite case in favor of TADSS. Consumed CPU time is
averagely three times less in favor to the TADSS comparing
to the ADSS. Generally, it can be concluded that the one-step
variant of the ADSS method, constructed TADSS scheme,
behaves slightly better than the original ADSS iteration,
especially when we consider the speed of executions.

Some additional experiments have been carried out in
further numerical research. These tests show the comparison
between the TADSS and the SM iterations. As mentioned
before, both of the schemes, TADSS and SM, are accelerated
gradient descent methods with one iterative step size param-
eter. We choose this additional numerical comparison in
order to confirm that the accelerated single step size TADSS
algorithm, derived from the accelerated double step size
ADSSmodel, gives better performances with respect to the all
three analyzed aspects than the classically defined accelerated
single step size SM method. Table 3 with 30 displayed test
functions verifies the previous assertion.

It can be observed from displayed numerical outcomes
that the TADSS method provides better results than the SM
method considering the number of iterations in 24 out of
30 testings, while the number of opposite cases is 5 out of
30. For the NONSCOMP test function, both models have
the same number of iterations. Concerning the CPU time,
both algorithms give the same results for 10 test functions.
The TADSS method is faster than SM for 19 test functions,
while the SM method is faster than TADSS for one test
function only. The greatest progress is obtained with respect
to the number of evaluations of the objectives. On thismatter,
using the TADSS algorithm, better results are obtained in 27
out of 30 test functions, while the opposite case holds for
two test functions only. For the NONSCOMP test function
both of the compared iterations give the same number of
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Table 3: Numerical results for 30 test functions tested by the TADSS and the SM methods.

Test functions Number of iterations CPU time Number of function evaluations
TADSS SM TADSS SM TADSS SM

Extended Penalty 40 589 2 5 1280 2987
Perturbed Quadratic 4276 111972 13 1868 12017 632724
Raydan 1 466 21125 11 178 8504 116757
Diagonal 1 20 10417 0 116 335 56135
Diagonal 3 21 10574 0 209 417 59425
Generalized Tridiagonal 1 61 278 0 2 431 989
Extended Tridiagonal 1 60 3560 0 35 250 30686
ExtendedThree Expon. Term 40 164 0 1 400 1224
Diagonal 4 40 80 0 0 270 530
Extended Himmelblau 60 168 0 0 300 566
Quadr. Diag. Perturbed 11542 53133 58 1193 56359 547850
Quadratic QF1 4953 114510 15 2127 13738 649643
Extended Quad. Penalty QP1 50 224 0 12 571 2566
Extended Quad. Penalty QP2 50 162 0 7 569 2057
Quadratic QF2 50 118801 0 2544 583 662486
Extended EP1 186 68 1 1 758 764
Extended Tridiagonal 2 638 584 0 0 2052 2144
Arwhead 50 10 0 0 601 30
Almost Perturbed Quadratic 4202 110121 15 2148 14974 627287
Engval1 60 185 0 7 290 2177
Quartc 10 190 0 0 30 430
Generalized Quartic 60 156 0 0 250 423
Diagonal 7 189 90 0 0 566 220
Diagonal 8 160 96 1 0 586 594
Diagonal 9 20 11235 0 118 352 60566
DIXON3DQ 10 112899 0 1908 30 639957
NONSCOMP 10 10 0 0 30 30
HIMMELH 10 30 0 0 40 80
Power Cute 1455 >𝑡𝑒 4 >𝑡𝑒 4567 >𝑡𝑒

Indef 20 >𝑡𝑒 0 >𝑡𝑒 50 >𝑡𝑒

Table 4: Average values of numerical results for the TADSS and the
SM methods calculated on 280 tests for each method.

Average performance TADSS SM
Number of iterations 976.21 24336.82
CPU time (in seconds) 4.14 445.68
Number of evaluations 4163.68 146475.96

evaluations. From Table 3, we can also notice that for 2 out
of 30 test functions testings are lasting more than the time
limiter constant 𝑡𝑒 defined in [3], while for all 30 test functions
when the TADSS algorithm is applied the time of execution
is far less than 𝑡𝑒.

The results arranged in Table 4 give even more general
view on the benefits provided by applying the TADSSmethod
with regard to the SM method. The average values of 28

test functions, which were possible to test by both methods
according to the constant 𝑡𝑒, are presented in the table.

The results presented in the previous table confirm that
by applying the TADSS method approximately 25 times less
iterations and even 35 times less evaluations of the objective
function are needed in comparison with the SM method.
Finally, when the TADSS is used, the testing is lasting even
107 times shorter than when the SM is applied.

The codes for presented numerical experiments are
written in the Visual C++ programming language on a
Workstation Intel 2.2 GHz.

5. Conclusion

The accelerated single step size gradient descent algorithm,
called TADSS, is defined as a transformation of the acceler-
ated double step size gradient descentmodel ADSS, proposed
in [4]. More precisely, the TADSS scheme is derived from the
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accelerated double step size gradient descent scheme ADSS
by imposing relation (6) between two step parameters in
the ADSS iteration. The efficiency of ADSS model regarding
all analyzed characteristics in comparison to the accelerated
gradient descent single step size SM method has been
numerically proved in [4].

The method defined in this way is comparable with its
double step size forerunner, ADSS method, as well as with
the single step size accelerated gradient descent SM method
which is defined in a classical manner.

Results illustrated in Tables 1 and 2 generally indicate that
the TADSS method behaves similarly as the ADSS method.
From the point of mean values, the ADSS scheme gives
slightly better results considering the number of iterations.
On the other hand, a certain improvement regarding the
number of function evaluations and needed CPU time is
obtained by applying the TADSS iterations.

Even greater advantages of derived TADSS method are
presented in Tables 3 and 4 where the comparisons between
the TADSS and the SM are given. Evidently, the TADSS
scheme improves the SM method with respect to all three
analyzed characteristics, which was the prime goal in the
research presented herein.

Linear convergence of the TADSS method is proved
for the uniformly convex and the strictly convex quadratic
functions.

Obtained results motivate further investigations of pos-
sible accelerated double step size gradient descent models
and its transformations into corresponding single step size
variants.
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