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Abstract. In this study, we present novel inertial type algorithms designed to address a research gap and
provide a solution to an open problem. We focus on a high-performing “Jungck normal-S inertial type
algorithm”, which we thoroughly examine for its convergence, stability and data dependency properties.
To substantiate our theoretical findings, we include thoughtfully selected numerical examples covering
both differential and integral equations. Furthermore, we show case the versatility of these algorithms

by employing them to create aesthetically pleasing polynomiographs, enhancing both the educational and
artistic dimensions of our work.

1. Introduction, basic concepts and some algorithms

A plethora of systematic methods, which can be broadly classified into iteration and direct methods, ex-
ists in the literature to solve a wide range of problems encountered in research fields. While direct methods
are limited in dealing with inherently nonlinear problems, iteration algorithms become indispensable for
approximating solutions to these problems. In recent years many algorithms have been introduced, aiming
for higher convergence rates and possessing various qualitative properties such as data dependency, stabil-
ity and convergence (see, [1, 11-13, 18, 19, 24]). As these algorithms find applications in diverse fields, the
demand for purpose-specific designs grows. When addressing challenges in research, existing algorithms
are refined or novel ones are designed to cater to unique problems. The chosen algorithm should adhere
to specific criteria, notably rapid and accurate computations, which hold significant importance in applied
and computational research domains. In this context, accelerating iteration algorithms can offer extensive
benefits across various domains, particularly in optimization, machine learning, numerical analysis and
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scientific computing. They enhance efficient handling of increasingly complex problems, optimize compu-
tation time and resources, and facilitate real-time and large-scale applications. However, it is essential to
strike a balance between speed and accuracy, as overly accelerated algorithms may compromise precision
or convergence stability (see, e.g., [19]). To achieve efficient solutions for increasingly complex problems,
researchers have devised diverse acceleration techniques, such as relaxation, inertial type extrapolation,
and variants of accelerated gradient descent like Nesterov accelerated gradient. These techniques effec-
tively accelerate iteration algorithms (for a more compherensive understanding of acceleration techniques,
refer to [6]). However, it is essential to consider that not all methods may yield desired improvements
in every scenario, as their effectiveness depends on the nature of the problem and the characteristics of
the fixed point iteration algorithm being used. Hence, as always, experimentation and careful analysis
on their impact on convergence behavior are key to identfying the most effective approach to a specific
problem and achieve faster and more robust convergence. The objective of this paper is twofold: to fill a
gap in the literature by designing inertial type algorithms for the pairs of mappings in the context of the
coincidence point/value theory and thus addressing an problem in the literature in a positive manner. To
achieve this goal, we shall first provide an overview of inertial iteration algorithms and their formulations
within the context of coincidence point/value theory; second, we shall conduct a thorough analysis of their
convergence, stability and data dependency properties; finally, we shall demonstrate their effectiveness
through empirical evaluations on a range of challenging numerical problems.

Polyak [29] initially introduced an inertial extrapolation, relying on the principles of two-order time
dynamical system’s heavy-ball method, as an acceleration technique to address the challenge of smooth
minimization. His approach generates a sequence {x,},_, by the following algorithm

Polyak’s heavy-ball method

Input: An objective function f, initial points x_1, xp and budget N.
1: forn=0,1,2,...,N do

2 Xpy1 =X — ayVf (xn) + B (2 — x4-1)

3: end for

Output: Approximate solution xy

in which Vf denotes the gradient of the objective function f, x, represents the current iterate at iteration
1, Bn (X4 — Xp—1) is the momentum term (also called inertial term), which enables the algorithm to maintain
a memory of previous iterations and incorporate their influence into the current update, facilitating faster
convergence and better solution quality, @, is the step size (learning rate) parameter at iteration #n, which
determines the size of the gradient descent update, and f, is the momentum parameter at iteration #,
controlling the influence of the previous update x,, — x,_1 on the current update.

In recent times, a considerable number of scholars have devised fast iteration algorithms through the
utilization of inertial extrapolation. These methods encompass the inertial proximal method [2, 27], the
inertial forward-backward algorithm [21], the inertial proximal ADMM [5], the fast iteration shrinkage
thresholding algorithm (FISTA) [3] and inertial KM-type algorithm [23].

Consider the following coincidence point/value problem:

Find (x,p) € X’ x X such that Tix = Tox = p, (1)

in which X’ # 0 is an arbitrary set, X is a Banach space, and Ty, T, : X’ — X are two mappings. A point
x € X' is called (i) a fixed point (provided that X’ = X) of Ty (or Ty) if Tyx = x (or Tox = x); (ii) a common
fixed point (provided that X’ = X) of the pair (T, T») if T1x = Tox = x; (iii) a coincidence point of the pair
(Tq, Ty) if T1x = Tox. If T1x = Tox = p for some x in X', then p is called a coincidence value of (Ty, T5). Itis
obvious that finding the solutions of problems that can be modelled with equations of type (1), also called
coincidence point equations, is equivalent to finding the coincidence points of the corresponding pair of
mappings (T, T>).

The following result demonstrates an equivalent relationship between a coincidence point problem of
the form (1) and a fixed point problem of the form

Find »* € X’ such that Tr* =77, (2)
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inwhich T : X’ — X'’ is a mapping. The set of all solutions of problems (1) and (2) are denoted by C (T, T>)
C X’ x Xand ¥ (T), respectively.

Lemma 1.1 (see [26]). Let (X’, px') and (X, px) be two metric spaces and Ty, T, : X' — X be two mappings such
that To(X’) C T1(X’) and T is an injective mapping. Then, Ty has a left inverse T;; : T1(X') = X'. Define a
function F : X! X T1(X’) =» X' X T1(X) by F(x, y) = (Tl‘}(y), Ta(x)). Then, F (IF) = C (T, T>).

An illustrative example, found in [17], demonstrates how this lemma establishes a connection between
fixed point and coincide point problems.

It appears that the initial investigations concerning the existence and uniqueness of the solution to
the coincidence point/value problem (1), using a constructive method similar to the Banach Contraction
Principle, were conducted by Machuca [22] in 1967. In the subsequent year, Goebel [9] further devel-
oped Machuca’s findings and applied them to derive solutions of some differential equations. Jungck [15]
extended Machuca’s method by incorporating the concept of commuting mappings, thereby generaliz-
ing the Banach contraction principle. These studies, considered fundamental in coincidence point/value
theory, have sparked numerous significant contributions from various researchers working with diverse
mathematical structures in this field.

In 2008, Olatinwo [28] designed the following Classical Jungck-Ishikawa algorithm for a pair of map-
pings that satisfy a general contractive condition, and obtained some theoretical results concerning the
strong convergence and stability of this algorithm:

Classical Jungck-Ishikawa algorithm (CJI algorithm)
Input: Two non-self mappings T; and T, initial point s, {(pn}:’:O , {1//,1}‘::0 c [0,1] and budget N.
1: forn=0,1,2,...,N do
2: Tiry = (1 = @) Tis, + @nTas,
T18p41 = (1 - ll)n)']rlsn + l)L'nr]rﬂ’n
3: end for
Output: Approximate solution Tysy

CJI algorithm encompasses several noteworthy special cases: the Classical Jungck-Picard algorithm
(CJP algorithm) [15] when ¢, = 0 and ¢, = 1 for all n € Ng (N U {0} = {0,1,2,...}), and the Classical
Jungck-Mann algorithm (CJM algorithm) [34] when ¢, = 0 for all n € IN,.

In 2013, Hussain et al. [14] defined various iteration algorithms to investigate the distinct properties of
the coincidence points/values of the pairs of mappings satisfying certain contractive conditions. Among
these, the following extension of the original normal-S algorithm, introduced by Sahu [32], which has gained
significant attention from numerous researchers owing to its exceptional ability to approximate solutions
effectively across a diverse set of problems, stands out:

Classical Jungck normal-S algorithm (CJNS algorithm)
Input: Two non-self mappings T; and T», initial point so, {¢.},", C [0,1] and budget N.
1: forn=0,1,2,...,N do
2: Tyry = (1 = @u) Ty, + @y Tasy
T18p+1 = Tory
3: end for
Output: Approximate solution Tisy

It is straightforward to notice that CJNS algorithm is a special case of CJI algorithm. It stands indepen-
dently from the CJM algorithm and reduces to the CJP algorithm when ¢, = 0 for all n € INj.

To the best of our knowledge, there is no study in the literature that uses an inertial algorithm designed
for a pair of mappings to approximate solutions to the coincidence point/value problems given in (1). The
main motivation for the work [17] was primarily to fill this gap in the literature. During the preparation
of [17], the authors designed the following algorithm by incorporating a momentum (inertial) term into
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the Jungck normal-S algorithm with the aim of accelerating it (however, as explained below, this algorithm
could not be used in [17]):

Jungck normal-S inertial type algorithm (JNSI algorithm, version 1)
Input: Two non-self mappings T and T», initial points x_1, xo, {ax},, C [0,1] and budget N.
1: forn=0,1,2,...,Ndo
2: Tizy = Tix, + 0, (Tlxn - Tlxn—l)
Ty, = (1 -ay) Tiz, + a, Trz,
T1xp41 = TZyn
3: end for
Output: Approximate solution Tixy

Here, the sequence {0,,}," , has been modified as follows, inspired by the choosing in [33, p. 881].

g mm{ o T T “}, if Ty, # Tix,o,
0<0,<0,:= . n+n" [[Tix, — T1xy o
s if Tlxn = Tlxn—lr
n+n

[oe]

for some n > 2 and {e,};, C (0, 0). However, as could be seen from numerous numerical experiments
(see also Table 4 in this paper), contrary to the expectations that the momentum term 6, (T1x,, — T1x,-1)
incorporated into CJNS would effectively speed up the iteration, it had a negligible effect, so that an
acceleration of the JNSI algorithm (version 1) in the work [17] was presented as an open problem. In
particular, the question remained whether it is possible to design an inertial Jungck-type iteration algorithm
that is more efficient in terms of convergence rate than its classical counterpart? In addition, how does
this algorithm behave in terms of data dependence and stability properties? We are now able to provide a
positive answer to this problem and as a result propose the following algorithm:

Jungck normal-inertial type algorithm (JNSI algorithm, version 2)
Input: Two non-self mappings Ty and T», initial points x_1, xo, {a,};", € [0,1] and budget N.
1: forn=0,1,2,...,N do
2: Tyz, = Tox, + 6, (Tox, — Toxy-1)
Ty, = (1 - ay) Tiz, + a, Thz,
T1xn41 = Toy,
3: end for
Output: Approximate solution Tixy

00

in which the sequence {0,};", is defined the following (We note that this sequence has been modified,
inspired by the choosing in [33, p. 881]),

n €y .
1n{ , }, if Tox, # Tox, 1,
0 < 9” < 511 = n+ n “T2x71 - szn—lu (4)

n

, if Tox, = Tox,-1,
n+1

for some 17 > 2 and {e,,};7, C (0, 00). Similar to JNSI algorithm (version 2) with (4), Jungck-Ishikawa inertial
type algorithm (JII algorithm version 2) for the pairs of mappings can be defined as follows.

Jungck-Ishikawa inertial type algorithm (JII algorithm, version 2)
Input: Two non-self mappings Ty and T», initial points x_1, Xo, {x}p—g, {Bn},o € [0,1] and budget N.
1: forn=0,1,2,...,N do
2: Tz, = Tox, + 0, (Tan - T2xn—1)
Tl]/n = (1 - an) Tz, + a, Tz,
Tixp1 = (1 - ﬁn) Tz, + ﬁnTZyn
3: end for
Output: Approximate solution Tixy
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(o)

in which the sequence {0, }" , as in (4).

In this article, we are employing three distinct types of algorithms. To prevent any potential confusion,
we are categorizing these algorithms in the following manner:

(i) Algorithms that lack an inertial term will be denoted as classical algorithms.

(ii) Algorithms that incorporate an inertial term 6, (T;x, — T1x,-1) will be identified as version 1 algo-
rithms.

(iii) Algorithms that incorporate an inertial term 6, (Tx, — T2x,_1) will be referred to as version 2
algorithms.

Remark 1.1. Let X’ # @ be an arbitrary set and X be a Banach space and T, T, : X’ — Xbe two mappings. If
the following conditions are satisfied, then JNSI algorithm (ver. 2) and JII algorithm (ver. 2) are well-defined.

@) 1+ AN)T(X") - ATL(X") c To(X'), for all A € [0, 1]. In particular, if T>(X’) is a vector subspace in X,
then the condition is satisfied.

(if) To(X’) € Ti(X").

(iii) T is injective and T (X’) is a convex set.

Remark 1.2. If the conditions (i)-(iii) in Remark 1.1 are satisfied by replacing T, with T; in the condition
(i), then JNSI algorithm (version 1) is well-defined. If the conditions (ii)—(iii) in Remark 1.1 are satisfied,
then CJI and CJNS algorithms are well-defined.

Remark 1.3. The following special cases of JII algorithm (ver. 2) are worth mentioning.
(i) When a, = 0 and B, = 1 for all n € INy, it gives rise to a Jungck-Picard inertial type algorithm (JPI
algorithm, ver. 2).
(ii) When a,, = 0 for all n € N, it yields a Jungck-Mann inertial type algorithm (JMI algorithm, ver. 2).
(iii) When 8, = 1 for all n € Ny, it reduced to JNSI algorithm, ver. 2.

In general, the pair of mappings (T1, T>) in (1) is expected to satisfy certain contractive conditions so
that the coincidence point technique can be applied in order find solutions of (1), that is, coincidence points
of (T1,T>), and hence, the classes of mappings that satisfies various contractive conditions are important in
the studies of coincidence points. We shall recall some of them in the following.

Definition 1.1. A pair of mappings (T1, T,) with Ty, T» : X’— X and C (T, T2) # 0 is said to be
(i) a quasi contractive if there is a number 6 € [0, 1) satisfying

”Tz?’ - pH <o ||T1r -p

4

for all (7, (x,p)) € X' X C (T4, T2);
(ii) a quasi (L, 6)-contractive if there are the numbers 6 € [0,1) and L > 0 satisfying

||"Jl"zr - pH <0 ||"[Flr - p“ + L|[Tqy7 = Tor|l,
for all (7, (x,p)) € X' X C (T4, Ty).

Keten Copur et al. [17] obtained an inclusion relation between the pair of mappings in (i) and (ii) of
Definition 1.1 (for detail, see [17]).

We proceed with the following organization for the rest of the paper. In Section 2, we demonstrate
that JNSI algorithm (versions 2 and 1) converges to the coincidence value of the pair (T, T,) of mappings
satisfying the quasi (L, 6)-contractive condition. Furthermore, we show that JNSI algorithm (ver. 2) is weakly
(T4, T»)-stable, and we construct a data dependency result related to the coincidence value of the pair (T, T,)
of mappings satisfying the quasi (L, )-contractive condition. In Section 3, in order to evaluate the reliability,
accuracy and effectiveness of the previous theoretical findings and to demonstrate the superior performance
of JNSI algorithm (ver. 2) in solving complex problems, particularly when compared to various algorithms,
including its classical counterpart, we present academic numerical examples in infinite dimensional spaces.
In Section 4, additionally to Section 3, we present various examples related to integral and differential
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equations, each of which can be considered as an application. Moreover, we use a variety of algorithms,
including JNSI algorithm (version 2), to create polynomigraphs that hold educational and artistic value and
are visually appealing.

The definitions and lemma given below play an important role in obtaining our results.

Definition 1.2 ([4]). Let {x,};, be a sequence in a metric space (X, d). If for any k € IN, there exists a C = ((k)
satisfying

(Ym>=k) d(xm ym) <C,

then, the sequence {y,}, , in X is called an approximate sequence of {x,}’ .

Definition 1.3 ([35]). Consider a metricspace (X, d), anon-empty set X’ and two mappings T, T> : X' — X.
Let T,(X’) ¢ T1(X’) and p be a coincidence value of (T3, T,). Additionally, consider an iteration sequence
{T'1x4},~o which is obtained by an algorithm in the form given below

Xg € X’,
(Vi’l € NO) Tixpe = f(T1/T21x11)/ (5)

where f is a function and xo is the initial approximation. If {T1x,};” , converges to p, and for any approximate
sequence {T1y,}>, of {T1x,};, the condition lim d (T1yy+1, f (T1, T2, y»)) = 0 implies lim Tyy, = p, then
n—oo n—o00

n=0’

(5) is called weakly stable with respect to (T4, T») or, briefly, weakly (T, T,)-stable.

Lemma 1.2 (see [20]). Let {q);}:):o

,i=1,2, be two real sequences satisfying ®} >0, ®2 > 0, lim @2 = 0 and
n—0oo
(YneNp) @}, <o) +D3,

in which g € [0, 1) is a constant. Then, lim ®} = 0.
n—-oo

2. Main results

In this section, we assume that X’ # 0 is an arbitrary set, X is a Banach space, Ty, T, : X’— Xis a pair
of quasi (L, 5)-contractive mappings such that ® := (6 + L)/(1 — L) < 1 and the pair satisfies the conditions
(i)—(iii) of Remark 1.1. Also, we assume that p € Xis a coincidence value of (T, T>).

Theorem 2.1. Let {T'1x,},., be the sequence generated by JNSI algorithm (version 2). If of] €n < 0o, then {T1x,}, 4
converges to p. "
Proof. By JNSI algorithm (ver. 2) and Definition 1.1 (ii), we obtain
(Yn € Ny) HTlan - p” <(O+1L) ||T1yn - pH +L ||p - szn”
and, thus for all n € INj

s =l < @ T =] ©
Also, by JNSI algorithm (version 2), we obtain the below inequalities

[Ty —p|| < Q= an)|[Tiza —p|| + T2z 1|,

iz —pf| < [T = p]| + 60 T2, = Tl 7)

On the other hand, by Definition 1.1 (ii), we get, for all n € INg

||"Jl"zzn - p” <0 HTlZ" - p“ and “szn — p” <O ||T1xn - p” . (8)
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Combining (6)—(8), we obtain, for all n € N
[T1201 = pl| < ©(1 = @, (1 - ©)) || T1x, — | + O(1 - @, (1 - ©))6, [T, — Toxsall. ©
Since @ [1 — a;, (1 — ©®)] < 1, the inequality in (9) implies that

[T12041 = p|| < © || Trxs = p| + 62 T2 = Tyl (10)

for all n € IN. By the definition of {0,};" , in (4), the condition }. €, < co and the squeeze principle, we get
n=0

lim 6, [|[T>x, — Trx,-1|| = 0. Now, an application of Lemma 1.2 to (10) yields that Tix, — pasn — co. O

n—oo

Remark 2.1. From the proof of Theorem 2.1, we observe that if the condition ), €, < o is replaced by

n=0
lim €, = 0, then Theorem 2.1 remains true.

n—oo

Remark 2.2. We observed with Example 3.1 that when the condition 6+2L < 1is removed, the convergence

result in Theorem 2.1 may not be guaranteed.

Theorem 2.2. Let {T1x,},, be the sequence generated by JII algorithm (version 2) with {0, in (4). If Y, €, < oo,
n=0

then {Tx,},., converges to p.

Proof. The proof of this theorem is omitted as similar to Theorem 2.1. [

By considering Remark 1.3 and Theorem 2.2 simultaneously, one can easily reach the following conclu-
sion.

Corollary 2.1. Under the assumptions of Theorem 2.2, each of the sequences generated by algorithms [PI (version 2)
and JMI (version 2) converges to p.

Theorem 2.3. Let a € (0,1] and {B,};7_, be a sequence such thata < B, <1, for alln € N and Y. €, < co. Then, the
n=0
sequence {T1x,},., generated by JII algorithm (version 1) converges to p.

Proof. Using the definition of JII algorithm (version 1), by similar operations in Theorem 2.1, we obtain the
following inequality for all n € IN

T —pl| < [1-Bu+ @11 = an(l - ON]|[Tixs — 7
+ [1 —Pn+ 1871@ {1-a,(1- 6)}] 0, [IT1x, — Trix,-1ll

[1-Bu(1 - ©) — OauBu(1 — O] [ Trxy — p|| + [1 = Bl — ©) — OaBu(1 — O)] &,
[1 - Bu(1 = ©)(1 + Oa,)] [ Tixy — p|| + [1 = Bu(1 = ©)(1 + Oa,)] €. (11)

Since 1 — B,(1 - 0?) <1-B,(1-0)(1+0Oay,) <1-p,(1-0)<1-a(l-0),forall n € N, the inequality in
(11) implies that, for all n € IN,

IA

[ Tixni1 = pl| < (1= 21 = ©)) || Tox, = pl + (1 - a1 - ©)) €. (12)

Since 1 —a(1 -®) < 1and } €, < oo, an application of Lemma 1.2 to (12) yields that Tix, — p as
n=0
n—oo. []

Considering Theorem 2.3 and the version 1 of Remark 1.3 simultaneously, one can easily reach the
following conclusion.
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Corollary 2.2. Under the assumptions of Theorem 2.3, each of the sequences generated by algorithms JPI (version 1)
and JMI (version 1) and JNSI (version 1) converges to p.

Theorem 2.4. Let {T1x,},., be the sequence generated by JNSI algorithm (version 2) under the conditions in Theorem
2.1 and {Tyuy,},., be an approximate sequence of {T1x,},.,. We define a sequence {¢,},., C R* as follows

&n = ||T1un+1 - TZUnH ’
Tiv, = (1 -a,) Tiw, + a,Tow,, (13)
Tiw, = Tou, + 06, (TZMn - Tzun—l) ’

in which {a,),._ is as in Theorem 2.1 and

) n € .
R min , ,if Touy, # Touy—q,
0<0,<0,:= ; {Tl +n |[Tou, — Tzun—ﬂl} " " (14)
, if Tou, = Tauy-1,
n+ lf 2Uy 2Un-1

for some > 2 and {€,}>>, € (0, 00). If Z €y < 0o, then hm en = 0if and only if that hm Tqu, = p. In particular,
JNSI algorithm (version 2) is weakly (Tl, Tz) stable.

Proof. Assume that lim ¢, = 0. We shall show that lim Tyu, = p. It follows from Definition 1.1 (ii), JNSI
n—00 n—o0
algorithn (version 2) and (13), for all n € IN,

IA

= pll + [l = Tayul| + [ Tr001 - p]
en + 0| T1vy — p|| + L| T2vn — Tro4

+0||T1yu — p|| + L[| T2y — Taya|| + || Taxaes = p|| - (15)
On the other hand, by Definition 1.1 (ii), we have, for all n € INy,

||T1un+1 - p” En

IA

IT20, = T1o4ll < x| T10s —p|| and | Toyn — Trya| < ¢ ||Trys —p| - (16)
in which x = (5 + 1)/(1 — L). Inserting (16) into (15), we get, for all n € N,

Tstss = pl| < e + O (|[T10n = pf| + [ Trys = plf) + [[Tr0s = p] (17)
Following the same lines as in the proof of Theorem 2.1, we obtain

[Tryn = pl| < (1 - @n (1 = ©))(©][ Ty — pl| + O[T - )

[T, = pl < (1 - au (1 - ©))(© [Ty, = p|| + || Tatt, = Toa]). (18)

Substituting the inequalities in (18) into (17), we get, for all n € IN,
| Titwa =pf| < en+©%(1 -y (1= ©))(|[Truty - p|| + [ Tr - pl])
+0(1 -y (1~ ©))6, Moty ~ Tty
+0(1 -, (1-0))0, [ITax, = Toxyall + [ T1xssr — p|.
Then, using ® <1, [1 - a, (1 - ©)] <1, (4) and (14), we get
||"Jl"1un+1 - p” <O ||T1un - p” + ”Tlx,, - p” + HTlan - p” +e,+€,+€,. (19)
By the hypotheses, since

11m ”Tlxn p” = lim ¢, = 11m € = 11m €, =0,

n—00



A. Keten Copur et al. / Filomat 39:29 (2025), 10205-10233 10213

by Lemma 1.2, we get lim HT1un - p” =0, that is, {T1x,},., is weakly (T4, T,)-stable.
Suppose on the contrary that lim T;u, = p. We shall show that lim ¢, = 0. By (13), we get

en < Mrttnsr = Taxsall + | Toyw = pl| + ||p = To0,||, forall neN.

Following the same lines as in first part of the proof, we get for alln € N
11 = Trwsall + © ([ T1ys = p + [ T10 — pl)

Iy tt41 = Taxall + ©%(1 = a (1 = ©)) ([ Tax,y = ]| + [ Tate — p|}
+O(1 — ay (1 = ©)) (61 T2y = Toxueall + B I Tatty — Toty-all).

IN

€n

IA

Using (4), (14), © <1, [1 - a, (1 - ©)] < 1, we get, forall n € N

en < Trttr = Tixeall + O {|Tuxy = p|| + [ Truew — p|} + O(en + &), (20)
By the hypotheses, since

lim | Ty, — p|| = lim | Ty, — p| = lim e = lim & =0,

passing to the limit in (20), we get lim ¢, =0. O

Theorem 2.5. Let {T1x,},., be the sequence generated by INSI algorithm (version 2). Let "Il"l, T> : X'— X be two
mappings satisfying the conditions of (i)—(iii) of Remark 1.1, p be a coincidence value of (T, T2) and initial points
X_1,%o € X' be given. We consider the sequence {Tlx,,} >, generated by

iﬁn = iZYn + 511(%2711 - Tzfn—l)/
Ty, = (-a)Tiz +a,Tz, (21)
TiX = f2%,
in which
R min{ n , = 6n~~ }, ififzfniﬁzzn—lf
0<6,<0,=0 AN | Tox — Ton| (22)

if Tox, = Taxy—1,

n+n’

for some n > 2 and {€,}%, C (0, o).
Suppose that all the hypotheses of Theorem 2.1 hold. In addition, if

(C1) there exist maximum admissible errors pq, po > 0 such that ||"Il"11f—i1r|| < and ||T2r—f2r|| < Uy, for
allre X/,

€, <,

138

(€2)

n=0

(C3) lim Ty%, =7,
then it holds that

+Ou)(@%*+O+1
fp-pf < v kOO o)
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Proof. It follows from JNSI algorithm (version 2), (21) and (C1) that for all n € INg

||T1Xn+1 - T1xn+1”

IA

T29 = Toia]| + [T = T
2+ [T = ]| + [Ip = Ty (24)
Using Definition 1.1 (ii) and (C1) in (24), we get, for all n € N,

IN

A

T2 = Tixuaa]| < p2 +© (M1 T = Tagull + IT1 - pll + I Tays - pll)
2 + Oy + O (I[T17, = pll + 1y, = pll).- (25)
On the other hand, by (21), (C1) and Definition 1.1 (ii), we have

T2 = v

IN

IA

(1 = @) IT1Zs = pll + aulToZy — Tozull + @l T2Z, - pll
[1—a, (1 - ©)]IT1Z, — pll + autiz + O
[1— an (1= ©)] (12 + 1T, — pll + 0y | To%s — ToFocn ||) + u (12 + Opt1)
[1- ay (1= ©)] (12 + OIT1X, — pll + Ol T2%, — ToFuall) + n (2 + Op)
[1- (1 - ©)]OIT1%, — pll + [1 - ay (1 - ©)] [12 + Opun]
+[1 = (1 = ©)] OullT2Xy — ToXotll + ty 112 + Opia]. (26)

IN A IA

IA

Inserting (18) and (26) into (25) and using® <1, @, <1,[1 -, (1 —®)] < 1, we get for all n € Ny

T %41 — Tidsall < 2 +Ou1 +O*[1 -, (1 - O)] T, %, — pll+0[1-a,(1-0)][u+0Ou]
+ O[1 - a, (1 - ©)] G4l To%, — ToFyall + Oty [z + Opir]
+ @’ [1-a, (1-0)][Tix, — pll + O[1 — a (1 = ©)] 0, [[T2xy, — Taxyll
< iz +Op1 + O Ti%, — pl + (© + %) (2 + Op1)
+ 06, + | Tix, — p|| + Oe. (27)

Passing to the limit in (27) and utilizing conditions (C2) and (C3), we get

. t2+Ou)(@*+0+1
o] < 2T oA 01

This completes the proof. O

3. Numerical examples

In this section, we provide a range of intricate numerical examples that serve a dual purpose: reinforcing
the theoretical conclusions drawn in the preceding section and highlighting the performance superiority
of JNSI algorithm (version 2) in computational tasks compared to various algorithms, including its own
classical counterpart.

Unless otherwise stated throughout this section and Section 4.1, we take

n+l 1 0 _ 1 —
n+2" " m+12" " m+D0+1"

(VTIEN()) an:(Pnzan:ﬁn:

and n=2.
The following example demonstrates that the result in Theorem 2.1 might not hold true if the condition
©:= (0 +L)/(1 -L) <1is omitted from the main assumptions.
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Example 3.1. Let {; = {{én}n 0" Z & < oo} with the norm ||{&,. 1.l = Y |€,4] and X/ = X = ¢;. Define two
n=0
mappings Ty, T, : X’ — X by

é, i=0,
(o] [ee] 2
T (1602%0) = Wil wi= ¢
=, i>1,
3
and
é, i=0,
(o8] (o] 3
T ({C.(:i}i:()) = {Pi},-:(y pi = S 428
%, i>1.

It can be easily seen that T; and T, are well-defined and T is linear. Thus, T>(X") € X is a vector
subspace. It is clear that T; is linear and injective. Hence, T;(X’) C Xis a convex subspace.
Now, we show that T,(X’) ¢ T;(X’), and therefore we take & € T,(X’). Then, there exists a {5},};‘;0 eX

such that & = T, ({51 b 0) If we choose the sequence {cfz} as follows

, 28 gL 428}

&= =5 and &2 := ”T, forall n>1,
then, {5%}010 eX' and £ =T ({531}:’:0). Thus, T>(X’) € T;1(X’). For x = {0,0,...} € X', we have Tyx = Tx.
Thus, p = {0,0, ...} € Xis the coincidence value of the pair (T, T2). On the other hand, any x = {&,}", € X,
so we have

1— +2 1
-l = 5 ) 22, @)
Iéol < _1 <
|Tux—p|| = Z;? and | Tax = Tuxl = 5 €0l + ;7 (29)
Utilizing (28) and (29), we get, for all x = {&,,},-, € X/,
S0l N L€ N REal
[Tox —p|| < > +;‘ a +l’=0 2
(1€l | v & S0l . o &l
< 1= = = =
_2(2+;3]+2[3+;6
Thus, for all x € X/,
| (30)

in which 6 = 1/2 and L = 2. So, the (1, T>) is a pair of quasi (L, §)-contractive mappings. On the other
hand, inequality (30) is not satisfied for any numbers 6 > 0 and L > 0 satisfying the condition 6 + 2L < 1.

Indeed, let x = {1/2’*1}, . In this case, x € {; and

1 5
[r—pll= 3 T—pl= 5 and [Tar—Toe] = 2
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Assume that inequality (30) is satisfied for any numbers 6 > 0 and L > 0 satisfying the condition 6 + 2L < 1.
In this case, by (30), we have

That is, 6 < 56 + 3L. However, it cannot be 6 < 50 + 3L as 6 + 2L < 1. Thus, inequality (30) is not satisfied
for6+2L < 1.

Now, we take x_; = xy = 1/3™1, for all n € Ny. Hence, all conditions except the condition 6 + 2L < 1
in Theorem 2.1 are satisfied. We see in Figure 1 that the sequence {T1x,} )’ , generated by JNSI algorithm
(version 2) does not converge to p. That is, if the condition 6 +2L < 1 is removed from the main assumptions,
then convergence of {Tx,}, to point p may not be guaranteed.

51
praluan , : L
—#— NS Algor. (Ver. 2) | (
181 1
161
=14r
|
s 127 10000
)
=, 8000
o
° 6000
0 08¢
= 4000
©
> 06F 2000 ]
0 2
0.4 4 6 8 10 i
02F A
0
0 10 20 30 40 50 60 70 80 90 100

Number of iterations

Figure 1: Graph denotes the convergence state of JNSI algorithm (version 2) forn =1,2,...,100

Now, we present an illustrative example that meets all the criteria outlined in Theorem 2.1, thereby
corroborating the theorem’s outcome.

Example 3.2. Let X’ = X = {;. Define two mappings by
T @ X —X
o So &1 & }
{571};7:0 — { 2/ 2/ 2 JARE
and

T, : X —X
o & &1 &
{En}nzo — {g, g, g,} .
Following similar arguments as in Example 3.1, it can be easily shown that T; and T, are well-defined
and the conditions (i)—(iii) of Remark 1.1 are satisfied. For x = {0,0,...} € X/, p = {0,0,...} € X is the
coincidence value of the pair (Tj, T,). On the other hand, for any x = {&,,},~, € X', we have

[ =pl = gleatll, o=l = g leeotl 2
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and
3 o«
Mo = Tuxll = 2 [[{&nlso |- (32)
Utilizing (31) and (32), we get, for all x = {&,,};7, € X’

T2 =]

IA

9 (o9
10 &bl
(1 e 103,
= 5 (5 Meal) + 5 (Gmeazon)
thatis, forall x € X/,

| T2x = p|| < 6||T1x = p|| + LIIMT2x — Toad],

in which 6 = 1/5 and L = 1/3. So, the (T, T») is a pair of quasi (L, 0)-contractive mappings with 6 + 2L =
13/15 < 1. We take x_; = xg = sp = 1/3"*!, for all # € IN. Thus, all hypotheses in Theorem 2.1 are satisfied,
and the sequence {T1x,} , generated by JNSI algorithm (ver. 2) converges to p. We see this case and
convergence state of some other algorithms in Figure 2.

0.15

CJP Algor.

JPI Algor. (Ver. 2)
---------- CJM Algor.
————— JMI Algor. (Ver. 2)
""""" CJI Algor.
————— JII Algor. (Ver. 2)
---------- CJNS Algor.
JNSI Algor. (Ver. 2)

o

Values of ||Tiz, — p|
o
=}
o

0 2 4 6 8 10 12 14 16 18 20
Numbers of iteration

Figure 2: Graphs show the convergence states of algorithms forn =1,2,...,20

The subsequent example demonstrates that JNSI algorithm (version 2) is weakly (T, T5)-stable.

Example 3.3. Let X/, X, Ty, T2, x-1 and xj be as in Example 3.2, and the sequence {T1x,}, be generated
by JNSI algorithm (ver. 2). We take the sequence {T1,},., in X as follows

0, if k<mn,
(YneN) T, ={Tug}, , T = 1
(k+1)* +logk+ 1)’

if k>n.

The sequence {T1u,},., is an approximate sequence of {T1x,},_, as can be seen in Figure 3 (a). We also see
in Figure 3 (b) that lim,, . T1u, = p if and only if lim, .. &, = 0. In particularly, JNSI algorithm (ver. 2) is
weakly (T, Ty)-stable.
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0.12 . . . 0.012 T T T T
1 —— [Tr — Tl ——(@) &1 = [Tus — T
—#— (b) [[T,u. —pll
0.1 F 8 0.01
0.08 [ 1 Zo.008
0.1 o
©
%1072 <
0.06 | 0.05 1.5 q b 0.006
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| — i ©
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05
3
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Figure 3: Graphs show that values of ||T1x, — T1uyll, €, generated by (13) and ||Tyu,, — pl|

In the following example, we illustrate the data dependency between the values p and p in Theorem 2.5.
The example shows the practical application of the estimate mentioned in (23).

Example 3.4. Let X', X, Ty, T, x_1 and xo be as in Example 3.2. Define the following mappings

T, : X =X
(Enlilo = T (&) = {% * 10}”1 }mo
and
T, : X -X
(Enlilo = T2 ((&l) = {% * 101“ }wo ‘

It can be easily seen as in Example 3.2 that ”JTl is injective, il(X’) is a convex set and TZ(X’) c il(X’)
and (1 + 1)T(X’) — ATo(X’) € To(X).

For x = {0,0,...}, Tyx = Tox = {1/10’“’1}:):0 = p. Thus, p is the unique coincidence value of (Ty, Tz). An
easy computation yields that

~ ~ =1 1
T =Tl = Tox = Toxll = ) 1oy = § = 1 = 4,
i=0

for all x = {&,},~, € X".

The sequence {Tlfn};"zl generated by (21) with¥_; =% =1 /31, &, =1/(n+1)% foralln € N, converges
to p as we can see in Figure 4. Now, by (23), we have

1 (B+i(k1i41) g
=<l ”ffi_j .o
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©
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Figure 4: Graphs denote that values of the |[T; %,||, IT1%;, — fll and |||

4. Applications

In this section, practical applications of the results obtained in this study are provided as examples, not
only by testing the hypotheses but also by providing examples of how the iteration algorithms defined in
this study can be useful in solving problems directly without testing the hypotheses.

4.1. Applications to integral and differential equations
Example 4.1. Let us contemplate the integral equation provided as

t
2(t+Dx () + 2 = f (1 - s?)x(s) ds, (33)
0
which has a solution
e (=124 1 t—1 2
__&e L -1 (t-12/4 _~ s

z(t) 31 {\/H[erfl(z)+erf1( 5 )]+2e 2\/5},

where

z

2 2
erfi(z) = —ierf(iz) and erf(z) = — f et dt.
Vr

It is a well-known fact that the set of real-valued continuous functions on the closed interval [0, 1], denoted
as C[0,1], is a Banach space with the norm |[|x|| = trr}gﬁ lx (£)]. Let X = X’ = (C[0,1],]-1). If we define the
€[o,

operators Ty, T, : X — Xas

Ti(x) =+ x(@)+ g, To(x) = % f(l — s2)x(s)ds
0

subsequently, we can satisfy all the conditions stated in Theorem 2.1. In fact,

i) Since T is bijective on X’, we have T»(X") C T;(X’).
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ii) Since T, is linear, T>(X’) is a subspace in X.

iii) It is readily apparent that T;(X’) forms a closed and convex subset of X.

10220

iv) Let T2 (z(t)) = T1 (z(t)) = p(#). Since 1 —s?> < 1+ s for s > 0 then, for any L > 0 and 6 = 1/2, we have

a2 gl < 5 [ = | + T2 = o]

Let choose T (x_1(t)) = T»(1) and T (xo(f)) = T2(1.001). Then, by Theorem 2.1, the sequence {T1x,},_,
generated by JNSI algorithm (version 2) converges to p (f) = T, (z(t)) = T; (z(t)). Moreover, the sequence
{T1x,},., generated by JNSI algorithm (ver. 2) converges faster than algorithms CJP, JPI (ver. 2), CJM, JMI
(ver. 2), CJI, JII (ver. 2), and CJNS. This can be easily verified in Tables 1, 2, 3 and Figure 5.

Table 1: The errors |T1(x1) - P(f)|

t CJp JPI (Ver.2) | CIM JMI (Ver.2) | CJ1 JIT (Ver.2) | CINS JNSI (Ver.2)
0.0 | O. 0. 5.01x107" | 0. 5.01x10°! | 0. 0. 0.

0.1 [5.00x1072 | 1.17x1073 | 5.78x 107! | 2.56 x107%2 | 5.66x107" | 2.53x1072 | 2.56x1072 | 5.93 x10™*
0.2 [9.93x1072 | 432x1073 | 6.61x107! | 5.18x1072 | 6.37x10~" | 5.08x1072 | 5.18 x1072 | 2.22x 1073
0.3 |1.47x107" [8.93x1073 [ 7.48x 107! | 7.82x 1072 | 7.13x107! | 7.60x1072 | 7.82x 1072 | 4.65x1073
04 1.93x107" [ 1.45%x1072 [ 8.39x 107! | 1.04x 107" | 7.95x107! | 1.01 x107" | 1.04x10~" | 7.60x 1073
0.5 [236x107! | 2.04%x1072 | 9.35%x107! | 1.28x107" | 8.81x107" [ 1.23x107! [ 1.28x107! | 1.08 x 1072
0.6 [2.75x10°! | 2.61x1072 | 1.03 1.50x107! [9.71x107! | 1.44x 107! | 1.50x 107! | 1.39x 1072
0.7 | 3.07x107" | 3.12x 1072 | 1.13 1.69x10°" | 1.07 1.62x107" [ 1.69x 107" | 1.67 x1072
0.8 [3.33x107! [3.52x1072 | 1.24 1.84x107" | 1.16 1.76 107" | 1.84x 107! | 1.89 x 1072
0.9 [3.50x107! [ 3.77x1072 | 1.34 1.94x107" | 1.26 1.85x107! [ 1.94x107! | 2.03 x 1072
1.0 | 3.56 x107! | 3.86 x1072 | 1.44 1.97x107" | 1.36 1.88x 107" [ 1.97x107" | 2.08 x 1072

Table 2: The errors |T1(X3) - p(t)|

t CJp JPI (Ver.2) | CIM JMI (Ver.2) | CJI JII (Ver.2) | CINS JNSI (Ver.2)
0.0 | O. 0. 4.17x1072 | 0. 4.17x1072 | 0. 0. 0.

0.1 [ 1.83x107 | 5.60x 107" | 5.91x 1072 | 7.83x 1077 | 5.03x 1072 | 7.48x 1077 | 8.18x 1077 | 5.68 x 1072
02| 1.28x10™* | 1.89x 10710 | 7.78 x 1072 | 591x107% | 5.98x 1072 | 5.43x107° | 6.05x107¢ | 5.31x 107!
0.3 [3.70x10™% | 2.32x 107 | 9.72x 1072 | 1.82x 107 | 7.00x 1072 | 1.62x 107> | 1.85x 107 | 8.22x 107!
04| 747x107* [ 1.47x10°% [ 1.17x107! | 3.84x 107 [ 8.07x 1072 | 3.32x 107 | 3.89%x 1073 | 2.06x 10710
0.5]1.22%x1073 [ 453x10°® | 1.37x107! [ 6.52%x 107 [ 9.17x107% | 5.53x 107 | 6.59x 1075 | 1.23x 10~
0.6 | 1.74x1073 | 9.76 x 1078 | 1.56x 107" | 9.57x 107> | 1.03x 107" | 7.98 x 107> | 9.67x 107 | 3.25x 107°
0.7 | 224%x1073 [ 1.66x 1077 | 1.73x 107! [ 1.26x10™* | 1.14x 107! | 1.04x10™* | 1.27x107* | 6.09%x 10~
0.8 2.66x1073 [235%x1077 | 1.89%x107! [ 1.51x10™* [ 1.24x 107! | 1.24x10™* | 1.53x107* | 9.10x 10~
0.9 293%x1073 [ 2.87x1077 [2.02x107! | 1.69x10™* [ 1.34x 107! | 1.37x10™* | 1.70x107* | 1.14x 1078
1.0 [ 3.03x1073 | 3.07x 1077 [2.13x107! | 1.75x10™* | 1.43x 107! | 1.42x10™* | 1.76x107* | 1.23x 1078

It is obvious that the newly defined inertial step increases the accuracy, as well as the convergence
speeds of Jungck type algorithms. However, the classical inertial step has no affect on convergence speeds
of Junck type algorithms (see Table 4 for errors in the iterations of the algorithms CJNS and JNSI (ver. 1)
forn=1,2,3,4).
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Table 3: The errors |T1(x5) - p(t)|
t CIP JPI (Ver.2) | CIM TMI (Ver.2) | CJI JI (Ver.2) | CINS JNSI (Ver.2)
0.0 0. 0. 1.39%x 1073 | 0. 1.39%x 1073 | 0. 0. 0.
0.1]2.05%107° | 1.98x 10712 [ 2.72%x 1073 [ 2.97x 10712 | 1.81x 1073 | 2.72x 10712 | 3.20x 10712 | 5.93 x 1022
02]5.08%x1078|2.65x10717 [ 432%x1073 | 8.42%x 1071 [ 2.29%x1073 | 7.17x 10711 | 8.76 x 10" | 1.00x 10~1°
031]294%x1077 | 2.75%1071% [ 6.12%x1073 | 5.36x 10710 | 2.82x 1073 | 4.30%x 10710 | 551 x 10719 | 1.49%x 10718
0.4 ]926x107 | 5.68x10716 | 8.04x 103 | 1.82x10° |3.39%x1073 | 1.39%x10™° | 1.87x10° | 7.79%x10718
0.5]2.07x107° [ 2.12x10715 | 1.00x 1072 | 4.34x107° |3.96x1073 | 3.17x107° | 4.42x10° |2.17x107"7
0.6]3.68x107° | 1.49%1071* [ 1.19% 1072 | 8.10x10™° | 4.54x 1073 | 5.74%x107° | 8.24x10° | 3.85x 1077
0.7 | 553%x107° | 442%x1074 | 1.36x 1072 | 1.26x 1078 | 5.08x1073 | 8.73x107° | 1.28x 1078 | 4.63x107"7
0.8 |7.27x107° | 8.66x10714 | 1.50x 1072 | 1.70x 1078 | 5.57%x1073 | 1.16x10°® | 1.73x 1078 | 3.81x107"7
0.9 | 8.50%x107° | 1.26x10713 | 1.60x 1072 | 2.03x 1078 | 5.98%x1073 | 1.36x10® | 2.06x1078 |2.15%x107"7
1.0 895%x107°° | 1.42x10713 | 1.65x 1072 | 2.14x 1078 | 6.31x1073 | 1.44%x10® | 2.17x1078 | 1.31x10717
............ T rr— T 0.05 [ T T T 4 T T T
0.5 CJP Algor. N CJP Algor. CJP Algor.
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Figure 5: Comparisons of the convergence of JNSI algorithm (ver. 2) with others, forn = 1,3, and 5
Table 4: The errors |T1 (x1) — p(t)| in the iterations of the algorithms CJNS and JNSI (ver. 1) forn =1,2,3,4
Iter. n=1 n=2 n=3 n=4
t CINS JNSI (Ver.1) | CINS JNSI (Ver.1) | CINS JNSI (Ver.1) | CINS JNSI (Ver.1)
00 |0 0 0 0 0 0 0 0
0.1 |256%x102 256x1072 |2.04x10* 2.02x10* |8.18x1077 8.06x1077 | 1.98x107° 1.94%x107°
0.2 |518%x102 5.18x102 |7.85x10* 781x10* |6.05x10° 6.00x10° |281x10% 2.78x1078
03 | 7.82%x107%2 7.82x107%2 |1.68x1073 1.67x1073 |1.85x10° 1.84x107° |123x107 1.22x1077
04 | 1.04x107" 1.04x1071 |2.79x1073 2.79%x1073 |3.89x107° 3.87x10° |3.29%x107 3.27x1077
0.5 | 1.28x107! 1.28x107! |4.02x1073 4.01x103 |6.59%x107° 6.57x10° | 6.59%x1077 6.55%1077
0.6 |1.50x107" 1.50x107' |5.25x103 524x1073 |[9.67x10° 9.63x10> |[1.09%x10° 1.08x10°
0.7 | 1.69%x107" 1.69x107! |636x1073 635%x1073 |1.27x10* 1.27x10* | 1.56x10°° 1.55%107°
0.8 | 1.84x10°! 1.84x107! |725x1073 723x1073 |1.53x10™* 1.52x10* | 1.98x10°® 1.97x107°
09 | 1.94%x10°! 1.94x107! |7.82x107 7.80x103 |1.70x10™* 1.70x10™* |2.28x10°° 227x107°
1.0 | 1.97x107" 1.97x10°!' | 8.01x1073 8.00x1073 |[1.76x10* 1.76x10* |2.38x10° 2.37x10°

Since we have confirmed the validity of Theorems 2.1, we can now verify Theorems 2.4 and 2.5. Let us
begin with Theorem 2.4.

Let {u,},, be {z(t) (;’133)}10 and {¢,},_, be the sequence generated by (13). Then, Table 5 indicates that
lim ¢, = 0 and it is obvious that the sequence {T;u,}; ; converges to T, (z (t)) = T (z(t)) = p(t). Hence,

n—oo




A. Keten Copur et al. / Filomat 39:29 (2025), 1020510233 10222

JNSI algorithm (ver. 2) is weakly (T, T;)-stable.

Table 5: The errors ¢, = ||Tqu,.1 — Tovy|

n |1 2 3 4 5 10 20
er | 377x107% 854x107° 493x1077 532x108 861x10° 522x1071! 3.13x 107

In conclusion, let us confirm the validity of Theorem 2.5 by examining the following integral equation

t
2t+Dx () + P +1 = f [(1 - %) x(s) + T] ds (34)
0
where 7 is a sufficiently small real number. The solution to equation (34) is given by
et t—1 1 .
_& _ . N e | BT s S PN () 2!
z(t) 2+ D) { Vr(t-2) [erﬁ( > ) + erfi (2)] Ve(t —4) — 4e } .

Define the following operators

t
2

To) = (£ + 1)x(t) + © ;T, iz(x):%f[(l—sz)x(s)ﬂ]ds

0

then, we have

~ T T ,
||T1(x) -T; (x)H = g}g\{(} ‘5’ = |2—| =u, forall xeX/,

and

[T26) = T2 = max

| [l _ ,
_EI_ > =up, forall xeX'.

Assuming 7 taken as 107°, Table 6 illustrates that the sequence {flfn}:}:l, generated by (21), with
T> (F-1 () = T2 (—=1/2) and T, (% (£)) = T2 (=7/2 + 0.001), converges to p () = T, (1) = Ty (Z(#). Hence,

\/%erﬁ(%)+ 1— e

= -7
2000000 =4.02974395839751 ... x 107".

It = p0)]| =

On the other hand, without knowing the value of p(t) (or without computing it), by (23), we have the

following
2
(o2 () m(32) + (752) +)

5+ L\?
1_(1—L)

[[p(t) - p()|| = 4.03 x 107 < 1.06 x 107 =

Remark 4.1. For solving the integral equation (33) (or its perturbed form (34)), we can use discrete versions
of the operators T; and T,, with high precision methods presented in [25].
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Table 6: The errors |ﬁ(fn) - ﬁ(t)' forn=1,2,...,6

Tter. | t=0 | t=0.1 1=0.2 1=0.3 1=0.4 1=0.5 1=0.6 1=0.7 1=0.8 1=0.9 t=1

n=1 [0 [1.05x107% [8.60x107° |3.23x107 [8.12x107 [1.59x10™* [2.62x10™* [3.76x107* [4.84x10™* [5.61x10™* |5.89x10~*
n=2 |0 |1.82x107'0 [ 8.42x10710 | 276 x107!% | 7.10x10™* [2.88x107 |6.92x10® |1.25x1077 | 1.84x1077 |229x1077 |2.46x1077
n=3 |0 |7.51x107 [ 1.30x1071 | 576 x107"% | 1.04 x1071? | 3.31x 1071 [ 4.97x1072 | 1.49x107!! | 2.79x 107" [ 3.92x10711 | 437 x107!!
n=4 |0 |1.03x107" [ 6.17x107'% | 599x107"7 | 2.48 x107!0 | 5.87x 10716 | 8.66x 107 | 7.45x107!6 | 1.09x107'¢ | 6.86x 10~ | 1.05x 10713
n=5 |0 |651x107% [ 138x1072 |2.70x107%! | 1.88x1072° | 7.09x 1072 | 1.74x 1071 | 3.12x 107" [ 4.41x107" | 524 %1071 | 5.51 x107"?
n=6 |0 |221x1073° [ 1.70x10"% | 6.65x107%° | 7.42x107 | 3.99x 1072 | 1.31x10"% | 2.98x107% | 5.11x1072 | 6.91x10°% | 7.62x 10"

Example 4.2. We are tasked with solving the following second-order differential equation (DE) subject to
homogeneous Dirichlet boundary conditions:

(35)

X' =x(t)+2 =202 +2t-7, tel0,1],
x(0) = x(1) =0.

To proceed with solving equation (35), we require an appropriate function space. Let X = C[0,1].
Additionally, let X’ be the subset of X defined as X’ := {x (t) € C?[0,1] : x(0) = x(1) = O} with norm ||x||,
in which C?[0,1] is the space of real functions with continuous second derivatives on [0,1] and ||x]|. =
max{llxll S, ||x”||}. It has been established in [7] that for all x € X’, the inequalities

1 1
< = / < = /1’
Il < 5 11l < 5 112”1

hold. Define operators Ty, T, : X’ — X as
Ti(x)=x", To(x)=x()+£ 22 +2t-7.
It is worth noting that T; is an injective map and the inverse of T; can be expressed in the form

1
"[l"l_l(x) = f G(t, s) x(s) ds,
0

where G(t, s) is the Green’s function corresponding to the boundary value problem. Thus, in this case,

G s(t—1), 0<s<t,
t,s) =
ts—1), t<s<l1,

and
t

1
"Irl‘l(x) =@-1) | sx(s)ds+t | (s—1)x(s)ds.
[rown]

0

Also, the exact solution is

(4 -11e)e'™ + (11 — 4e)e’

B =—£ +22 -8t +
z(t) o

+11,

as well as

(4 —11e)e'™" + (11 — 4e)e!

6t + 4.
e2 -1

p(z) = Ti(z) = Ta(z) =
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Furthermore, it can be established that T,(X’) ¢ T;(X’) (for more details, refer to [7]).
Given the inequality

IT2 () -T2 (y)| < |x -y

we can apply [7, Lemma 4.4] to deduce

[T2(x) - Ta(y)| < % |1 () - T1 ()| -

10224

Consequently, all the assumptions of Theorem 2.1 are met. Therefore, by selecting T, (x_1(t)) = T2(t(1-t))

and T (x(t)) = T> (t(l - tz)), the sequence {T (x,)},~; generated by JNSI algorithm (ver. 2) not only converges

to T, (z(t)) = T1 (z(t)) = p (t), but also demonstrates a significantly higher convergence rate when compared
to the algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2), CJI, JII (ver. 2) and CJNS. This comparison is detailed
in Tables 7, 8, 9, as well as in Figure 6.

Table 7: The errors |T1(x1) - p(t)|

t CJP JPI (Ver.2) | CIM JMI (Ver.2) | ClI JII (Ver.2) | CINS JNSI (Ver.2)
0.0 | 0. 0. 3.50 0. 3.50 0. 0. 0.
0.11.71x107"' | 1.24x1072 | 2.89 7.92x1072 | 2.94 8.26x1072 | 7.92x1072 | 5.61x1073
0.2 |282x107" [ 2.31x1072 | 2.36 1.29x 107" | 243 1.36x107! | 1.29x 107! | 1.04x 1072
0.3]343x107! | 3.11x1072 | 1.90 1.56x10°! | 1.99 1.65x107! | 1.56x 107! | 1.40x 1072
04 ]3.63x107" | 3.56x1072 | 1.50 1.64x107! | 1.60 1.73x 107! | 1.64x 107! | 1.60x 1072
0.5 3.49x107" | 3.66x 1072 | 1.15 1.56x107! [ 1.25 1.66x 107" | 1.56x 107" | 1.64x 1072
0.6 [ 3.08x107!" [ 3.40x 1072 | 8.52x 107" | 1.37x 107! | 9.37x107" [ 1.47x107" | 1.37x 107" | 1.53x 1072
0.7 |248x107"' | 2.85x1072 | 5.92x 107! | 1.10x 107" | 6.61x107! | 1.17x 107! | 1.10x 107! | 1.27x 1072
0.8 | 1.73x107" | 2.04x1072 | 3.67x 107! | 7.61x 1072 | 4.16x107" | 8.18x1072 | 7.61x 1072 | 9.13x 1073
0.9 [ 8.85x1072 | 1.06x1072 | 1.71x 107! | 3.89x 1072 | 1.96x 107" | 4.19x 1072 | 3.89x 1072 | 4.76 x 1073
1.0 ] 0. 0. 0. 0. 0. 0. 0. 0.
Table 8: The errors |T1(X3) - p(t)|

t CJp JPI (Ver.2) | CIM IMI (Ver.2) | CJI JII (Ver.2) | CINS JNSI (Ver.2)
0.0 ] 0. 0. 2.92x107! | 0. 2.92x107! | 0. 0. 0.

0.1 1.17x1073 | 1.16x107° | 2.11x 107! | 2.49x107° | 2.37x107! | 4.22x 107 | 2.47x 107 | 2.30x 1078
0.2]222x1073 | 2.20x107° | 1.48x 107! | 471x 107> | 1.90x 107! | 8.00x 107 | 4.67x 107 | 4.38x 1078
0.3 [3.04x1073 [ 3.03x107° [ 1.00x 107" | 6.43x 107 | 1.51x 107" | 1.09x107* | 6.38 x 107> | 6.03x 1073
0.4 [3.56x1073 [ 3.56x107% | 6.46x 1072 | 7.48x 107 | 1.18x 107" [ 1.28x107* | 7.42x 107 | 7.09x 1078
0.5]3.72x1073 | 3.75x107° | 3.91x 1072 | 7.79%x 107> | 8.99x 1072 | 1.34x10™* | 7.73x 107 | 7.46 x 1078
0.6 |3.52x1073 | 3.56x107° [ 2.15x 1072 | 7.33x 107 | 6.60x 1072 | 1.26x107* | 7.28 x 1075 | 7.09x 1078
0.7 [ 298x1073 [ 3.03x107% | 1.01x 1072 | 6.19%x 107 | 4.56x1072 | 1.07x107* | 6.14x 107 | 6.03x 1078
0.8]2.16x1073|220x107° | 3.46x 1073 | 447x 107> | 2.81x1072 | 7.72x 107 | 4.43x 107 | 4.38x 1078
09| 1.13x1073 | 1.16x107° [ 451 x107* | 2.34x 107 | 1.30x 1072 | 4.05x107° | 2.32x 1075 | 2.30x 1078
1.0 | 0. 0. 0. 0. 0. 0. 0. 0.
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Table 9: The errors |T1(x5) - p(t)|

t CJp JPI (Ver.2) | CIM JMI (Ver.2) | CII JII (Ver.2) | CINS JNSI (Ver.2)
0.0]0. 0. 9.72x1073 | 0. 9.72x 1073 | 0. 0. 0.
0.1 1.18x107° | 1.22x10710 | 5.84%x 1073 | 2.43x107° | 7.66x1073 | 1.29x 1078 | 2.41x107° | 2.37x 10714
0.2]225%x107 | 232x10710 | 3.18x 1073 | 4.62x107° | 5.99%x 1073 | 2.45%x 1078 | 4.58x107° | 4.52x 10714
0.3]3.09%107° [ 3.19x 10710 [ 1.42x 1073 | 6.35x 107 [ 4.65%x1073 | 3.38x1078 | 6.30x107° | 6.21 x 1074
0.413.63%x107 | 3.75x1071° | 327%x107* | 7.46x10° | 3.55x1073 | 3.97x 1078 | 7.40x 10™° | 7.31 x 10714
0.5]3.82%x107 | 3.95x10710| 2.95x10* | 7.83x 107 | 2.65%x1073 | 4.17x 1078 | 7.77x107° | 7.68 x 10714
0.6 | 3.63%x107 | 3.75x 10710 | 5.80%x10* | 7.43x10™° | 1.92%x 1073 | 3.96x 1078 | 7.37x107° | 7.31 x 10714
0.7 | 3.09%107° [ 3.19x 10719 [ 6.31x10™* | 6.31x107° [ 1.30x 1073 | 3.37x1078 | 6.26x107° | 6.21 x 1074
0.8]224x107|232x10710|520%x107* | 4.58x107° | 7.92x107% | 2.45%x 1078 | 4.54x 1077 | 4.52x 10714
0.9 1.18x107 | 1.22x 1071 | 2.99x 107 | 2.41 x 10 | 3.63x107* [ 1.29x 1078 | 2.39x 107 | 2.37x 1071
1.0 | 0. 0. 0. 0. 0. 0. 0. 0.
— ° - EJP Algor. —~ o4 CJP Algor. — o‘4 CJP Algor.
£ 04 JPI Algor. (Ver. 2) | = JPI Algor. (Ver. 2) | £ JPI Algor. (Ver. 2)
SO Y A 2 A e CJM Algor. SO Y S N B CJM Algor. < Y A A 2 B e CJM Algor.

03 S S JMI Algor. (Ver. 2) o3 —-m-= JMI Algor. (Ver. 2) L A A (R (- JMI Algor. (Ver. 2)

~< wwnnenn CJT Algor. 0720838375~ ° wwnnee CJT Algor. 0 e CJT Algor.
0.20723 \x\ ----- JII Algor. (Ver. 2) 0356 \\s ----- JII Algor. (Ver. 2) 0723;&3702‘ ----- JII Algor. (Ver. 2)
of7 s e CJNS Algor. 07235485 N wone CINS Algor. | " N | [ CJNS Algor.
015 RN —— JNSI Algor. (Ver. 2) (a1} \‘~ —— JNSI Algor. (Ver. 2)| © B —— JNSI Algor. (Ver. 2)
0 0.1 0.2 0.3 0.4 0%5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 Oti 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0}/5 0.6 0.7 0.8 0.9 1

Figure 6: Comparisons of the convergence of JNSI algorithm (ver. 2) with others, forn = 1,3 and 5

Remark 4.2. In certain instances, verifying conditions in the hypothesis of Theorem 2.1 may pose significant
challenges. Nonetheless, it is feasible to identify examples where the practical utility of the result from
Theorem 2.1 is not hindered. In the example given below, convergence can be attained using the JNSI
algorithm (ver. 2) without the need to explicitly validate the conditions stipulated in Theorem 2.1.

Example 4.3. Consider the following first-order nonlinear DE:

te[0,1], }

The exact solution for this equation is given by

3 1/3
2+4t+=|ef—t-1| .
[priv )iy

Equation (36) can be transformed into the integral equation given below,

3x2(t)x’ (1) = x23(F) + (2 + et + 1,

x(0) =1. (36)

z(t) =

t
=1+ f[x3(s) + (s + 1) + s] ds, te][0,1].
0
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Let X =C][0,1]. We define X’ ¢ X as X’ := {x ®HeCl0,1]:x(f) = 0} and the operators Ty, T, : X' — X
as follows

t

0

Ti(x)=x%, To(x)=1+ f[x3(s) + (s + 1) + s] ds.

If we take T, (x_1 (t)) = T2 (1) and T, (xo (t)) = T>(1.001), then by observing the data in Table 10, 11, 12
and Figure 7, it is evident that the sequence {T; (x,)},; generated by JNSI algorithm (ver. 2) converges to
T, (z (#)) = T1 (z(t)) = p(t). Notably, this convergence is characterized by a faster rate compared to several
other algorithms (CJP, JPI (ver. 2), CJM, JMI (ver. 2), CJL, JII (ver. 2) and CJNS).

Table 10: The errors |T1 (x1) — p(t)|

t |CIP JPI (Ver.2) | CIM JMI (Ver.2) | CJT JIT (Ver.2) | CINS JNSI (Ver.2)
0.0 |o0. 0. 1.50x 1073 | 0. 1.50x 1073 | 0. 0. 0.

0.1 | 1.04x1072 [ 3.36x107* [ 1.14x 107" | 5.37x107 | 1.12x 107" | 5.28 x1073 | 5.37x 1073 | 1.72x 10™*

0.2 452x1072 [ 2.89%x1073 | 2.66x107! | 241x 1072 | 2.56x107" | 2.34x 1072 | 2.41x 1072 | 1.52x 1073

0.3 | 1.10x107" | 1.04x 1072 | 4.62x 107" | 6.01x1072 | 437x107" [ 5.77x1072 | 6.01x1072 | 5.56 x 1073

04 [2.10x107" [ 2.60x1072 | 7.10x 107" | 1.18 x 107! | 6.64x 107" [ 1.12x 107" | 1.18 x 107! | 1.43x 1072

0.5|3.54x107" [ 5.39%1072 | 1.02 2.04x107" [ 9.46x107" | 1.92x 107! | 2.04x 107! | 3.01x 1072

0.6 | 551x107' | 9.87x1072 | 1.41 3.25x107" | 1.30 3.04x 107" | 3.25%x 107! | 5.63x 1072

0.7 | 8.12x107" | 1.66x 107" | 1.89 4.89%107" | 1.73 454%107" | 4.89%x 107" [ 9.65%x 1072

0.8 1.15 2.64x107! | 2.48 7.06x107" | 2.26 6.52%x 1071 | 7.06x 107" | 1.56x 107!

0.9 | 1.58 3.99%107' | 3.20 9.89x 107! | 2.91 9.09%x 107! | 9.89x 107! | 2.40x 107!

1.0 | 2.12 5.83x107! | 4.09 1.35 3.71 1.24 1.35 3.56x 107!

Table 11: The errors |"Jl"1 (x3) — p(t)|

t | CIP JPI (Ver.2) [ CIM JMI (Ver.2) [ CII JII (Ver.2) | CJNS JNSI (Ver.2)
0.0 | 0. 0. 1.25x107* | 0. 1.25%107* | 0. 0. 0.

0.1 [8.18x107° | 1.56x 107" | 1.18x 1072 | 3.77x 1077 | 1.00x 1072 | 3.50x 1077 | 3.82x 1077 | 2.65x 107
02| 1.41x10™* | 436%x 107 | 3.30%x1072 | 7.28x107° | 2.46x1072 | 6.30x107° | 7.32x107° | 1.74x 10710
03] 7.50x107* | 8.49%x107% | 6.63x1072 | 431x107° | 451x1072 |[3.51x107° | 4.32x107 | 4.06x107°

04 ]249%x1073 [ 6.78x 1077 | 1.16x 107! | 1.57x10™* [ 7.35x107% | 1.22x10™* | 1.58%x107* | 3.59%x 1078

0.5]6.36x1073 | 3.38x107° | 1.85x 107" | 4.41x10* | 1.12x 107" | 3.25%x107* | 4.42x107* | 1.93x 1077

0.6 | 1.38x1072 | 1.26x 1075 | 2.81x107" | 1.04x 1073 | 1.64x 107" | 7.38x107* | 1.05x 1073 | 7.71x 1077

0.7 | 2.69%1072 | 3.83x 1075 | 4.09%107" | 2201073 | 2.32x 107! | 1.50x 1073 | 2.20x 1073 | 2.50%x 107°

0.8 4.81x1072|1.01x10™* |579%107" | 4.25%x1073 | 3.21x 107! [ 2.80x 1073 | 4.26x1073 | 7.00x 107°

0.9 | 8.08x1072 [ 2.38x10™* | 7.99%x 107! | 7.69%x 1073 [ 437x107! | 493x1073 | 7.70x 1073 | 1.75%x 1073

1.0 1.29%107! | 5.13x10™* | 1.08 1.32x1072 | 5.85x107! | 826x1073 | 1.32x 1072 [ 3.99x 1077
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Table 12: The errors |T1 (x5) — p(t)|

t |CJP JPI (Ver.2) | CIM TMI (Ver.2) | CII JII (Ver.2) [ CINS JNSI (Ver.2)
0.0 | 0. 0. 4.17x107° | 0. 4.17x107° | 0. 0. 0.

0.1261x107° |2.12x1071 | 5.62x107* | 436x 10712 | 3.62x10™* | 3.75x 10712 | 4.44x 10712 | 1.36x 1072
0.2]1.80x1077 | 6.16x107'° | 2.01x 1073 | 3.69x 10710 [ 9.74%x 107* | 2.76x 10710 | 3.72x1071° | 4.05x 1071°
0.3]2.15%107° | 7.40x 107" | 4.89x 1073 | 5.27x107° [ 1.95%x1073 [ 3.49%x10° | 5.31x107° | 1.15x107'¢
0.4 |125%107 | 1.96x10712 | 9.99%x 1073 | 3.65x 1078 | 3.46x1073 | 2.17x 1078 | 3.67x107% | 3.84x10°13
0.5]4.96x107 | 2.43x107" | 1.83x1072 | 1.69x 1077 [571x1073 [ 9.11x107® | 1.70x1077 | 5.54x 10714
06| 1.53x10™* | 1.88x10710 | 3.12x 102 | 6.09x 107 [ 9.00x1073 | 3.00x 1077 | 6.11x 107 | 4.87x10713
0.7 | 4.00x107* | 1.06x107° | 5.05x1072 | 1.84x10°° | 1.37x107%2 [ 8.35%x 1077 | 1.84x107°% | 3.07x107!2
0.8]9.22x10* | 4.75x107° | 7.83x1072 | 4.86x10°° [2.03x107%2 | 206x10° | 4.87x10° | 1.53x 107!
09|193%x1073 | 1.78x10°% | 1.17x107" | 1.16x 107 |2.95%1072 | 4.61x10°° | 1.16x107° | 6.32x10" !
1.0 [ 3.77x1073 | 5.81x10°% | 1.72x 107" | 2.57x 1075 | 4.20%x1072 | 9.60x10°° | 2.57x 107 |2.27x10710
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Figure 7: Comparisons of the convergence of JNSI algorithm (ver. 2) with others, forn = 1,3, and 5

4.2. Applications for Finding Roots of Complex Polynomials and Creating Image Polynomiography

Polynomiography is a unique mathematical and artistic technique developed by Kalantari in the late
1990s (cf. [16]). It involves visually representing complex polynomial equations in a two-dimensional plane,
showecasing the roots of these equations as points. These points convey both the real and imaginary parts of
the roots, while factors like color and size offer additional insights into the polynomial’s properties. Poly-
nomiography stands as a remarkable intersection where mathematics and artistic expression intertwine.
Rooted in the art and science of visualizing the zeros of complex polynomials, polynomiography employs
mathematical iteration functions and fractal imagery to unlock a realm of both scientific exploration and
creative artistry. This discipline encapsulates a dual purpose: it serves as a tool for approximating poly-
nomial roots, shedding light on a fundamental mathematical problem, while simultaneously offering a
canvas for artists and enthusiasts to craft intricate and mesmerizing visual representations. The synergy
between mathematics and computer technology inherent in polynomiography not only transforms how we
perceive complex equations but also forges an innovative path that enriches both the scientific and artistic
landscapes. We can mention [8], [10], [30], [36] for various studies on polynomiography:.

Example 4.4. Letus consider the equation P(z) = z°~2z—1 = 0, where P(z) represents a complex polynomial.
If we take

Tyz)=2z-1 and T, (z) =2z
then we can establish the equivalence:

P(z) =0 & Tai(z) = Ti(2).
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Figure 8: Example 4.4 (from left to right): Algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2) (first line); Algorithms CJI, JII (ver. 2), CJNS,
JNSI (ver. 2) (second line)

For any value of w # —1, specifically chosen such that w = —T}(z)/T}(z), we can deduce

sz(z) + T (Z)

T2 = aTi(d) & TiE) = T3 = Ta@) = =2

(as detailed in [31]). To determine all the roots of P(z) and generate polynomiographs as shown in Figure 8,
we adopt @, = al, = a2 = a3 = 0.5, 6 = 107, an accuracy of eps = 1077, and confine the range to the
area [—5,5]>. As depicted in Figure 8, it is evident that the inertial type algorithm are faster then original
algorithms and the sequence {Tx,},., generated by JNSI algorithm (ver. 2) converges faster than any other

algorithms.

Example 4.5. Consider the problem of solving P(z) = z° +2x—i+1 = 0, where P(z) is a complex polynomial.
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Figure 9: Example 4.5 (from left to right): Algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2) (first line); Algorithms CJI, JII (ver. 2), CJNS,
JNSI (ver. 2) (second line)
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We define the following transformations:
Tyz)=2z"—i+1 and T(z) = —2z.

Similar to the previous example, we then apply T5(z). To determine all the roots of P(z) and generate
polynomiographs shown in Figure 9, we select parameters as follows:

l=a2=0a2=09, 0=107°,

accuracy eps = 1077 and domain [-5,5]?. As seen in Figure 9, it is evident that the inertial type algorithms
are faster then original algorithms and the sequence {T1x,},.; generated by JNSI algorithm (ver. 2) exhibits
faster convergence compared to all other algorithms.

Example 4.6. Let us consider the problem of solving
Pz) =2 +22* +22 - 422 +2z+1 =0,
where P(z) is a complex polynomial.
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Figure 10: Example 4.6 (from left to right): Algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2) (first line); Algorithms CJI, JII (ver. 2), CJNS,
JNSI (ver. 2) (second line)

We define the following transformations
Tyz) =2" +2z* - 422 +2z and Ti(z)=-2z°-1.

Similar to the previous example, we iterate T5'(z) as well. In order to determine all the roots of P(z) and
to obtain polynomiographs as shown in Figure 10, we set
a,=al=a2=a3=09, 0=10"°,
accuracy eps = 1077, and the region of interest as [-5, 5]°.
From Figure 10, it is evident that the inertial type algorithms are faster then original algorithms. The

sequence {T1x,},; generated by JNSI algorithm (ver. 2) demonstrates faster convergence in comparison to
all the other algorithms.
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In the following example, we show the affect of parameters to the images.

Example 4.7. Consider the polynomials P(z), T>(z), T1(z), and T5'(z) as defined in Example 4.4.

To observe the effects of various parameters on polynomiographs, we generated, images which are
shown in Figures 11 — 14, using different parameter values without concerning ourselves with the conver-
gence of iterations.

# of iters. : 100 and Time : 10.7272 # of iters. : 100 and Time : 30.5077 # of iters. : 100 and Time : 10.1083

bt 1

# of iters. : 100 and Time : 18.5792 # of iters. : 100 and Time : 47.2839 # of iters. : 100 and Time : 28.0028

|

Figure 11: Example 4.7 for a, = a;, = a% = af‘, =05foralln e Ngandi=1,2,3, 0 = 0.9, accuracy eps = 1, the area being [-20, 2013, the
iteration count fixed at 100 and w = 0.009:: (from left to right): Algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2) (first line); Algorithms
CJL, JII (ver. 2), CJNS, JNSI (ver. 2) (second line)
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Figure 12: Example 4.7 for a, = a}, =a; = a% = 0.9 for all n € INp, 6 = 0.5, accuracy eps = 1, the area being [-20, 20]2, the iteration

count fixed at 100 and w = 0.009:: (from left to right): Algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2) (first line); Algorithms CJI, JII
(ver. 2), CJNS, JNSI (ver. 2) (second line)
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Figure 13: Example 4.7 for a, = a} = a2 = a3 = 0.1 for all n € Ny, 0 = 0.9, accuracy eps = 1, the area being [-20, 201, the iteration
count fixed at 100 and w = 0.009:: (from left to right): Algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2) (first line); Algorithms CJI, JII
(ver. 2), CJNS, JNSI (ver. 2) (second line)
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Figure 14: Example 4.7 for a, = a} = a% = a3 = 0.5 for all n € Ny, 0 = 0.5, accuracy eps = 1, the area being [-6, 6]?, the iteration count
fixed at 100 and w = —0.0001 — 0.08i: (from left to right): Algorithms CJP, JPI (ver. 2), CJM, JMI (ver. 2) (first line); Algorithms CJI, JII
(ver. 2), CJNS, JNSI (ver. 2) (second line)

5. Conclusion

In this study, we would investigate the convergence of algorithms, assuming that the inertial algorithms
available in the literature for the fixed point problem will work effectively for the pairs of mappings that
satisfy quasi (L, 6)-contractive condition, with the intention of adapting them to the coincidence point
problem. However, as we delved deeper into the study, we saw that, surprisingly, these were not effective
in accelerating the classical Jungck algorithms due to their generally accepted structure in the literature.
We were able to overcome this difficulty by defining an iteration with a somewhat contradictory inertial
step (On(Tox, — Tax,-1)). We defined and studied effective algorithms in terms of convergence speed
for the coincidence point problem called “Jungck inertial type algorithms”. These algorithms offered a
different structural approach compared to classical inertial algorithms, resulting in increased performance
and efficiency. In this context, we observed with examples that the inertial step in the proposed new
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structure also accelerates the classical Jungck-Picard, classical Jungck-Mann and classical Jungck-Ishikawa
algorithms. We obtained extensive analyzes of the convergence of new inertial type algorithms and
demonstrated the stability and data dependency properties for one of these algorithms. We tested the
obtained theoretical results with non-obvious examples in finite dimensional spaces. Finally, in order to
reveal how these theoretical results can be applied practically, we used them to find approximate solutions
to the solutions of integral equations and differential equations, as well as to approximately find the roots
of complex polynomials and obtained polynomiographs to turn them into visual art. We believe that
the demonstrated advantages of these algorithms will facilitate their broader adoption and offer valuable
insights for future developments in the field of fixed/coincidence point theory and related research areas.
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