UNIV. BEOGRAD. PUBL. ELEKTROTEHN. FAK. Ser. Mat. Fiz. № 602—№ 633 (1978), 159—162.

624. SOME CONSIDERATIONS ON FUNCTIONAL INEQUALITIES (I)

Petar M. Vasić, Gradimir V. Milovanović and Igor Ž. Milovanović

Theorem 1. Let $x \mapsto f(x)$ be a solution of the functional inequality

(1)
$$f(x+y) \leq f(x) f(y)$$

such that f(0) = 1 and f'' exists and is continuous in a neighbourhood of x = 0, and let f_1 and f_2 be the even and odd parts of f respectively. Then, for every real x

$$|f_2(x)| \le \sqrt{f_1(x)^2 - 1}$$
 and $1 \le f_1(x) \le \operatorname{ch} \sqrt{k} x$,

where k = |f''(0)|.

Proof. Since $f(x) = f_1(x) + f_2(x)$, the inequality (1) becomes

(2)
$$f_1(x+y) + f_2(x+y) \leq f_1(x) f_1(y) + f_1(x) f_2(y) + f_2(x) f_1(y) + f_2(x) f_2(y).$$

If we put x + y = 0 in (2) we obtain

$$f_1(0) + f_2(0) \leq f_1(x) f_1(-x) + f_1(x) f_2(-x)$$

+ $f_2(x) f_1(-x) + f_2(x) f_2(-x),$

i.e.,

(3)
$$1 \leq f_1(x)^2 - f_2(x)^2$$
,

since $f_1(0) = f(0) = 1$, $f_2(0) = 0$, $f_1(x) = f_1(-x)$, $f_2(x) = -f_2(-x)$.

Now, if we replace x and y by -x and -y respectively in (2), then

(4)
$$f_1(x+y) - f_2(x+y) \leq f_1(x) f_1(y) - f_1(x) f_2(y) - f_2(x) f_1(y) + f_2(x) f_2(y).$$

Adding (2) and (4), we obtain

(5)
$$f_1(x+y) \leq f_1(x) f_1(y) + f_2(x) f_2(y).$$

Substituting y for -y, the last inequality becomes

(6)
$$f_1(x-y) \leq f_1(x) f_1(y) - f_2(x) f_2(y).$$

Finally, from (5) and (6) immediately follows:

$$f_1(x+y)+f_1(x-y) \leq 2f_1(x)f_1(y).$$

Under the mentioned conditions for f, this functional inequality has the solution (see [1])

$$f_1(x) \leq \operatorname{ch} \sqrt{k} x \quad (k = |f_1''(0)| = |f''(0)|).$$

On the basis of the above, we conclude that f_1 and f_2 satisfy the inequalities

$$|f_2(x)| \le \sqrt{f_1(x)^2 - 1}$$
 and $1 \le f_1(x) \le \operatorname{ch} \sqrt{k} x$

for every real x.

This completes the proof.

Theorem 2. Let $x \mapsto g(x)$ be a given function differentiable at x = 0 with g(0) = 1and g'(0) = b ($b \in \mathbb{R}$). The functional inequality

(7)
$$f(x+y) \ge f(x) g(y) e^{2axy} \quad (a \in \mathbf{R})$$

has the general solution f determined by

1°
$$f(x) = A^2 e^{ax^2 + bx}$$
, if $g(x) \ge e^{ax^2 + bx}$;
2° $f(x) = -B^2 e^{ax^2 + bx}$, if $g(x) \le e^{ax^2 + bx}$;
3° $f(x) \equiv 0$, otherwise,

where A and B are arbitrary real constants.

Proof. Suppose that $x \mapsto f(x)$ is a solution of (7). Then, for small positive h, we have (see proof of Theorem 3 in [1])

$$\frac{f(x+h)-f(x)}{h} \ge f(x) \frac{g(h) e^{2axh}-1}{h}$$

and

$$f(x) \frac{\frac{e^{2ah(x+h)}}{g(-h)} - 1}{h} \ge \frac{f(x+h) - f(x)}{h}$$

:i.e.,

$$(8) \qquad \frac{1}{h} \left(\frac{e^{2ah(x+h)}}{g(-h)} - 1 \right) f(x) \ge \frac{1}{h} \left(f(x+h) - f(x) \right) \ge \frac{1}{h} \left(g(h) e^{2axh} - 1 \right) f(x).$$

Note that for small negative h, the reverse inequalities in (8) hold.

Since

$$\lim_{h\to 0} \frac{1}{h} \left(g(h) e^{2axh} - 1 \right) = \lim_{h\to 0} \frac{1}{h} \left(\frac{e^{2ah(x+h)}}{g(-h)} - 1 \right) = 2ax + b,$$

we conclude that f' exists and

$$f'(x) = (2 ax + b) f(x),$$

from where, by integration, we obtain

$$f(x) = Ce^{ax^2 + bx},$$

where C is a constant.

By direct substitution of f(x) in (7) statements 1° and 2° are obtained. Suppose now that the curves y = g(x) and $y = \Phi(x) = e^{ax^2+bx}$ have a crossing point $x = \alpha$. In the domain where $g(x) \ge \Phi(x)$, the general solution of the functional inequality (7) is given by $f(x) = A^2 \Phi(x)$ ($A \in \mathbb{R}$), and in the domain in which $g(x) \le \Phi(x)$, the general solution is $f(x) = -B^2 \Phi(x)$ ($B \in \mathbb{R}$). Since f is continuous at x = 0 (by differentiability) we conclude that A = B = 0, i.e. f(x) = 0.

This result is an extension of Theorem 3 from [1].

From the Theorem 2 immediately follows:

Corollary 1. The functions $x \mapsto f(x) = e^{ax^2+bx}$ and $x \mapsto g(x) = e^{ax^2+bx}$ are the only solution of the following system of functional inequalities

$$f(x+y) \ge f(x) g(y) e^{2axy},$$

$$g(x+y) \ge g(x) f(y) e^{2axy},$$

with constraint conditions that f(0) = 1, g(0) = 1 and g'(0) = b (or f'(0) = b) exist.

Theorem 3. Consider the functional inequality

(9) $f(x+y) \ge H(x, y) f(x) g(y),$

where given functions $x \mapsto g(x)$ and $(x, y) \mapsto H(x, y)$ satisfy the conditions:

1° g is differentiable at x = 0 and H has the partial derivatives $\frac{\partial H}{\partial x}$ and $\frac{\partial H}{\partial y}$ on the x-axis;

2°
$$g(0) H(x, 0) = 1, \quad \frac{\partial H(x, 0)}{\partial x} = 0.$$

Then the most general solution to (9) is necessarily of the form

$$f(x) = C e^{\int \psi(x) \, \mathrm{d}x},$$

where $\psi(x) = g'(0) H(x, 0) + g(0) \frac{\partial H(x, 0)}{\partial y}$ and C is a constant.

Consider a functional inequality which is connected with JENSEN-CARMI-CHAEL's functional equation ([2])

(10)
$$f(x+y)f(x-y) = f(x)^2 - f(y)^2.$$

Theorem 4. Function f is the solution of the functional inequality

(11)
$$f(x+y)f(x-y) \le f(x)^2 - f(y)^2$$

if and only if it is the solution of the functional equation (10).

11 Publikacije Elektrotehničkog fakulteta

Proof. If f is the solution of the functional equation (10), the statement is trivial.

Now suppose that f is the solution of the functional inequality (11). Then

(12)
$$(f_1(x+y)+f_2(x+y))(f_1(x-y)+f_2(x-y))$$

 $\leq (f_1(x)+f_2(x))^2-(f_1(y)+f_2(y))^2,$

where we put $f(x) = f_1(x) + f_2(x)$ (f_1 and f_2 are the even and odd parts of f respectively).

Substituting $\begin{pmatrix} x & y \\ y & x \end{pmatrix}$, (12) becomes

(13)
$$(f_1(x+y)+f_2(x+y))(f_1(x-y)-f_2(x-y))$$

 $\leq (f_1(y)+f_2(y))^2 - (f_1(x)+f_2(x))^2.$

Adding (12) and (13) we obtain inequality

$$f_1(x+y)f_1(x-y)+f_2(x+y)f_1(x-y) \le 0,$$

which, after substitution $\begin{pmatrix} x & y \\ -x & -y \end{pmatrix}$, becomes

$$f_1(x+y)f_1(x-y) - f_2(x+y)f_1(x-y) \le 0.$$

From the last two inequalities it follows

(14)
$$f_1(x+y)f_1(x-y) \leq 0.$$

Finally, if we put y=0, we obtain $f_1(x)^2 \le 0$, i.e., $f_1(x) = 0$, and we conclude that f is an odd function.

Now substitute $\begin{pmatrix} x & y \\ y & x \end{pmatrix}$ in inequality (11). Then $-f(x+y)f(x-y) \leq f(y)^2 - f(x)^2$.

On the basis of (11) and the last inequality we conclude that f satisfies JENSEN-CARMICHAEL's equation (10). This completes the proof.

Corollary 2. The general system of continuous solutions of the functional inequality (11) is

$$f(x) = C x$$
, $f(x) = C \sin \alpha x$, $f(x) = C \sin \alpha x$,

where C and α are arbitrary constants.

REFERENCES

- 1. IH-CHING HSU: On Some Functional Inequalities. Aequationes Math. 9 (1973), 129-135.
- 2. J. AczéL: Lectures on functional equations and their applications. New York-London 1966.
- 3. J. E. WETZEL: On the Functional Inequality $f(x+y) \ge f(x) f(y)$. Amer. Math. Monthly 74 (1967), 1065–1068.