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ON THE ZERO BOUNDS OF POLYNOMIALS AND
REGULAR FUNCTIONS OF A QUATERNIONIC

VARIABLE

Gradimir V. Milovanović∗ and Abdullah Mir

In this manuscript, we are concerned with the problem of locating the zeros of
some special quaternionic polynomials and regular functions with restricted
coefficients; namely quaternionic coefficients whose real components or their
moduli satisfy suitable inequalities. The obtained results for this subclass
of quaternionic polynomials and regular functions produce extensions of the
classical Eneström-Kakeya theorem and its various variants from complex to
the quaternionic setting.

1. INTRODUCTION AND PRELIMINARIES

The task of finding the regions containing all the zeros of a polynomial on us-
ing various methods of the geometric function theory is a classical topic in analysis.
In addition to having numerous applications, this study has been the inspiration
for much more research both from the theoretical point of view, as well as from the
practical point of view. Since the zeros of a polynomial are continuous functions
of its coefficients, in general, it is quite complicated to derive bounds or the norm
of zeros of a general algebraic polynomial. Therefore, in order to attain better
and sharp zero bounds, it is desirable to put some restrictions on the coefficients
of the polynomial. In the literature, we can see a large body of research concern-
ing the regions containing all the zeros of a polynomial in terms of coefficients of
the polynomial. The following elegant result concerning the distribution of zeros
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of a polynomial when its coefficients are restricted is known in the literature as
Eneström-Kakeya theorem [12].

Theorem 1 (Eneström-Kakeya Theorem). If T (z) =
∑n

ν=0 aνz
ν (z ∈ C) is a

polynomial of degree n with real coefficients and satisfying

an ≥ an−1 ≥ · · · ≥ a1 ≥ a0 ≥ 0,

then all the zeros of T (z) lie in |z| ≤ 1.

The above classical result is particularly important in the study of stability
of numerical methods for differential equations and is the starting point of a rich
literature concerning its extensions, generalizations and improvements in several
directions, see, e.g., the papers [1], [2], [4], [10] to mention only a few.

In this form, it has been extensively studied and extended in various ways,
even to complex coefficients with their moduli satisfying suitable inequalities. For
an exhaustive survey of its extensions and refinements, we refer the readers to the
comprehensive books of Marden [12], Milovanović et al. [15] and Gardner et al.
[6].

We can get the following equivalent form of Theorem 1 by applying it to the
polynomial znT (1/z).

Theorem 2. If T (z) =
∑n

ν=0 aνz
ν (z ∈ C) is a polynomial of degree n with real

coefficients and satisfying

a0 ≥ a1 ≥ · · · ≥ an−1 ≥ an > 0,

then T (z) does not vanish in |z| < 1.

From the above results on polynomials, analogues specifying a zero free disk
of a power series analytic in a given region can be deduced. In this connection, an
extension of Theorem 2 to a class of related analytic functions was established by
Aziz and Mohammad [1] in the form of the following result.

Theorem 3. Let f(z) =
∑∞

ν=0 aνz
ν ̸≡ 0 be analytic in |z| ≤ t, t > 0. If

aν > 0 and aν−1 − taν ≥ 0, ν = 1, 2, . . . ,

then f(z) does not vanish in |z| < t.

In this paper, we are interested to extend the above results and their various
generalizations in the quaternionic setting. We begin with some preliminaries on
quaternions and regular functions of a quaternionic variable which will be useful
in the sequel. Quaternions are essentially a generalization of complex numbers
to four dimensions (one real and three imaginary parts) and were first studied
and developed by Sir Rowan William Hamilton in 1843. This number system of
quaternions is denoted by H in honor of Hamilton. This theory of quaternions is
by now very well developed in many different directions, and we refer the reader
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to [19] for the basic features of quaternionic functions (see also recent papers [3],
[13], [14]).

The set of quaternions denoted by H is a noncommutative division ring. It
consists of elements of the form q = α + βi + γj + δk, α, β, γ, δ ∈ R, where the
imaginary units i, j, k satisfy

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Every element q = α + βi + γj + δk ∈ H is composed by the real part Re(q) = α
and the imaginary part Im(q) = βi+ γj + δk.

The conjugate of q is denoted by q and is defined as q = α−βi−γj− δk and
the norm of q is

|q| =
√
qq =

√
α2 + β2 + γ2 + δ2.

The inverse of each non zero element q of H is given by q−1 = |q|−2q.

For r > 0, we define the ball B(0, r) =
{
q ∈ H : |q| < r

}
. By B we denote

the open unit ball in H centred at the origin, i.e.,

B =
{
q = α+ βi+ γj + δk : α2 + β2 + γ2 + δ2 < 1

}
,

and by S the unit sphere of purely imaginary quaternions, i.e.,

S =
{
q = βi+ γj + δk : β2 + γ2 + δ2 = 1

}
.

The angle between two quaternions q1 = α1 + β1i+ γ1j + δ1k and q2 = α2 + β2i+
γ2j + δ2k is given by

∡(q1, q2) = cos−1

(
α1α2 + β1β2 + γ1γ2 + δ1δ2

|q1||q2|

)
.

The functions we consider in this paper are regular functions as polynomials of the
form

T (q) =

n∑
ν=0

qνaν

and power series of the form

f(q) =

∞∑
ν=0

qνaν

of the quaternionic variable q on the left and with quaternionic coefficients aν on
the right.

Two quaternionic polynomials of this kind can be multiplied according to the
convolution product (Cauchy multiplication rule): given T1(q) =

∑n
i=0 q

iai and
T2(q) =

∑m
j=0 q

jbj , we define

(T1 ∗ T2)(q) :=
∑

i=0,1,...,n
j=0,1,...,m

qi+jaibj .
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If T1 has real coefficients, the so called ∗ multiplication coincides with the
usual pointwise multiplication. Notice that the ∗ product is associative and not, in
general, commutative. Given two quaternionic power series f(q) =

∑∞
ν=0 q

νaν and
g(q) =

∑∞
ν=0 q

νbν with radii of convergence greater than R, we define the regular
product of f and g as the series

(f ∗ g)(q) =
∞∑
ν=0

qνcν ,

where cν =
∑ν

k=0 akbν−k for all ν. Further, as observed in ([5], [9]) for each
quaternionic power series f(q) =

∑∞
ν=0 q

νaν , there exists a ball B(0, R) =
{
q ∈

H : |q| < R
}

such that f converges absolutely and uniformly on each compact
subset of B(0, R) and where the sum function of f is regular.

The regular functions of a quaternionic variable f(q) =
∑∞

ν=0 q
νaν have been

introduced and intensively studied in the past decade, and they have proven to be
a fertile topic in analysis, and their rapid development has been largely driven by
the applications to operator theory.

In the preliminary steps, the structure of the zero sets of a quaternionic reg-
ular function and the factorization property of zeros was described. In this regard,
Gentili and Stoppato [9] (see also [7]) gave a necessary and sufficient condition for
a regular quaternionic power series to have a zero at a point in the form of the
following result.

Theorem 4. Let f(q) =
∑∞

ν=0 q
νaν be a given quaternionic power series with

radius of convergence R, and let p ∈ B(0, R). Then f(p) = 0 if and only if there
exists a quaternionic power series g(q) with radius of convergence R such that

f(q) = (q − p) ∗ g(q).

This extends to quaternionic power series the theory presented in [11] for
polynomials. The following result which completely describes the zero sets of a
regular product of two polynomials in terms of the zero sets of the two factors is
from [11] (see also [7] and [9]).

Theorem 5. Let f and g be given quaternionic polynomials. Then (f ∗ g)(q0) = 0
if and only if f(q0) = 0 or f(q0) ̸= 0 implies g

(
f(q0)

−1q0f(q0)
)
= 0.

Gentili and Struppa [8] introduced a maximum modulus theorem for regular
functions, which includes convergent power series and polynomials in the form of
the following result.

Theorem 6 (Maximum Modulus Theorem). Let B = B(0, r) be a ball in H with
centre 0 and radius r > 0, and let f : B → H be a regular function. If |f | has a
relative maximum at a point a ∈ B, then f is a constant on B.

In [7]–[9] the structure of the zeros of polynomials was used and a topological
proof of the Fundamental Theorem of Algebra was established. We point out that
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the Fundamental Theorem of Algebra for regular polynomials with coefficients in
H was already proved by Niven (for reference, see [16], [17]) by using different
techniques. This lead to the complete identification of the zeros of polynomials in
terms of their factorization, for reference see [18]. Thus it became an interesting
perspective to think about the regions containing some or all the zeros of a regular
polynomial of quaternionic variable.

Very recently, Carney et al. [3] extended the Eneström-Kakeya theorem and
its various generalizations from complex polynomials to quaternionic polynomials
by making use of Theorems 5 and 6. Firstly, they established the following quater-
nionic analogue of Theorem 1.

Theorem 7. If T (q) =
∑n

ν=0 q
νaν , is a polynomial of degree n (where q is a

quaternionic variable) with real coefficients and satisfying

an ≥ an−1 ≥ · · · ≥ a1 ≥ a0 ≥ 0,

then all the zeros of T (q) lie in |q| ≤ 1.

In the same paper, Carney et al. [3] also established the following generaliza-
tion of Theorem 7 to quaternionic coefficients in the form of the following result.

Theorem 8. If T (q) =
∑n

ν=0 q
νaν is a quaternionic polynomial of degree n, where

aν = αν + βνi+ γνj + δνk for ν = 0, 1, 2, . . . , n, satisfying

αn ≥ αn−1 ≥ · · · ≥ α1 ≥ α0 ≥ 0, αn ̸= 0,

then all the zeros of T (q) lie in

|q| ≤ 1 +
2

αn

n∑
ν=0

(
|βν |+ |γν |+ |δν |

)
.

In the meantime, Tripathi ([20, Corollary 3.3]) established the following gen-
eralization of Theorem 7 in the form of the following result.

Theorem 9. If T (q) =
∑n

ν=0 q
νaν is a polynomial of degree n (where q is a

quaternionic variable) with real coefficients satisfying

an ≥ an−1 ≥ · · · ≥ a1 ≥ a0,

then all the zeros of T (q) lie in

|q| ≤ 1

|an|

(
|a0|+

n∑
ν=1

|aν − aν−1|

)
=

1

|an|
(|a0| − a0 + an) .

The study of regular functions of a quaternionic variable are now a days a
widely studied topic, important especially in replicating many properties of holo-
morphic functions of a complex variable. As remarked in the beginning, the main



On the Zero Bounds of Polynomials and Regular Functions . . . 221

purpose of this paper is to extend various results of Eneström-Kakeya type from
complex to the quaternionic setting and to obtain zero free regions of some special
regular functions of a quaternionic variable with restricted coefficients. We shall
make use of the recently established maximum modulus theorem (Theorem 6), the
structure of the zero sets of regular product of two polynomials (Theorem 5) and
factorization theorem (Theorem 4) to get the desired results. The obtained results
also produce various generalizations of Theorems 7, 8 and 9.

2. MAIN RESULTS

In this section, we state our main results and their proofs are given in the next
section. We start with the following generalization of Theorem 9. As a consequence,
it also provides a generalization of Theorem 7.

Theorem 10. Let T (q) =
∑n

ν=0 q
νaν be a polynomial of degree n (where q is a

quaternionic variable) with real coefficients. If for some real numbers k0 and k1,

k0 + an ≥ k1 + an−1 ≥ an−2 ≥ · · · ≥ a1 ≥ a0,

then all the zeros of T (q) lie in∣∣∣∣q + k0 − k1
an

∣∣∣∣ ≤ 1

|an|
(
an + k0 − a0 + |a0|+ |k1|

)
.

Remark 11. The above theorem is applicable to locate the zeros of all those poly-
nomials of a quaternionic variable with real coefficients whose first three coefficients
do not satisfy the condition of monotonicity and some suitable weights k0 and k1
are added to the coefficients an and an−1 respectively to support the monotonicity
condition.

Taking k1 = 0 and k0 = (λ − 1)an with λ ≥ 1 in Theorem 10, we get the
following generalization of Theorem 9.

Corollary 12. Let T (q) =
∑n

ν=0 q
νaν be a polynomial of degree n (where q is a

quaternionic variable) with real coefficients satisfying

λan ≥ an−1 ≥ an−2 ≥ · · · ≥ a1 ≥ a0,

for some λ ≥ 1, then all the zeros of T (q) lie in∣∣q + λ− 1
∣∣ ≤ 1

|an|
(
λan − a0 + |a0|

)
.

Remark 13. The above Corollary 12 extends a results of Aziz and Zargar [2,
Theorem 2] from complex to the quaternionic setting.
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Instead of proving Theorem 10, we prove the following more general result for
a quaternionic polynomial with quaternionic coefficients when we have information
only about the real parts its coefficients. We recover Theorem 10 and other related
results as special cases from this theorem.

Theorem 14. Let T (q) =
∑n

ν=0 q
νaν be a quaternionic polynomial of degree n,

where aν = αν + βνi + γνj + δνk for ν = 0, 1, . . . , n. If for some real numbers k0
and k1,

k0 + αn ≥ k1 + αn−1 ≥ αn−2 ≥ · · · ≥ α1 ≥ α0,

then all the zeros of T (q) lie in∣∣∣∣q + k0 − k1
an

∣∣∣∣ ≤ 1

|an|

(
αn + k0 − α0 + |α0|+ |k1|+M0

)
,

where

M0 =

n∑
ν=0

(
|βν − βν−1|+ |γν − γν−1|+ |δν − δν−1|

)
, β−1 = γ−1 = δ−1 = 0.

Remark 15. Taking βν = γν = δν = 0 for ν = 0, 1, 2, . . . , n in Theorem 14, we
recover Theorem 10.

It is easy to verify that

M0 ≤ 2

n∑
ν=0

(
|βν |+ |γν |+ |δν |

)
.

Using this and taking k1 = 0 in Theorem 14, we get the following generalization of
Theorem 8.

Corollary 16. Let T (q) =
∑n

ν=0 q
νaν be a quaternionic polynomial of degree n,

where aν = αν + βνi + γνj + δνk for ν = 0, 1, 2, . . . , n. If for some non-negative
real number k0,

k0 + αn ≥ αn−1 ≥ · · · ≥ α1 ≥ α0 ≥ 0 (αn ̸= 0),

then all the zeros of T (q) lie in∣∣∣∣q + k0
an

∣∣∣∣ ≤ 1 +
1

αn

(
k0 + 2

n∑
ν=0

(|βν |+ |γν |+ |δν |)

)
.

Remark 17. For k0 = 0, Corollary 16 reduces to Theorem 8.

We now turn to study the zeros of some special regular functions of the form∑∞
ν=0 q

νaν with restricted coefficient, regular in the ball B(0, R), R > 0. in this
direction, we first prove the following which gives quaternionic analogue of Theorem
3 as a special case.
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Theorem 18. Let f : B(0, R) → H be a regular power series in the quaternionic
variable q, i.e., f(q) =

∑∞
ν=0 q

νaν for all q ∈ B(0, R). Let b be any non-zero
quaternion such that ∡(aν , b) ≤ θ ≤ π/2, ν = 0, 1, 2, . . ., and for some finite non-
negative integer λ, we have

|a0| ≤ t|a1| ≤ · · · ≤ tλ|aλ| ≥ tλ+1|aλ+1| ≥ · · · ,

where 0 < t < R, then f(q) does not vanish in

|q| < t

M
,

where

M =

(
2tλ
∣∣∣∣aλa0

∣∣∣∣− 1

)
cos θ + sin θ +

2 sin θ

|a0|

∞∑
ν=1

tν |aν |.

Taking λ = 0 in Theorem 18, we get the following result.

Corollary 19. Let f : B(0, R) → H be a regular power series in the quaternionic
variable q, i.e., f(q) =

∑∞
ν=0 q

νaν for all q ∈ B(0, R). Let b be any quaternion
such that ∡(aν , b) ≤ θ ≤ π/2, ν = 0, 1, 2, . . ., and

|a0| ≥ t|a1| ≥ t2|a2| ≥ · · · ,

where 0 < t < R, then f(q) does not vanish in |q| < t/M0, where

M0 = cos θ + sin θ +
2 sin θ

|a0|

∞∑
ν=1

tν |aν |.

Remark 20. Taking θ = 0 and assume b to be a positive real number in Corollary
19, we get the quaternionic analogue of Theorem 3.

Finally, we shall prove the following result for regular power series with
quaternionic coefficients that gives a generalization of Corollary 19.

Theorem 21. Let f : B(0, R) → H be a regular power series in the quaternionic
variable q, i.e., f(q) =

∑∞
ν=0 q

νaν for all q ∈ B(0, R). If aν , ν = 0, 1, 2, . . ., are
such that for some λ0, λ1 ≥ 1, we have

λ0|a0| ≥ λ1t|a1| ≥ t2|a2| ≥ t3|a3| ≥ · · · ,

where 0 < t < R. Let b be any non-zero quaternion such that ∡(aν , b) ≤ θ ≤ π/2,
ν = 0, 1, 2, . . . , then f(q) does not vanish in∣∣∣∣q − (λ0 − 1)t

E2 − (λ0 − 1)2

∣∣∣∣ < Et

E2 − (λ0 − 1)2
,

where

(1) E = λ0(cos θ + sin θ) + 2t(λ1 − 1)

∣∣∣∣a1a0
∣∣∣∣+ 2 sin θ

|a0|

(
λ1t|a1|+

∞∑
ν=2

tν |aν |

)
.
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Remark 22. On setting λ0 = λ1 = 1 in Theorem 21, we recover Corollary 19.

Taking θ = 0, assume b to be a positive real number and λ1 = 1 in Theorem
21, we get the following corollary.

Corollary 23. Let f : B(0, R) → H be a regular power series in the quaternionic
variable q, i.e., f(q) =

∑∞
ν=0 q

νaν for all q ∈ B(0, R). If aν , ν = 0, 1, 2, . . ., are
real and positive satisfying

λ0a0 ≥ ta1 ≥ t2a2 ≥ · · ·

for some λ0 ≥ 1 and 0 < t < R, then f(q) does not vanish in∣∣∣∣q − (λ0 − 1)t

2λ0 − 1

∣∣∣∣ < λ0t

2λ0 − 1
.

3. PROOFS OF THE MAIN RESULTS

Proof of Theorem 14. Consider the polynomial

T (q) ∗ (1− q) = a0 + q(a1 − a0) + q2(a2 − a1) + · · ·+ qn(an − an−1)− qn+1an

=

n−1∑
ν=0

qν(aν − aν−1) + qn[(k0 + an)− (k1 + an−1)]

− qn(k0 − k1)− qn+1an (a−1 = 0)

= f(q)− qn(qan + k0 − k1),

where

f(q) =
n−1∑
ν=0

qν(aν − aν−1) + qn[(k0 + an)− (k1 + an−1)]

=

n−2∑
ν=0

qν(αν − αν−1)− qn−1k1 + qn−1(k1 + αn−1 − αn−2)

+ qn[(k0 + αn)− (k1 + αn−1)]

+

n∑
ν=0

qν [(βν − βν−1)i+ (γν − γν−1)j + (δν − δν−1)k],

where α−1 = β−1 = γ−1 = δ−1 = 0.

By Theorem 5, T (q) ∗ (1 − q) = 0 if and only if either T (q) = 0 or T (q) ̸= 0
implies T (q)−1qT (q) − 1 = 0, that is T (q)−1qT (q) = 1. Thus, if T (q) ̸= 0, this
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implies q = 1, so the only zero of T (q) ∗ (1− q) are q = 1 and the zeros of T (q).

We first note that

|aν − aν−1| = |(αν − αν−1) + (βν − βν−1)i+ (γν − γν−1)j + (δν − δν−1)k|

≤ |αν − αν−1|+ |βν − βν−1|+ |γν − γν−1|+ |δν − δν−1|.

For |q| = 1, we have

|f(q)| ≤
n−2∑
ν=0

|qν(αν − αν−1)|+ |qn−1k1|+ |qn−1(k1 + αn−1 − αn−2)|

+
∣∣qn[(k0 + αn)− (k1 + αn−1)]

∣∣
+

n∑
ν=0

∣∣qν [(βν − βν−1)i+ (γν − γν−1)j + (δν − δν−1)k]
∣∣,

i.e.,

|f(q)| ≤ |α0|+
n−2∑
ν=0

(αν − αν−1) + |k1|+ (k1 + αn−1 − αn−2)

+ [(k0 + αn)− (k1 + αn−1)] +M0

= |α0| − α0 + |k1|+ k0 + αn +M0,

where

M0 =

n∑
ν=0

(
|βν − βν−1|+ |γν − γν−1|+ |δν − δν−1|

)
.

Notice that, we have

max
|q|=1

∣∣∣∣qn ∗ f
(
1

q

)∣∣∣∣ = max
|q|=1

∣∣∣∣qnf (1

q

)∣∣∣∣ = max
|q|=1

∣∣∣∣f (1

q

)∣∣∣∣ = max
|q|=1

|f(q)|,

it is clear that qn ∗ f (1/q) has the same bound on |q| = 1 as f , that is∣∣∣∣qn ∗ f
(
1

q

)∣∣∣∣ ≤ |α0| − α0 + |k1|+ k0 + αn +M0 for |q| = 1.

Since qn ∗ f (1/q) is a polynomial and hence is regular in |q| ≤ 1, it follows
by the Maximum Modulus Theorem (Theorem 6), that∣∣∣∣qn ∗ f

(
1

q

)∣∣∣∣ = ∣∣∣∣qnf (1

q

)∣∣∣∣ ≤ |α0| − α0 + |k1|+ k0 + αn +M0 for |q| ≤ 1.
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Hence ∣∣∣∣f (1

q

)∣∣∣∣ ≤ 1

|qn|

(
|α0| − α0 + |k1|+ k0 + αn +M0

)
for |q| ≤ 1.

Replacing q by 1/q, we see that

(2) |f(q)| ≤
(
|α0| − α0 + |k1|+ k0 + αn +M0

)
|q|n for |q| ≥ 1.

For |q| ≥ 1, we have

|T (q) ∗ (1− q)| =
∣∣f(q)− qn(qan + k0 − k1)

∣∣
≥ |q|n|qan + k0 − k1| − |f(q)|

≥ |q|n [|qan + k0 − k1| − (αn + k0 − α0 + |α0|+ |k1|+M0)]

by (2). Hence, if∣∣∣∣q + k0 − k1
an

∣∣∣∣ > 1

|an|

(
αn + k0 − α0 + |α0|+ |k1|+M0

)
,

then |T (q)∗(1−q)| > 0, that is T (q)∗(1−q) ̸= 0. Since the only zeros of T (q)∗(1−q)
are q = 1 and the zeros of T (q), therefore, T (q) ̸= 0 for∣∣∣∣q + k0 − k1

an

∣∣∣∣ > 1

|an|

(
αn + k0 − α0 + |α0|+ |k1|+M0

)
.

In other words, all the zeros of T (q) lie in∣∣∣∣q + k0 − k1
an

∣∣∣∣ ≤ 1

|an|

(
αn + k0 − α0 + |α0|+ |k1|+M0

)
.

This completes the proof of Theorem 14.

We need the following auxiliary result due to Carney et al. [3] for the proofs
of Theorems 18 and 21.

Lemma 24. Let q1, q2 ∈ H, where q1 = α1 + β1i+ γ1j + δ1k and q2 = α2 + β2i+
γ2j + δ2k, ∡(q1, q2) ≤ 2θ and |q1| ≤ |q2|. Then

|q2 − q1| ≤ (|q2| − |q1|) cos θ + (|q2|+ |q1|) sin θ.

Proof of Theorem 18. Consider the power series

F (q) = (t− q) ∗ f(q) = ta0 − q

∞∑
ν=1

qν−1(aν−1 − taν) = ta0 − qψ(q),
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where

ψ(q) =

∞∑
ν=1

qν−1(aν−1 − taν).

For |q| = t, we have

|ψ(q)| ≤
∞∑
ν=1

∣∣qν−1(aν−1 − taν)
∣∣

=

∞∑
ν=1

tν−1
∣∣aν−1 − taν

∣∣
≤

∞∑
ν=1

tν−1

{
|t|aν | − |aν−1|| cos θ + (t|aν |+ |aν−1|) sin θ

}

=

λ∑
ν=1

tν−1(t|aν | − |aν−1|) cos θ +
∞∑

ν=λ+1

tν−1(|aν−1| − t|aν |) cos θ

+ 2 sin θ

∞∑
ν=1

tν |aν |+ |a0| sin θ

= (2tλ|aλ| − |a0|) cos θ ++2 sin θ

∞∑
ν=1

tν |aν |+ |a0| sin θ,

i.e.,

|ψ(q)| ≤ |a0|

[(
2tλ
∣∣∣∣aλa0

∣∣∣∣− 1

)
cos θ +

2 sin θ

|a0|

∞∑
ν=1

tν |aν |+ sinθ

]
= |a0|M.

Since ψ(q) is regular in |q| ≤ t, it follows by the Maximum Modulus Theorem
(Theorem 6), that

(3) |ψ(q)| ≤ |a0|M for |q| ≤ t.

For |q| ≤ t, we have

|F (q)| = |ta0 − qψ(q)|

≥ t|a0| − |q||ψ(q)|

≥ |a0|[t− |q|M ] (by (3))

> 0

if |q| < t/M .

Since by Theorem 4, the only zeros of (t− q) ∗ f(q) are q = t and the zeros of
f(q), it follows that f(q) does not vanish in |z| < t/M . This proves Theorem 18.
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Proof of Theorem 21. Again we consider the power series

F (q) = (t− q) ∗ f(q)

= ta0 − q(a0 − ta1)− q2(a1 − ta2)− · · ·

= ta0 − q(λ0a0 − tλ1a1) + q [(λ0 − 1)a0 − (λ1 − 1)ta1]

− q2[(λ1a1 − ta2)− (λ1 − 1)a1]− q3(a2 − ta3)− · · ·

= ta0 + q [(λ0 − 1)a0 − (λ1 − 1)ta1]− qψ(q),

where

ψ(q) = (λ0a0 − tλ1a1) + q [(λ1a1 − ta2)− (λ1 − 1)a1] + q2(a2 − ta3) + · · · .

For |q| = t, we have

|ψ(q)| ≤ |λ0a0 − tλ1a1|+ |q||λ1a1 − ta2|+ |q||λ1 − 1||a1|

+

∞∑
ν=3

|q|ν−1|aν−1 − taν |

= |λ0a0 − tλ1a1|+ |λ1a1t− t2aν |+ t(λ1 − 1)|a1|

+

∞∑
ν=3

tν−1|aν−1 − taν |

≤ (λ0|a0| − tλ1|a1|) cos θ + (λ0|a0|+ tλ1|a1|) sin θ

+ (λ1t|a1| − t2|a2|) cos θ + (λ1t|a1|+ t2|a2|) sin θ + t(λ1 − 1)|a1|

+

∞∑
ν=3

tν−1
{
(|aν−1| − t|aν |) cos θ + (|aν−1|+ t|aν |) sin θ

}
,

i.e.,

|ψ(q)| ≤ λ0|a0|(cos θ + sin θ) + t(λ1 − 1)|a1|+ 2 sin θ

(
λ1t|a1|+

∞∑
ν=2

tν |aν |

)
.

It follows by the Maximum Modulus Theorem (Theorem 6), that

|ψ(q)| ≤ λ0|a0|(cos θ + sin θ) + t(λ1 − 1)|a1|+ 2 sin θ

(
λ1t|a1|+

∞∑
ν=2

tν |aν |

)

for |q| ≤ t.
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Let E defined by (1). Now, for |q| ≤ t, we have

|F (q)| = |a0| |t+ q(λ0 − 1)| − (λ1 − 1)t|a1||q| − |q||ψ(q)|

≥ |a0| |t+ q(λ0 − 1)| − |a0||q|

{
λ0(cos θ + sin θ)

+ 2t(λ1 − 1)

∣∣∣∣a1a0
∣∣∣∣+ 2 sin θ

|a0|

(
λ1t|a1|+

∞∑
ν=2

tν |aν |

)}

= |a0| |t+ q(λ0 − 1)| − |a0||q|E

> 0,

if |q|E < |q(λ0 − 1) + t|, i.e., if

α2 + β2 + γ2 + δ2 − 2t(λ0 − 1)α

E2 − (λ0 − 1)2
<

t2

E2 − (λ0 − 1)2
,

or [
α− (λ0 − 1)t

E2 − (λ0 − 1)2

]2
+ β2 + γ2 + δ2 <

(
Et

E2 − (λ0 − 1)2

)2

,

which is precisely the disk:

(4)

{
q :

∣∣∣∣q − (λ0 − 1)t

E2 − (λ0 − 1)2

∣∣∣∣ < Et

E2 − (λ0 − 1)2

}
.

Since by Theorem 4, the only zeros of (t− q) ∗ f(q) are q = t and the zeros of
f(q), it follows that f(q) does not vanish in the disk defined by (4). This completes
the proof of Theorem 21.

4. CONCLUSION

The study of regular functions of a quaternionic variable are now a days a
widely studied topic, important especially in replicating many properties of holo-
morphic functions of a complex variable and their rapid development has been
largely driven by the applications to operator theory. In this paper, we study the
properties of zeros of some special polynomials and regular functions of a quater-
nionic variable with restricted coefficients; namely quaternionic coefficients whose
real components or their moduli satisfy suitable inequalities. We obtain zero free
regions for these functions and also extend the well-known Eneström-Kakeya the-
orem and its various generalizations from complex to the quaternionic setting.
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