THE GENERALIZATION OF AN INEQUALITY FOR A FUNCTION AND ITS DERIVATIVES

Gradimir V. Milovanović and Miomir S. Stanković

In monograph [1, p. 362] the following result is given:

Let function \(f \) be defined in an interval \((a, b)\). Let us assume that there exists \(f''' \) and that it is an increasing function in the interval \((a, b)\). Then, if \(x \in (a + 1, b - 1) \), we have

\[
(1) \quad f''(x) < f(x + 1) - 2f(x) + f(x - 1).
\]

Let us introduce an operator \(\Delta \) by means of

\[
\Delta^n f(x) = \Delta^{n-1} f(x + 1) - \Delta^{n-1} f(x), \quad \Delta^0 f(x) = f(x) \quad (n \in \mathbb{N}).
\]

It may be shown that

\[
(2) \quad \Delta^n f(x) = \sum_{i=0}^{n} (-1)^i \binom{n}{i} f(x + n - i).
\]

In this paper we shall use the following denotation

\[
(3) \quad \lambda_n = \Delta^n f(x - k) - f^{(0)} (x) \quad (n \in \mathbb{N}),
\]

where \(k = \left[\frac{n}{2} \right] \), by which the inequality (1) has the form

\[
0 < \lambda_2.
\]

Lemma 1. If \(0 \leq m \leq n \), then

\[
\sum_{i=0}^{n} (-1)^i \binom{n}{i} (x + n - i)^m = \begin{cases} 0 & (0 \leq m < n) \\ n! & (m = n) \end{cases}
\]

Proof. Let \(x \mapsto x^m \ (0 \leq m \leq n) \). Then, using (2),

\[
\sum_{i=0}^{n} (-1)^i \binom{n}{i} (x + n - i)^m = \Delta^n (x^m).
\]

Since

\[
\Delta^n (x^m) = \begin{cases} 0 & (0 \leq m < n) \\ n! & (m = n) \end{cases}
\]

(see [2]), the proof is completed.

* Presented July 25, 1974 by GH. Tudor.
Let the function f be defined and be $(n+1)$-times differentiable in (a, b). Let us introduce the operators T and R by means of

$$
T(n, l; f) = \sum_{m=0}^{n} \frac{f^{(m)}(x)}{m!} l^m \quad \text{and} \quad R(n, l; f) = \frac{1}{(n+1)!} l^r f^{(n+1)}(x+1) \theta_1,
$$

where $0 \leq \theta_1 \leq 1$. Then the development of the function f into the Taylor expansion in the neighbourhood of point $x \in (a, b)$, is given by

$$
f(x+l) = T(n, l; f) + R(n, l; f) \quad \text{for} \quad x+1 \in (a, b).
$$

Lemma 2. Equality

$$
\lambda_n = (-1)^n \sum_{j=0}^{n} (-1)^j \binom{n}{j} R(n, j-k; f)
$$

is valid.

Proof. Since

$$
f(x+(n-k-i)) = T(n, n-k-i; f) + R(n, n-k-i; f),
$$

using (2), we have

$$
\Delta^n f(x-k) = \sum_{i=0}^{n} (-1)^i \binom{n}{i} T(n, n-k-i; f) + \sum_{i=0}^{n} (-1)^i \binom{n}{i} R(n, n-k-i; f).
$$

Since

$$
\sum_{i=0}^{n} (-1)^i \binom{n}{i} T(n, n-k-i; f) = \sum_{i=0}^{n} (-1)^i \binom{n}{i} \sum_{m=0}^{n} \frac{f^{(m)}(x)}{m!} (n-k-i)^m
$$

$$
= \sum_{m=0}^{n} \frac{f^{(m)}(x)}{m!} \sum_{i=0}^{n} (-1)^i \binom{n}{i} (n-k-i)^m,
$$

using Lemma 1, it follows

$$
\sum_{i=0}^{n} (-1)^i \binom{n}{i} T(n, n-k-i; f) = f^{(n)}(x).
$$

According to (5), the equality (3) becomes

$$
\lambda_n = \sum_{i=0}^{n} (-1)^i \binom{n}{i} R(n, n-k-i; f).
$$

Placing in (6) $i=n-j$, we obtain (4), and thus the proof is completed.

For a sequence of functions $F=(F_1, F_2, \ldots, F_k)$, let us define the terms $D(F)$ and $G(F)$ as follows:

$$
D(F) = \sum_{i=1}^{\left[\frac{k}{2}\right]} F_{k-2i+1}, \quad G(F) = \sum_{i=0}^{\left[\frac{k-1}{2}\right]} F_{k-2i}.
$$

In further discussion we shall define the upper and the lower limit for λ_n, under condition that $f^{(n+1)}$ is a nondecreasing function.

We shall distinguish the cases when n is even and when n is odd.
1. Case \(n = 2k \). Let sequence \(F \) be defined by
\[
F_m = F_m(k, x; f) = \binom{2k}{k-m} m^{2k+1} \left[f^{(2k+1)}(x+m) - f^{(2k+1)}(x-m) \right] (m=1, 2, \ldots, k).
\]

Theorem 1. If \(f^{(2k+1)} \) is a nondecreasing function in \((a, b)\) \((b-a \geq 2k)\), then
\[
- \frac{D(F)}{(2k+1)!} \leq \lambda_{2k} \leq \frac{G(F)}{(2k+1)!} \quad (a+k < x < b-k; k \in \mathbb{N}).
\]

Proof. Since \(R(2k, 0; f) = 0 \), we have
\[
\begin{align*}
\lambda_{2k} &= \sum_{j=0}^{2k} (-1)^j \binom{2k}{j} R(2k, j-k; f) \\
&= \frac{1}{(2k+1)!} \sum_{j=0}^{k-1} (-1)^j \binom{2k}{j} (k-j)^{2k+1} \left[f^{(2k+1)}(x+\theta_{k-j}(k-j)) - f^{(2k+1)}(x-\theta_{k-j}(k-j)) \right],
\end{align*}
\]

i.e.
\[
\lambda_{2k} = \frac{1}{(2k+1)!} \sum_{m=1}^{k} (-1)^{k-m} s_m,
\]
where
\[
s_m = \binom{2k}{k-m} m^{2k+1} \left[f^{(2k+1)}(x+\theta_{m}m) - f^{(2k+1)}(x-\theta_{m}m) \right].
\]

Since \(f^{(2k+1)} \) is a nondecreasing function in \((a, b)\), \(0 \leq \theta_{m} \leq 1 \) and \(0 \leq \theta_{-m} \leq 1 \), we deduce that \(s_m \in [0, F_m] \) when \(x \in (a+m, b-m) \).

Upon summing up the intervals (see [3]), we obtain
\[
\lambda_{2k} \in I \quad \forall \, x \in (a+k, b-k),
\]
where the interval \(I \) is given by
\[
I = \frac{1}{(2k+1)!} \sum_{m=1}^{k} (-1)^{k-m} [0, F_m]
\]
\[
= \frac{1}{(2k+1)!} \left[-F_{k-1} + F_{k-3} + \cdots, F_k + F_{k-2} + \cdots \right]
\]
\[
= \left[- \frac{D(F)}{(2k+1)!}, \frac{G(F)}{(2k+1)!} \right].
\]

Thus, Theorem 1 is proved.

Example 1. If \(f''' \) is a nondecreasing function in \((a, b)\), (7) is reduced to
\[
0 \leq \lambda_2 \leq \frac{1}{3!} F_1 \quad \forall \, x \in (a+1, b-1),
\]
i.e.
\[
f''(x) \leq f(x+1) - 2f(x) + f(x-1) \leq f''(x) + \frac{1}{6} \left(f'''(x+1) - f'''(x-1) \right).
\]

The first inequality in (8) includes inequality (1).

Similarly, for \(k=2 \) and \(k=3 \), (7) is reduced respectively to
\[
- \frac{1}{30} \left(f^{(5)}(x+1) - f^{(5)}(x-1) \right) \leq \lambda_4 \leq \frac{4}{15} \left(f^{(5)}(x+2) - f^{(5)}(x-2) \right).
\]
and
\[-\frac{16}{105} (f^{(7)}(x + 2) - f^{(7)}(x - 2)) \leq \lambda_6 \leq \frac{243}{560} (f^{(7)}(x + 3) - f^{(7)}(x - 3)) + \frac{1}{336} (f^{(7)}(x + 1) - f^{(7)}(x - 1)).\]

2. Case \(n = 2k + 1\). Let us define sequences \(P = (P_1, P_2, \ldots, P_k)\) and \(Q = (Q_1, Q_2, \ldots, Q_k)\) by
\[
P_m = P_m(k, x; f) = m^{2k+2} \left[\binom{2k+1}{m-1} f^{(2k+2)}(x) + \binom{2k+1}{m-1} f^{(2k+2)}(x-m) \right],
\]
\[Q_m = Q_m(k, x; f) = P_m(k, x+m; f) \quad (m = 1, 2, \ldots, k).
\]

Theorem 2. If \(f^{(2k+2)}\) is a nondecreasing function in \((a, b)\) \((b - a > 2k + 1)\), then
\[
\frac{(k+1)^{k+2} f^{(2k+2)}(x) + D(P) - G(Q)}{(2k+2)!} \leq \lambda_{2k+1} \leq \frac{(k+1)^{k+2} f^{(2k+2)}(x+k+1) + D(Q) - G(P)}{(2k+2)!}.
\]
\((a + k < x < b - k - 1; \ k \in \mathbb{N})\)

and
\[
\frac{1}{2} f''(x) \leq \lambda_1 \leq f''(x + 1) \quad (a < x < b - 1).
\]

The proof of Theorem 2 is similar to that of Theorem 1.

Example. If \(f''\) is nondecreasing function in \((a, b)\), then
\[
f'(x) + \frac{1}{2} f''(x) \leq f(x + 1) - f(x) \leq f'(x) + \frac{1}{2} f''(x + 1) \quad \forall x \in (a, b - 1).
\]

Note that similar inequality is given in [1]. Namely, if \(f\) is an increasing function, the inequality
\[
f'(x) < f(x + 1) - f(x) < f'(x + 1).
\]
is proved.

For \(k = 1\) and \(k = 2\), (9) is reduced to
\[
\frac{5}{8} f^{(4)}(x) - \frac{1}{8} f^{(4)}(x + 1) \leq \lambda_3 \leq \frac{2}{3} f^{(4)}(x + 1) - \frac{1}{8} f^{(4)}(x) - \frac{1}{24} f^{(4)}(x - 1)
\]
and
\[
\frac{1}{144} f^{(6)}(x - 1) + \frac{15}{16} f^{(6)}(x) - \frac{4}{9} f^{(6)}(x + 2) \leq \lambda_5 \leq \frac{81}{80} f^{(6)}(x + 3) + \frac{1}{72} f^{(6)}(x) - \frac{4}{45} f^{(6)}(x - 1).
\]

REFERENCES