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Ser. Math. Inform. Vol. 29, No 3 (2014), 295–312

AN APPLICATION OF THE ECF METHOD AND NUMERICAL
INTEGRATION IN ESTIMATION OF THE STOCHASTIC VOLATILITY

MODELS∗

Gradimir V. Milovanović, Biljana Č. Popović and Vladica S. Stojanović

Abstract. In this paper, the Empirical Characteristic Function (ECF) method is described
in parameter estimations of the stochastic volatility (SV) models, as well as the origi-
nal thresholds modification (and a generalization) of these models, named the Split-SV
model. The estimation procedure is based on minimization of the objective function
which represents the double integral with respect to some weight function � : R2 → R.
Some typical, exponential classes of the weight functions �(u1,u2) are considered, as well
as the different types of cubature formulas. Estimation procedures are realized by the
original authors’ codes written in statistical programming language “R”, and the per-
formances of the ECF method are examined, by statistical and numerical aspects. The
numerical simulation of the obtained estimates is also given. Finally, the standard SV
model, and the Split-SV model as its alternative, are applied for fitting the empirical data:
the daily returns of the exchange rates of GBP and USD per euro, and the efficiency of
their fitting is compared.

Keywords: SV models, ECF estimation, numerical integration

1. Introduction and Definition of the Model

The stochastic volatility (SV) models represent a particularly important class of
nonlinear stochastic models, commonly used in the stochastic modeling of financial
sequences. Firstly introduced by Taylor [26], today there are many modifications
and generalizations of these models (see, e.g., [3, 5, 20, 27]). In our interpretation,
we used the so-called Noise-Indicator model of Stochastic Volatility, or the Split-SV
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model, defined in [17, 22] by the following relations:

(1.1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Xt = σtεt,

σt = σ e
1
2Δt ,

Δt = aΔt−1 + ξt qt−1,

t ∈ Z.

Here, we denoted the following sequences:

• (Xt) is an empirically (financial) sequence,

• (σt) is the volatility sequence, well-known as a measure of uncertainty in the
fluctuations of (financial) series (Xt),

• (εt) is a sequence of independent identically distributed (i.i.d.) random vari-
ables (RVs) with GaussianN(0, 1) distribution,

• (ξt) is a i.i.d. sequence of RVs with Gaussian N(0, δ2) distribution, mutually
independent of the (εt),

• (Δt) is the autoregressive (AR) series with the coefficient a � 0, as well as
with the “optional” noise (ξt). Namely, we suppose that the sequence (qt),
so-called noise-indicator, satisfies the equality

qt(c) = I(ξ2
t ≥ c) =

⎧⎪⎪⎨⎪⎪⎩ 1, ξ2
t ≥ c;

0, ξ2
t < c.

In that way, the so-called critical value of reaction c > 0 indicates the realizations
of the series (ξt) which are sufficiently statistically significant so that their
values are to be included in Eq. (1.1).

By its definition, the Split-SV model can explain the nonlinearity in the behavior
of series (Xt), i.e. its volatility series (σt), similarly as it was done in the time series
of autoregressive conditional heteroscedasticity (ARCH) type, described in [16, 21],
as well as in the stochastic permanent breaking (STOPBREAK) processes, described
in [23, 24]. Moreover, Split-SV model generalizes the standard Taylor’s SV model,
which is obtained from (1.1), when c→ 0. In the following, for the critical value c
we denote the mathematical expectation

mc = E
[
I(ξ2

t ≥ c)
]
= P{ξ2

t ≥ c} = 1 − Fχ2
1

( c
δ2

)
,

where Fχ2
1

is the distribution function (DF) of the chi square random variable with
one degree of freedom. In that way, mc is uniquely determined by the constant c,
and vice versa. As could be seen bellow, it enables a “two-stage” estimation of the
critical value c.
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Let us remark that, unlike the Taylor’s SV model, the RVs Δt have not “the
usual” Gaussian distribution. Using the conditional probability, we can find the
DF of the variable ηt = ξtqt−1, which appears in the definition of Δt, as

(1.2) Fη(x) = mc Fξ(x) + (1 −mc)F0(x),

where Fξ(x) is the DF of ξt : N(0, δ2), and

(1.3) F0(x) =
{

0, x ≤ 0
1, x > 0

is the DF of Z0
as
= 0. So, the function Fη(x) is continuous almost everywhere, with

the discontinuity in point x = 0, where it has the jump of the order 1−mc (Fig. 1.1).
Therefore, ηt are mixtures of RVs of the Gaussian and discrete types, usually called
the Contaminated Gaussian Distributions (CGDs). This is a very important difference
between the Split-SV model and the Taylor’s SV model, which prevents some of
the standard procedures in the investigation of its properties. In the following, we
give a short discussion on the properties of our model.

FΗ�x�

x

1�
mc

2
mc

2

1

0

Fig. 1.1: The distribution function of CGD random variable.

2. Properties of the Model

In the sequel, we assume that the stationarity condition |a| < 1 is valid. Then,
the RVs Δt have the mean μ := E (Δt) = 0, and the variance

(2.1) υ2 := D (Δt) =
D

(
ξt qt−1

)
1 − a2 =

δ2 mc

1 − a2 .

After some simple computations (see, for more details [22]), the autocovariance
function of Δt can be obtain as

Cov(Δt,Δt+k) =
δ2mcak

1 − a2 ,
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as well as the autocorrelation function (ACF)

Corr(Δt,Δt+k) =
Cov(Δt,Δt+k)√
D(Δt)D(Δt+k)

= ak,

which has the same form as in the case of standard linear autoregressive models.
Due to stationarity of the series (Δt), and applying the conditional probability,

we can find the DF of this sequence

(2.2) FΔ(x) = mc(G ⊗ Fξ)(x) + (1 −mc)G(x),

where Fξ denotes the DF of ξt,

(2.3) G(x) :=

⎧⎪⎪⎨⎪⎪⎩ 1 − FΔ (x/a) , a ∈ (−1, 0),

FΔ (x/a) , a ∈ (0, 1),

and “⊗” denotes the convolution of appropriate DFs, i.e.

(G ⊗ Fξ)(x) =
∫ +∞

−∞
G(x − u)Fξ(du).

Finally, the characteristic function (CF) of Δt is

(2.4) ϕΔ(u) :=
+∞∏
j=0

[
1 +mc

(
e−

1
2 a2 ju2δ2 − 1

)]
,

and the analytic expression of ϕΔ(u) in a closed form cannot be done. It can also
be seen that the distribution of Δt is non-Gaussian by investigating its CF (see, for
more details [17, 22]).

On the other hand, the sequence (Xt) is the martingale difference and, therefore,
the sequence of uncorrelated RVs. According to this, it holds

E(Xt) = E
[
E
(
Xt

∣∣∣Ft−1

)]
= 0,

but the determination of the variance of Xt is somewhat complicated. Using the
same procedure as in determining CF of Δt, we obtain

D(Xt) = σ2
+∞∏
j=0

[
1 +mc

(
e

1
2 a2 jδ2 − 1

)]
,

and the autocovariance function of X2
t is

γ(k) = R(k) − [D(Xt)]2 ,

where
R(k) := E

(
X2

t X2
t−k

)
= σ4E

(
eΔt+Δt−k

)
.
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Similarly, the ACF of this series is defined by

ρ(k) =
γ(k)
γ(0)

=
R(k) − [D(Xt)]2

E(X4
t ) − [D(Xt)]2 =

S(k) − 1
KX − 1

,

where S(k) = R(k) [D(Xt)]−2 and KX is the kurtosis of Xt. When k → ∞, it follows
that

(2.5) ρ(k) ∼ e
mcδ2ak

1−a2 − 1
KX − 1

−→ 0, k→ ∞,
i.e., the ACF of the Split-SV model, when |a| < 1, has approximately the same
decreasing rate as the standard SV models. The kurtosis satisfies the condition
KX ≥ 3, and this points out the typical feature of fat tail distribution of the financial
time series (Xt) at mean E(Xt) = 0. Also, it is easy to show that the time series (Xt)
is ergodic in mean.

3. Estimation of Parameters by ECF Method

Parameters estimation procedures of SV models are much more complex than
the other similar nonlinear stochastic models, because of their specific structure.
The two most commonly used methods, introduced almost at the same time, are
the simulated maximum likelihood method [2] and quasi-likelihood method [19],
as well as their various modifications (see, e.g., [8, 9]). Unfortunately, in the case of
our model, it can be proved that the likelihood function is unlimited at the point
x = 0, and thus disenables the usage of all the well-known parameters estimation
methods based on the maximum likelihood approach. For these reasons, we use
the method of Empirical Characteristic Function (ECF method), which is conducive
in the cases when the maximum likelihood approach encounters difficulties, as
in the case of our model. The usage of the ECF method here was inspired by
works [10, 28, 29] where, for the first time, an implementation of this method in
econometrics analysis of financial series was described in details.

ECF method is based on the fact that CF of some RV has the same information as
its DF and, consequently, the empirical characteristic function (ECF) preserves the
whole information from the sample. In that way, the main goal of this method is
the minimization of “the distance” between the CF and its appropriate ECF. What
can be used, in general, for this purpose is the p-dimensional CF of the following
logarithmic process

(3.1) Yt := log X2
t = log σ2 + Δt + νt,

where t = 1, . . . ,T and νt := log ε2t . If u = (u1, . . . , up)′ ∈ Rp is some vector and
Y(p)

t := (Yt, . . . ,Yt+p−1)′, t = 1, . . . ,T − p + 1, so called, overlapping blocks, then the
CF of the random vector Y(p)

t is

(3.2) ϕ
(p)
Y (u;θ) := E

[
exp

(
iu′Y(p)

t

)]
.
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The appropriate p-dimensional ECF of the random sample Y1, . . . ,YT is

ϕ̃
(p)
T (u) :=

1
T − p + 1

T−p+1∑
t=1

exp
(
iu′Y(p)

t

)
,

and the objective function can be written as

(3.3) S(p)
T (θ) :=

�

Rp

�(u)
∣∣∣∣ϕ(p)

Y (u;θ) − ϕ̃(p)
T (u)

∣∣∣∣2 du,

where du = du1 · · ·dup and � : Rp → R+ is a some weight function. Therefore, ECF
estimates θ̂(p)

T are obtained by the minimization of the objective function S(p)
T (θ) with

respect to parameter θ := (a, σ, δ,mc) ∈ R4, i.e.

(3.4) θ̂(p)
T = arg min

θ∈Θ
S(p)

T (θ),

where Θ = (−1, 1) × (0,+∞)× (0,+∞)× (0, 1) is the parameter space of the station-
ary Split-SV model. In [22] we investigated the asymptotic properties of the ECF
estimates of the parameters of our model. Under some necessary regularity con-
ditions, we proved a strong consistency and asymptotic normality (AN) of these
estimates. We get the estimators of orders p = 2, i.e., we used the procedure based
on two-dimensional vector Y(2)

t = (Yt,Yt+1). The analytic expression of its CF is

ϕ(2)
Y (u1, u2;θ) =

(2σ2)i(u1+u2)

π

+∞∏
j=0

[
1 +mc

(
e−

1
2 a2 j(u1+au2)2δ2 − 1

)]

×
[
1 +mc

(
e−

1
2 u2

2δ
2 − 1

)]
Γ

(
iu1 +

1
2

)
Γ

(
iu2 +

1
2

)
.

The real and the imaginary part of this CF, when a = 1/2 and σ = δ = c = 1, are
shown in Fig. 3.1.

In this case, the objective function (3.3) represents a double integral with respect
to the some weight function � : R2 → R+. In our investigation we consider some
typical, exponential weight functions �(u1, u2), which put more weight around
the origin. This is in accordance with the fact that characteristic functions (CFs)
contain the most of information around this point. On the other hand, exponential
weight functions have the numerical advantage, because the integral in (3.3) can
be numerically approximated by using some N-point cubature formula

(3.5) I( f ; �) =
�
R2
�(u1, u2) f (u1, u2)du1du2 ≈ CN( f ) =

N∑
j=1

wj f (u1 j, u2 j),

where the nodes (u1 j, u2 j) belong to R2 and wj are the corresponding weight coeffi-
cients.
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Fig. 3.1: Real and imaginary parts of two-dimensional CF of the sequence Y(2)
t =

(Yt,Yt+1).

In our investigation the exponential weights �(u1, u2) will be assumed to be
symmetric in u1 and u2 and positive, i.e.,

�(−u1, u2) = �(u1,−u2) = �(u1, u2) > 0.

The construction of such cubature formulas can be done by constructive methods
for Gaussian quadrature formulas and realized using the Mathematica package
OrthogonalPolynomials (see [1, 13] for more details). This package can be down-
loaded freely from Web Site http://www.mi.sanu.ac.rs/˜gvm/.

4. Cubature Methods and Numerical Simulation

Using the above mentioned procedures, by different choices of weight functions,
we examined the performance of the ECF method, by statistical and numerical
aspects. We consider three weight functions �(u1, u2):

1◦ �1(u1, u2) = e−γ(u2
1+u2

2),

2◦ �2(u1, u2) = e−γ
√

u2
1+u2

2 ,

3◦ �3(u1, u2) = e−γ(|u1 |+|u2 |),

with a parameter γ > 0.

For the first weight �1(u1, u2), we use a product cubature formula based on the
one-dimensional Gauss-Radau formula (cf. [11, pp. 329–330]) with respect to an
exponential weight on (0,+∞), and trapezoidal quadrature in angular coordinate.
Namely, introducing polar coordinates u1 = r cosθ and u2 = r sinθ, the integral
I( f ; �1) in (3.5) reduces to

(4.1) I( f ; �1) =
∫ +∞

0
re−γr2

S(r) dr,
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where S(r) is given by

(4.2) S(r) =
∫ π

π
f (r cosθ, r sinθ) dθ.

The integral (4.2) can be approximated by the composite trapezoidal rule in 4m
points θ j = −π + jπ/(2m), j = 0, 1, . . . , 4m,

S(r) ≈ Sm(r) =
2π
4m

⎧⎪⎪⎪⎨⎪⎪⎪⎩1
2

f (−r, 0) +
4m−1∑
j=1

f (r cosθ j, r sinθ j) +
1
2

f (−r, 0)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
Using the nodes

xν = cos
νπ
2m
, yν = sin

νπ
2m
, ν = 1, . . . ,m,

after certain transformations, Sm(r) can be represented in the form

Sm(r) =
π

2m

m∑
ν=1

[
f (rxν, ryν) + f (−rxν,−ryν) + f (ryν,−rxν) + f (−ryν, rxν)

]
.

Now, for calculating (4.1) we use the (n + 1)-point Gauss-Radau formula with
respect to the exponential weight r �→ re−γr2

on (0,+∞),

(4.3)
∫ +∞

0
re−γr

α
S(r) dr ≈ Qn(S) = A0S(0) +

n∑
k=1

AkS(rk),

where the nodes rk are zeros of the polynomial πn(r) orthogonalnal on (0,+∞) with
respect to the weight function r �→ r2e−γr2

. The corresponding Christoffel numbers
wk for this weight function give the weight coefficients in the formula (4.3), i.e.,

Ak =
wk

rk
, k = 1, . . . , n, A0 =

1
2γ
−

n∑
k=1

Ak.

For details see [11, pp. 329–330] (see also [12], [14]).
In this way, we obtain the cubature formula

I( f ; �1) ≈ CN( f ) = Qn(Sm) = A0Sm(0) +
n∑

k=1

AkSm(rk) (N = 4mn + 1),

i.e.,

CN( f ) = 2πA0 f (0, 0) +
π

2m

n∑
k=1

Ak

m∑
ν=1

[
f (rkxν, rkyν) + f (−rkxν,−rkyν)

+ f (rkyν,−rkxν) + f (−rkyν, rkxν)
]
.
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Numerical construction of the Gauss-Radau formula (4.3) for an arbitrary number
of points can be done by the Mathematica package ‘‘OrthogonalPolynomials’’
(see [1, 13]). In our calculations we use CN with N = 81 nodes (n = 5, m = 4), and
with γ ∈ {1, 1/2, 3/2}.

Alternatively, for all weights 1◦–3◦ we use, also, the so-called perfectly symmetric
two-dimensional integration formulas with minimal number of nodes [18] (see also [25],
[4], [15]). Such a cubature formula has the nodes of the form (±u1 j,±u2 j) and
(±u2 j,±u1 j) with the same weight wj. According to Rabinowitz and Richter [18] we
call it a “good” formula if all of its weights are positive.

In order to obtain “good” cubature rules for the weights 1◦ and 2◦ of degree
d � 7, Stroud and Secrest [25] used the nodes whose generators are of the form
(0, 0), (a, 0), (b, b). However, for rules of degree d � 8, it is necessary to include nodes
whose generators are of the form (c, d). As we can see (c, d) generates eight nodes
of the form: (±c,±d), (±d,±c) with the same weight, while (a, 0) and (b, b) generate
only four nodes: (±a, 0), (0,±a) and (±b,±b), respectively. Of course, (0, 0) gives
only one node (0, 0). We recall that a two-dimensional rule of degree d integrates
exactly all monomials ui

1uj
2 for which i + j � d. In our calculations, we use the

corresponding 44-point cubature formulas of degree d = 15, with the following
generators: (aj, 0), j = 1, 2, 3, 4; (b j, bj), j = 1, 2, 3; (c j, dj), j = 1, 2.

Using the previously mentioned Mathematica package, these formulas can be
obtained for all weights 1◦–3◦. Following [18], the method of construction needs
the following “moments”, i.e., integrals of the form

μ(ν)
jk =

∫ +∞

0

∫ +∞

0
�ν(u1, u2)(u2

1 − u2
2)2(u2

1u2
2) j(u2

1 + u2
2)k du1du2 (ν = 1, 2, 3),

where j � 1, k � 0. They can be calculated in an analytic form for each of the
weight functions �ν, ν = 1, 2, 3. For example, for γ = 1,

μ(1)
jk =

(2 j + k + 2)!π
24 j+3( j + 1)

(
2 j
j

)
and μ(2)

jk =
(4 j + 2k + 5)!π

24 j+2( j + 1)

(
2 j
j

)
.

In the third case it can be expressed by the following integral

μ(3)
jk =

(4 j + 2k + 5)!
24 j+k+1

∫ 1

0

√
z (1 − z)2 j(1 + z)kdz

or in terms of hypergeometric functions as

μ(3)
jk =

(4 j + 2k + 5)!

2k−2(2 j + 1)
(
4( j + 1)
2( j + 1)

){ 2F1

(
−1

2
,−k; 2 j +

5
2

;−1
)

+
k − 2 j − 1
2( j + 1) 2F1

(1
2
,−k; 2 j +

5
2

;−1
)}
.
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For example, the obtained (generator) nodes in the 44-point cubature formula
of degree d = 15 for the weight function �3 (γ = 1) are:

{{16.75517334835192,0}, {9.520295794790188,0}, {4.451284933071043,0},

{1.326612922551803,0}, {10.40246868263913,10.40246868263913},

{6.307197292644404,6.307197292644404},{2.533316709591005,2.533316709591005},

{13.16709143114937,3.265192228507983},{6.770241049738993,2.369872911188105}},

and the corresponding weight coefficients are:

{8.186694686950403*(10ˆ-7), 0.0006529201474967032, 0.06663038092243385,

0.8569723144924805, 6.812119062461652*(10ˆ-8), 0.00007773406088317548,

0.07219519187714604, 2.913841882561950*(10ˆ-6), 0.001732372012567657}.

Distribution of nodes in this cubature formula is shown in Fig. 4.1.

Remark 4.1. Formulas for γ � 1 can be obtained by ones for γ = 1 by the simple changes
of variables in (3.5), e.g., u1 := u1/

√
γ, u2 := u2/

√
γ in the case of the first weight function �1.

�15 �10 �5 0 5 10 15

�15

�10

�5

0

5

10

15

Fig. 4.1: Distribution of nodes in 44-point cubature formula of degree d = 15 for
the weight function �3 (γ = 1)

After numerical construction of cubature rules, the objective function is mini-
mized by a Nelder-Mead method, and estimation procedures are realized by the
original authors’ codes written in statistical programming language “R”. Using
these procedures, by different choices of weights, we examine the performance of
the ECF method in estimation of our model. For the true value of the parameter
θ we choose the vector θ0 = (a0, σ0, δ0, c0) = (0.5, 1, 1, 1), and we calculate 120 in-
dependent Monte Carlo simulations of Split-SV model, i.e., the 120 independent
realizations of the series (Xt) and (Yt) of the length T = 10 000. The starting points of
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the optimization procedures were the Bayesian estimates of parameters of SV mod-
els, obtained by the modification of Markov Chain Monte Carlo (MCMC) method,
described in [7]. In the next step, using these estimates as the initial values, we
obtained ECF estimates of parameters of the standard SV model (with c = 0). After
that, we used the estimates of the SV model as the initial values, and we estimated
parameters of the Split-SV model. As the initial value of the critical value c we take
c = δ, the mean value of the random variable δ−1ξ2

1, and the initial estimates of δ
are obtained according to δ2 = m−1

c δ
2
SV , where mc = F−1

χ2
1
(1) ≈ 0.3173 and δ2

SV is the

variance of the appropriate Gaussian noise of the standard SV model.
The results of these estimation procedures are shown in Fig. 4.2. The estimates

with respect to the weight �1(u1, u2) have a slightly smaller values of estimated
errors, especially for the parameters σ and δ. The corresponding results, with
respect to the weights �2(u1, u2) and �3(u1, u2), in our simulations study, have a
similar properties, according to the corresponding estimated errors.

In the following, we investigate the asymptotic properties (strong consistency
and asymptotic normality) of the ECF estimates of the parameters of our model.
They are, as we have already pointed out, formally proved in [22]. In the light of
calculated simulations, the consistency is a particularly confirmed for all parame-
ters. Especially, it is most pronounced in the case of estimated values of parameter
σ. According to these, it can be examined and some conclusions can be made
about the asymptotic normality of the obtained estimates. It can be easily seen
that the asymptotic normality is confirmed in the cases of the parameters a and σ,
but it varies for the rest of the parameters. This is understandable because of the
specific threshold structure of our model and because these estimates are obtained
in a two-stage procedure, based on the previously determined estimates of param-
eter mc ∈ (0, 1). Let us point out that this fact is also verified in [22], where the
Anderson-Darling’s and Cramer-von Mises’s tests of normality were used.
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Fig. 4.2: Empirical distributions of estimated parameters, based on 120 MC simu-
lations of Split-SV model
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5. Application of the ECF Method

In this, the final part of our paper, the standard SV model and the Split-SV
model are applied for fitting the empirical data: the daily returns of the exchange
rates of British pound (GBP) and U.S. dollar (USD) against the euro, in the period
2003 to 2013 (Fig. 5.1).

Fig. 5.1: The daily returns of the exchange rates of GBP and USD per one euro.

In the first step, similarly as in the previous simulation study, for both series
were estimated values of parameters, assuming that their dynamics is subjected
to the standard SV model. For this purpose, we first estimated parameters using
the Bayesian estimates of SV models. The estimation algorithm, implemented in R
by G. Kastner [6], realizes MCMC-simulates from the posterior distribution of the
SV-parameters, along with the volatility estimates, via R-procedure ”svsample()”
in R-package ”stochvol” (Figures 5.2 and 5.3).

After that, we applied the ECF method based on “usual” Gauss-Hermitian
cubature, e.g., the weight function �1(u1; u2) with γ = 1, and we obtained estimates
of SV model, also. They are used as the initial values for estimating parameters
of Split-SV model, where we applied (again) the ECF method with the weights
�i(u1, u2), i = 1, 2, 3. In that way, for both of the data series, we were able to
compare the obtained results, i.e. the efficiency of their fittings, using the standard
SV model, and the Split-SV model as its alternative.

Some conclusions were made by using several well known statistical proce-
dures. First of all, we generated 1 500 simulations of the standard SV model, as
well as of the Split-SV model, for all estimated values of their parameters. After
that, the “distances” of the PDF’s of the simulated and empirical data were cal-
culated using the corresponding mean-squared errors (MSE), the Kullback-Leibler
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Fig. 5.2: Estimations of SV-parameters obtained by MCMC method (dataset is time
series of daily returns of the exchange rates of GBP per one euro).

Fig. 5.3: Estimations of SV-parameters obtained by MCMC method (dataset is time
series of daily returns of the exchange rates of USD per one euro).



An Application of the ECF Method and Numerical Integration . . . 309

Fig. 5.4: Empirical and fitted log-returns densities of the exchange rates of GBP per
one euro

divergence (KLD), and the two sample Kolmogorov-Smirnov (KS) test of the dis-
tributional equivalency. The detailed results of these procedures are given in [22],
also.

The values of all of these statistics suggest on the relatively high degree of
PDF’s agreement of the empirical and simulated data. Therefore, the quality of
the theoretical models for both the empirical data series, generated for all obtained
estimates, is shown.

As an illustration, Figure 5.4 shows the empirical PDF of the original, GBP
series, along with the PDFs of the fitting data, generated using both theoretical
models. The estimated values of parameters in the case of daily log-returns of the
GBP series are generally better when the Split-SV model was applied than with the
standard SV model. Therefore, it seems that the Split-SV model is more adequate
model than standard SV model in the case of this series.

On the other hand, in the case of daily log-returns of USD series, the estimates
of the standard SV model and the Split-SV model have similar efficiency. However,
there is (noticeably) better fitting of the appropriate PDFs in the most cases of the
obtained estimates of the Split-SV model, which can be seen in Figure 5.5, also. It
represents, as in the previous the GBP-series, the fitting using the both theoretical
models, that provide the best match to empirical PDF.
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Fig. 5.5: Empirical and fitted log-returns densities of the exchange rates of USD per
one euro
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13. G. V. Milovanović, A. S. Cvetković: Special classes of orthogonal polynomials and
corresponding quadratures of Gaussian type. Math. Balkanica 26 (2012), 169–184.
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