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Abstract

In this paper we define and study a sequence of functions

vAm(avb7C;Z): ! )Z’C[S+ba 2F1(c,a—z,m;1—t)]
s=1

'z+1-a

where L[s; f(t)], 2F1(a,b,c;z) and T'(z) are the Laplace transform, Gauss’s hypergeo-
metric function and the gamma function, respectively. We give several properties of
vAm(a,b, c; z) including a discussion on special cases ,A,,(a,b,m; z), 142(1,0,1;n) and
vA1(a,b,—z;a — 2z — 1).

1 Basic definition

The Laplace transform and Gauss’s hypergeometric function (Gauss 1812; Barnes 1908)
denoted respectively L[s; f(t)] and 2F}(a, b, c; z), and are defined as [1, pp. 1019-1030]

clsi o) = [ T et iy,

0
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and [1, pp. 555-566]

oF 1 (a,b,c;x) = Z (azz)(:)n%l

n=0

(lz] < 1),

where (z),, and I'(z) are the Pochhammer symbol and the Gamma function given by

I'(z+n)

(2)o=1, (m=2(z+1)..(z2+n—-1)= OB
and

I'(z) = /0+<>0 t*7le7tdt (Re(z) > 0).

The hypergeometric function has integral representation (Euler 1748)

T 1
oFi(a,b,c;x) = (c) / 711 — )01 — t) T,

T(O)T(c—10) J,

in the = plane cut along the real axis from 1 to oo, if Re(¢) > Re(b) > 0. Apart [1],
the relevant theory on hypergeometric function can be found in Spanier and Oldham
[18], Seaborn [17], Whittaker and Watson [20], Barnes [5] and Bailey [3].

We now introduce the following function.

Definition 1.1 Fora, b, ¢, m and z are complex variables the function , A, (a,b,c; z)

defined by

vAm(a,b,c;2) = 1 ) Zﬁ[s+b; oFi(c,a — z,m; 1 —t)].
s=1

I'z+1-a

This function is interesting because its special cases include the Riemann and the
Hurwitz zeta functions, the harmonic number of order n, left factorial numbers, etc.

2 Statement of the results

The Riemann and Hurwitz zeta functions ((z) and ((z,b) respectively, defined by

1
= (Re()>1), (2.1)

Nk

((2) =

i

1

1

(b)) = (k+0)°

(Re(z) > 1, b#£0, -1, =2, ...),. (2.2)

NE

k=0

For Re(z) < 1, z # 1, the functions ((z) and ((z,b) are defined as the analytic
continuations of the foregoing series. Both are analytic over the whole complex plane,
except at z = 1, where they have a simple pole.

Theorem 2.1 Let ((z,b) be the Hurwitz function defined as in (2.2) and Re (b) > —1,
Re(z —a) > —1. Then:

vAm(a,bym;z) =C(z+1—a,b+1)=((z+1—a,v+b+1).



Note 1. The harmonic number of order H,(n) defined by H,(n) = Y 2, with

kn 9
k=1
H,(1) = H,. Applying Theorem 2.1 we have:
c0Am(L,b—1,m;z) = ((z,b), (2.3)
ooAm(LO,m; Z) - C(Z), (24)
2A1(1,0,1;n) = Hy(n). (2.5)
In 1971 Kurepa (see [10, 11]) defined so-called the left factorial !n by:
n—1
10=0, In=>» Kk (neN)
k=0
and extended it to the complex half-plane Rez > 0 as
+o0 2 —1
lz = / —— e tdt. (2.6)
o t—1

Such function can be also extended analytically to the whole complex plane by !z =
(z+1)—T(2+1). For m=-1,0,1,2,... and Re(2) > v —m — 2 in [15] is given the
generalization of the left factorial function:

. +m+1-k
oM (sya,2) =S (1)1 *
(0 = Y0 (T

)ﬁaﬂﬂmk—%m+21—ﬂL
k=1

where v is a positive integer, s, a, z are complex variables. The special cases include
(see [16]): the gamma function I'(z), the left factorial !z, Milovanovic’s factorial func-
tion M, (2), the alternating factorial numbers A,, the Riemann zeta functions ((z),
the figured number {?}, the K;(z) function and the Stirling number of the first kind.
However, apart from n!, In and A, twenty-five more well-known integer sequences in
[19] are special cases of the function ,M,,(s;a, z).

Lemma 2.2 For Re(z) > 0 we have

1z

Ay(1,0,1;2) = ————.
1 2( 707 ,Z) F(2+1)

Note 2. The function n! and In are linked by Kurepa’s hypothesis:
KH hypothesis. For n € N\{1} we have

ged(n, nl) =2

where ged(a, b) denotes the greatest common divisor of integers a and b.

This is listed as Problem B44 of Guy’s classic book [7]. A detailed bibliography is



given in Ivi¢ and Mijajlovié¢ [8]. In [10], it was proved that the KH is equivalent to the
following assertion

Ip#0 (mod p), for all primes p > 2.
It is not difficult to prove the following result:
ged(In, nl)=2 < L[1;2F(1,1 —n,2;1 —t)] € N. (2.7)
Theorem 2.3 For Re (b) > —1 we have

lim ,A;i(a,b,—2z;a —2z—1)=0 (n=0,1,2,...).

zZ—n

3 Proof of the results

Proof of Theorem 2.1. For Re(b+s) > 0 and Re (z —a) > —1, from

z—a

oFi(mya—zm;1—t)=t

it follows

v

1 oo
vAm b . - - —t(s+b)tz—a dt
(CL, ,m,z) F(z—i—l—a); 0 €

B 1 " I'(z+1-a)
- I'(z+1-a) Zl (5 + b)=tl-a

v

1
- Z (3 + b)z—l—l—a

s=1

= ((z4+41-a,b+1)—((z+1—a,v+b+1).

Proof of Lemma 2.2. The relation

¥ —1

Fr(1,1—2,2,1—t) = —
21(7 Z, 45 ) Z(t—l)

yields
+oo -1

1
Ay(1,0,1;2) = —tdt.
1 2(7 ) aZ) ZP(Z)/O t—1 €

The result follows from (2.6).

Proof of Theorem 2.3. The identity

Cstsnny (DR (n + k) e (0 + k)
/e o ((k!))2 ((n—k))! (1-tfde= - (b+s)k+1((k!)2(n)— k)

D(k+1, (s +b)(t 1)),



where I'(z, x), the incomplete gamma function, is defined by
+o0
[(z,x) :/ et at
x
for Re (b + s) > 0 gives

oy (CDE( 4 E)! e 57 (n+ k)!
f e G 00 = G i = o0 69

The relations (3.8) and

o (=n)k(n + Dy (1—1)*
(- 1,1;1 — = 1-— 1
2 1( n,n+1,1; t) Z (1)k k! ) (’ t’< )
k=0
~ (=DFn+ k) (10"
_ 3.9
k!'(n —k)! k! (39)
k=0
yield
I [™ _ " (=DF(n + k)
JAi(ab, —nza—n—1) = oy 5 CUR ARy
1(@, y s a n ) F(—n) 51/0 € kzo k')2 (n—k)‘ ( )
1 v /Oo —tsh) N~ (CDF(n +E)! k
o 22, 2 (2 (n— k)|
1 . e (n+ k)
= I'k+1,—s—1b).
T & 2 Tov sf i — i b
The result follows from that I'(z) is meromorphic with simple poles at z = —n and
1
li = =0,1,2
Zl—r>I’I1’L F(—Z) (n 07 ) ) )
4 Remark

The Legendre polynomials P, (z) are a special case of the hypergeometric function

1_
Po(z) = oF <—n,n+ LL— x) .

Standard texts on the classical theory of P, (z) are Legendre [13], Lagrange [12], Bailey
[3, 4], Abramowitz and Stegun [1], Arfken [2] and Koepf [9].
Analogously, according to the relation (3.9) we have

n

(n+k)‘ : k k—r, .r
Fi(-n,n+1,1;1—2) = T Y —— (=) "z
2 D (KD2(n — k)! Z:; (r)

k=0

tL (1) Tk k
W(n—k;+1)(n—lc+2)-~(n+lc):c .

k=0



Hence
oFi(—n,n+1,1;1 —2) = (-1)"2Fi(—n,n+ 1,1;2), b<z<l (4.10)
so that, the following definition is reasonable.

Definition 4.1 For n € Ny the polynomial x — A, (x) is defined by
Ap(@) = 2Py (—n,n+ 1,11 —2) = > an(k)z".
k=0

The first few A, (z) polynomials are
Ap(z) = 1
Ai(z) = 2z-1
Ag(z) = 622 —62+1
Asz(z) = 202° —302% + 122 — 1
Ay(z) = 702* — 1402° 4 902 — 202 + 1

The well-known sequences A000984, A002457, A002544, A007744, A002378 and
A033487 from [19] are special cases of the sequences {a,(k)}}_,. Using the relation
(4.10), for n € Ng and k£ =0,1,2,...,n we have

()" * 1
an(k) = I Hln—k—i—m. (4.11)

On the basis on (4.10) and the following well-known relation (see [1])
oFi(—n,n+1,1;2) = P(1 — 2x)

equality
Ap(z) = (-1)"P(1 — 2x) (4.12)

is valid. Hence, common characteristic of the polynomials P, (z) can be transfer of the
polynomials A,,(z). For example, the A, (z) polynomials are orthogonal over (0, 1) and
for n,m € Ny satisfy the following

0, if n # m,

if n=m.

/O 1 Ap(z) Ay (2)dz = {

_1
2n+17
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