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Abstract. Various discrete versions of Wirtinger’s type inequalities are considered. A
short account on the first results in this field given by Fan, Taussky and Todd [10] as well
as some generalisations of these discrete inequalities are done. Also, a general method
for finding the best possible constants A, and By in inequalities of the form

n n n

2 2 2

An E PrTk < E Th(Tk — Tk41)” < Bn E PkTk,
k=1 k=0 k=1

where p = (pg) and r = (r}) are given weight sequences and & = (z) is an arbitrary
sequence of the real numbers, is presented. Two types of problems are investigated and
several corollaries of the basic results are obtained. Further generalisations of discrete
inequalities of Wirtinger’s type for higher differences are also treated.

1. Introduction and Preliminaries

In the well-known monograph written by Hardy, Littlewood and Pdlya [13, pp.
184-187] the following result was mentioned as the Wirtinger’s inequality:

Theorem 1.1. Let f be a periodic function with period (27) and such that f' €
L2(0,27). If 2™ f(z)dz = O then

27 2
(1.1) / f(z)?ds < / ()2 ds,
0 0

with equality in (1.1) if and only if f(z) = Acosz + Bsinz, where A and B are
constants.

Also, this inequality can be found in the monograph of Beckenbach and Bellman
[4, pp. 177-180] and, especially, in one written by Mitrinovié in cooperation with
Vasi¢ [25, pp. 141-154], including many other inequalities of the same type. The
proof of W. Wirtinger was first published in 1916 in the book [5] by Blaschke.
However, inequality (1.1) was known before this, though with other conditions on

1991 Mathematics Subject Classification. Primary 26D15; Secondary 41A44, 33C45.

Key words and phrases. Discrete inequalities; Difference; Eigenvalues and eigenvectors; Best
constants; Orthogonal polynomials.

This work was supported in part by the Serbian Scientific Foundation, grant number 04M03.

289

G.V. Milovanovic (ed.), Recent Progress in Inequalities, 289-308.
© 1998 Kluwer Academic Publishers.



290 G. V. MILOVANOVIC AND I. Z. MILOVANOVIC

the function f. The French and Italian mathematical literature do not mention the
name of Wirtinger in connection with this inequality. A historical review on the
priority in this subject was given by Mitrinovi¢ and Vasi¢ [24] (see also [25-26]).
They have mentioned various generalisations and variations of inequality (1.1), as
well as possibility of applications of such kind of inequalities in many branches in
mathematics as Calculus of Variations, Differential and Integral Equations, Spec-
tral Operator Theory, Numerical Analysis, Approximation Theory, Mathematical
Physics, etc. Under some condition of f, there are also many generalisations of
(1.1) which give certain estimates of quotients of the form

fw(@)f(2)? da [ wle, ) a,)" dody

freve  [((5) +(5)) e

where w is a weight function (in one or two variables) and D is a simply connected
plane domain.

There are various discrete versions of Wirtinger type inequalities. In this survey
we will deal only with such kind of inequalities.

The paper is organised as follows. In Section 2 we give a summary on the first
results in this field given by Fan, Taussky and Todd [10] as well as some generali-
sations of these discrete inequalities. In Section 3 we present a general method for
finding the best possible constants A, and B, in inequalities of the form

n n n
AnY peak < i@k — Tet1)? < Ba Y prai,
k=1 k=0 k=1

where p = (px) and r = (ry) are given weight sequences and * = (zy) is an
arbitrary sequence of the real numbers. This method was introduced by authors
[19] and later used by other mathematicians (see e.g., [1] and [36]). In the same
section we give several corollaries of the basic results. Finally, generalisations
of discrete inequalities of Wirtinger’s type for higher differences are treated in
Section 4.

2. Discrete Fan-Taussky-Todd Inequalities and Some
Generalisations

The basic discrete analogues of inequalities of Wirtinger were given by Fan, Taus-
sky and Todd [10]. Their paper has been inspiration for many investigations in
this subject. We will mention now three basic results from [10]:

Theorem 2.1. If z;,x3,... ,x, are n real numbers and 1 = 0, then

n—1 n
2.1 - 2> 4si
( ) kz_:l(l‘k :I:k+1) Z sm 2(2n — 1 k;_zx ,
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with equality in (2.1) if and only if

(k—1)m

k=1,2,...
277,—1’ )& )y Ty

Tr = Asin

where A is an arbitrary constant.

Theorem 2.2. If zo (= 0), z1,%Z2,... ,Zn, Tnt+1 (= 0) are given real numbers,
then

(2.2) Z(xh — Ty1)? > 4sin® 5
k=0

T N~
(n+1)z“"’°’

with equality in (2.2) if and only if z = Asin nk:—rl’ k=1,2,...,n, where A is

an arbitrary constant.

Theorem 2.3. Ifzy,x2,... ,Zn, Tnt1 are given real numbers such that x; = Ty
and
n
(2.3) >z =0,
k=1
then
n n
(2.4) Z(zk — Zp41)? > 4sin’ % Zmi
k=1 k=1

The equality in (2.4) is attained if and only if

2k 2k
mszcosTﬂ+BsinT7r, k=1,2,...,n,

where A and B are arbitrary constants.

Let A be a real symmetric matrix of the order n, and R be a diagonal matrix of
the order n with positive diagonal elements. For the generalised matrix eigenvalue
problem

(2.5) Ar =ARz, xz=[z; ... z,]7,

the following results are well known (cf. Agarwal [1, Ch. 11]):

1° There exist exactly n real eigenvalues A = A\, v = 1,... ,n, which need not be
distinct.

2° Corresponding to each eigenvalue )\, there exists an eigenvector £ which can
be so chosen that n vectors x!,...,z" are mutually orthogonal with respect to
the matrix R = diag (r11,... ,7nn), i-€.,

()" Ra’ = Zrkkxixi =0 (i#7),
k=1
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In particular, these vectors are linearly independent.

3° If A is a tridiagonal real symmetric matrix of the form

fa; by O 7
b1 as bz
(2.6) H,(a,b) = b az . ,
. - . bn—l
L O bn—-l Qn J

where @ = (ay,...,a,), b= (b1,... ,bp—1) and b2 > 0 for k= 1,...,n — 1, then
the eigenvalues A, of the matrix A are real and distinct.

4° If R = I and the eigenvalues ), of A are arranged in an increasing order, i.e.,
A1 < -+ < Ay, then for any vector @ € R", we have that

(2.7) Ail(z,z) < (Az, z) < A\ (z, ),
where (z,y) = ) zxyx is the scalar product of the vectors
k=1

T=[z1 -- wn]T and y=[y1 --- yn]T.

In the case A\; < A2 the equality A\ (z,z) = (Azx,x) holds if and only if x is a
scalar multiple of z!. Similarly, if A, > A,_1 the equality (Az,z) = A\.(z, )
holds if and only if « is a scalar multiple of ™.

Further, for any vector & orthogonal to ! ((x,x!) = 0), we have
(2.8) Ao (z,x) < (Az, ).

If A1 < A2 = A3 < Ay, then a vector  orthogonal to x! satisfies the equality
X2(z,x) = (Azx, ) if and only if  is a linear combination of 2 and z3.

5° If the real symmetric matrix A is positive definite, i.e., for every nonzero
z € R*, (Az,x) > 0, then the eigenvalues A, (v = 1,...,n) are positive. In
a particular case when R = I and A = H,(a,b) is positive definite, then the
eigenvalues A, (¥ = 1,...,n) can be arranged in a strictly increasing order, 0 <
AL <0 < A

Note that inequalities (2.1), (2.2) and (2.4) are based on the left inequality in (2.7)
(i.e., (2.8)). The right inequality in (2.7) has not been used, so that in [10] we
cannot find some opposite inequalities of (2.1), (2.2) and (2.4). As special cases of
certain general inequalities, the opposite inequalities of (2.1), (2.2) and (2.4) were
first proved in [19] (see also [2]).

Using a method similar to one from [10], Block [6] obtained several inequalities
related to (2.1), (2.2) and (2.4), as well as some generalisations of such inequalities.
For example, Block has proved the following result:



DISCRETE INEQUALITIES OF WIRTINGER’S TYPE 293

Theorem 2.4. For real numbers x1, T2,... ,Zn (= 0), Tnt1 = T1, the inequality
n
(2.9) Z Tp — Tpy1)? > 4sm — sz
k=1

holds, with equality in (2.9) if and only if xy, = Asin(kw/n), k =1,2,...,n, where
A is an arbitrary constant.

A number of generalisations of (2.1), (2.2) and (2.4) were given by Novotna ([27]
and [29]). We mention here three of them.

Theorem 2.5. For real numbers x;, ©,... ,Z, satisfying (2.3), the inequality
n—1 . n
2 ‘2 2
(2.10) kél(:vk — Zp41)” > 4sin o ;wk

holds, with equality in (2.10) if and only if zx, = Asin((2k — 1)7/(2n)), k =
1,2,...,n, where A is an arbitrary constant.

Theorem 2.6. Let n = 2m and let x1, x3,... , Ty, Tny1 = T1 be real numbers
such that (2.3) holds. Then

n n
2r T
_ 2S5 4sin2 & 2 -E(-___-__) 2
Z(a:k Tgy1)” > 4sin - Zxk +nsmn sin - smn (T + Tom)®,
k=1 k=1
with equality if and only if
zy, = Acos(2knw/n) + Bsin(2kw/n), k=1,2,...,n,

where A and B are arbitrary constants.

Theorem 2.7. For real numbers x,, T, ... ,Z, Satisfying (2.3), the inequality
T v s
Z(wk —Tp1)? >4 2— ,; % + 2nsin % (sm - sin E—T;)(xl + z,)?

holds, with equality if and only if xx = Asin((2k — 1)x/(2n)), k = 1,2,...,n,
where A is an arbitrary constant.

Using some appropriate changes, Novotna [27] showed that inequalities (2.1), (2.2)
and (2.10) can be obtained from (2.4). She proved the basic Theorem 2.3 using the
real trigonometric polynomials. Namely, she used the fact that for every number z;
there exist the Fourier coefficients Cy and C} (k=0,1,...,m; j=1,... ,m—1)
such that

2mks ; .
- )+(—1) Cm, 1<i<n.

m—1
2
z; =Co + E(Ckcos mki + C} sin
k=1
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For details on this method see for example [1].

New proofs of inequalities (2.1), (2.2) and (2.4) were given by Cheng [8]. His
method is based on a connection with discrete boundary problems of the Sturm-
Liouville type

A(p(k — 1)Au(k — 1)) + g(k)u(k) + Ar(k)u(k) =0, k=1,...,n,
u(0) = Au(l), u(n+1) = Bu(n).
For some details of this method see Agarwal [1, Ch. 11]. Another method of

proving these inequalities was based on geometric facts in Euclidean space (cf.
Shisha [32]).

(2.11)

3. A Spectral Method and Using Orthogonal Polynomials

In this section we consider our method (see [19]) for determining the best constants
A, and B, in the inequalities

n n n
(3.1) A, Zpkxi < Z T (T — Tk )2 < B, Zpkxi,
k=1 k=0 k=1

under some conditions for a sequence of real numbers * = (z), where p = (pk)
and r = (ry) are given weight sequences. The method is based on the minimal
and maximal zeros of certain class of orthogonal polynomials, which satisfy a
three-term recurrence relation.
For two N-dimensional real vectors

z=[zn ... zN]T and w=[w ... wN]T

N
we define the usual inner product by (z,w) = ) zxw; and consider the sums
k=1

n n
F = Zrk(zk — ZTpq1)? and G = Zpk:ci.
k=0 k=1

If we put /przr =yx (k=1,...,n), then F and G can be transformed in the
form

DkPr+1

e T
F=Y —*—(/prrie - VBeyrs1)” = (Hn(a,b)y,y)
k=0

and "
G=) vi=®v),
k=1

where y € RV and Hy/(a,b) is a three-diagonal matrix like (2.6), with N = n or
N =n—1, depending on the conditions for the sequence * = (z). Especially, we
will consider the following two cases:

1° 29 = zp41 =0 and x,,... , T, are arbitrary real numbers (N = n);
2° £, =0 and zs,... ,z, are arbitrary real numbers (N =n — 1).

For such three-diagonal matrices we can prove the following auxiliary result ([19]):
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Lemma 3.1. Let p = (px) and r = (ri) be positive sequences and the matriz
H,(a,b) be given by (2.6).
1° If the sequences a = (ay,... ,a,) and b= (by,... ,b,_1) are defined by

o= (ro+r1 Tn—1 +rn)
p Dn ’

(3.3) b= (_ T1 __Tn )
\V/P1D2 ’ ’ Dn—1Pn

then the matriz Hy(a,b) is positive definite.
2° If the sequences a = (ay,... ,an—1) and b= (by,... ,bp_2) are defined by

geo ey

a= (7'1 + T2 Tn—2 +Th-1 rn—l)
D2 DPn—1 ’ Dn ’

(3.2)

b= (-, ,— )
VP23’ \/Pa—iPn/’
then the matriz H,_1(a,b) is positive definite.
We will formulate our results in terms of the monic orthogonal polynomials ()

instead of orthonormal polynomials as we made in [19]. Such an approach gives a
simpler and nicer formulation than the previous one.

The monic polynomials orthogonal on the real line with respect to the inner prod-
uct (f,9) = [ F(t)g(t)du(t) (with a given measure du(t) on R) satisfy a funda-
mental three-term recurrence relation of the form

(3.5) Te+1(t) = (8 — o) mi(t) — Brme—1(t),

with mo(t) = 1 and w_1(¢) = 0 (by definition). The coefficients i are positive.
The coeflicient [y, which multiplies 7_;(¢) = 0 in three-term recurrence relation
may be arbitrary. Sometimes, it is convenient to define it by Gy = fR du(t). Then
the norm of 7} can be express in the form

(3.6) 7ell = V/(m,mk) = v/ BoBr -+ B -

An interesting and very important property of polynomials 7x(t), k > 1, is the
distribution of zeros. Namely, all zeros of 7,(t) are real and distinct and are

located in the interior of the interval of orthogonality. Let T,S"), v=1,...,n,
denote the zeros of 7,(t) in an increasing order

(3.7) ™ < <<,

It is easy to prove that the zeros T,S") of 7, (t) are the same as the eigenvalues of
the following tridiagonal matrix

"o VB (O
VB a1 B
Jn = Jp(dp) = VB2 o :
' ' Bn-1
[ O Brn_1 Qp—1 J
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which is known as the Jacobi matriz. Also, the monic polynomial 7,(t) can be
expressed in the following determinant form

wn(t) = det(tl, — Jp),
where I, is the identity matrix of the order n. For some details on orthogonal
polynomials see [17] and [23].
Regarding to the conditions on the sequence x = (z), we consider now two
important cases:
CASE 1° (g = Tpny1 = 0). If we take ax_; = —ax and /Br = —by, (ie., Bk = b3 >
0), k > 1, then we can consider the matrix H,(—a,—b) = —H,(a,b), defined by

(2.6), as a Jacobi matrix for certain class of orthogonal polynomials (7). Thus,
for every y € R™ we have

(Hn(a,b)y,y) = (—Hn(—a,-b)y,y) = (-Jny,y)

and
—rM(y,9) < (-Jay,9) < -1 (3, ),
where the zeros i, v = 1,... ,n, of 7, (t) are given in an increasing order (3.7).
On the other hand, putting
@) =[m@t) @) ... =_,®))7 and e,=[0 0 ... 1]7,

where 7} (t) = mx(t)/||7k]l, we have (cf. Milovanovié [18, p. 178])

tw*(t) = Jpw* (t) + /Bn 7 (t)en.

This means that for the eigenvalue t = T,E") of J,, the corresponding eigenvector

is given by w*(r,gn)). Notice also that the same eigenvector corresponds to the
eigenvalue —T,Sn of the matrix —J,,. Therefore, the following theorem holds.
Theorem 3.2. Let p = (px)ken, and r = (rk)ren, be two positive sequences,
Th—1+ Tk r2
Q-1 = ———, k=
Pk PkDPk+1
and let (m) be a sequence of polynomials satisfying (3.5). Then for any sequence

of real numbers zg (= 0), T1, ..., Tn, Tnt+1 (= 0), inequalities

(k> 1),

n n n
(3:8) AnY przi < ) rr(zk = Tke1)” < Bn ) prat,
k=1 k=0 k=1
hold, with A, = —1\" and B, = — 1("), where TV, v = 1,... ,n, are zeros of

mn(t) in an increasing order (3.7).
Equality in the left (right) inequality (3.8) holds if and only if
C 7rk_1(t)

Vo Ime-all”

where t = 75" (t= 7‘1(")), |7&|| is given by (3.6) and C is an arbitrary constant.

=1,...,n,

Some corollaries of this theorem are the following results:
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Corollary 3.3. For each sequence of the real numbers o (= 0), x1, ..., Tn, Tnt1
(= 0), the following inequalities hold:

. 2 ™
(3.9 4 sin Mt D

n n

n
Z 2 Z 2 2 T Z 2
Ty, S k_O(IBk - .’Bk+1) S_ 4 cos m Ty -

k=1 k=1
Equality in the left inequality (3.9) holds if and only if

km
+1°

zr = Csin k=1,...,n,
n

where C is an arbitrary constant.

Equality in the right inequality (3.9) holds if and only if

km
= C(-1)*si , k=1,...,n,
Tk (—1)" sin ] , n
where C s an arbitrary constant.
Proof. For pr, = rr, = 1 we obtain a; = —2 and S = 1 for each k. Consequently,

the recurrence relation (3.5) becomes
Tre1(t) = (E+ 2)m(t) —me—1(t), wo(t) =1, m_1(¢) =0.

Putting ¢ + 2 = 2z and m(t) = Sk(z), this relation reduces to the three-term
recurrence for Chebyshev polynomials of the second kind

Sk+1(z) = 228k (z) — Sk—1(x), So(z) =1, Si(z) =2z.
Thus, we have (cf. Milovanovié [17, pp. 143-144))

_ _ sin(k + 1)8 _ t+2
(3.10) () = Sk(z) = P cosf =z = 5

and therefore the zeros of m,(t) are (in an increasing order)

(3.11) T,E")=—4sin2fol, 0,,=(—n—w, v=1,...,n.
2 n+1
Thus, the best constants in (3.9) are
= —7(") = ggin? — 7
A, T 4 sin 2+
and
Bp = —1{™ = 4sin® — = = 4cos?
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Since ||Sk|] = 1/7/2 for each k, using (3.10) and (3.11) we find the extremal
sequences for the left and the right inequality in (3.9). For example, for the right
inequality we have

o1 (1) __sinkf; 1 i (k nm )_ __coskn sin km
|Te-1]] ~ sinf;  siné n+1/ siné; n+1’

from which follows

km

— _1\k o
zp = C(-1) sin ———

where C' is an arbitrary constant. O
Remark 3.1. Theorem 2.2 is contained in Corollary 3.3.

In a more general case we can take
pr=(a+bk)? and 7 = (a+bk)(a+bk+1)),

with a,b > 0. When b = 0 we obtain Corollary 3.3. However, if b # 0, because of
homogeneity in (3.8), it is enough to put b = 1. In that case, we obtain the same
polynomials as in Corollary 3.3.

Corollary 3.4. For each sequence of the real numbers o (= 0), 1, ..., Tp, Tpt1
(= 0), the following inequalities

n

(3.12) 4sin? 2(nﬂ—+1) ,;(k +a)%2? < ;(k +a)(k +a+1)(zk — Thp1)?

< 2 T 2,2
< 4cos T D) ;(k+a) xi
hold, where a > 0.
FEquality in the left inequality (3.12) holds if and only if

= ¢ sin km
T k+a n+1’

Tk k=1,...,n,

where C is an arbitrary constant.

Equality in the right inequality (3.12) holds if and only if
C(-1)* . kn

= sin
Tk k+a n+1’

k=1,...,n,

where C' is an arbitrary constant.

Remark 3.2. The corresponding inequalities for a = 0 were considered in [19].
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Corollary 3.5. For each sequence of the real numbers zo (= 0), 1, ..., Tn, Tnt1
(= 0), we have

(3.12) An Z r? < Z k(zy — Trt1)? < Bp Z xi,

k=1 k=0

where A, and B, are minimal and maximal zeros of the monic Laguerre polyno-
mial L,(x), respectively.

Equality in the left (right) inequality (3.12) holds if and only if
zr = CLg_1(x)/(k - 1)! (k=1,...,n),

where x = A, (x = B,) and C is an arbitrary constant.

In this case we have ay = —(2k + 1) and Bx = k?, so that the relation (3.5)
becomes

Tk4+1 (t) = (t + 2k + l)ﬂk(t) - k27rk_1(t).

Putting t = —z and 7 (—z) = (—1)kLi(x), this relation reduces to one, which cor-
responds to the monic Laguerre polynomials orthogonal on (0, +00) with respect
to the measure du(z) = e~ % dz. The norm of Li(z) is given by || Lg|| = k!

In a more general case we can take

1 1
e — —_— >1
BGrLR)’ * T GraBerLR 2

(3.13) To — 0, Ty =
where s > —1 and B(p,q) is the beta function (B(p,q) = I'(p)I'(¢)/T(p + q), T
is the gamma function). Then we have oy = —(2k + s + 1) and B = k(k + s),

and the corresponding recurrence relation, after changing variable ¢t = —z and
mk(—z) = (—1)*Li(z), becomes

(3.14) k+1(2) = (& — (2k + 5+ 1)) Li(z) — k(K + 8) L4 (2),

where L} (z), k =0,1,..., are the generalised monic Laguerre polynomials ortho-
gonal on (0, 4+00) with respect to the measure du(r) = z®e~* dz. Thus, we have
the following result:

Corollary 3.6. Let s > —1 and let r = (r)ren, and p = (pr)ken be given by

(3.13). For each sequence of real numbers zo (= 0), 1, ..., Tn, Tnt1 (= 0), we
have
(3.15) A, Zpkxi < Zrk(.’nk —zx41)? < B, Zpkmi,

k=1 k=0 k=1

where A, and B,, are minimal and maximal zeros of the monic generalised La-
guerre polynomial LS (z), respectively.
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Equality in the left (right) inequality (3.15) holds if and only if

CL;_,(z)
\/(k - DIT(k + s)

Tk = (k':]-a---an),

where x = A, (x = By,) and C is an arbitrary constant.

CASE 2° (z; = 0). Here, in fact, we consider the inequalities

n n—1 n
(3.16) A, Zpkwi < Z re(Tr — Try1)? < By Zpkxi,
k=1 k=1 k=1
for any sequence of the real numbers z; (= 0), z2, ..., Tp.

Using Lemma 3.1 (Part 2°) we put N =n — 1,
2
T
(3.17) Qp_1 = _M, B = —+L (k>1),
Pr+1 Pk+1Pk+2

and also ax_; = —ag, /Br = —bi, (k > 1). Taking

@) =[me@) 7@ ... 7_ot)]" and e,;=[0 0 ... 1]7,

n—

where 7} (t) = mx(t)/||7k||, we have, as in the previous case,

t0* () = Jno1 7 (¢) + /B 7y () en—1,

but now ,
Hn—l(a'ub) = _Hn—l(_a', _b) = _Jn—l - _TLDn-—h

n

where D,,_; = diag(0,...,0,1). So, we obtain that

Tn &«
Hyoa (0, 0)° (8) + 1 (1) = (VBarimia () = 2 maa() enca,
from which we conclude that the eigenvalues of H,,_;(a,b), in notation A\, = —7,,
v=1,...,n—1, are the zeros of the polynomial
* Tn *
(3.18) VBn-1mp,_1(t) — Pn Tp—2(t).
n

The corresponding eigenvectors are 7*(7,).

Since ||7n—1]| = ||7n—2||v/Bn-1, the polynomial (3.18) can be reduced to one rep-
resented in terms of the monic polynomials,
'rn

(3.19) Rp—1(t) = mn1(t) — — mn—2(?).

n
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Theorem 3.7. Let p = (pr)ren and r = (rx)ren be two positive sequences, ay—1

and B (k > 1) be given by (3.17), and let (m;) be a sequence of polynomials

satisfying (3.5). Then for any sequence of real numbers z, (= 0), T2, ..., Zn,

inequalities (3.16) hold, with A, = min{—-7,} B, = max{-7,}, where 7,, v =
14 14

1,...,n—1, are zeros of the polynomial R,,_1(t) given by (3.19).

Equality in the left (right) inequality (3.16) holds if and only if

C T7p_2 (t)

x].:O) T =

VP k=2’

where t = —Ay, (t = —By,), ||mk|| is given by (3.6) and C is an arbitrary constant.

k=2,...,n,

Some corollaries of this theorem are the following results:

Corollary 3.8. For each sequence of real numbers z; (= 0), z2, ..., Tn, the
following inequalities hold:

n

n n—1
T T
3.2 '2——2:2<§: — 2< 2 2:2.
(3.20) 4 sin 2@n 1) k_zxk_k_l(:vk Tr+1)° < 4cos 2”'1k Ty

=2

Equality in the left inequality (3.20) holds if and only if

(k—1)m

ok = Csin 5—,

k=1,...,n,

where C is an arbitrary constant.

Equality in the right inequality (3.20) holds if and only if

2(k - D

= C(-1)*si =1,...
zr, = C(—1)"sin 5 1 k=1,...,n,
where C is an arbitrary constant.
Here we have (as in Corollary 3.3) that
_ _ sin(k +1)0 _
Tk (t) = Sk(z) = sng t+2=2z,

and
_cos((2n —1)8/2)

Rn—l(t) = Sn—l(z) - Sn—Z(z) = COS(0/2) >

and therefore
VT

2n—-1"

T, = —4sin? v=1,...,n—-1.
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Corollary 3.9. Let s > —1 and let r = (rx)ren and p = (pr)ren be given by

1 1
21 = = — = k>1).
(3 ) rl O’ Irk+l B(S + l,k) b pk+1 (k + S)B(S + l,k) ( - )
For each sequence of real numbers z; (= 0), z2, ..., T,, we have
(3.22) Z ri(zk — Te41)® < Bn Zpkfci,
— k=2

where By, is a mazimal zero of the monic generalised Laguerre polynomial L1 (x).
Equality in (3.22) holds if and only if
Li_5(Bn)

_ A _1\k
(3.23) z1=0, zr=C(-1) Thts—1)’

k=2,...,n,

where C is an arbitrary constant.
Proof. Taking m(—z) = (—1)*L(z), with (3.21) we obtain the recurrence relation
(3.14), so that the polynomial (3.19) becomes
Ry 1(t) = p—1(t) = (n+ s — D)mp—2(t)
= (=)" Lot (=t) + (n+ 5 = 1)L}, _5(~1))
= (1)Lt (-1).

Thus, By, is a maximal zero of the monic generalised Laguerre polynomial L5 ().
Evidently, A, = 0.

Since

1 me_2(~Bn) \/(k +s5-D0(s +1)(k=2)!  (-1)¥2L;_,(Bn)
VP lmk—2l| I'(k +s) VE=2)T(k+s—1)
I(s+1)

=V 5Erson

Lk—2 (Bn),

we obtain the extremal sequence (3.23) for which the equality is attained in
(3.22). O

Remark 3.3. A few members of the monic generalised Laguerre polynomials LZ"’I(m)
are
Lit () =1,
LT (@) =z~ (s +2),
Lt (z) = 2% = 2(s + 3)z + (s + 2)(s + 3),
L5t (z) = 2% —3(s + 4)z® — (s + 3)(s + 12)z — (s + 2)(s + 3)(s + 4).

It is not difficult to show that Bs =s+2, By =s+3+ s+ 3.
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Remark 3.4. For s = 0 the inequality (3.22) reduces to (see [19])

n—1 n
> (k= 1)(zk - 2k41)> < Bn Y 7%,

k=1 k=2
where Bp, is a maximal zero of the monic generalised Laguerre polynomial L}l_z(a)).

Remark 3.5. If for every k we take z; = (—1)Fa; the inequalities (3.1) become

n n n
An Y prlakl® < relak + apqal® < Ba Y pelal®.
k=1 k=0 k=1
Moreover, these inequalities are valid for complex numbers too.
At the end of this section we mention some results of Losonczi [15]). He considered
inequalities of the form

n . n
(3.24) of Y lenl? < 3 lok tareml® < BE Y leul?,
k=0 k=0
where zg, 1, ..., T, are real or complex numbers, 1 < m < n, summation symbols
defined by:
n—m

Zl
> -
23

with Tn41 = =Tn4+m = 0,
k=0
n—m
= Z with z_,, = =gz_1 =0,

k=—m

4 n

Z = z withe_p,=---=z2_1=0=2p41 =+ = ZTptm,

k=—m

af, ﬂf (i = 1,2,3,4) are constants and either the + or the — sign is taken. It is
easy to see that the cases 1 = 2 and ¢ = 3 are the same apart from the notation
of the variables zx. Hence there are 6 different cases in (3.24) corresponding to
t =1,2 or i = 3,4 and the + or — sign. Losonczi found the best constants afc
and B in all cases and it was based on the determination of eigenvalues of some
suitable Hermitian matrices.

Theorem 3.10. Let n and m be fized natural numbers (1 < m < n) and r =

[n/m]. The inequalities (3.24) hold for every real or complex numbers xo, z1, ...,
Ty, with the best constants:

at =a7 =0, Bf =81 =4CO522(—r7r-m;

af =a; =af =o3 :4sin2W:+T),

B3 =Py =i =fy =dcos 2r13;

af =aj =4Sin2ir7-r4-—2)’ Bf =867 =4cos2ﬂ1—”—1—2).
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Remark 3.6. In connection with extremal properties of nonnegative trigonometric poly-
nomials Szeg6 [33] and Egervéary and Szész [9] proved that for every complex numbers
zg, Z1, - .., Tn the inequalities

n n—m n
2 _ , 2
(3.25) Dokl < ) (@ Fham + TxTham) <V Y okl

holds, with the best constant v = 2cos(w/(r + 2)), where r = [n/m]. The case m =1
was previously proved by Fejér [11]. It is clear that the inequalities (3.25) are related to
(3.24).

4. Inequalities for Higher Differences

In this section we give a short account on generalisations of Wirtinger’s type
inequalities to higher differences. The first results for the second difference were
proved by Fan, Taussky and Todd [10]:

Theorem 4.1. If zo (= 0), z1,%2,... ,Tn, Tnt1 (= 0) are given real numbers,
then
n—1 T n
(4.1) Z(mk — 22441 + Trp2)® > 16sin’ Mt Zmi,
k=0 k=1
km

with equality in (4.1) if and only if xx = Asin - ,k=1,2,...,n, where A is

+1
an arbitrary constant.

Theorem 4.2. If xy,21,... ,Tn,Tny1 are given real numbers such that To = z1,
Tnt1 = T and (2.3) holds, then

n—1 n
.4 T

(4.2) Z(mk — 2Tk 41 + Thyo)? > 16sin? 2 Z Ti.

k=0 k=1
The equality in (4.2) is attained if and only if

2k -1
mszcos-(-——)F, k=12,...,n,
2n

where A is an arbitrary constant.

A converse inequality of (4.1) was proved by Lunter [16], Yin [36] and Chen [7]
(see also Agarwal [1]).

Theorem 4.3. If zo (= 0), z1,%2,... ,Zpn, Tny1 (= 0) are given real numbers,
then
n—1 - n
2 4 2
(4.3) ’;)(zk — 2%k+1 + Tr42)” < 16 cos 2t 1) kzzzlwk,

with equality in (4.3) if and only if T, = A(—1)% sin

A is an arbitrary constant.

T ,k=1,2,... ,n, where
n+1

Chen [7] also proved the following result:



DISCRETE INEQUALITIES OF WIRTINGER'S TYPE 305

Theorem 4.4. If 29,%1,... ,Tn,Tny1 are given real numbers such that ro = x;
and T, = x,, then

n—1 n

s
E (Tk — 2Tk41 + Tht2)? < 16cos? — _S_ T3,
k=0 2n k=1

with equality holding if and only if

-1
zr, = A(—1)Fsin @’CT)’IT’ k=1,2,...,n,

where A is an arbitrary constant.

Proof. In this case, the n X n symmetric matrix corresponding to the quadratic
form

n—1
F, = Z(wk — 2T 41 + Trt2)? = (Hn2w, T)
k=0
is
r 2 -3 1 1
-3 6 —4 1
1 -4 6 —4 1
Hos = W
1 —4 6 —4 1
1 -4 6 -3
X 1 -3 2

This matrix is the square of the n x n matrix

- 1 _1 -
-1 2 -1
-1 2 -1
(44) Hn = Hn,l = . . .
-1 2 -1
| -1 1
The eigenvalues of H,, are
- 1
A = Ay (Hy) = 4cos? @——M, v=1,...,n,
2n
and therefore, the largest eigenvalue of H,, is
An(Hy) = 4 cos? % > A1 (Hn).
The corresponding eigenvector is ™ = [11, Ta2p ... x,m]T, where
2v-1
:L‘,,nz(—l)"sinu v=12,...,n.

2n ’



306 G. V. MILOVANOVIC AND L. Z. MILOVANOVIC

Thus, the largest eigenvalue of Hy, o is

™

n(Hnz2) =1 4
An(Hp,2) = 16 cos o

> )\n—l(Hn,2),

and the associated eigenvector is . O

Remark 4.1. Notice that the minimal eigenvalue of the matrix H, (and also Hy 2) is
A1 = 0. Therefore, the condition (2.3) must be included in Theorem 4.2 and the best
constant is the square of the relevant eigenvalue

D

Ay = 4 cos? (il— 2 T
2n

= 4si
Sin 2n

For any n-dimensional vector £ = [z1 z2 ... zp]T, Pfeffer [30] introduced a
periodically extended n-vector by setting z;4,n, = z; fori =1,2,... ;nand r € N,
and used the mth difference of & given by z(m = [A™z; ATz ... A™z,]T,
where

r

A"z, = Z(_l)m—r (m) Ti—[m/2]+r> 1<i<n,

r=0
in order to prove the following result:

Theorem 4.5. If x is a periodically extended n-vector and (2.3) holds, then
(m) 2m\ > (46in2 )
('™, 2'™) > (4sm n) (x,x),

with equality case if and only if x is the periodic extension of a vector of the form
Ciu + Csv, where

u=[u wuz ... un]T and v=[v; vy ... vn]T
have the following components
2km . 2kmw
U = COS —, v = sin —, k=1,...,n,
n n

and C1 and Cs are arbitrary real constants.

Recently we have studied inequalities of the form (see [21])

u

3

n
(Amxk)2 < Bn,m zxiy

n
(4.5) Anm Y} <
k=1 k=l,, k=1

where I, =1 — [m/2], uy, = n — [m/2] and

AMgy, = i(—w’ (T) Chtmei-

i=
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Um
The quadratic form Fy,, = (Amxk)2 for m = 1 reduces to
k=lm

n—1 n—1
2 2 2
"=z + E 2z +x;, — 2 E TkTk+1,
k=2 k=1

with corresponding tridiagonal symmetric matrix H, = H,; given by (4.4).
Under conditions

Ts = T1—s, Tntl—s = Tn+s (lm <s< 0)

we proved that the corresponding matrix of the quadratic form F,, is exactly
the mth power of the matrix H, = H, 1 so that the best constant in the right
inequality (4.5) is given by

Evidently, A, = 0. However, by restriction (2.3), the best constant in the left
inequality (4.5) is given by

) T
Apnm =4" sin®*™ — .
2n

For other generalisations of discrete Wirtinger’s inequalities for higher differences
see [6], [16], [31] and [34]. There are also generalisations for multidimensional
sequences and partial differences (see [6] and [28]). Finally, we mention that there
exist some types of non-quadratic Wirtinger’s inequalities (cf. [6], [10] and [12])
as well as discrete inequalities of Opial’s type (cf. [3], [14], [20], [22], [35])-
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