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Abstract. This paper surveys the zero distribution and inequalities for zeros of algebraic
polynomials. Besides the basic facts on the zero distribution we consider the Grace's
theorem and many of its applications, the zero distribution for real polynomials, as well
as the Enestrom-Kakeya theorem for a special class of polynomials. Also, we give some
estimates for a number of zeros of a polynomial in a given domain in the complex plane.

1. Introduction
We start with some basic facts on the zero distribution of algebraic polynomials.

Theorem 1.1. If P(z) is an algebraic polynomial of degree n (n ;::: 1), then the
equation P(z) =0 has at least one root.

This is the well-known fundamental theorem of algebra. Another variant of this
theorem is:

Theorem 1.2. Every algebraic polynomial of degree n with complex coefficients
has exactly n zeros in the complex plane.

Applying the principle of the argument (see [61, pp. 173-175]) to an algebraic
polynomial P(z), we obtain

1
2?T b..r Arg P(z) = N,

where b..r denotes the variation along the closed contour rand N is the number
of zeros of the polynomial P(z) interior to r, counted with their multiplicities.

Let P(z) be a polynomial of degree n, with m different zeros Zl, ... , Zm, and their
multiplicities k1 , ... , km , respectively. Then we have

(1.1)
m

P(z) = II (z - zv)kv
,

v=l

m
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Since
P'(z)

P'(z) = P(z) P(z) = P(z)F(z),

where

(1.2)
d m k

F(z) = -d [logP(z)] = L _v_,
Z v=l Z - Zv

the zeros of P'(z), i.e., the critical points of P(z), can be separated into two classes.
First, there are the points Zv for which kv > 1 as zeros of P'(z), with multiplicities
kv - 1. Their total multiplicity is

m

L (kv - 1) = n - m.
v=l

Secondly, there are else m -1 zeros of P'(z) which are the zeros of the logarithmic
derivative (1.2).

Evidently, if we know the location of the zeros of the polynomial (1.1), then we
know a priori the location of the first class of zeros of P'(z). However, the lo-
cation of the second class of zeros of P'(z), i.e., zeros of the function F, given
by (1.2), remains as a problem. Some physical, geometric, and function-theoretic
interpretation of zeros of F can be found in Marden [56].
In a special case we have the answer to the previous question. Namely, a particular
corollary of Rolle's theorem says that any interval I of the real line which contains
all the zeros of a polynomial P(z) also contains all the zeros of P'(z). This can be
generalized in the sense that I can be replaced by a line-segment in the complex
plane.
In a general case we have (see Marden [56, p. 22]):

Theorem 1.3. All the critical points of a non-constant polynomial P(z) lie in the
convex hull D of the set of zeros of P(z). If the zeros of P(z) are not collinear,
no critical point of P(z) lies on the boundary aD of D unless it is a multiple zero
of P(z).

This is a well-known result which was implied in a note of Gauss dated 1836, but
it was stated explicitly and proved by Lucas [51]-[54] in 1874. Since Lucas' time,
at least thirteen proofs of this Gauss-Lucas theorem have been published. For
references see [61].

From the Gauss-Lucas' Theorem 1.3 follows:

Theorem 1.4. Any circle C which encloses all the zeros of a polynomial P(z)
also encloses all the zeros of its derivative P' (z).

Indeed, if D is the smallest convex polygon enclosing the zeros of P(z), then D
lies in C and therefore by Theorem 1.3 all the zeros of P'(z) being in D, also lie
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in c. It can be proved that Theorems 1.3 and 1.4 are equivalent (d. Marden [56,
p. 23]).

Let P(z) be a real polynomial. Then its non-real zeros can occur only in conjugate
imaginary pairs. Constructing the circles (so-called Jensen circles of P(z)), whose
diameters are the line-segments between the pairs of conjugate imaginary zeros of
P(z), Jensen [43] stated without proof the following result (d. Marden [56, p. 26]):

Theorem 1.5. Let P(z) be a real polynomial. Then each non-real zero of P'(z)
lies in or on at least one of the Jensen circles of P(z).

The proof of this theorem was given by Walsh [83] and later by Echols [22] and
Sz.-Nagy [81J. Some other results in this direction can be found in the book of
Marden [56].

We mention here an interesting conjecture of Bl. Sendov, better known as Ilieff-
Sendov conjecture: If all zeros of a polynomial P(z) lie in the unit disk Izi 1
and if Zo is anyone such zero, then the disk Iz - zol 1 contains at least one zero
of P'(z). For a discussion about this conjecture see [61, pp. 216-243].

In this paper we give an account on some important results in the field on the
zero distribution and inequalities for zeros of algebraic polynomials. The paper
is organized as follows. Grace's theorem and many applications are considered
in Section 2. The zero distribution for real polynomials is analyzed in Section 3.
Enestrom-Kakeya theorem for a special class of polynomials and its generalizations
are studied in Section 4. Finally, in Section 5 we give some estimates for a number
of zeros of a polynomial in a given domain in the complex plane.

2. Grace Theorem and Some Applications
Grace [32] introduced the following definition:

Definition 2.1. Two polynomials A(z) and B(z) defined by

(2.1) A(z) = ao + alZ + ... + akzk + ... + anzn

and

B(z)=bo + G)b1Z+"'+

are said to be apolar provided that their coefficients satisfy the apolarity condition

(2.3)

The coefficients of A(z) and B(z) may be real or complex. If ar ::J 0 (r ;::: 0) and
av = 0 for v = r + 1, ... ,n, then we regard z = 00 as an (n - r)-fold zero of
A(z). In case all the coefficients of A(z) are zero, then A(z) is not regarded as
a polynomial. Grace [32] discovered the following significant result, which is very
useful in the study of the geometry of the zeros of polynomials.
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Theorem 2.1. Let the polynomials A(z) and B(z), defined by (2.1) and (2.2),
respectively, be apolar. Let al, ... ,an be the zeros of A(z) and (31, ... ,(3n be the
zeros of B(z). If the circular region C contains all of the a v, then C must contain
at least one of the (3v.

Szego [78] gave a proof of Grace's theorem freed of the invariant-theoretic concepts
used by Grace [32], and he also gave several applications. Goodman and Schoen-
berg [29] obtained a new proof of Grace's theorem by induction on n. Goodman-
Schoenberg's approach is the following. By the transform of A(z) under the Mobius
transformation

aw+b
z=---

cw+d

they meant the polynomial function defined by

A*(w) == (cw + d)n A(aw + b)
cw+d

== (:) av(aw + bt(cw + d)n-v

== t
v=o

Example. If A(z) == 1, then A*(w) = (cw + d)n and the n-fold zero of A(z) at
z = 00 becomes an n-fold zero of A*(z) at w = -dlc if c i- O.

In their inductive proof of Grace's theorem, Goodman and Schoenberg [29] used
the following two lemmas:

Lemma 2.2. Let A(z) and B(z) be apolar polynomials. If the Mobius transfor-
mation changes the polynomials (2.1) and (2.2) into

(2.4) A*(w) = and B*(w) =

then the polynomials A *(w) and B* (w) are also apolar.

Lemma 2.3. If a is a zero of the polynomial A(z), then its transform (3 is a zero
of the transformed polynomial A*(w), defined in (2.4).

Remark 2.1. If neither Q nor f3 takes the value 00, then we have Q = (af3 +b)/(ef3 +d)
and

A*(f3) = (ef3 + d)nA(;;: = (ef3 + d)n A(Q) = O.

If Q = 00 is an r-fold zero of A(z), then f3 = -die is an r-fold zero of A*(z). If Q = ale
is an r-fold zero of A(z), then the decomposition used in the proof of Lemma 2.2 proves
that f3 = 00 is an r-fold zero of A*(z).
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The complete Goodman-Schoenberg's proof of Grace's theorem can be found in
[61, pp. 189-190]. The following applications with their proofs of Grace's theorem
can be found in Szeg6's paper [78] or the book by Marden [56] (see also Goodman
and Schoenberg [29]).
By A(z) and B(z) we consider the polynomials (2.1) and (2.2), and C(z) the
related polynomial

(2.5)

We assume that A(z) and B(z) are apolar.

Theorem 2.4. Let w be a zero of C(z), and

B*(z) = znB(-w/z),

then A(z) and B*(z) are apolar.

Theorem 2.5. If all the zeros of A(z) are in Izi < r and all the zeros of B(z) are
in Izl S g, then all the zeros of C(z) are in Izl < rg. The polynomials A(z), B(z),
and C(z) are given by (2.1), (2.2), and (2.5), respectively.

Theorem 2.6. If all the zeros of A(z) are in a closed and bounded convex domain
D and all the zeros of B(z) are in [-1,0], then all the zeros ofC(z) lie in D.

This result, well-known as Schur-Szegii composite theorem, has been obtained by
Schur [75] and Szeg6 [78].

The following result is an extension of Rolle's theorem to complex functions:

Theorem 2.7. Let P(z) be a polynomial of degree n and suppose that P(l) = °
and P(-l) = 0. Then the derivative P'(z) has a zero in Izl S cot(-rr/n) and this
result is best possible. Furthermore pI (z) has a zero in Re z °and a zero in
Rez S 0.

Walsh [85] obtained the following special case of Grace's theorem and he applied
it to derive other related results.

Lemma 2.8. Let mk > 0, lakl S 1 (k = 1, ... ,n), L: mk = 1, Izi > 1. Then the
equation in a

(2.6)
n

II (z - ak)m k = z - a
k=l

has a solution a which satisfies lal S 1. Indeed there exists such a solution a
satisfying

(2.7) - ak)/z] S arg[(z - a)/z] S - ak)/z],



176

where these three arguments are values of any arg[(z - ,B)/z] chosen continuous
for fixed z and for all ,B with I,BI :::; l.

Lemma 2.8 is true (see Walsh [84, Theorem III]) without the hypothesis Izi > 1 if
(2.7) is omitted.
As Walsh [85] remarked if the mk and ak are fixed in Lemma 2.8 and Izi is large,
the point a which depends on z, with lal :::; 1, lies close to the center of gravity of
the ak, as we see by expressing (2.6) as follows

L m k log(l- :k)
== Lmk[- :k _ _ _ ... ]

== log ( 1 - == [- - _ 3 _ .. -].

Some other related results that Walsh [86] obtained are the following:

Lemma 2.9. Let mk > 0, lakl :::; 1 (k = 1, ... ,n), Lmk = 1, Lmkak = 0,
Izl> 1. Then there exists an a such that lal :::; 1/lzl, with

L mk log (1 - :k) = log ( 1 -

where arg(1 - a/z) may be chosen as in (2.7).

Lemma 2.10. Let mk > 0, lakl:::; 1 (k = 1, ... ,n), Lmk = 1, Izl > 1. Then a
as defined by the equation

n

L =
k=l

satisfies lal :::; 1. Under the same hypotheses and with L mkak = 0, we have
lal :::; 1/lzi.

A relatively immediate application of Lemma 2.9 is the following theorem of Walsh
[86].

Theorem 2.11. Let lakl :::; 1 for k = 1, ... ,n, with L ak = 0. Set

P(z) == II(z - ak) - C,

where the constant C is arbitrary. Then for Izi :::; 1 all zeros of P(z) lie in the n
circles I z - C 1/n I:::; 1 and for Izi > 1 in the n lemniscate regions

I z(z - C 1
/

n ) I:::; 1,

where C 1/n takes all n values.

Remark. If ICI < 2n the lemniscate 1z(z - C1/n) 1= 1 consists of a single Jordan
curve, whereas if ICI > 2n it consists of two mutually exterior ovals contained in
the respective closed disks whose centers are zero and C 1/n, having the common
radius [C 1/n - (C2 /n - 4)1/2]/2, a radius less than unity.
Walsh [86] obtained also the following result:
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Theorem 2.12. Suppose that we have

with L: D:k = na and L: 13k = nb. We set

where A is an arbitrary constant. Then if Ai-I all zeros of P(z) lie in the n loci

(2.8)

where

I
z - a - bAl/n 1< 11 _Al/n 1-1

l-A l /n -q ,

q = rl min (1, Iz al) + r21 A Il/n min (1, Iz bl)

and A lin is in turn each nth root of A.

If A = 1 and we have

(2.9) . ( rl) . ( r 2 )rl mm 1, Iz _ al + r2 mm 1, Iz _ bl > la - bl,

then all zeros of P(z) lie in the n - 1 loci (2.8), where A lin is in turn each nth
root of unity except unity. If A = 1 and (2.9) is false, we draw no conclusion
concerning the location of z.

Applying the theorem of Grace, the following result was obtained by Szego [78]:

Theorem 2.13. Let the polynomial

have no zeros in the circular region Izi ::; R. Then the "section"

has no zeros in the circular region Izi ::; R/2.

If n is even, the example P(z) = (z - R)n shows that the circle Izi ::; R/2 cannot
be replaced by a larger concentric circle. However if n is odd, following Szego, the
polynomial Q(z) is different from zero even in the circle Izi ::; (R/2) sec(7f/2n).

Sz.-Nagy [80] proved the following results:



(2.10)
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Theorem 2.14. Let the polynomial

have no zeros in the circle Iz - al R; and let the polynomial

Q(z) = (z - bd(z - b2 )··· (z - bn )

have all its zeros in the circle Iz - al (l, (l < R. Then the polynomial R(z) =
P(z) - >'Q(z), for P.I tn, 0 t < R/(l, can have no zero in the circle

R - (It
Iz - al < r = -- .

- l+t

Proof. We note that for any zero of the polynomial R(z)

Therefore R(zo) =I 0 in every point Zo where

We have that at every point Zo of the circular region (2.10)

Izo - akl lak - al -Izo - al lak - al - r > R - r = (r + (l)t,

Izo - bkl Izo - al + Ibk - al r + (l,

so that

I
P(zo) I= IT IZo - ak I> (R - r)n = tn 1>'1. 0
Q(zo) k=l Zo - bk r + (l

If b1 = ... = bn = a, 1>'1 = lei = 1 ((l = 0, t = 1), Sz.-Nagy's theorem 2.14 implies
the special case:

Corollary 2.15. If the polynomial

P(z) = zn + A1zn- 1 + .,. + An

have no zeros in the circular region Iz - al R, then no polynomial R(z)
P(z) - e(z - a)n for lei 1 can have any zeros in the circle Iz - al R/2.

Setting

Q(z) = zn + Akzn- k = zn-k(zk + A k), a = 0, (l = IAkI 1/ k , >. = 1

in Theorem 2.14, Sz.-Nagy [80J obtained the following result:
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Theorem 2.16. The polynomial

P(z) = zn + Akzn- k + A k+lzn- k- 1 + ... + An

has at least one zero in the circle Iz I :s 2r + IAk 11/ k provided the "section"

R() P() n A n-k A n-k-l A n-k-2 + Az = z - z - kZ == k+lZ + k+2Z + ... n

has at least one zero on the circle Izi :s r.
Remark. A theorem similar to Theorem 2.14 holds also if the zeros of the poly-
nomials P(z) and Q(z) are in arbitrary circular domains without common points.
One of these circular domains is the interior of a circle, the other the exterior
or interior of a circle or a half-plane. Corresponding to these cases the following
three theorems of Sz.-Nagy [80] can be proved generalizing also some theorems of
Szego [78].

Theorem 2.17. Let the zeros of the polynomials

and
Q(z) = (z - bd ... (z - bn )

be located in the circular regions Iz - 01 2: 121 and Iz -,61 :s (}2, respectively.
We assume that these regions have no points in common, that is, (}1 - (}2 > 0,
LB - 01 < (}1 - (}2. Then no polynomial

R(z) = P(z) - eQ(Z) for lei :s 1,

can have a zero in the interior of the ellipse E with foci at 0 and f3 and with the
major axis (}1 - (}2·

Theorem 2.18. Let the zeros of the polynomials P(z) and Q(z) be located in the
circular regions Iz - 01 :s (}1 and Iz - f31 :s (}2, respectively, such that these regions
have no points in common, that is, 1f3 - 01 > (}1 + (}2. Then no polynomial

R(z) = P(z) - eQ(z) for lei = 1,

can have a zero in the interior of the hyperbole H with foci at 0 and f3 and with
the real axis (}l + (}2·

Theorem 2.19. Let the zeros of the polynomials P(z) and Q(z) be located in the
circular region Iz - 01 :s (} and in the half-plane S, respectively, such that these
regions have no points in common. Let K be a conic section with 0 as focus and
the boundary line L of the half-plane S as the directrix corresponding to 0 (that
is, the polar 0). Then no polynomial P(z) - AQ(z), with

(
+ l)nIAI 2: t

n = e + (} T '



180

can have a zero in the interior of the conic section K where e is the numerical
eccentricity of K and e5 is the distance of a from the line L.

By the interior of a conic section is meant the set of points from which no tangent
can be drawn to the given conic section.

Grace's theorem also provides a proof for the following theorem of Schaake and
van der Corput [73]:

Theorem 2.20. Let f(Z1, ... , zn) be a linear combination of the elementary sym-
metric functions of Z1, ... , Zn, i.e.,

and

then we have the identity

'" (Z1 Zn)f(Z1, ... 'Zn)=L..-,An -, ... ,- f(p,···,p),
p p p

where p runs through the n-th roots of Z1 ... Zn. Moreover

'" (Z1 Zn)L..-, An -, ... , - = 1,
p p p

and if Izd = ... = IZnl = 1 we have An(zdp,··· ,zn/P) 2: O.
The proof of this inequality and similar statements can be found in the paper of
de Bruijn [8]. A result similar to Theorem 2.20 (so-called Coincidence Theorem)
was obtained by Walsh [84] (see also Marden [56, p. 62]).

Using a proof similar to Szeg6's proof of Grace's theorem, Lee and Yang [50]
showed an interesting result, which is an extension to polynomials of degree n of
an obvious property of quadratic polynomials:!f -1 :::; x :::; 1 then the zeros of
Z2 + 2xz + 1 lie on the unit circle. Professor R. Askey pointed out this result
in his comment on Szeg6's paper [78] in [Gabor Szeg6: Collected Papers, Vol. I
(1915-1927), Birkhauser, Boston, 1982, p. 534].

Lee and Yang [50] proved:

Theorem 2.21. The polynomial
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is reciprocal, i.e., g(z) = zng(z-l), and all the roots of g(z) = 0 lie on the unit
circle.

Now, we mention some results on the location of the zeros of certain composite
polynomials.

For the polynomials P(z) and Q(z), defined by

respectively, Aziz [4]-[5] proved:

Theorem 2.22. If m ::; n and the coefficients of the polynomials P(z) and Q(z)
satisfy the apolarity condition

then the following holds:

1° If Q(z) has all its zeros in Iz - cl r, then P(z) has at least one zero in
Iz - cl r.

2° If P(z) has all its zeros in Iz - cl ::; r, then Q(z) has at least one zero in
Iz - cl ::; r.

As an application of this theorem, Aziz [5] obtained certain generalizations of
results of Walsh [84], Szego [78], de Bruijn [8], and Kakeya [46]. For example, Aziz
[5] proved the following result, which is a generalization of Walsh's Coincidence
Theorem for the case when the circular region C is a circle Iz - cl = r.

Theorem 2.23. Let (Zl' ... , zn) >--+ G(ZI,' .. ,zn) be a symmetric n-linear form
of total degree m, m ::; n, and

C = {z E C : Iz - cl ::; r}

be a circle containing the n points WI, ... , W n . Then in C there exists a least one
pointw such thatG(w, ... ,w) =G(WI, .. ' ,wn).

Hormander [35] obtained an extension of Grace's theorem to several variables for
homogeneous polynomials defined on a vector space over a field with values in that
field. Using symbolic notation he showed how to obtain theorems similar to those
de Bruijn obtained in [8J.

In his book [56, pp. 68-70] Marden states two theorems which are supposed to be
restatements of his results in [55].
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Theorem 2.24. From the given polynomials

(2.11)
m

P(z) = L ak zk ,
k=O

n

Q(z) =L bk Zk ,
k=O

let us form the polynomial

(2.12)
m

R(z) = L akg(k)zk .
k=O

If all the zeros of P(z) lie in the ring

(2.13) Ro = {z E C : O:S rl :s Izl:S r2:S +oo},

and if all the zeros of Q(z) lie in the annular region A

A = {z E C : 0 :s Pi :s Izi/iz - ml :s P2 :s +oo},

then all the zeros of R(z) lie in the ring R n

Rn = {z E C : 7"1 min (1, pf) :s Izi :s r2 max (1,

Theorem 2.24'. Let P(z), Q(z), and R(z) be polynomials defined in (2.11) and
(2.12), and let Ro be the ring defined by (2.13). If all the zeros of the polynomial
P (z) lie in the ring Ro, then all the zeros of the polynomial R(z) lie in the ring

rl min[1, IQ(O)/Q(m)l] :s Izl :s r2 max [1, IQ(O)/Q(m)I]·

Theorem 2.24 is really a part of Marden's corollary in [55, p. 97] whereas Theorem
2.24' is not included there.
Peretz and Rassias [66] proved that Theorem 2.24' is false as it stands. They
constructed the following counterexample:
Let P(z) = 1 + 2z + z2 = (1 + z)2 and Q(z) = 1 + 2z - Z2. Then n = m = 2,
Q interpolates the coefficients of P at z = 0,1,2, that is Q(O) = 1, Q(1) = 2 and
Q(2) = 1. Thus R(z) = 1 + 4z + Z2. The zero (a double zero) of Pis -1, so we
can take rl = r2 = 1. Since Q(0)/Q(2) = 1, Theorem 2.24' asserts that the zeros
of R lie in Izi = 1. But R vanishes at -2 + \1'3, -2 - \1'3.
The bounds rlIQ(O)/Q(m)1 and r2IQ(0)/Q(m)1 appear in the above corollary
in Marden [55] but under the restrictions P2 < 1, Pi > 1 respectively.
The methods of the proofs of these results are different in Marden [55] and Marden
[56]. In the first of them he used a direct method whereas in the book [56] Marden
used results of Walsh [84] on multilinear symmetric forms (see Theorem 2.23). A
corrected form of Theorem 2.24', without the restrictions P2 < 1 or Pi > 1, was
formulated and proved by Peretz and Rassias [66].
The key to prove Theorem 2.24 is the following transformation on the polynomial
P(z) introduced by Marden [56, Lemma (16.2a)]:

Pi (z) = 131P(Z) - zP'(z) , 131 E C.

Actually Marden finds a certain representation for the zeros of H (z) with the aid
of Walsh's result and then iterates this representation.



183

Definition 2.2. Let P(z) be a polynomial and (31,(32, ... a sequence of complex
numbers. We define a sequence of polynomials by

PO(z) =P(z), Pk(z) = (3kPk-1 (z) - (z) for k = 1,2, ...

(The sequence {(3d will be considered to be fixed.)
m

Remark. If P(z) = L ajz j , then
j=O

m

Pk(Z) =L aj((31 - j) ... ((3k - j)zj
j=O

(k 1)

as it can be easily seen.
Marden's representation for the zeros of H(z) is included in his Lemma (16.2a)
(see Marden [56, p. 69)):

If (31 f:. m and if all the zeros of P(z) lie in a disk C, then every zero Z of PI (z)
may be written as Z = or Z = [(3I!((31 - where E C. This follows
because H(Z) is a symmetric multi-linear form in the zeros of P(z) and so by the
above mention Walsh's Coincidence Theorem there is a E C such that

0= PI (Z) = (31 (Z - om - mZ(Z _

which proves the assertion.

In order to state and prove a version of Theorem 2.24' (see Theorem 2.25 below),
Peretz and Rassias [66] introduced the following definition:

Definition 2.3. Let Q(z) = ((31 - z)··· ((3n - z) and m a given positive integer.
We define

1:::;j:::;n
Re(i3i)

II ((3j - z),
l<j<n

Re(J3;)<m/2

with the understanding that Q+ or Q- takes the value 1 if one of the products is
empty.

Remark. Q(z) = Q+(z)Q-(z), and the zeros of Q+ are those zeros of Q for which
1(3/((3 - m)1 1.

Theorem 2.25. Let P(z), Q(z), and R(z) be polynomials defined in (2.11) and
(2.12), and let Ro be the ring defined by (2.13). If all the zeros of the polynomial
P(z) lie in the ring Ro, then all the zeros of the polynomial R(z) lie in the ring

Remark. This implies the assertion in Marden's corollary in [55] since if 1 < PI
then Q = Q+ and if P2 < 1 then Q = Q- .
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Proof of Theorem 2.25. We may assume that

Q(z) = ((31 - z) ... ((3n - z).

By Lemma (16.2a) in Marden [56, p. 69] any zero Z of

m

P1(z) = Laj((31 - j)zj
j=O

can be written as Z = or Z = [(31/((31 - where :s r2. Thus

IZI :s r2 max{l, 1(31/((31 - m)l}.

Applying the same lemma once more with P1(z) in place of P(z) and P2(z) in
place of PI (z) we conclude that any zero Z of

m

P2(Z) = L aj((31 - j)((32 - j)zj
j=O

satisfies
IZI :s r2 max{l, 1(31/((31 - m)1} max{l, 1(32/((32 - m)l}.

We iterate the above n times to conclude that any zero Z of Pn(z) = R(z) satisfies

n

IZI :s r2 II max{l, l(3j/((3j - m)1} = r2 II l(3j/((3j - m)1
j=l

113;/(13;

II

=r2IQ+(O)/Q+(m)l·

Similarly we obtain by the fact that the zeros of P lie in Izl 2: r1 that any zero Z
of R(z) satisfies

II
113; /(13; -m) I<1

=rl IQ-(O)/Q-(m) I· 0

n

IZI2: rl II min{l, l(3j/((3j - m)l} = r1
j=l

The method of Peretz and Rassias [66] of proving Theorem 2.25 can be used to
prove other similar results. We will give such an example:
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Definition 2.4. Let P(z) be a polynomial and (31, (32,' .. a sequence of complex
numbers. We define a sequence of polynomials by

PO(z) = P(z),
- - 2 -II
Pdz) = (3kPk-l (z) - Z Pk- 1 (z), k = 1,2, ...

(The sequence {(3d will be considered to be fixed.)
m

Remark. If P(z) = L ajzj then
j=O

m

Pk(z) = 2: aj [(31 - j(j - 1)]··· [(3k - j(j - 1)] zj for k;:: 1.
j=O

Lemma 2.26. If i= ±Jm(m - 1) and if all the zeros of P(z) lie in a disk
C, then every zero Z of PI (z) may be written as

Z = or Z = T Jm(m

where E C.

Proof. PdZ) is a symmetric multi-linear form in the zeros of P(z) and so by the
Walsh's Coincidence Theorem there is a E C such that

which proves the assertion. 0

Definition 2.5. Let Q(z) = ((31 - z)··· ((3n - z) and m a given positive integer.
We define

and

II
l:5:j:5:n

Re{

II

(Jfij-z)

(Jfij-z)
l:5:j:5:n

O:5:Re{ ,j73;}<m(m-l)/2

such that if a product is empty, we take it to be equal to 1, and wherever we take
the square roots Jfij to be such that Re{ Jfij} ;:: 0 for 1 ::; j ::; n.

Using the previous results and definitions, Peretz and Rassias [66] proved:

Theorem 2.27. If all the zeros of the polynomial P(z), defined by (2.11), lie in
the ring
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and if Q(z) is a polynomial of degree n, then all the zeros of
m

R(z) = L akQ(k(k - l))zk
k=O

lie in the ring

rl I[Q-I/2(0)/Q-I/2 ()m(m - 1))] I:s jzl

:S r2 I[Q+l/2(0)/Q+I/2 ()m(m - 1))] I.
Remark. It is obvious how to obtain similar results by using the transformations
f3IP(z) - ZS j(s)(z) for 1 :::; s:::; dgP(z).

3. Distribution of Zeros of Real Polynomials
In 1916 P61ya [67) considered two polynomials

m

P(x) = L ayxY and
y=o

n

h(x) = L byxY

y=o

of degree m and n, respectively, with only real zeros, and proved the following
results:

Theorem 3.1. Let n 2: m and let the zeros of the polynomial h(x) be all negative.
Then the real algebraic curve

F(x, y) == boP(y) + b1xP'(y) + ... + bmxmp(m)(y) = 0

has m intersection points with each line sx - ty + u = 0, where s 2: 0, t 2: 0,
s + t > 0 and u is real.

As P6lya noted this theorem gives a unified proof of three important special cases
regarding composite polynomials:
1° For x = 1 it gives a special case of the Hermite-Paulain theorem (see Obresch-
koff [64, Satz 3.1));
2° For y = 0 it gives a theorem of Schur (see Obreschkoff [64, Satz 7.4));
3° For x = y it gives a result of P6lya and Schur [68, p. 107).
Craven and Csordas [11] investigated some of the properties of the curve

(3.1)
n

F(x,y) == L byxYp(Y)(y) = 0,
y=O

without restriction on P(y), and when the polynomial

(3.2)
n

h(x) = L byxY

y=o
(bn = 1, n 2: 1)

has only real zeros. Their main result shows that no branch of (3.1) can pass
through two distinct zeros of P(y) on the y-axis.
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Theorem 3.2. Let h(x) be a real polynomial with only real zeros, given by (3.2),
and let P(y) be an arbitrary polynomial.

If bo i- °each branch of the real curve (3.1) which intersects the y-axis will
intersect the y-axis in exactly one point and will intersect each vertical line x = c,
where c is an arbitrary constant.

If bo = 0, the conclusion still holds for all branches which do not coincide with the
y-axis. Furthermore, if two branches which cross the y-axis intersect at a singular
point (xo, Yo) not on the y-axis, then these branches are in fact components of the
form y - Yo =0, and thus coincide as horizontal line.

As a direct extension of Theorem 3.1 to arbitrary polynomials P(y), Craven and
Csordas [11] proved the following result:

Theorem 3.3. Let h(x) be a real polynomial with only real negative zeros, given
by (3.2), and let P(y) be an arbitrary polynomial with l' real zeros and degree at
most n. Then the real algebraic curve (3.1) has at least l' intersection points with
each line sx - ty + u = 0, where s 2': 0, t 2: 0, s + t > °and u is real.

Removing the restriction on degree of P(y) they also proved:

Theorem 3.4. Let h(x) be a real polynomial, given by (3.2), with only real non-
positive zeros, and let P(y) be an arbitrary polynomial with l' real zeros. Then
the real algebraic curve (3.1) has at least l' intersection points with every line of
positive slope.

We mention now four interesting corollaries of the previous results:

Corollary 3.5. Let P(x) be a real polynomial and h(x) a real polynomial with
n

only real zeros, given by (3.2). Then the polynomial Q(x) = L: bvP(v)(x) has at
1'=0

least as many real zeros as P(x). If P(x) has only real zeros, then every multiple
zero of Q(x) is also a multiple zero of P(x).

This is the Hermite-Paulain theorem. Notice that it is a corollary of Theorem 3.2,
where Q(x) == F(I, x).

Corollary 3.6. Let h(x) be a real polynomial with only real zeros, all of the same
m

sign or zero, defined by (3.2), and let P(x) = L: avxv , where m :::; n. Then the
1'=0

n

polynomial Q(x) = L: v!avbvxV has at least as many real zeros as P(x).
1'=0

By a slight change in the hypotheses of this corollary, Craven and Csordas [11]
obtained the result separately for the positive and negative zeros.

Corollary 3.7. Let h(x) be a real polynomial with only real negative zeros, defined
m

by (3.2), and let P(x) = L: avxv , where m :::; n. Then the polynomial
1'=0

n

Q(x) = L v!avbvxV

1'=0
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has at least as many positive (negative) zeros as P(x) has positive (negative) zeros.
The multiplicity of zero as a zero is the same.

Setting y = x, from Theorem 3.4 one has:

Corollary 3.8. Let h(x) be a real polynomial, given by (3.2), with only real non-
positive zeros, and let P(y) be an arbitrary real polynomial. Then the polynomial

n

g(x) = 2: bvxvp(vJ(x)
v=o

has at least as many real zeros as P(x).

In the sequel we deal with the inequality

(3.3) Zc(T[P(x)]) Zc(P(x)),

where Zc(P(x)) denotes the number of non-real zeros of a real polynomial P(x),
counting their multiplicities, and where T is a linear transformation. If T is the
differentiation operator, i.e., T = D = d/dx, then (3.3) is a consequence of the
Rolle's theorem. If h(x) is a real polynomial with only real zeros and T = h(D),
then (3.3) follows from Corollary 3.5. There are many other linear transformations
T which possess the property (3.3).
Following Craven and Csordas [10] we take a sequence of real numbers r = {"tv}

n
and, for P(x) = L avxv, we define r[p(x)] by

v=o
n

(3.4) r[p(x)] =2: av"tv xv .
v=o

Let Q(x) be a real polynomial with only real negative zeros and r =
Then Laguerre's theorem (see Craven and Csordas [10]) asserts that

n

Zc(r[P(x)]) = Zc (2: avQ(v)xv) Zc(P(x)),
v=o

n
where P(x) = L avxv is an arbitrary real polynomial.

v=o
The real sequences r = for which r[P(x)] has only real zeros whenever
P(x) is a real polynomial with only real zeros have been characterized by P6lya
and Schur [68]. They called such a sequence r as a multiplier sequence of the first
kind. Also they introduced a multiplier sequence of the second kind if r takes
every real polynomial P(x), all of whose zeros are real and of the same sign, into a
polynomial all of whose zeros are real. Notice that the above mentioned sequence
r = is a multiplier sequence of the first kind.
The following characterization was given P6lya and Schur [68] (see also Hille [34]
and Iserles, N0rsett, and Saff [40]):
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Theorem 3.9.

(n = 0,1, ... ).
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Let r = 'Yo =I- 0, be a sequence of real numbers and

+00 1
<1>(z) =L I 'Y/lz/l.

V.
/1=0

1° Then in order that r be a multiplier sequence of the first kind it is necessary
and sufficient that the series (3.5) converge in the whole plane, and that the entire
function <1>(z) or <1>( -z) can be represented in the form

+00
where C E IR, a 0, Zn > 0, and L < +00.

n=l

2° In order that the sequence r be a multiplier sequence of the second kind it is
necessary and sufficient that the series (3.5) converge in the whole plane, and that
the entire function <1>(z) can be represented in the form

+00
Ce-az2

+{3z II (1 - : )ez / zn ,

n=l n

+00
where a 0, 13, C, Zn E IR, and L < +00.

n=l

An equivalent characterization, again due to P6lya and Schur [68], is in terms of
the Jensen polynomials

gn(z) = (:) 'Y/lz/l

Theorem 3.10. r = b/l is a multiplier sequence of the first kind if and only
if all Jensen polynomials have only real zeros, all of the same sign.

A family of multiplier sequences of the first kind which depend continuously on a
parameter was introduced by Craven and Csordas [10]. Using that, they obtained
the following fundamental inequality.

Theorem 3.11. Let r = be a multiplier sequence of the first kind and
n

let P(x) = L a/lx/l be an arbitrary real polynomial of degree n. Then
/1=0

(3.6) Zc(r[P(x)]) S Zc(P(x)),

where r[p(x)] is defined by (3.4).

Craven and Csordas [10] completely characterized all real sequences r = {'Y/I}
which satisfy inequality (3.6) for all real polynomials P(x). Namely, they proved
that r is a multiplier sequence of the first kind if and only if (3.6) holds for any
real polynomial P(x).

Also, we mention here the following consequence of the previous theorem, as an
extension of the Schur-Szego composite theorem (Theorem 2.6).
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n

Theorem 3.12. Let h(x) = 2: b"x" be a real polynomial of degree n with only
,,=0

real negative zeros and let P(x)

degree n. Then

n
2: a"x" be an arbitrary real polynomial of
,,=0

n

Zc(2:a"b"xv) Zc(P(x)).
,,=0

We mention here also an useful result (cf. Obreschkoff [65, p. 107]):

Theorem 3.13. Let ao + alZ + ... + anzn be a polynomial with only real zeros
and let z cI>(z) be an entire function of the second kind without positive zeros.
Then the polynomial

aocI>(O) + al cI>(1)z + ... + ancI>(n)zn

has only real zeros.

Craven and Csordas [12] gave also a characterization of the sequences
n

with the property that, for any complex polynomial P(z) = 2: a"z" and convex
,,=0

n
region D containing the origin and the zeros of P(z), the zeros of 2: I"a"z" again

,,=0
lie in D. Many applications and related results can be also found in this paper as
well as in [13]-[15]. The case D = {z E C : Izi 1} was considered in [47].

There are many so-called zero-mapping transformations which map polynomials
with zeros in a certain interval into polynomials with zeros in another interval. A
general technique for the construction of such transformations was developed by
Iserles and N0rsett [39]. It is based on the theory of bi-orthogonal polynomials
that has been also developed by Iserles and N0rsett [38].

Let D and E be two real intervals that need not be distinct, r = be a
n

given real multiplier sequence of the first kind, and P(x) = 2: a"x". Consider
,,=0

the transformation T defined by T[P(x)] = r[P(x)], i.e.,

Then, given that all the zeros of P(x) are real, all the zeros of T[P(x)] will also
be real.

Iserles and N0rsett [39] introduced sixteen zero-mapping transformations (see also
[61, pp. 213-215]). An alternative technique for generating transformations with
predictable behaviour of zeros can be developed from the work of AI-Salam and
Ismail [1]. Namely, let 'l/J be a Laplace transform of a non-negative function and
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assume that it is analytic and with non-zero derivatives at the origin. Then the
transformation

maps polynomials with real zeros into polynomials with real zeros. Here, (a)"
denotes the standard Pochhammer's symbol:

(a)O = 1, (a)" = (a)"-l (a + II - 1), II 1.

More details of the proof and examples are given in [40] and [41].
At the end of this section we mention a result on the zero distribution of a class
of polynomials associated with the generalized Hermite polynomials.

The sequence of polynomials where>. is a real parameter and m
is an arbitrary positive integer, was studied in [20]. For m = 2, the polyno-
mial reduces to Hn(x, >.)/n!, where Hn(x, >') is the Hermite polynomial
with a parameter. For>. = 1, = Hn(x)/n!, where Hn(x) is the classi-
cal Hermite polynomial. Taking>. = 1 and n = mN + q, where N = [n/m]
and 0 q m - 1, Dordevic [20] introduced the polynomials by

= and proved that they satisfy an (m + I)-term
linear recurrence relation of the form

(3.7)
m

L AN(i, = (t),
i=O

where BN(q) and AN(i, q) (i = 0,1, ... ,m) are constants depending only on N,
m and q. Recently, Milovanovic [58] determined the explicit expressions for the
coefficients in (3.7) using some combinatorial identities.

An explicit representation of the polynomial (t) can be given in the form
(see [20], [58]),

(3.8)
N tk

p(m,q) (t) _ '"'( I)N-k
N - - -:-(N-_-k-o)--:-,(-oq-+-m-k-'--')! '

where mEN and q E {O, 1, ... ,m -I}.
Using Theorem 3.13 with the function cI>(z) = r(z + 1)/f(mz + q + 1), where
r(z) is the gamma function, Milovanovic and Stojanovic [62] proved the following
result:

Theorem 3.14. The polynomial defined by (3.8), where mEN and
q E {O, 1, ... ,m - I}, has only real and positive zeros for every N E N.

For some other classes of polynomials and the corresponding zero distribution see
[21], [59], [60].
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4. Enestrom-Kakeya Theorem and Its Generalizations
For polynomials with positive coefficients Enestrom [24] and Kakeya [45] proved
(see also Henrici [33, p. 462] and Marden [56, p. 136]):

n
Theorem 4.1. Let P(z) = L avzv be any polynomial whose coefficients satisfy

v=o

Then P(z) has no zeros for Izi > 1.

This theorem has been extended and sharpened in various ways (cf. Hurwitz [36],
Egervary [23], Tomic [82], Krishnaiah [49], Cargo and Shisha [9], Joyal, Labelle,
and Rahman [44]' Govil and Rahman [31], Jain [42], Govil and Jain [30], Anderson,
Saff, and Varga [2]-[3], Dilcher [18], Kovacevic and Milovanovic [48], etc.). In this
subsection we will mention some of them.
Let I, E, \l be standard difference operators defined by (cf. Milovanovic [57])

and let

Cargo and Shisha [9] proved:
n

Theorem 4.2. Let P(z) = L avzv such that ao 2': 0 and av 2': 0, \l"av 0
v=o

(/I = 1, ... ,n) for a given Q (0 < Q 1), then P(z) has no zeros in Izi < 1.

Taking only monotonicity of the coefficients of a polynomial, Joyal, Labelle, and
Rahman [44] proved:

n
Theorem 4.3. If P(z) = L avzv is a polynomial of (exact) degree n (n 2': 1)

v=o
such that an 2': an-l 2': ... 2': al 2': ao, then P(z) has all its zeros in the disk

(4.1) I 1
< an - ao + laol

z - lanl .

Proof. Consider the polynomial znQ(I/z), where

n

Q(z) = anZnH + (1 - z)P(z) = ao + 2)\lak)zk
k=l

and \lak = ak - ak-I' For Izi 1 we have

n n

IznQ(I/z)1 laol+ IL(\lak)zk laol + L \lak = laol + an - ao,
k=1 k=1
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i.e., IQ(l/z)1 (Iaol + an - ao)/Izln. Replacing z by l/z we obtain that

for Izl 1. Also, for Izl 1 we have

I(z - l)P(z)1 = lanzn+1
- Q(z)1

lanllzln+l - IQ(z)1
Izln (Ianllzl - (Iaol + an - ao)).

Since an - ao lanl -Iaol we note that R = (Iaol + an - ao)/Ianl 1. Supposing
Izl > R we conclude that I(z -l)P(z)1 > 0, i.e., the polynomial P(z) has no zeros
for Izi > R. 0
For ao > 0 the disk (4.1) becomes Izi 1, Le., Theorem 4.3 reduces to Theorem 3.4.

If >. > 0, taking >.n-kak instead of ak (k = 0,1, ... ,n) in Theorem 4.3, we can
formulate the following statement:

n
Theorem 4.4. If P(z) = L: avzv is a polynomial of (exact) degree n (n 1)

v=o
such that ak - >'ak-l 0 (k = 1, ... ,n) for some>' > 0, then P(z) has all its
zeros in the disk

(4.2) Izl < an - ao>.n + laol>.n
- >'Ianl

A direct proof of this result was given by Kovacevic and Milovanovic [48]. Also,
they gave some comments regarding this result. For example, if ao < 0 and an > 0,
the bound given by (4.2) has the minimal value n/«n - 1)>'*), if

(
a )l/n>'_>'*_ n

- - 2ao (1 - n) .

Thus, the best estimate for zeros of a polynomial, according to Theorem 4.4, can be
obtained when the polynomial coefficients satisfy the conditions ak - >.*ak-l 0
(k = 1, ... ,an)' Notice that the conditions of Theorem 4.3 and >'* < 1 imply that
ak - >.*ak-l 0 for every k.

Dewan and Govil [17] showed that the disk given by (4.1) can be replaced by an
annulus with a smaller outer radius. More precisely, they proved the following
result:

Theorem 4.5. Under conditions of Theorem 4.3, the polynomial P(z) has all its
zeros in the annulus (perhaps degenerate)
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where

and

c = an - an-I, b = al - ao .

Moreover
0< R < 1 < R < an - ao + laol

- 2 - - 1 - lanl
An equivalent statement of Theorem 4.1, due in fact to Enestrom [24], is the
following (d. Anderson, Saff, and Varga [2]):

n
Theorem 4.6. Let P(z) = L avzv, n :::: 1, be any polynomial with ak > a for

v=o
all a :s k :s n. Setting

(4.3) a = alP] = min
ak+l

ak13 = 13[P] = max -,
ak+l

then all zeros of P(z) are contained in the annulus

(4.4) a :s Izi :s 13·

It is interesting to ask whether both inequalities in (4.4) are sharp, in the sense that
polynomials with positive coefficients can be found having zeros either on Izi = a
or on Izl = 13. An affirmative answer was given by Hurwitz [37]. He showed
that such extremal polynomials have a very special characterization. Using the
Perron-Frobenius theory of non-negative matrices, Anderson, Saff, and Varga [2]
gave a new proof of Hurwitz result, including some corrections and showed that
the zeros of a particular set of polynomials fill out the Enestrom-Kakeya annulus
(4.4) in a precise manner. They used the following notation: Pn denotes the set
of all complex polynomials of degree exactly n, and

n

= {Pn(z) = l:avzv I av > a for all O:S v:S n}
v=o

It is clear, if

denotes the spectral radius of any polynomial Pn(z) of degree at least unity, then
it follows from (4.4) that

(n:::: 1).
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For Pn(z) E 1>;t, Anderson, Saff, and Varga [2] set

S = S[Pn] = {v E Sn : j3an+l-v - an-v> 0, a-I = O},

5. = 5.[Pn] = {v E Sn : av-I - aav > 0, an+l = O},
where Sn = {I, 2, ... ,n + I} and a and {3 for Pn(z) are defined in (4.3). Note that
these sets are non-empty, since n + 1 is an element of both sets. Also associated
with Pn(z) E 1>;t, they introduced the positive integers

k = k[Pn] = gcd{v E S}, !£. = !£.[Pn] = gcd{v E 5.}.

With this notation, Anderson, Saff, and Varga [2] proved the following result:

Theorem 4.7. For any Pn(z) E 1>;t with n 1, all the zeros of Pn(z) lie in the
annulus (4.4). Moreover, Pn(z) can vanish on Izl = j3 if and only if k > 1. If
k> 1, the zeros of Pn(z) on Izi = {3 are all simple, and are precisely given by

{3 (
2rriv)exp ---=-

k

and Pn(z) has the form

(v = 1,2, ... ,k - 1),

(v=I,2, ... ,!£.-I),

Pn({3z) = (1 + z + Z2 + ... + Zk-l)Qm{i),

where Qm(w) E 1>;t. If m 1, then all the zeros of Qm(w) lie in Iwi < 1, and
{3[Qm] :S 1.

Similarly, Pn(z) can vanish on Izi = a if and only if!£. > 1. If!£. > 1, the zeros of
Pn(z) on Izi = a are simple and given precisely by

and Pn(z) has the form

znpn(a/z) = (1 + z + z2 + ... + zk- 1 )Rm (z!.),

where Rm(w) E 1>;t. If m 1, then all the zeros of Rm(w) lie in Iwl < 1 and
{3[Rm] :S 1.

Anderson, Saff, and Varga [3] was extended the classical Enestrom-Kakeya theo-
rem to the case of any complex polynomial having no zeros on the ray [0, +00).
They showed that this extension is sharp in the sense that, given such a complex
polynomial Pn(z) of degree n 1, a sequence of polynomials can
be found for which the classical Enestrom-Kakeya theorem, applied to the prod-
ucts Qm" (z)Pn(z), yields the maximum of the moduli of the zeros of Pn(z), when
v --+ +00. Also, Anderson, Saff, and Varga [3] described a computational algo-
rithm, based on linear programming, for improving the Enestri:.im-Kakeya upper
bound.
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5. Number of Zeros in a Given Domain
We consider here a few domains in the complex plane, starting with a simple case
when that domain is the real line.
Let r denote the number of real zeros, taking multiplicity into account, of a poly-
nomial

(5.1)

(5.3)

Under conditions that

laol b, lanl b, lakl::; a (k = 1, ... ,n -1),

Bloch and P6lya proved the following inequality

A ( b)
n log log n

r < I a, I 'ogn

where the constant Al depends only on a and b. A few years later Schmidt [74]
proved the sharper inequality

2 an
r <A2 (a,b)nlog b ,

where A 2 depends on a and b, and the still sharper one

(5.2) r 2
::; A3n log R,

where A 3 is a positive constant and

R = laol + ... + lanl
jlaoanl

Schmidt's detailed proof has never been published because Schur [76] found an
elementary short proof for it. Also Schur proved that A3 =4 is the best constant
in (5.2) and that

r2
- 2r ::; 2n log ,

where
Q = laol2 + ... + lan l2

laoanl
Szego [79] proved that

r(r + 1) < 4(n + 1) logR

and
r(r + 1) + (p - q)2 < 4(n + 1) log M

where p and q denote the numbers of positive and negative zeros, respectively, of
P(z), and

M = max IP(z)1 .
Izl=l jlaoanl

Erdos and Turan [25] gave a short proof of an inequality for the number of positive
zeros:
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Theorem 5.1. If P(z), given by (5.1), has p positive zeros, then

p2 2n log R,

where R is defined by (5.3).

In order to prove this result we suppose that Zk = rkeilJk (k = 1,2, ... ,n) be zeros
of P(z), i.e.,

n

P(z) = ao II (z - rk eilJk )
k=l

and put
n

q(z) = II (z - eilJk ).
k=l

It is easy to see that

rlz - eiIJ
1
2 Iz - reiIJ

1
2 (r 2: 0),

when Izi = 1. Then, using this inequality we have
n I 12 n

Iq(zW = II Iz - aO II Iz - rkeilJkl2,
laoI 2rlr2··· rnk=l k=l

i.e.,

whenever Izi = 1.
Put C = {z E <C : Izi = I},

Ilflle = If(z)1 and IIfll[a,b] = If(x)l·

Since P(z) has p positive real zeros, we see that the polynomial q(z) has p zeros
at 1. Using the change of variables x = z + Z-l applied to znq(z-l)q(z) we can
prove that (see [7, pp. 17-18])

2: lI(z - l)p(zn- p + bn_p_lZn-p-l + ... + bIZ +

2: min IIxp(xn- p + Cn_p_IXn-p-l + ... + CIZ + Co 11[0 4]
Ck '

=4n min IlxP(xn- p+ dn_p_lXn-p-l + ... + d1z + doll[o I}
,

2: .j2n + 1( 2n ) .n+p
Finally, using the inequality

p2 ( 4n )- <10
n - g .j2n + 1(';';p) ,

we obtain p2 2n log R.
A refinement of this theorem was recently given in [7]:
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Theorem 5.2. Every algebraic polynomial P(z) of the form (5.1), with lanl = 1
and lakl :s; 1 (k = 0,1, ... ,n -1), has at most ll;J1iJ + 4 zeros at l.

Theorem 5.3. If the zeros of the polynomial P(z), given by (5.1), are denoted
by

zv = rvexp(icpv)

then for every O:S; a < {3 :s; 21r we have

(v=I, ... ,n),

1 L 1- 16y!nlogR,
vEI(a,tll

where R is given by (5.3) and the index set I(a, (3) is defined by

I(a,{3) = {v E {I, ... ,n} : a:S; CPv:S; {3}.

The content of this theorem can be expressed by saying that the zeros of a poly-
nomial are uniformly distributed in the different angles with vertex at the origin
if the coefficients "in the middle" are not too large compared with the extreme
ones. In the case ao = al = ... = an the uniform distribution is of course much
more perfect than is expressed in the previous theorem and represents the ideal
case, but this theorem shows that if all coefficients satisfy the condition

(5.4) (v=O,l, ... ,n),

then R:S; (n + l)n2 )' < (n + 1)2H l, i.e.,

1 L 1- (3 an 1< 16.12,\ + 1y!nlog(n + 1).
vEI(a.tI)

Hence a rather radical change of the coefficients restricted only by (5.4) cannot
"spoil" the uniformly dense distribution of the zeros in angles very much (d. Erdos
and Turan [25]).
Erdos and Turan [25] deduced from Theorem 5.3 the inequality (5.2), even in a
slightly sharpened form.
For number of zeros in a circle, Singh [77] has proved the following results:

n
Theorem 5.4. Let P(z) = I: avzv be a polynomial with real or complex coeffi-

v=o
cients such that for n 2: 2

and

2(n+1)/2 r n(n + 1) 1:: 1< 1, r 2:

Then at least one zero of P(z) lies outside the circle Izi = r.
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n
Theorem 5.5. Let P(z) = I: avzv satisfy

v=o

Then

min lavl > 1°svsn - and

( /)
2Iog{(n+1)lanIRn}

logK (K>1),

where n(x) is the number of zeros of P(z) for Izi x and

R _ { I an-1 II an
-2 1

1
/

2
1 an

-3 1
1

/
3

}-max , , , ....
an an an

Rahman [69] improved Singh's results in the following theorem.
n

Theorem 5.6. Let P(z) = I: avzv be a polynomial with real or complex coeffi-
v=o

cients and let the conditions of Theorem 5.4 be satisfied, then the least number of
zeros of P(z) lying outside the circle Izi = l' is (n + 1)/2 or (n/2) + 1 according as
n is an odd or an even positive integer. Under the same conditions as in Theorem
5.5 one also has

(5.5) n(R/K) log{ (n + 1)lan IR
n

}
logK

for every K > 1.

The following result is due to Mohammad [63J:
n

Theorem 5.7. Let P(z) = I: avzv be a polynomial of degree n such that an
v=o

an-1 ... a1 ao > 0, then the number of zeros of P(z) in Izi 1/2 does not
exceed

1 an
1 + --log-.

log 2 ao

As a generalization of Theorem 5.7, Dewan [16] proved:
n

Theorem 5.8. Let P(z) = I: avzv be a polynomial of degree n with complex
v=o

coefficients such that

Iargav -.81 a 1r/2

for some real .8, and

(v = 0,1, ... ,n)

lanl lan-Ii ... la11 laol,

then the number of zeros of P(z) in jzl 1/2 does not exceed

n-1
lanl(cosa + sina + 1) + 2sina I: lavl

1 v=o
log 2 log laol
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n
Theorem 5.9. Let P(z) = L avzv be a polynomial of degree n with complex

v=o
coefficients. If Re av = a v, 1m av = f3v, for 1/ = 0,1, ... ,n and an 2: a n-l 2:
... 2: a1 2: ao > 0, then the number of zeros of P(z) in Izi :S 1/2 does not exceed

n

1 an + L lf3vl

1 + log 2 log

The previous three theorems were generalized by Bidkham and Dewan [6] for
different classes of polynomials which in turn also refine upon them.

The zero distribution of the trinomial

(5.6) T(x) = mxn
- nxm + n - m, n >m > a

recently has been investigated by Dilcher, Nulton, and Stolarsky [19].
Let C = {z E C Ilzl = I} and let gcd(m,n) be the greatest common divisor of
the integers m and n.

Theorem 5.10. Let a> b > 0 be real numbers and n > m > a be integers. Then
the number of zeros of

P(z) = bzn - azm + a - b

strictly inside C is m - gcd(m, n) if alb 2: nlm, and m if alb < nlm.

As a consequence of this result, Dilcher, Nulton, and Stolarsky (19) proved:

Corollary 5.11. If n > m > 0 are two relatively prime integers, then the trino-
mial T(z) in (5.6) has m -1 zeros strictly inside C, n - m -1 zeros strictly outside
C, and a double zero at z = 1.

For n 2: 3 the zeros of T(z)/(z - 1)2 lie in the following annuli:
1° For m = 1

1 + (n - 2)-1 :S Izi :S [2(n - 1))1/(n-l);

2° For 2 :S m :S n - 2

max {(2m)-I/m, 1- _1-J2nlm} :S Izi
n-m

:S min {[2(n - m)I/(n-m), 1 + J2nl(n - m)} ;

3° For m = n - 1

[2(n - l)t 1/(n-l) :S Izi :S 1 - (n - 1)-1.

Recently, Gleyse and Moflih [28) gave a new algebraic proof and method for the
exact computation of the number of zeros of a real polynomial inside the unit disk.
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In their investigation, they used the Brown transform and Schur-Cohn transforms
of a real polynomial (see also [26] and [27]).

Different results about the number of zeros in a half-plane, in a sector, or in a
given circle, the reader can find in the book of Marden [56].
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