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11.1. Introduction 
Suppose that X is a real linear space of functions, with an inner product if, g) :,X2 -+ R 
such that 

(a) if+ g, h) = if, h) + (g, h) 

(b) (a/, g) = a if, g) 

(c) if, g) = (g,j) 

(d) if,j) > 0, if,j) = 0 ¢:> f= 0 

where/, g, hEX and a is a real scalar. 

(Linearity) 

(Homogeneity) 

(Symmetry) 

(positivity) 

If X is a complex linear space of functions, then the inner product if, g) maps,X2 into 
C and the requirement (c) is replaced by 

(c' if, g) = (g, f) (Hermitian Symmetry) 

where the bar designates the complex conjugate. 

A system of polynomials {Pk}' where 

Pk(/) = Ik + tenns of lower degree 

and 

(k =0, 1, ... ) 

(Pk' p",) = 0 (k *m), (Pk' p",»O (k=m) 

is called a system of (monic) orthogonal polynomials with respect to the inner product 
( . , . ). 

The most common type of orthogonality is with respect to the following inner product 

(f, g)= J !(t)g(t)dJ.(t), 
R 

where dA.{t) is a nonnegative measure on the real line R with compact or infinite support, 
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for which all moments 

I'k= J tkcU(t), k=O, 1, ... 
R 

exist and are finite, and Jlo > O. Then the (monic) orthogonal polynomials {Pk} satisfy the 
fundamental three-term recurrence relation 

(1) 
PHI (t) =(t - ak) Pk(t) - bkPk-l (t), 

P-l (t)=O, Po (t)= 1, 

where the coefficients ak and bk are given by 

ak= (tPk,Pk) (k=O, 1, ... ), 
(PkoPk) 

bk = (Pk, Pk) (k = 1, 2, ... ). 
(Pk-II Pk-t) 

k= 0, 1, 2, ... , 

We note that bk > 0 for k 1. The coefficient bo in (1) is arbitrary, but the definition 

is sometimes convenient. 

Typical examples of such polynomials are the classical orthogonal polynomials of 
Legendre, Ceby§ev, Gegenbauer, Jacobi, Laguerre and Hermite. 

An other type of orthogonality is the orthogonality on the unit circle with respect to 
the inner product 

2n 

(/, g)= J /(ef")g(ef") dp.(O), 
o 

These polynomials were introduced and studied by SzegO [1]. Monic orthogonal 
polynomials { <l>t} on the unit circle satisfy the recurrent relation 

cPk +1 (z) = Z cPk (z) + cPk (0) Zk cPk (liz), k=O, 1,2, ... , 

which is not of the form (1). For more details consult Nevai [2]. 

Similarly, we may consider orthogonal polynomials on a rectifiable curve or an arc 
lying in the complex plane (e.g. Geronimus [3], SzegO [4]). Complex orthogonal 
polynomials may also be constructed by means of double integrals. Namely, introducing 
the inner product by 
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(J, g)= J J J(z)g(z)w(z)dxdy. 
B 

for a suitable positive weight function w where B is a bounded region of the complex 
plane, a system of orthogonal polynomials can be generated (see Carleman [5] and 
Bochner [6]). 

11.2. Orthogonality on the Semicircle 
Recently Gautschi and [7] (see also [8]) introduced a new type of 
orthogonality, the so-called orthogonality on the semicircle. The inner product is defined 
by 

(1) (J, g) = J J(z)g (Z)(iZ)-1 dz, 
r 

where r= {z eel z =£18 , 0 S (}S tr}. Alternatively, (1) can be expressed in the form 

or 

(2) (J, g)= J f(e'')g (e'') dO. 
o 

Notice that this inner product does not satisfy the conditions (c' and (d). Namely, the 
second factor in (1), i.e. (2), is not conjugated, so that this product does not possess 
Hermitian symmetIy; instead it has property (c). 

The corresponding (monic) orthogonal polynomials exist uniquely and satisfy a three-
term recurrence relation of the form (1) from 1l.1, due to the property (zJ, g) = if, zg). 

The general case of orthogonality with the complex weight function w with respect to 
the inner product 

i.e. 

(J, g)= J !(z)g(z)w(Z)(iZ)-l dz, 
r 

or 

(3) (J, g)= J J(e'll)g(e'6) w(ei6) dO, 
o 

was considered by Gautschi, Landau and [9]. 

Let w : (-1, 1) -. R+ be a weight function, which can be extended to a function 
z 14 w(z) which is regular in the half disc 
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Together with (3) consider the inner product 

1 

(4) [f. g) = J I(x)g (x)w(x)dx, 

-1 

which is positively definite and therefore generates a unique set of real (monic) 
orthogonal polynomials {Pk}: 

[Pi' p",]=O for k*,m and 

[Pi' p",]>O for k=m (k, m=O, 1, 2, ... ) 

On the other hand, the inner product (3) is not Hermitian; the second factor g is not 

conjugated and the integration is not with respect to the measure Iw(e j ')ld6. The 
existence of corresponding orthogonal polynomials, therefore, is not guaranteed. 

We call a system of complex polynomials {lrk} orthogonal on the semicircle if 

[lri , 11' .. ] = 0 for k *' m and 

[11'." 11' .. ]*,0 for k=m (k, m=O, 1, 2, ... ) 

where we assume that lrk is monic of degree k. 

The existence of the orthogonal polynomials {lrk} can be established assuming only 
that 

,. 
(5) Re(I,I)= Re lw(el9)cl6=1=O. 

o 

11.3. Existence and Representation of n;. 
Assume that the weight function w is positive on (-1, 1), regular in D+ and such that the 
integrals (3) and (4) from 11.2 exist for smooth/and g (possibly) as improper integrals. 
We also assume that the condition (S) of 11.2 is satisfied. 

Let C 8' & > 0 denote the boundary of D + with small circular parts of radius & and 
centres at ±l spared out and let P be the set of all algebraic polynomials. Then. by 
Cauchy's theorem, for any g e P we have 

0= J g(z)w(z)dz 

c. . 
(1) 

J-. 

=( J + J + J )g(z)w(z)dz= J g (x) w (x) dx, 

r. C •• _l c •. +1 -1+. 
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where rs and C.!;±l are the circular parts of Cs (with radii 1 and & respectively). We 

assume that w is such that for all g E P 

(2) lim J g(z)w(z)dz=O 
._0 C •• ±I 

(VgEP). 

Then, if 0 in (1), we obtain 

I 

(3) 0= J g (z) w (z) dz = J g (z) w (z) dz + J g (x) w (x) dx, 
gEP. 

C r -I 

The (monic, real) polynomials {Pk}' orthogonal with respect to the inner product (4) 
of 11.2, as well as the associated polynomials of the second kind 

1 

qk(z)= J Pk (Z)-Pk(X) w(x) dx 
z-x 

-I 

(k=O, 1, 2, ... ), 

are known to satisfy a three-term recurrence relation of the form 

(4) (k=O, 1, 2, ... ), 

where 

(5) Y_I = 0, Yo = 1 for {Pk} and Y_I = -1, Yo = 0 for {qk}. 

Denote by mk and Pk the moments associated with the inner products (4) and (3) of 11.2, 
respectively 

where, in view of (5) 

(6) bo = "'0. 

THEOREM 1. Let w be a weight function. positive on (-1, 1), regular in D+ = 
{z E Cllzl <1, Imz> O} and such that (2) is satisfied and the integrals in (3) exist 

(possibly) as improper integrals. Assume in addition that 

If 

(7) Re(1, 1) = Re J w{e(9)dO:t O. 
o 

Then there exists a unique system of (monic. complex) orthogonal polynomials {Irk} 
relative to the inner product (3) of 11.2. Denoting by {Pk} the (monic. rea/) orthogonal 
polynomials relative to the inner product (4) ofl1.2, we have 
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(8) 

where 

(9) 

nn (z) =Pn (z) - i 0n-1Pn-l (Z) 

° = l'oPn (0)+ iqn (0) 
n-l . . i l'oPn-l (O)-qn-l (0) 

(n=O, 1,2, ... ), 

(n=O, 1,2, ... ). 

Alternatively, 

(10) (n=O, 1, 2, ... ); 0_1 =1-'0' 

Chapter 11 

where ak' bk are the recursion coefficients in (4) and Po = (1, 1). In particular, all On are 
real (in fact, positive) if an = 0 for all n O. Finally, 

(n= 1,2, ... ), 

Proof. Assume first that the orthogonal polynomials {Nk} exist. Putting 

g(z) = Nn(Z)Zk-l, 1 s: k < n 
I 

in (3) we find 
1 

0= J nn (z) zk (iZ)-l W (z) dz - i J nn (x) ,xk-l w (x) dx 
r-l 

(1 :;;.k<n), 

and hence, upon expanding Nn in the polynomials {Pk}' 

(12) nn (z) = Pn (z) - i 0n_l Pn-l (z) (n=O, 1,2, ... ). 

for some constants On-I. To determine these constants, put 

g (z)= [nn (z) - nn (0)] (iZ)-l = {Pn(Z)-Pn (0) -i 0n-l Pn-l (Z)-Pn-l(O)} 
,z z 

in (3) and use the first expression for g to evaluate the first integral, and the second to 
evaluate the second integral in (3). This gives 

1). 

Since (Nn, 1) = 0, (1, 1) = Po, and using (12) with z = 0, we get (9) for n 1. Note that the 
denominator in (9) (and the numerator, for that matter) does not vanish, since Re Po * 0 
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by (7) and Pk(O), qk(O) cannot vanish simultaneously, {Pk} and {qk} being linearly 
independent solutions of (4). For n = 0, (9) yields, by virtue of (5), 0_1 = JIo. 

To show the first relation in (10), replace n by n + 1 in (9) and use (4) for z = 0, to 
obtain 

o _POPII+1 (O)+iqll+1 (0) 
,11-1 - iPoPII (O)-qll (0) 

Po [-aIlPII (O)-hIlPn_1 (0)] + i [-all qll (O)-hll qll_1 (0)] 

i POPII (O)-qll(O) 

iall [iPoPII(O)-qll (O)]-hll lPOPII-1 (0) + iqll_1 (0)] 

i Po PII (O)-qll (0)' 

1). 
(111-1 

Using (9) with n = 1, (4) with k = 0 and (5), yields 

8 Po (-ao) + iho • mo 
o • =Iao+-' 

'Po Po 

since b
o 

= mo (see (6». Therefore, (10) also holds for n = O. 

If all an = 0, then w is symmetric and we can prove that (see Theorem 1 in 1l.6) 

Po = (1,1) = nw(O) > O. 

Hence, using (10) we conclude that On is real. 

Conversely, defining "n by (8) and (9), it follows readily from (3) that for n 2, 

1 

(nn, zk)= J n,,(z)zk-1 w(z)dz=i J n,,(x)xk-1 w(x)dx=O 
r _I 

and from (13), (9) and (8) for z = n that ("n' 1) = 0 for n l. Furthermore, 

(nil' nil) = J nn (z) zn w (Z)(iZ)-1 dz 
r 

1 J 1 =[ nn(z)zn-1w(z)dz=i f nil (x)xn- I w(x)dx 
r _I 

1 

.. i J [PII(x)-iOIl _ 1PII_I(X)]xn-1w(x)dx 
-I 

1 

=011_1 f (x)w (x) dx, 
-1 ' 
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proving (11). 

We note from (8) that 

" (14) (p", 1)=iO"_1 (P"-h 1)= ... = n (iO._ 1)(I, 1), .-1 
and, similarly, 

1 

which, applied repeatedly, gives 

(IS) 

Here, (11) has been used in the last step. From (14) and (IS) there follows 

(16) 

the inversion of (8). When k = n, the empty product in (16) is to be interpreted as 1. 

EXAMPLE 1. w(z) = 1 + z. 

Here, J.lo = (I, 1) = Ir + 2;, Re J.lo *' 0, so that the orthogonal polynomials {Irk} exist. 
Fw1hennore, bo = mo = 2, 

1 
a = 
" (2n + 1X2n + 3) 

b = n(n+1) 

" (2n+1)2 

so that by (10) 

n-4i 
00 = 3 (2 - in) , 

3n+8i 
01 = , ••• 

S (4+ in) 

by (4) and (5), 

and by (8), 
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in 4 

n ==Z2_.-- z- , 
2 4+in 3 (4+ in) 

EXAMPLE 2. w(z) = r. 
Here 

" 
P-o = J e2i8 dO = 0 

o 

so that (7) is violated and thus the polynomials {Irk} do not exist, even though w(x) 0 on [-I, 1] 
and the polynomials {Pk} do exist. It is easily seen that = 0 when k is even, so that 0n-I is 
zero for n even, and undefmed for n odd. For an explanation of this example see Theorem 1 in 11.6. 

11.4. Recurrence Relation 

We assume that 
tr 

(1) Re(l, 1) = Re J wk8)d8;t: o. 
o 

so that orthogonal polynomials {7rk} exist. Since (zf, g) = if, zg), it is known that they 
must satisfy a three-tenn recurrence relation 

k =0, 1, 2, ... , 
(2) 

7'-1 (z) = 0, 

Using (8) of 11.3 and (2), for k 1 we get 

and substituting here for zPk(z) and zPk_l (z) the expressions obtained from the basic 
recurrence relation (4) of 11.3, yields 

[ok + i «()k - ()k-l - a/] Pk (z) + [bk - {Jk - ()k-l (ak + iOk-1)]Pk-l (z) 

+ i [{Jk 0k-2 - bk-
1 

Ok-I] Pk-2 (z)= 0, k!1;. 1. 

By the linear independence of the polynomials {Pk} we conclude that 

ak +i(Ok- Ok_l- ak)=O, k!1;.l, 

(3) 
k !1;.I, 



156 Chapter 11 

From the last equality in (3) and (10) of 11.3, we get 

(4) 

for k > 2. The first equality in (3) gives 

(5) 

To verify that (4) also holds for k = 1, it suffices to apply the second relation (3) for k = 1, 
in combination with (10) of 11.3 and (5) for k = 1. With a", Pk thus determined, the 
second equality in (3) is automatically satisfied, as follows easily from (10) of 11.3. 
Finally, from 

(z) = z- jao = PI (z) - jOo =z - ao - jOo' 

we find 

Alternatively, by (10) of 11.3 we may write (5) and (6) as 

(7) 

We have therefore proved: 

THEOREM 1. Under the assumption (1). the (monic. complex) polynomials {1l'k} 
orthogonal with respect to the inner product (3) of 11.2 satisfy the recurrence relation 
(2), where the coeffiCients ale> Pt are given by (5) (or (7» and (4), respectively, with the 
On defined in (9) (or (10» ofll.3. 

By comparing the coefficients of zk on the left and right of (2), we obtain from (5), (6) 
that 

(n 1). 

11.5. Jacobi Weight 

We consider now the case of the Jacobi weight function 
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(1) +Z)II, a> -1, P>I, 

where fractional powers are understood in terms of their principal branches. We first 

obtain the existence of the corresponding orthogonal polynomials {t4aJl)}. 

THEOREM 1. We have 

n 1 

(2) 1'0 = ,100. {J) = J w<o. II) (ei 8) dO = 31: + i v. p. J W(O,: (x) dx, 

o -1 

and hence Re Po *" O. 

Proof. Let CE , &> 0, be the contour formed by {JD+, with a semicircle of radius r about 
the origin spared out. Then, by Cauchy's theorem 

where rand ce are the circular parts of Ce (with radii 1 and &, respectively). If 0 in 
(3) we get 

1 

O=I'o-i v. p. J W;X) dx-nw(O), 

-1 

which proves (2). 

The following theorem is also proved in [9]: 

THEOREM2. We have 

31:(fl.O)(z) ( 1),,-(0. /I) ( ) " = - 31:" . - Z , 

where frIO denotes the polynomial frn with all coefficients conjugated, i.e. n...(z) = frll(z). 

11.6. Symmetric Weights and Gegenbauer Weights 
THEOREM 1. If the weight function w. in addition to the assumptions stated in 11.3, 
satisfies 

(1) w( -z) =w(z) and w(O»O, 

then 
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(2) ,uo = (1, 1) = nw (0), 

and the system %rthogonal polynomials {Kn} exists uniquely. 

Proof. Proceeding as in the proof of Theorem 1 from 11.5, we find 

1 

. J w(x) O=,uo-l v.p. -;-dx-nw(O), 
-1 

where the Cauchy principal value integral on the right vanishes because of symmetIy of 

w. This proves (2). 

Under the assumption (1) we have ak = 0 for all k 0 in (4) of 11.3. In this case the 

relations (6), (5) and (4) of 11.4 reduce to 

1. 

Furthermore, by (10) of 11.3 

wherem = 1, 2, ... 

In particular, for the Gegenbauer weight 

(3) A> -1/2, 

we have p" (z) = C" (z) - the monic Gegenbauer polynomials - for which as is well 

known, 

b =m = lrn r

(i.+l/2) 

o 0 r"' r(i.+l) , 

b - k(k+2A-l) 1 

k- 4(k+i.)(k+i.-l) ' - • 

Therefore, by (10) of 11.3, 
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n(n+2A-l) 1 
()n= -, n=l, 2, "" 

4(n+A)(n+A-l) 8n - 1 

i.e. 

1. 

() _ r(A+l/2) 
0- Vn r(A+l) 

The corresponding orthogonal polynomials can be represented in the form 

:n;k(z)=C;(z)-i()k-l CLt(z) 

and their norm is given by 

In particular, we have: 

1 ° The Legendre case A. = 112: 

() = ( r «k + 2)/2) )2 k 0; 
k r«k+l)/2) , 

2° The teby§ev case A. = 0: 00 = 1, Ok = 112, k 1; 

3° The teby§ev case of the second kind A. = 1: Ok = 112, k O. 
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The Legendre case is considered in detail in [7], and Gegenbauer case, including various 
applications to numerical analysis, in [10]. 

11.7. The zeros of n;,(Z) 

It follows from (2) of 11.4 that the zeros of 7rn(z) are the eigenvalues of the (complex, 
tridiagonal) matrix 

iag 1 0 
PI ia, 

J= n 
p, iaz 

1 

0 Pn-I ian_, 
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The elements of I n are easily computed using (6), (5), (4) of 11.4 and (10) of 11.3, 
since the recursion coefficients ale> b

k 

for the orthogonal polynomials {Pk} are known. 

If the weight w is symmetric, then Pk = oLI is positive, and I n can be transformed into 
a real matrix. Indeed, a similarity transformation with the diagonal matrix 

transforms the complex matrix I n into the real nonsymmetric tridiagonal matrix 

o 

o 
with eigenvalues 1J

v

= -isv . Using the EISPACK subroutine HQR (see [11» we can 
evaluate all the eigenvalues 1J

v 

(v= 1, ... ,n) of An' and then all the zeros sv= i1J

v 

(v= 1, ... ,n) of 7rn(z). 

A theorem on the distribution of zeros of 7rn(z) in the case when the weight function w 
is symmetric, i.e. 

w(-z) = w(z) and w(O) > 0 

is proved in [9]. We shall quote here a particular, but important, result regarding the 

distribution of zeros of the polynomials n;!(z), orthogonal with respect to the complex 
Gegenbauer weight 

w(z) = (l-z2r"2 , A. > -112. 

THEOREM 1.1f A. > -112, all the zeros of are simple and for n 2 they belong to 

the upper unit half disc D+ = {z E Cllzl < 1, Imz> O}. 

REMARK 1. The problem of distribution of zeros for general weight functions is not solved. The 
case of Jacobi weights (see (1) of 11.5) is particularly interesting. Numerical experiments indicate 
that all the zeros belong to the half disc D +. 

REMARK 2. For the Gegenbauer case a second order linear differential equation is found in [9] 

whose particular solution is the polynomial 7r:(z). Applications of those polynomials to numerical 
integration and numerical differentiation of analytic functions are given in [10). 
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