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Abstract. Some new properties of Boubaker polynomials, as well as an application of these polynomials for obtaining
approximate analytical solution of Love’s integral equation are presented.
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INTRODUCTION

There are several papers on the so-called Boubaker polynomials and their applications in different problems in physics
and other computational and applied sciences (cf. [1, 2, 3, 9] and references therein). Such polynomials are defined in
a similar way as Chebyshev polynomials of the first and second kind Tn(x) and Un(x), which are orthogonal on (−1,1)
with respect to the weights functions 1/

√
1− x2 and

√
1− x2, respectively.

The monic Boubaker polynomials are defined as

Bn(x) =
[n/2]

∑
k=0

(−1)k

(
n− k

k

)
n−4k

n− k
xn−2k, n≥ 1, (1)

and B0(x) = 1. Alternatively, they can be expressed by a three-term recurrence relation

Bm+1(x) = xBm(x)−Bm−1(x), m = 2,3, . . . , (2)

where B0(x) = 1, B1(x) = x, B2(x) = x2 +2.
The next seven members of this polynomial sequence are:

B3(x) = x3 + x, B4(x) = x4−2, B5(x) = x5− x3−3x, B6(x) = x6−2x4−3x2 +2,

B7(x) = x7−3x5−2x3 +5x, B8(x) = x8−4x6 +8x2−2, B9(x) = x9−5x7 +3x5 +10x3−7x.

Otherwise, the polynomials (1) can be expressed in terms of Chebyshev polynomials of the first and second kind,
Tn(x) and Un(x). Namely, we can prove (e.g., by the mathematical induction) the following result:
Theorem 1. For m≥ 1 the following formula Bm(x) = 2Tm(x/2)+4Um−2(x/2) holds, where U−1(x)≡ 0.

THREE-TERM RECURRENCE RELATION AND ZEROS

As we can see, the relation (2) is not true for m = 1. In order to provide a relation for each m ∈ N, we can define a
sequence {βm}m∈N by β1 =−2 and βm = 1 for m≥ 2, and then we have the three-term recurrence relation in the form

Bm+1(x) = xBm(x)−βmBm−1(x), m = 1,2, . . . , with B0(x) = 1, B−1(x) = 0. (3)

Using this relation for m = 0,1, . . . ,n−1, and defining n-dimensional vectors bn(x) = [B0(x) B1(x) . . . Bn−1(x)]
T and

en = [0 0 . . . 0 1]T (the last coordinate vector), we obtain the equation

(xIn−Mn)bn(x) = Bn(x)en, (4)
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where In is the identity matrix of order n and Mn is a tridiagonal matrix of order n,

Mn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 O

β1 0 1

β2 0
. . .

. . . . . . 1

O βn−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 O

−2 0 1

1 0
. . .

. . . . . . 1

O 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

According to (4) we conclude that the zeros of the polynomial Bn(x) are also eigenvalues of the matrix Mn. Also, using
Gerschgorin’s theorem, it is easy to see that these eigenvalues are in the unit circle |z|< 2 (see also [9]).

It is well-known that for orthogonal polynomials on a symmetric interval (−a,a), which satisfy a three-term
recurrence relation of the form (3), it can be defined two new polynomial systems which are orthogonal on (0,a2)
(cf. [7, pp. 102–103]). In a similar way, we can introduce here also two new (nonorthogonal) systems of (monic)
polynomials P = {pm(t)} and Q = {qm(t)} via Boubaker polynomials Bm(x), so that

B2m(x) = pm(x
2) and B2m+1(x) = xqm(x

2).

Theorem 2. Let βm, m≥ 1, be recursive coefficients in the recurrence relation (3). Then,

pm+1(t) = (t−am)pm(t)−bm pm−1(t) and qm+1(t) = (t− cm)qm(t)−dmqm−1(t),

with p0(t) = q0(t) = 1, p−1(t) = q−1(t) =, where the recursive coefficients are given by

am = β2m +β2m+1 =

{−2, m = 0,

2, m≥ 1,
bm = β2mβ2m−1 =

{−2, m = 1,

1, m≥ 2,

and

cm = β2m+1 +β2m+2 =

{−1, m = 0,

2, m≥ 1,
dm = β2mβ2m+1 = 1, m≥ 1.

Thus, this theorem gives two systems of polynomials: P =
{

1, t +2, t2−2, t3−2t2−3t +2, t4−4t3+8t−2, . . .
}

and Q =
{

1, t +1, t2− t−3, t3−3t2−2t +5, t4−5t3 +3t2 +10t−7, . . .
}

.
In order to investigate zeros of the polynomials Bn(z) on the imaginary axis we put z = iy and consider Bn(iy)/im,

n≥ 2, i.e., the sequence of polynomials y2−2, y(y2−1), y4−2, y(y4 + y2−3), y6 +2y4−3y2−2, . . . .
For t > 0 we introduce two sequences of polynomials em(t) and om(t), m = 1,2, . . ., by

em(t) = (−1)mB2m(i
√

t) and om(t) = (−1)m B2m+1(i
√

t)

i
√

t
.

According to (1) and Theorem 2, it is clear that

em(t) = (−1)m pm(−t) =
m

∑
k=0

(
2m− k

k

)
2m−4k

2m− k
tm−k, om(t) = (−1)mqm(−t) =

m

∑
k=0

(
2m− k

k

)
2m−4k+1
2m−2k+1

tm−k. (5)

Theorem 3. For any m ∈ N the polynomials em(t) and om(t) have only one positive zero.
Proof. In the proof we use the number of sign variations (differences) between consecutive nonzero coefficients of a

polynomial ordered by descending variable exponent. We note that the coefficients in (5) are positive for k < m/2 and
negative for k > m/2, so that we have only one sign variation. According to Descartes’ Rule the number of positive
zeros is either equal to the number of sign differences between consecutive nonzero coefficients, or less than it by a
multiple of 2. Since em(0) =−2 < 0 and em(T )> 0 for each sufficiently large positive T , we conclude that em(t) has
only one positive zero. A similar proof can be done for polynomials om(t). �

Using this theorem one can prove the following result on the zero distribution:
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Theorem 4. Every polynomial Bn(x), n≥ 2, has two complex conjugate zeros ±i
√γn, γn > 0, and other zeros are real

and symmetrically distributed in (−2,2), where lim
n→+∞

γn = 4/3.

Thus,

B2m(x) = (x2 + γ2m)
m

∏
ν=1

(x2− τ2m,ν), B2m+1(x) = x(x2 + γ2m+1)
m

∏
ν=1

(x2− τ2m+1,ν),

where 4 > τn,1 > .. . > τn,m > 0 and n = 2m or n = 2m+1.

APPLICATIONS

The polynomials {B4m(x)} plays important role in applications. Solutions to several applied physics problems based
on the so-called Boubaker Polynomials Expansion Scheme (BPES) (cf. [9] and references therein). It is easy to prove
that these polynomials satisfy the relation (cf. [3]) B4(m+1)(x) = (x4−4x2 +2)B4m(x)−βmB4(m−1)(x), m ≥ 1, where
βm is defined before.

Recently, for example, Kumar [4] has presented a method for obtaining an analytical solution of Love’s integral
equation (see [5, 6])

f (x)−μ
∫ 1

−1

r

r2 +(x− y)2 f (y)dy = 1, −1 < x < 1, (6)

for a particular physical (electrostatical) system, based on the Boubaker polynomials expansion scheme (BPES). An
approximation to the solution of (6), in the case r = 1 and μ = 1/π , was given by Love [6],

f (x)≈ fL(x) = 1.919200−0.311717x2 +0.015676x4 +0.019682x6−0.000373x8. (7)

As an approximate solution solution in the set of polynomials of degree at most 4n (in notation P4n), Kumar [4] used

the expansion f
(1)
4n (x) =

n

∑
m=1

cmB4m(x), but in his approach was an error. The corrected version of the method leads to

the equation
n

∑
m=1

cmB4m(x)−μ
∫ 1

−1

r

r2 +(x− y)2

n

∑
m=1

cmB4m(y)dy =
n

∑
m=1

(
B4m(x)−μ

∫ 1

−1

rB4m(y)

r2 +(x− y)2 dy

)
cm = 1.

Taking collocation points as the positive zeros of T2n(x) we get a system of linear equations for determining the
coefficients cm, m = 1, . . . ,n. In the same case r = 1 and μ = 1/π , the corresponding solutions for n = 1 and n = 2,
are f

(1)
4 (x) =−1.01362B4(x) and f

(1)
8 (x) =−1.01062B4(x)+0.140162B8(x), or in the expanding form

f
(1)
4 (x) = 2.02725−1.01362x4 and f

(1)
8 (x) = 1.74091+1.1213x2−1.01062x4−0.560649x6 +0.140162x8.

However, we can get better solutions taking the constant term (B0(x) = 1) in the corresponding expansion of the

approximate polynomial solution, i.e., f
(0)
4n (x) =

n

∑
m=0

cmB4m(x). In that case, using the positive zeros of T2n+2(x) as

collocation points, we obtain the following approximative solutions

f
(0)
4 (x) = 1.32192B0(x)−0.279362B4(x) = 1.88064−0.279362x4

and

f
(0)
8 (x) = 1.63647B0(x)−0.106254B4(x)−0.0339144B8(x)

= 1.91681−0.271315x2−0.106254x4 +0.135658x6−0.0339144x8.

Moreover, in the previous set of polynomials we can get much better results if we take the complete basis of (even)

polynomials. Thus, in order to find an approximate solution in the set P2n, we put f̃2n(x) =
n

∑
m=0

cmB2m(x). For example,

in this case we find f̃4(x) = 2.63989B0(x)−0.32014B2(x)+0.0400543B4(x) and

f̃8(x) = 2.46662B0(x)−0.264159B2(x)+0.0160255B4(x)+0.000730762B6(x)−0.00565549B8(x)

= 1.91903−0.311595x2 +0.014564x4 +0.0233527x6−0.00565549x8.
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TABLE 1. Maximal relative errors of the approximate solutions

Approximate Maximal relative errors
solution n = 1 n = 2 n = 3 n = 4

fL(x) 1.69(−3)

f
(1)
4n (x) 3.82(−1) 1.27(−1) 3.57(−2) 1.22(−2)

f
(0)
4n (x) 2.34(−2) 1.16(−3) 1.52(−4) 1.07(−5)
f̃4n(x) 2.43(−4) 1.37(−6) 9.65(−9) 2.41(−10)

Maximal relative errors of the previous approximate solutions, including Love’s solution (7), are displayed in
Table 1, where we used as the exact solution one obtained by an efficient method for solving Fredholm integral
equations of the second kind [8]. Numbers in parentheses indicate decimal exponents. The solutions f̃8(x) for μ = 1/π
and r = 0.1, r = 1, and r = 10 are presented in Figure 1.

��� ��� ��� ��� ��� ���

�

�

�

�

��

��

FIGURE 1. The solutions f̃8(x) of Love’s equation (6) for r = 1/10 (dotted line), r = 1 (dashed line) and r = 10 (solid line)
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