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Abstract. Various discrete versions of Wirtinger's type inequalities are considered. A 
short account on the first results in this field given by Fan, Taussky and Todd [10] as weH 
as some generalisations of these discrete inequalities are done. Also, a general method 
for finding the best possible constants An and Bn in inequalities of the form 

n n n 
An :5 L rk(xk - XkH)2 :5 Bn LPkxi, 

k=l k=O k=l 

where p = (Pk) and r = (rk) are given weight sequences and :z: = (Xk) is an arbitrary 
sequence of the real numbers, is presented. Two types of problems are investigated and 
several coroHaries of the basic results are obtained. Further generalisations of discrete 
inequalities of Wirtinger's type for higher differences are also treated. 

1. Introduction and Preliminaries 
In the well-known monograph written by Hardy, Littlewood and P6lya [13, pp. 
184-187] the following result was mentioned as the Wirtinger's inequality: 

Theorem 1.1. Let f be a periodic function with period (211") and such that l' E 
L2(0,211"). 11 f: 1r f(x) dx = 0 then 

21r 21r 

(1.1) J f(x)2 dx J j'(x)2 dx, 
o 0 

with equality in (1.1) il and only il 1 (x) = A cos x + B sin x, where A and B are 
constants. 

Also, this inequality ean be found in the monograph of Beekenbaeh and Bellman 
[4, pp. 177-180] and, especially, in one written by Mitrinovic in eooperation with 
Vasic [25, pp. 141-154], including many other inequalities of the same type. The 
proof of W. Wirtinger was first published in 1916 in the book [5] by Blasehke. 
However, inequality (1.1) was known before this, though with other eonditions on 
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the function f. The French and Italian mathematicalliterature do not mention the 
name of Wirtinger in connection with this inequality. A historical review on the 
priority in this subject was given by Mitrinovic and Vasic [24] (see also [25-26]). 
They have mentioned various generalisations and variations of inequality (1.1), as 
weIl as possibility of applications of such kind of inequalities in many branches in 
mathematics as Calculus of Variations, Differential and Integral Equations, Spec-
tral Operator Theory, Numerical Analysis, Approximation Theory, Mathematical 
Physics, etc. Under some condition of f, there are also many generalisations of 
(1.1) which give certain estimates of quotients of the form 

b 

J w(X)f(X)2 dx 
a 

b 

J f'(X)2 dx 
a 

JJ w(x, y)f(x, y)2 dxdy 
D 

where w is a weight function (in one or two variables) and D is a simply connected 
plane domain. 

There are various discrete versions of Wirtinger type inequalities. In this survey 
we will deal only with such kind of inequalities. 

The paper is organised as follows. In Section 2 we give a summary on the first 
results in this field given by Fan, Taussky and Todd [10] as weIl as some generali-
sations of these discrete inequalities. In Section 3 we present a general method for 
finding the best possible constants An and Bn in inequalities of the form 

n n n 
An L rk(xk - Xk+1)2 B n 

k=l k=O k=l 

where p = (Pk) and r = (rk) are given weight sequences and x = (Xk) is an 
arbitrary sequence of the real numbers. This method was introduced by authors 
[19] and later used by other mathematicians (see e.g., [1] and [36]). In the same 
section we give several corollaries of the basic results. Finally, generalisations 
of discrete inequalities of Wirtinger's type for higher differences are treated in 
Section 4. 

2. Discrete Fan-Taussky-Todd Inequalities and Some 
Generalisations 

The basic discrete analogues of inequalities of Wirtinger were given by Fan, Taus-
sky and Todd [10]. Their paper has been inspiration for many investigations in 
this subject. We will mention now three basic results from [10]: 

Theorem 2.1. If Xl, X2, . .. ,Xn are n real numbers and Xl = 0, then 

n-l n 

(2.1) ""( )2' 2 7r "" 2 Xk - Xk+l 4sm 2(2n -1) Xk' 
k=l k=2 
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with equality in (2.1) if and only if 

. (k - l)'Ir 
xk=Asm 2n-1' 

where A is an arbitrary constant. 

k = 1,2, ... ,n, 

291 

Theorem 2.2. 1fxo(= 0), X},X2, ... ,Xn, XnH(= 0) are given real numbers, 
then 

n n 

(2.2) )2. 2 'Ir 2 
L..J Xk - XkH 4sm 2(n + 1) L..JXk, 
k=O k=l 

with equality in (2.2) if and only ifxk = k = 1,2, ... ,n, where Ais 
n+1 

an arbitrary constant. 

Theorem 2.3. 1f Xl, X2, ... , Xn , XnH are given real numbers such that Xl = xnH 
and 

(2.3) 

then 

(2.4) 

The equality in (2.4) is attained if and only if 

2k'lr . 2k7r 
Xk = Acos -- + Bsm-, 

n n 
k = 1,2, ... ,n, 

where A and B are arbitrary constants. 

Let A be a real symmetrie matrix of the order n, and R be a diagonal matrix of 
the order n with positive diagonal elements. For the generalised matrix eigenvalue 
problem 

(2.5) A:z: = >'R:z:, :z: = [Xl 

the following results are weIl known (cf. Agarwal [1, Ch. 11]): 
10 There exist exactly n real eigenvalues >. = >'v, v = 1, ... , n, which need not be 
distinct. 
20 Corresponding to each eigenvalue >'v there exists an eigenvector :z:V which can 
be so chosen that n vectors :z:l, ... ,:z:n are mutually orthogonal with respect to 
the matrix R = diag (ru, ... , Tnn ), i.e., 

n 

(:z:i)T R:z:i = L = 0 (i i- j), 
k=l 
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In partieular, these vectors are linearly independent. 

3° If A is a tridiagonal real symmetrie matrix of the form 

a1 b1 0 
b1 a2 b2 

(2.6) Hn(a,b) = b2 a3 

bn- 1 
0 bn- 1 an 

where a = (al, ... ,an), b = (b1, ... ,bn- 1) and > 0 for k = 1, ... ,n -1, then 
the eigenvalues Av of the matrix A are real and distinct. 

4° If R = I and the eigenvalues Av of Aare arranged in an increasing order, Le., 
Al ... An, then for any vector X E !Rn, we have that 

(2.7) 

n 
where (x, y) = E XkYk is the scalar product of the vectors 

k=l 

Ynf· 

In the case Al < A2 the equality Al (X, X) = (Ax, X) holds if and only if X is a 
scalar multiple of Xl. Similarly, if An > An-1 the equality (Ax,x) = An(X,X) 
holds if and only if X is a scalar multiple of x n . 

Further, for any vector X orthogonal to Xl ((X, Xl) = 0), we have 

(2.8) 

If Al < A2 = A3 < A4, then a vector X orthogonal to Xl satisfies the equality 
A2 (x, x) = (Ax, x) if and only if X is a linear combination of x 2 and x 3 • 

5° If the real symmetrie matrix A is positive definite, Le., for every nonzero 
X E !Rn, (Ax,x) > 0, then the eigenvalues Av (v = 1, ... ,n) are positive. In 
a partieular case when R = I and A = Hn(a, b) is positive definite, then the 
eigenvalues Av (v = 1, ... ,n) can be arranged in a strictly increasing order, 0 < 
Al< ... < An. 

Note that inequalities (2.1), (2.2) and (2.4) are based on the left inequality in (2.7) 
(Le., (2.8)). The right inequality in (2.7) has not been used, so that in [10] we 
cannot find some opposite inequalities of (2.1), (2.2) and (2.4). As special cases of 
certain general inequalities, the opposite inequalities of (2.1), (2.2) and (2.4) were 
first proved in [19] (see also [2]). 

Using a method similar to one from [10], Block [6] obtained several inequalities 
related to (2.1), (2.2) and (2.4), as weH as some generalisations of such inequalities. 
For example, Block has proved the foHowing result: 



DISCRETE INEQUALITIES OF WIRTINGER'S TYPE 293 

Theorem 2.4. For real numbers Xl, X2, ... ,xn (= 0), xnH = Xl, the inequality 

n n 

(2.9) - Xk+I)2 4sin ;n 
k=l k=l 

holds, with equality in (2.9) if and only if Xk = A sin(k1l" In), k = 1,2, . .. ,n, where 
A is an arbitrary constant. 

A number of generalisations of (2.1), (2.2) and (2.4) were given by Novotna ([27] 
and [29]). We mention here three of them. 

Theorem 2.5. For real numbers Xl, X2, ... ,Xn satisfying (2.3), the inequality 

(2.10) 

holds, with equality in (2.10) if and only if Xk = Asin((2k - 1)1I"/(2n)), k = 
1,2, ... , n, where A is an arbitrary constant. 

Theorem 2.6. Let n = 2m and let Xl, X2, ... , Xn, XnH = Xl be real numbers 
such that (2.3) holds. Then 

n n 
)2 4· 2 11" 2 . 11" (. 211" . 11") ( )2 sm sm--sm- Xm +X2m , 

n n n n 
k=l k=l 

with equality if and only if 

Xk = Acos(2k1l"In) + Bsin(2k1l"ln), k = 1,2, ... ,n, 

where A and Bare arbitrary constants. 

Theorem 2.1. For real numbers Xl, X2, ... ,Xn satisfying (2.3), the inequality 

n-l n 
)2 4· 2 11" 2 2 • 11" (. 11" • 11") ( )2 Xk-Xk+l sm nsm 2n sm;;:-sm 2n XI+Xn 

k=l k=l 

holds, with equality if and only if Xk = Asin((2k -1)1I"/(2n)), k = 1,2, ... ,n, 
where A is an arbitrary constant. 

Using some appropriate changes, Novotna [27] showed that inequalities (2.1), (2.2) 
and (2.10) can be obtained from (2.4). She proved the basic Theorem 2.3 using the 
real trigonometrie polynomials. Namely, she used the fact that for every number Xi 

there exist the Fourier coefficients Ck and C; (k = 0,1, ... , m; j = 1, ... , m - 1) 
such that 

1 i n. 
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For details on this method see for example [1]. 
New proofs of inequalities (2.1), (2.2) and (2.4) were given by Cheng [8]. His 
method is based on a connection with discrete boundary problems of the Sturm-
Liouville type 

(2.11) 
-1)) + q(k)u(k) + Ar(k)u(k) = 0, k = 1, ... ,n, 

u(O) = Au(I), u(n + 1) = ßu(n). 

For some details ofthis method see Agarwal [1, Ch. 11]. Another method of 
proving these inequalities was based on geometrie facts in Euclidean space (cf. 
Shisha [32]). 

3. A Spectral Method and Using Orthogonal Polynomials 
In this section we consider our method (see [19]) for determining the best constants 
An and Bn in the inequalities 

n n n 
(3.1) An L rk(xk - xk+d2 Bn 

k=l k=O k=l 

under some conditions for a sequence of real numbers a: = (Xk), where p = (Pk) 
and r = (rk) are given weight sequences. The method is based on the minimal 
and maximal zeros of certain dass of orthogonal polynomials, which satisfy a 
three-term recurrence relation. 
For two N -dimensional real vectors 

and W= [Wl 
N 

we define the usual inner product by (z,w) = L ZkWk and consider the sums 
k=l 

n 

F = L rk(xk - Xk+1)2 
k=O 

and 

If we put VPk Xk = Yk (k = 1, ... ,n), then F and G can be transformed in the 
form 

and 

n 

F = L Yk - v'jJkYk+t} 2 = (HN(a,b)y,y) 
k=O PkPk+l 

n 

G = = (y,y), 
k=l 

where y E ]RN and HN(a, b) is a three-diagonal matrix like (2.6), with N = n or 
N = n -1, depending on the conditions for the sequence a: = (Xk). Especially, we 
will consider the following two cases: 

1° Xo = Xn+l = 0 and Xl, ... ,Xn are arbitrary real numbers (N = n)j 
2° Xl = 0 and X2, ••• ,Xn are arbitrary real numbers (N = n - 1). 

For such three-diagonal matrices we can prove the following auxiliary result ([19]): 
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Lemma 3.1. Let p = (Pk) and r = (Tk) be positive sequences and the matrix 
Hn(a, b) be given by (2.6). 

10 1/ the sequences a = (al, ... , an) and b = (bI, ... , bn - l ) are defined by 

_ (TO + Tl Tn-l + Tn ) a- , ... , , 
PI Pn 

b= _ Tn-l ) 
';PIP2 , ... , .,fPn-IPn ' 

(3.3) 

then the matrix Hn(a, b) is positive definite. 

20 1/ the sequences a = (al, ... , an-d and b = (bI, ... , bn - 2) are defined by 

__ (Tl + T2 Tn -2 + Tn-l Tn-l) 
a , ... , " 

P2 Pn-l Pn 

( T2 Tn-l ) 
b = - ';P2P3 , ... , - ';Pn-IPn ' 

(3.2) 

then the matrix H n - l (a, b) is positive definite. 

We will formulate our results in terms of the monie orthogonal polynomials (7Tk) 

instead of orthonormal polynomials as we made in [19]. Such an approach gives a 
simpler and nicer formulation than the previous one. 
The monie polynomials orthogonal on the realline with respect to the inner prod-
uct (J, g) = IR. /(t)g(t)dJ.L(t) (with a given measure dJ.L(t) on IR) satisfy a funda-
mental three-term recurrence relation of the form 

(3.5) 

with 7To(t) = 1 and 7T_I(t) = 0 (by definition). The coefficients ßk are positive. 
The coefficient ßo, whieh multiplies 7T-I(t) = 0 in three-term recurrence relation 
may be arbitrary. Sometimes, it is convenient to define it by ßo = IR. dJ.L(t). Then 
the norm of 7Tk can be express in the form 

(3.6) 

An interesting and very important property of polynomials 7Tk(t), k 1, is the 
distribution of zeros. Namely, all zeros of 7Tn (t) are real and distinct and are 
located in the interior of the interval of orthogonality. Let 11 = 1, ... , n, 
denote the zeros of 7Tn (t) in an increasing order 

(3.7) Tin) < rJn) < ... < rAn). 

It is easy to prove that the zeros of 7Tn (t) are the same as the eigenvalues of 
the following tridiagonal matrix 

o 

o 
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which is known as the Jacobi matrix. Also, the monie polynomial 7rn(t) can be 
expressed in the following determinant form 

7rn (t) = det(tIn - Jn ), 

where In is the identity matrix of the order n. For some details on orthogonal 
polynomials see [17] and [23]. 
Regarding to the conditions on the sequence x = (Xk), we consider now two 
important cases: 

CASE 10 (xo = x n+1 = 0). If we take ak-l = -ak and ..(iJk = -bk (i.e., ßk = bi > 
0), k 2: 1, then we can consider the matrix H n( -a, -b) = -Hn(a, b), defined by 
(2.6), as a Jacobi matrix for certain dass of orthogonal polynomials (7rk)' Thus, 
for every y E IRn we have 

(Hn(a,b)y,y) = (-Hn(-a,-b)y,y) = (-Jny,y) 

and 
(-Jny,y) -Tin)(y,y), 

where the zeros TSn ), lJ = 1, ... ,n, of 7rn (t) are given in an increasing order (3.7). 
On the other hand, putting 

7r*(t) = [ 7ro(t) 7ri(t) and en=[O 0 1f, 

where 7rk(t) = 7rk(t)/II7rkll, we have (cf. Milovanovic [18, tl. 178]) 

t7r*(t) = Jn7r*(t) + $n 
This means that for the eigenvalue t = TSn ) of Jn , the corresponding eigenvector 
is given by 7r*(TSn)). Notiee also that the same eigenvector corresponds to the 
eigenvalue -TSn ) of the matrix -Jn . Therefore, the following theorem holds. 

Theorem 3.2. Let P = (PkhENo and r = (rk)kENo be two positive sequences, 

rk-l + rk ß _ ri 
ak-l = - k - -- (k 2: 1), 

Pk PkPk+l 

and let (7rk) be a sequence of polynomials satisfying (3.5). Then for any sequence 
of real numbers Xo (= 0), Xl, ... , Xn, XnH (= 0), inequalities 

n n n 
(3.8) An LPkXi L rk(xk - xk+d 2 Bn LPkxt 

k=l k=O k=l 
h ld . h A - (n) d B - (n) h (n) - 1 o ,Wtt n - -Tn an n - -Tl ,w ere Tv ,V - , ... , n, are zeros of 
7rn(t) in an increasing order (3.7). 
Equality in the left (right) inequality (3.8) holds if and only if 

C 7rk-l(t) 
Xk = -- . k = 1, ... ,n, 

..jfik l1 7rk-lll' 

where t = T$.n) (t = Tin)), l17rkll is given by (3.6) and C is an arbitrary constant. 

Some corollaries of this theorem are the following results: 
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Corollary 3.3. For each sequence of the real numbers Xo (= 0), Xl, ... , Xn , Xn+1 
(= 0), the following inequalities hold: 

n n n 
() . 2 1f 2 )2 2 1f 2 
3.9 4sm 2(n + 1) :::; Xk - Xk+1 :::; 4cos 2(n + 1) L..Jxk· 

k=l k=O k=l 

Equality in the left inequality (3.9) holds if and only if 

C . k1f 
Xk = sln--1 , 

n+ 

where C is an arbitrary constant. 

k = 1, ... ,n, 

Equality in the right inequality (3.9) holds if and only if 

xk=C(-I)k sin k1f 1 , 
n+ 

where C is an arbitrary constant. 

k = 1, ... ,n, 

Proof. For Pk = rk = 1 we obtain ak = -2 and fA = 1 for each k. Consequently, 
the recurrence relation (3.5) becomes 

Putting t + 2 = 2x and 1fk(t) = Sk(X), this relation reduces to the three-term 
recurrence for Chebyshev polynomials of the second kind 

Thus, we have (cf. Milovanovic [17, pp. 143-144]) 

(3.10) ( ) _ S ( ) _ sin(k + 1)/J 
1fk t - k X - . /J ' sm 

t+2 
cos/J=x= --, 

2 

and therefore the zeros of 1fn (t) are (in an increasing order) 

(3.11) r(n) = -4sin2 /Jv 
v 2 ' 

/J _ (n + 1 - v)1I' 
v- n+l ' v= 1, ... ,no 

Thus, the best constants in (3.9) are 

A = _r(n) = 4sin2 11' 
n n 2(n+l) 

and 

_ (n) _ • 2 n1l' _ 2 1f 
B n --T1 -4sm 2(n+l)-4cos 2(n+l)' 
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Since IISkll = ../'Ir/2 for each k, using (3.10) and (3.11) we find the extremal 
sequences for the left and the right inequality in (3.9). For example, for the right 
inequality we have 

from which follows 

(k = 1, ... ,n), 

where C is an arbitrary constant. 0 
Remark 3.1. Theorem 2.2 is contained in Corollary 3.3. 

In a more general case we can take 

Pk = (a + bk)2 and rk = (a + bk)(a + b(k + 1», 

with a, b O. When b = 0 we obtain Corollary 3.3. However, if b i- 0, because of 
homogeneity in (3.8), it is enough to put b = 1. In that case, we obtain the same 
polynomials as in Corollary 3.3. 

Corollary 3.4. For each sequence of the real numbers Xo (= 0), Xl, ... , X n , X n +1 

(= 0), the following inequalities 

n n 

(3.12) 4sin2 2(n: 1) + :::; + a)(k + a + 1)(xk - xk+d2 
k=l k=O 

n 
2 'Ir "'( )2 2 :::; 4cos 2( 1) L.... k + a Xk 

n+ k=l 

hold, where a o. 
Equality in the left inequality (3.12) holds if and only if 

C . k'lr 
Xk = -k- sm--1 , 

+a n+ 
k = 1, ... ,n, 

where C is an arbitrary constant. 

Equality in the right inequality (3.12) holds if and only if 

C(-I)k. k7r 
Xk = k sm--1 , 

+a n+ 
k = 1, ... ,n, 

where C is an arbitrary constant. 

Remark 3.2. The corresponding inequalities for a = 0 were considered in [19). 
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Corollary 3.5. For eaeh sequenee 0/ the real numbers Xo (= 0), Xl, ... , Xn, Xn+1 
(= 0), we have 

n n n 
(3.12) An LX% Lk(Xk - Xk+1)2 Bn LX%, 

k=l k=O k=l 

where An and Bn are minimal and maximal zeros 0/ the monie Laguerre polyno-
mial Ln(x), respeetively. 

Equality in the left (right) inequality (3.12) holds i/ and only i/ 

Xk = CLk-l(X)j(k - I)! (k = 1, ... ,n), 

where X = An (x = B n) and C is an arbitrary eonstant. 

In this case we have (lk = -(2k + 1) and ßk = k2, so that the relation (3.5) 
becomes 

7rk+l (t) = (t + 2k + l)7rk(t) - k27rk_l (t). 

Putting t = -x and 7rk( -x) = (-l)k Lk(X), this relation reduces to one, which cor-
responds to the monie Laguerre polynomials orthogonal on (0, +00) with respect 
to the measure dJ.t(x) = e-X dx. The norm of Lk(X) is given by IILkll = k!. 

In a more general case we can take 

1 1 
rk = B(s + 1, k)' Pk = (k + s)B(s + 1, k) 

(3.13) rO = 0, (k 1), 

where s > -1 and B(p, q) is the beta function (B(P, q) = r(p)r(q)jr(p + q), r 
is the gamma function). Then we have (lk = -(2k + s + 1) and ßk = k(k + s), 
and the corresponding recurrence relation, after changing variable t = -x and 
7rk(-X) = (-l)kLk(x), becomes 

(3.14) Lk+1 (x) = (x - (2k + s + l))Lk(x) - k(k + s)Lk_l (x), 

where Lk(x), k = 0,1, ... , are the generalised monie Laguerre polynomials ortho-
gonal on (0, +00) with respect to the measure dJ.t(x) = xBe- X dx. Thus, we have 
the following result: 

Corollary 3.6. Let s > -1 and let r = (rk)kENo and p = (pkhEN be given by 
(3.13). For eaeh sequenee 0/ real numbers Xo (= 0), Xl, ... , x n, Xn+1 (= 0), we 
have 

n n n 
(3.15) An LPkX% L rk(xk - Xk+1)2 B n LPkX%, 

k=l k=O k=l 

where An and B n are minimal and maximal zeros 0/ the monie generalised La-
guerre polynomial (x), respeetively. 
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Equality in the left (right) inequality (3.15) holds if and only if 

Xk = -..;77.( k;=+===:=s) (k = 1, ... ,n), 

where x = An (x = Bn) and C is an arbitrary constant. 

CASE 2° (Xl = 0). Here, in fact, we consider the inequalities 

n n-l n 

(3.16) An L Tk(Xk - Xk+1)2 B n 
k=l k=l k=l 

for any sequence of the real numbers Xl (= 0), X2, ... , Xn. 
Using Lemma 3.1 (Part 2°) we put N = n - 1, 

(3.17) 

and also Uk-l = -ak, V1fk = -bk (k 1). Taking 

(k 1), 

7I"*(t)= [7ro(t) 7ri(t) ... and en-I=[O 0 ... 1f, 

where 7rk(t) = 7rk(t)/II7rk11, we have, as in the previous case, 

t7l"*(t) = Jn - 17l"*(t) + Vßn-1 

but now 
Hn-l(a,b) = -Hn-l(-a,-b) = -Jn- l - Tn Dn- l , 

Pn 
where Dn - l = diag (0, ... ,0,1). So, we obtain that 

from which we conclude that the eigenvalues of Hn-l(a,b), in notation Av = -Tv, 
V = 1, ... ,n - 1, are the zeros of the polynomial 

(3.18) 

The corresponding eigenvectors are 71"* (T v). 

Since l17rn-11l = l17rn-21IJßn-l, the polynomial (3.18) can be reduced to one rep-
resented in terms of the monie polynomials, 

(3.19) 
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TheoreIll 3.7. Let P = (PkhEN and r = (rkhEN be two positive sequences, Uk-l 

and ßk (k 2: 1) be given by (3.17), and let (1I"k) be a sequence of polynomials 
satisfying (3.5). Then for any sequence of real numbers Xl (= 0), X2, ... , Xn, 
inequalities (3.16) hold, with An = min{-Ty } B n = max{-Ty}, where Ty, 1/ = 

y y 

1, . .. , n - 1, are zeros of the polynomial R n - l (t) given by (3.19). 

Equality in the left (right) inequality (3.16) holds if and only if 

Xl = 0, k = 2, ... ,n, 

where t = -An (t = -Bn), l11l"kll is given by (3.6) and C is an arbitrary constant. 

Some corollaries of this theorem are the following results: 

Corollary 3.8. For each sequence of real numbers Xl (= 0), X2, ... , Xn, the 
following inequalities hold: 

n n-l n 

(3.20) • 2 11" 2 2 2 11" 2 
4 sm 2(2n _ 1) L..J xk :::; L..J(Xk - XkH) :::; 4cos 2n _ 1 L..J xk· 

k=2 k=l k=2 

Equality in the left inequality (3.20) holds if and only if 

. (k - 1)11" 
xk=Csm 2 ' n-1 

k = 1, ... ,n, 

where C is an arbitrary constant. 

Equality in the right inequality (3.20) holds if and only if 

_ C(-l)k . 2(k - 1)11" 
Xk - sm 2n -1 ' 

where C is an arbitrary constant. 

Here we have (as in Corollary 3.3) that 

and 

1l"k(t) = Sdx) = + 1)0 , 
smO 

k = 1, ... ,n, 

t + 2 = 2x, 

cos«2n - 1)0/2) 
Rn-l(t) = Sn-l (x) - Sn-2(X) = cos(0/2) , 

and therefore 
• 2 1/11" 

T y = -4sm 2n -1 ' v=l, ... ,n-l. 
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Corollary 3.9. Let 8> -1 and let r = (rkhEN and p = (Pk)kEN be given by 

(3.21) 
1 1 

rl = 0, rk+l = B(8 + 1, k)' Pk+l = (k + 8)B(8 + 1, k) (k 1). 

For each 8equence 01 real number8 Xl (= 0), X2, ... , Xn, we have 

n-l n 

(3.22) L rk(Xk - Xk+l)2 B n LPkX%, 
k=l k=2 

where B n i8 a maximal zero 01 the monic generalised Laguerre polynomial 
Equality in (3.22) hold8 il and only il 

(3.23) Xl = 0, 
k L'k_2(Bn) 

Xk = C( -1) r(k + 8 _ 1) , k = 2, ... ,n, 

where C is an arbitrary con8tant. 

Proof. Taking 7I'k( -x) = (_l)k Lk(x) , with (3.21) we obtain the reeurrenee relation 
(3.14), so that the polynomial (3.19) beeomes 

Rn-l(t) = 7I'n-l(t) - (n + 8 - 1)7I'n-2(t) 

= (_l)n-1 (-t) + (n + 8 - -t)) 

= 

Thus, B n is a maximal zero of the monie generalised Laguerre polynomial (x). 
Evidently, An = O. 
Since 

1 

..jPk 
7I'k-2( -Bn ) 

1171'k-211 
(k + 8 - 1)r(8 + l)(k - 2)! 

r(k + 8) 

= (_l)k Jr(8 + 1) U (B) 
r(k + 8 - 1) k-2 n, 

(_1)k-2 L'k_2(Bn ) 

J(k - 2)!f(k + 8 - 1) 

we obtain the extremal sequence (3.23) for which the equality is attained in 
(3.22). D 

Remark 3.3. A few members of the monic generalised Laguerre polynomials 
are 

Lg+l(x) = 1, 

= x - (8 + 2), 

L;+l(x) = x2 - 2(8 + 3)x + (8 + 2)(8 + 3), 

L;+l (x) = x3 - 3(8 + 4)x2 - (8 + 3)(8 + 12)x - (8 + 2)(8 + 3)(8 + 4). 

It is not difficult to show that B3 = 8 + 2, B4 = 8 + 3 + y'S"'+3. 
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Remark 3.4. For s = 0 the inequality (3.22) reduees to (see [19]) 
n-l n 

L (k - 1)(Xk - Xk+1)2 Bn E xi, 
k=l k=2 

where B n is a maximal zero of the monie generalised Laguerre polynomial 

Remark 3.5. If for every k we take Xk = (-1)k ak the inequalities (3.1) become 
n n n 

An LPklakl2 L Tklak + aHl12 Bn LPklakl2. 
k=l k=O k=l 

Moreover, these inequalities are valid for eomplex numbers too. 
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At the end of this section we mention some results of Losonczi [15]. He eonsidered 
inequalities of the form 

n. n 

(3.24) ar L IXkl 2 L' IXk ± xHml2 ßr L IXkI 2 , 
k=O k=O 

where Xo, Xl, ... , X n are real or complex numbers, 1 m n, summation symbols 
defined by: 

I n-m 

L=L, 
k=O 

with Xn+l = ... = Xn + m = 0, 

",3 __ 
L..J L..J with X-m = ... = X-I = 0, 

k=-m 

",4 __ 
L..J L..J with X-m = ... = X-I = 0 = Xn+l = ... = Xn+ m ' 

k=-m ar, ßt (i = 1, 2, 3, 4) are constants and either the + or the - sign is taken. It is 
easy to see that the cases i = 2 and i = 3 are the same apart from the notation 
of the variables Xk. Hence there are 6 different cases in (3.24) corresponding to 
i = 1,2 or i = 3,4 and the + or - sign. Losonczi found the best constants ar 
and ßt in all cases and it was based on the determination of eigenvalues of some 
suitable Hermitian matrices. 

Theorem 3.10. Let n and m be fixed natural numbers (1 m n) and r = 
[n/m]. The inequalities (3.24) hold for every real or complex numbers Xo, Xl, ... , 

X n , with the best constants: 

at = a; = at = a3" = 4sin2 2(2r'lr+ 3) , 

ß+ - ß- - ß+ - ß- - 4 cos2 _'lr_ . 
2 - 2 - 3 - 3 - 2r + 3 ' 
+ ___ .2 'Ir +_ __ 2 'Ir 

a 4 -a4 -4sm 2(r+2)' ß4 -ß4 -4cos 2(r+2)' 



304 G. V. MILOVANOVIC AND I. Z. MILOVANOVIC 

Remark 3.6. In connection with extrem al properties of nonnegative trigonometrie poly-
nomials Szegö [33] and Egervary and Szasz [9] proved that for every complex numbers 
Xo, Xl, ... , Xn the inequalities 

n n-m n 

(3.25) -r L Ixd ::; L (XkXk+m + XkXk+m) ::; rL IXkl 2 
k=O k=O k=O 

holds, with the best constant r = 2cos(7r/(r + 2)), where r = [n/m]. The case m = 1 
was previously proved by Fejer [11]. It is clear that the inequalities (3.25) are related to 
(3.24). 

4. Inequalities for Higher Differences 
In this section we give a short account on generalisations of Wirtinger's type 
inequalities to higher difIerences. The first results for the second difIerence were 
proved by Fan, Taussky and Todd [10]: 

Theorem 4.1. 1f Xo (= 0), XI,X2, ... ,Xn, xn+d= 0) are given real numbers, 
then 

n-l n 

(4.1) ,,( )2' 4 7r "2 L...J Xk - 2XkH + Xk+2 16sm 2(n + 1) L...Jxk, 
k=O k=l 

with equality in (4.1) if and only if Xk = k = 1,2, ... , n, where A is 
n+I 

an arbitrary constant. 

Theorem 4.2. 1f Xo, Xl, ... , Xn, Xn+l are given real numbers such that Xo = Xl, 

Xn+l = Xn and (2.3) holds, then 

(4.2) 

The equality in (4.2) is attained if and only if 

A (2k - I)7r 
Xk = cos 2n ' k = 1,2, ... ,n, 

where A is an arbitrary constant. 

A converse inequality of (4.1) was proved by Lunter [16], Yin [36] and Chen [7] 
(see also Agarwal [1]). 

Theorem 4.3. 1fxo(= 0), XI,X2, ... ,Xn, xn+d= 0) are given real numbers, 
then 

n-l n 

(4.3) E(Xk - 2XkH + Xk+2)2 :::; 16cos4 2(n: 1) {; xk, 

with equality in (4.3) if and only if Xk = A( -l)k k = 1,2, ... , n, where 
n+I 

A is an arbitrary constant. 

Chen [7] also proved the following result: 
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Theorem 4.4. I/ XO,Xl, ... ,xn ,xn+1 are given real numbers such that Xo = Xl 

and Xn+l = X n , then 

with equality holding i/ and only i/ 

A( l) k . (2k - 1)1f 
Xk = - Sln , 

n 
k = 1,2, ... ,n, 

where A is an arbitrary constant. 

Proof. In this case, the n x n symmetrie matrix corresponding to the quadratie 
form 

is 

n-l 

F2 = Z)Xk - 2Xk+1 + Xk+2)2 = (Hn,2X, x) 
k=O 

H n ,2 = 

2 -3 1 
-3 6 -4 1 

1 -4 6 -4 1 

1 -4 6 -4 1 
1 -4 6-3 

1 -3 2 

This matrix is the square of the n x n matrix 

1 -1 
-1 2 -1 

-1 2-1 
(4.4) H n = Hn,l = 

-1 2-1 
-1 1 

The eigenvalues of H n are 

\ _ \ (H ) - 4 2 (n - v + 1)1f 
/\" - /\" n - cos 2n ' v = 1, ... ,n, 

and therefore, the largest eigenvalue of H n is 

The corresponding eigenvector is x n = [Xl n X2n X nn ]T, where 

_ ( 1)". (2v - 1)1f 
x"n - - Sln 2n ' v=1,2, ... ,n. 
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Thus, the largest eigenvalue of H n ,2 is 

and the associated eigenvector is x n . 0 
Remark 4.1. Notice that the minimal eigenvalue of the matrix Hn (and also Hn ,2) is 
..\1 = O. Therefore, the condition (2.3) must be inc1uded in Theorem 4.2 and the best 
constant is the square of the relevant eigenvalue 

2 (n -1)11" . 2 11" 
..\2 = 4 cos 2n = 4 sm 2n· 

For any n-dimensional vector X = [Xl X2 ... xnf, Pfeffer [30] introduced a 
periodically extended n-vector by setting xHrn = Xi for i = 1,2, ... ,n and rEN, 
and used the mth difference of x given by x(m) = ... 
where 

1 i n, 

in order to prove the following result: 

Theorem 4.5. If x is a periodically extended n-vector and (2.3) holds, then 

with equality case if and only if x is the periodic extension of a vector of the form 
Cl U + C2v, where 

have the following components 

2k1r 
Uk = cos--, 

n 

and 

. 2k1r 
Vk = Sin --, 

n 

and Cl and C2 are arbitrary real constants. 

k = 1, ... ,n, 

Recently we have studied inequalities of the form (see [21]) 

n Um n 

(4.5) An,m L Bn,m 
k=l k=lm k=l 

where lm = 1 - [m/2], Um = n - [m/2] and 
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2 
The quadratie form Fm = 2: (LlmXk) for m = 1 reduces to 

n-l n-l 

F l = + L + - 2 L XkXkH, 
k=2 k=l 

with corresponding tridiagonal symmetrie matrix H n = Hn,l given by (4.4). 

Under conditions 

X s = Xl- s , Xn+l- s = xn+ s 
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we proved that the corresponding matrix of the quadratic form Fm is exactly 
the mth power of the matrix H n = Hn,l so that the best constant in the right 
inequality (4.5) is given by 

7f B =4mcos2m _ 
n,m 2n 

Evidently, An,m = O. However, by restrietion (2.3), the best constant in the left 
inequality (4.5) is given by 

A 4m . 2m 7f 
nm= Sln -2. , n 

For other generalisations of discrete Wirtinger's inequalities for higher differences 
see [6), [16), [31] and [34]. There are also generalisations for multidimensional 
sequences and partial differences (see [6] and [28]). Finally, we mention that there 
exist some types of non-quadratie Wirtinger's inequalities (cf. [6), [10] and [12]) 
as weH as discrete inequalities of Opial's type (cf. [3], [14], [20], [22], [35]). 
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