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514. ON A MALET-HAMMOND’S FUNCTIONAL EQUATION*
Radosav Z. Dordevi¢ and Gradimir V. Milovanovié

1. J. C. MALET (see [1]) has stated a problem:
Prove that the function f(x)=5b*~—a* statisfies the functional equation
@+b)f(x)=abf(x—D+f(x+1)  (ab).

Solving this problem, J. HaAMMOND [1] has proved a more general result.
Function f, defined by
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satisfies the equation
@ (a0 f6 s =(TTad G =1, ooy 5= D)
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In this paper we will consider the functional equation (2), where f: R”->R,
;>0 (i=0,1,...,n), ¢;<a; & i<j.

Function f, defined by (1), is a particular solution of equation (2).
It is easy to show that the function
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where «y; (i=0, 1, ..., n) are arbitrary real constants, is also a solution of
equation (2).
Let us introduce the following notations:
F(X) F (X) - FX)
a a™! a,!

X=3 x, A=>a, AXF,F,...,E)= " I
k=1 i=0
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2. We shall determine all functions /" of the form
[y %) =AX; G, ..., G,
satisfying the equation (2).
According to this result we shall prove the following lemma.

Lemma 1. If ¢, +t,+ - +1,=1,
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then the equality

is valid.
Proof. Since
DED a;4; and D;= > t;a;;4;,
i=1 j=1

where A4;; is the algebraic complement of g;;, so that

n

.leiz 21 (21 ta;A;) = Zl t; ('21 a;4;;)= > t;D=1tD.
i= =1 j= i= i=

j=1

Theorem 1. If functions H, (i=0, 1, ..., n) are general continuous solutions of
equation
3) AX; Hy, ..., H)=0,
functional equation (2) has the general solution given by
C)) fx, o, x)=AX; Gy, ..., G,
if and only if functions G, satisfy equations
&) (A—a)G;(X+1) - 4G, (X) +4,G; (X —n) = H; (X).

Proof. If we substitute (4) in equation (2) we obtain

: G,(X—n) G,(X—n) - G,(X—n)
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Using the Lemma 1, the last equation becomes
AANX; Gy, ..., G)=AX~-n; a,G,, ..., a,G) L
+AA(X+1;, Gy, ..., G)— A(X+1; a,G,, ..., a,G,);

hence, it follows

AX+1; 4G,, ..., AG)-A(X+1; a,G,, . .., a,G,)
~A(X; AG,, ..., AG)+A(X—n; a,G,y, ..., a,G,)=0,
A(X+1;(4-a)G,, ..., (A—a)G,)—A(X; 4G,, ..., AG,)

+A(X—n; a,Gy, ..., a,G,)=0,

AX; H,, ..., H)=0.

Thus, Theorem is proved.

The continuous solutions of equation (3) are (see [2])

6) 1° HX)=HX), HX)=0 (i=1,...,n—1), H(X)=(-1D"1g*H(X),
where H is an arbitrary continuous function with values in R, if a,, a,, .., a,
make a geometric progression, where a,=¢'a,, or

2° H,(X)=0 (i=0,1,...,n),
if a,, @, ..., a, do not make a geometric progression.

Basing on that it may be concluded that for defining functions G;, as
solutions of equations (5), one should recognize these two cases. We are about
to show that there is no need for that, i.e., that it is enough to take only
H;(X)=0 (i=0,1,...,n).

Namely, equations (5), that is equations

(A-a)G,(X+n+1)-AG,(X+m)+a,G,(X)=H,(X+n) (=0,1,...,n),
to which, using the operator E, one may give a concise form

(7N D, (E)G,(X)=H,(X+n) (i=0,1,...,n),
where
D, (E)y=(A—a)E""1~AE"+a; (i=0, 1, ..., n),

have general solutions given by
G, =gX) +& X  (=0,1,....m),

where g, are particular solutions of equations (7) and g; general solutions of
the corresponding homogeneous equations

D, (E)YG;(X)=0 (i=0,1,...,n).
Then
Sy, oo x)=AX g0 - 8D FAXG g s 8-

We are going to show that A(X; g~0, ey §n)=0.
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Lemma 2. If A(X; Hy, ..., H)Y=0and if éo, e én are the particular solutions
of equations (T), then
(%) A(X; 8y -:58)=0.

Proof. If H,(X)=0 (=0, 1, ..., n), the claim is correct, since equations

(7) are reduced to the homogeneous ones.

Let now functions H; be defined by (6). Then a4;=¢'a, (i=0,1,...,n),
so equations (7) become

©)] Dy (E) Gy (X) = H{(X +n),
(10) ®.(E)G,(X) =0  (i=1,...,n-1),
(11) D, (E)G,(X)=(-1)y""1¢"*""H(X +n).

From (10) it immediately follows g;(X)=0 (i=1, ..., n—1).
As (A—a,)q=A—a,, one has

D, (qE)=(A—a)q" " E"* — Aq"E" + a,= q" D (E),
SO
?,(E)G,(X)=2,(E)(¢%q=*G, (X))

:qu)n(qE) (q—XGn(X))
=q*" @y (E) (47 G, (X)).
If g, is a particular solution of equation (9), follows that equation
(11) has a particular solution g, defined by
g, (X)=(—1y"1g%g (X).
As for the system of functions
LX), &M (=0) (=1,2,...,n=1), £ (=(-1)"1¢" X))
equality (8) holds true (see [2]), the Lemma is proved.
Theorem 2. If oy (X) and o, (X) are arbitrary periodic constants and A, (k=1,
2, ..., n) roots of equations

AZgm_n-1_ ... _a—1=0 (i=0,1,...,n),

a;
the general solution of the form (4) of equation (2) is
f(xp, .o, x)=A(X; Gy, ..., G,

where functions G, are defined by

Gi (X) = oy (X) + Zl a (D MX (=0, 1,...,m)
k=
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Proof. Based on Theorem 1 and Lemma 2 each function G; satisfies the

equation
(12) (A—a)G,(X+n+ 1)~ AG,(X+n)+a,G, (X)=0.
Its characteristic equation is

(A—a) M+ — AN+ a0,

A-1P(1)=0,
where
P oY= i

]

If »,; (k=1, ..., n) denote the roots of equations P,(A)=0 (i=0, 1, ...

the general solution of equation (12) is defined by
G (X) =00, (X)+ 2 og (X) 2™ (i=0,1,...,n),
k=1

where o (X) and o« (X) are arbitrary periodic constants.
Theorem 2 is thus proved.

» 1),

ExampLE. Let f:R?—>R and let a, b, ¢ be mutually different positive numbers. General solution

of the form (3) of the functional equation
(@a+b+o)f(x, p)=abef(x—1, y=1+f(x+1, »)+f(x, y+1)
G (x+y) G (x+y) Gi(x+y)

S, = a* b* cx ,
> oo
where functions G;(i=1, 2, 3), with values in R, are given by
VFETTa BT +aV V@ T da(br—a)
G ()=a, (0)+B, ™ (——Wb_—LT)—) +v, (%) (—'——m—'_) Cos TTX,

\/m+b>x (\/b2+ 4b(c+a)—b

Gz(x)=°‘z(x)+92(x)( 2(c+a) +Y2 (%) 2(c+a)

e+ 4c(a+b)+c)"

Gs(x)=aa(X)+Bs(x)( T@ b J Y () 2(a+b)

and «;, B;, v; (f=1, 2, 3) are real periodic constants.

3. Now we are going to point out to some generalizations.

If aGR, m,r&EN, 0<g;<a;(i<)), 4,=a+a™+ - - - +a,"

and if function f:R"— R, for functional equations

(13) af(xl,...,xn)=(lg)ak)f(xl~l,...,xn—l)

n
-+ kz1f(x1’ ey Xy XTI, Xgpgs oo s Xp)

X
COS TX,

(\/c2 +4c (a+b)~c)x
S——————"—] cosTx
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and

(14) af(x,, ..., xn)=(kI:I0 a )y f(x, =1y ooy Xy—1)

n
+k21f(x]’ R xk—l’ xk+m9 xk+19 ceny xn)a
the following results hold.

Theorem 3. If o,;(X) are the arbitrary periodic constants and ), roots of equations
A, —a™yN"tr— g+ a;=0 (i=0,1,...,n),
the general solution of equation (13) is
fxy, oo, x)=AX; G, ..., G,
where functions G; are defined by

n+m
G; (X)= 2. e (X) MX (i=0,1,..., n).
k=1
Theorem 4. If functions H;(i=0, 1, ..., n) are general continuous solutions of

equation
AX;Hy, ..., H)=0,

Sunctional equation (14) has the general solution given by
fxy oo x)=AX; Gy, ..., Gy,
if and only if the functions G, satisfy equations
A,,~a™ G (X+m)—aG;(X)+a; G; (X —nr) = H, (X).

Since the proofs of these theorems are similar to those of Theorem 1
and 2, they will not be given here.

REFERENCES

C. MALET — J. HaMMOND: Problem 5144. Educational Times 28 (1877), 51—52.

L
. R. Z. DorpEvi¢ and G. V. MiLovaNovi¢: On a functional equation having determi-
nant form. Same Publications Ne 513 (1975), 85—90.

Levy and F. LessMAN: Finite difference equations. London, 1959.

S. MILER: An introduction to the calculus of finite differences and difference equa-
tions. New York, 1960.

N =

H.
K.

3.
4.



