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Polynomials Orthogonal on the Semicircle, II 

Walter  Gautschi ,  Henry  J. Landau ,  and Gradimir  V. Milovanovi6 

Abstract. Generalizing previous work [2], we study complex polynomials {rrk}, 
r ) = Zk+ ' ' ' ,  orthogonal with respect to a complex-valued inner product 
( f, g) = ~o f( e~8)g( e~a)w( e ~~ dO. Under suitable assumptions on the "weight 
function" w, we show that these polynomials exist whenever Re Jo w(C~ dO ~ O, 
and we express them in terms of the real polynomials orthogonal with respect 
to the weight function w(x). We also obtain the basic three-term recurrence 
relation. A detailed study is made of the polynomials {zrk} in th; ease of the 
Jaeobi weight function w(z) = (1 - z)~ + z) a, tr > - 1,/~ > -1, and its special 
case a=13 =A-�89 (Gegenbauer weight). We show, in particular, that for 
Gegenbauer weights the zeros of ~r, are all simple and, if n-> 2. contained in 
the interior of the upper unit half disc. We strongly suspect that the same holds 
true for arbitrary Jacobi weights. Finally, for the Gegenbauer weight, we obtain 
a linear second-order differential equation for =,,(z). It has regular singular 
points at z = 1, -1, co (like Gegenbauer's equation) and an additional regular 
singular point on the negative imaginary axis, which depends .on n. 

1. Introduct ion 

Let w be a weight funct ion which is positive and  integrable on the open  interval 
( - 1 ,  1), though  possibly singular at the endpoints ,  and which can be extended 
to a funct ion w(z) holomorph ic  in the hal f  disc /9+ = {z e C: [zl < I, Im z > 0}. 
Cons ider  the  fol lowing two inner products ,  

I_ (1.1) [ f  g ]  = f(x)g--(-~w(x) dr, 
1 

(1.2) ( f , g ) = ~ r f ( Z ) g ( z ) w ( z ) ( i z ) - l d z = f ~ f ( e i ~ 1 7 6 1 7 6  

where F is the circular part  o f  OD+ and all integrals are assumed to exist (possibly) 
as appropr ia te ly  defined improper  integrals. The first inner p roduc t  is positive 
definite and  therefore generates a unique set o f  real or thogonal  polynomials  { Pk}, 

= 0  if k # l ,  
(1.3) [Pk, PJ] > 0  if k = l ,  k , l = 0 , 1 , 2 , . . . ,  
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where Pk is assumed monic of degree k. The second inner product, on the other 
hand, is not Hermitian; we deliberately did not conjugate the second factor g 
and did not integrate with respect to the measure Iw(e'O)l dO. The existence of 
corresponding orthogonal polynomials, therefore, is not guaranteed. We call a 
system of complex polynomials {Zrk} orthogonal on the semicircle if 

=0  if k ~ l ,  . 
(1.4) (~rk, lr~) ~ 0  if k=l ,  k , l = 0 , 1 , 2 , . . . ,  

we assume "/'/'k monic of degree k. 
Our interest here is in the orthogonal polynomials { ~rk}, their existence, relation- 

ship to the polynomials { Pk}, difference and differential equations, and zeros. A 
study of these polynomials was initiated in [2], where we considered w ( z ) - 1  
and used moment information to construct the polynomials { ~rk}. This necessitated 
lengthy preliminary computations of moment determinants [2, Section 2]. We 
now obtain these polynomials more directly, and for more general weight func- 
tions, using orthogonality as the principal tool of construction. 

The paper is organized as-follows. In Section 2 we establish the existence of 
the orthogonal polynomials {Irk}, assuming only that 

(1.5) Re (1, 1) = Re w(e '~ dO r 0. 

We furthermore represent ~r, as a linear (complex) combination of  pn and p~_~. 
This then leads quickly to the basic three-term recurrence relation, as is shown 
in Section 3. The case of Jacobi weights w(z)= ( 1 -  z)"(1 + z) ~, a > - 1 , / 3  > - 1 ,  
is considered in Section 4 and is further specialized to Gegenbauer weights 
(~ =/3 = A -�89 in Section 5. Section 6 is devoted to a study of the zeros of ~r, in 
the case of Jacobi and Gegenbauer weights. After a brief discussion of numerical 
methods, it is shown that, for Gegenbauer weights with A > -�89 the zeros of ~r~, 
n >- 2, are all contained in the upper unit half  disc/9+. Numerical evidence seems 
to suggest that the same is true for arbitrary Jacobi weights. The simplicity of 
the zeros is shown in the case of Gegenbauer weights. The polynomial ~rn then 
satisfies a linear second-order differential equation, which is derived in Section 7. 

2. Existence and Representation of ~'n 

We assume that w is a weight function, positive on ( -1 ,  1), hoiomorphic in 
D§ = {z ~ C: Izt < I, Im z > 0}, and such that the integrals in (1.1) and (1.2) exist 
for smooth f and g (possibly) as improper integrals. We shall also assume (1.5). 
If  C~, e > 0, denotes the boundary of D§ with small circular parts of radius e 
and centers at +1 spared out, we have by Cauchy's theorem, for any polynomial 
g, 

P 

(2.1) o= [_ g(z)w(z) dz 

I = + g(z)w(z)  dz+ g(x)w(x)  dx, g e P ,  



Polynomials Orthogonal on the Semicircle 391 

where F~ and c,.• are the circular parts of  C~ (with radii 1 and e, respectively). 
We assume that w is such that 

(2.2) l i m f  g ( z ) w ( z ) d z = O ,  all g ~ P .  
e~O Jc~.• 

Then, letting e~0 in (2.1), we obtain 

Ii ; (2.3) 0 = g( z )w( z )  dz = . g ( z )w( z )  dz+ -1 g ( x ) w ( x )  dx, g ~ P. 

The (monic, real) polynomials {pk(z)}, orthogonal with respect to the inner 
product (1.1), as well as the associated polynomials of  the second kind, 

I I pk(z)--pk(X) 
(2.4) qk(Z) = W(X) dx, k = 0, 1, 2 , . . . ,  

- i  Z - - X  

are known to satisfy a three-term recurrence relation of  the form 

Y k + l  = ( Z  - -  a k ) Y k  - -  b k Y k - l ,  k = 0, 1, 2 . . . .  , (2.5) 

where 

y_~ = 0, Yo = 1 for {Pk}, 
(2.6) 

y _ ~ = - l ,  y o = 0  for {qk}. 

We denote by mk and /~k the moments associated with the inner products (1.1) 
and (1.2), respectively, 

(2.7) mk = I x  k, 1], jZk =(Z k, 1), k - 0 .  

It is assumed, in (2.5), that 

(2.8) bo = mo. 

Theorem 2.1. Let w be a weight function, positive on ( -1 ,  1), holomorphic in 
D+ -- {z ~ c :  Izl < 1, Im z > 0}, and such that (2.2) is satisfied and the integrals in 
(2.3) exist (possibly) as improper integrals. Assume in addition that (1.5) holds. 
Then there exists a unique system of  ( monic, complex) orthogonal polynomials {Trk} 
relative to the inner product (1.2). Denoting by {Pk} the (monic, real) orthogonai 
polynomials relative to the inner product (1.1), we have 

(2.9) 

where 

(2.1o) 

Alternatively, 

(2.11) 

r  n = 0 ,  1,2 . . . .  , 

txop,(O) + iq,(O) 
O . _ ,  - i l z o P . _ l ( O  ) _ q._,(O)' n = 0 ,  1 , 2 , . . . .  

O,=ia ,+  b , ,  n = 0 , 1 , 2 , . . . .  
On - 1 

0_! =/ ' / '0 ,  
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where ak, bk are the recursion coefficients in (2.5) and I.% = (1, 1). In particular, all 
O, are real (in fact, positive) i f  a,  = 0 for  all n >-O. Finally, 

(2.12) (Tr, , , 'n ' , , )=O,-l[p, , -~,p,_l]~O, n =  1 , 2 , 3 , . . . ,  (fro, 7to) = ~o. 

Proof. Assume first that the orthogonal polynomials {Trk} exist. Putting g ( z ) =  
(1/ i)r  k-l ,  1 <- k <  n, in (2.3), we find 

0 =  r d z - i  r r , , ( x )xk - lw(x )  dx 

=(~r, , , zk)- - i[Tr , , ,xk-I]=-- i[Tr , , ,xk- t] ,  l < _ k < n ,  

hence, upon expanding It, in the polynomials {Pk}, 

(2.13) "rr, ,(z)=p,(z)--iO,,_~p,_l(z),  n =0, 1,2 . . . .  , 

for some constants 0,-1. To determine these constants, put 

in (2.3) and use the first expression for g to evaluate the first integral, and the 
second to evaluate the second integral in (2.3). This gives 

(2.14) 0 = (r 1 ) -  7r,(0)(1, 1)+l[q,,(O)-iO,_~q,_~(O)], .  n>- l .  
t 

Since (Tr,, 1) = 0, (1, 1) =/xo, and using (2.13) with z = 0, we get (2.10) for n - 1. 
Note that the denominator in (2.10) (and the numerator, for that matter) does 
not vanish, since Re txo ~ 0 by (1.5) and pk(O), qk(O) cannot vanish simultaneously, 
{Pk} and {qk} being linearly independent solutions of (2.5). For n =0,  (2.10) 
yields, by virtue of (2.6), 0-1 =/-to, which is the definition given in (2.11). 

To show the first relation in (2.11), replace n by n + l  in (2.10), and use (2.5) 
for z = 0, to obtain 

~op.+~(0) + iq.+,(0) 
O. = i txop.(O)-q.(O) 

= g0[ -a .p .  (o) - b.p,_,  (o)] + i[-a.q~ (o) - b.q~:., (0)] 

it.top. (0) - q. (0) 

= ia.[(/~op.(0) - q.(0)] - b.[/Xop,._l(0) + iq,,_,(O)! 

ilxop.(O) - q.(O) 

b. 
= ia,, "~ On-l" n >-- 1. 

Using (2.10) with n = 1, (2.5) with k = 0, and (2.6), yields 

0o- tXo(-ao)+ ibo mo = i a o + - - ,  
it~o tXo 

since bo = mo [cf. (2.8)]. Therefore, (2.11) also holds for n =0.  
If all a.  = 0, then w is symmetric and the reality of the 0. follows from (2.11) 

and (5.2) below. 
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(2.15) 

and, similarly, 

Conversely, defining 7r, by (2.9) and (2.10), it follows readily, for n->2, from 
(2.3) that 

(rr",zk)=l f Tr,(z)zk-lw(z)dz=i . ,7r"(x)xk-'w(x)dx=O, e<_k<n, 

and from (2.14), (2.10), and (2.9) for z=0,  that (~',, 1)=0, n_> 1. Furthermore, 

(~"' ~") = Jr ~r"(z)z"w(z)(iz)-~ dz 

1I I =7 ~r,~(z)z'~-'W(Z) dz = i 7r,,(x)x'~-lw(x) dx 

I 1 = i [ p , ( x ) -  iO,_tp,_l(x)]xn-lw(x) dx 
- 1  

I_ = o._, p L , ( x ) w ( x )  dx, 
1 

proving (2.12). I 

We note from (2.9) that 

(p,, 1) = iO,,_~(p,,_,, 1) . . . . .  1] (i0~_1)(1, 1), 
J'=l 

(pn,~rk)----iO,-~(pn-i,Irk), l<-k<n, 
which, applied repeatedly, gives 

(2.16) (p., q'gk)= (v=kU+l iO~-l)(pk, 7rk) 

= i -1 iO,_l Pk-l , Pk-l], l <- k <- n. 
k 

Here, (2.12) has been used in the last step. From (2.15) and (2.16) there follows 

(2.17) pn(z)= ~=O (~,=k~+ iO~,_,)~k(Z), 

the inversion of (2.9). (When k = n, the empty product in (2.17) is to be interpreted 
as 1.) 

Example 2.1. w ( z )  = 1 + z. 

Here, tzo= (1, 1)= rr +2i, Re tXo# 0, so that the orthogonal polynomials {wk} 
exist. Furthermore, bo=mo=2, a,=(2n+l)-~(2n+3) -~ for n->0, b ,=  
n(n+l) (2n+l)  -2 for n->l, so that by (2.11), 

7r-4i  3"rr +8i 
0o = 3(2-i~r~' 01 = 5(4+ i~r~ . . . .  ' 
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by (2.5) and (2.6), 

po(z) = 1, 

and by (2.9), 

t '~ , - 1 ,  p~(z) ~ 2 = Z --SZ-- '~,  . . . ,  

2 2 izr 4 
"n'o(z)=l, z q ( z ) = z - 2 - i - - - ~ '  r  3(4+ir . . . . .  

Example 2.2. w ( z )  = z 2. 

Here, ~o = So e2i~ dO = 0, so that (1.5) is violated and thus the polynomials {wk} 
do not exist, even though w(x )>-0  on [-1 ,  1] and the  polynomials {Pk} do exist. 
It is easily seen, in fact, that qk(0)-=0 when k is even, so that 0,-i  in (2.10) is 
zero for n even, and undefined for n odd. For an explanation of Example 2.2, 
see Theorem 5.1. 

3. Recurrence Relation 

We assume (1.5), so that the orthogonal polynomials {Trk} exist. Since (zf, g) = 
(f ,  zg),  it is known that they must satisfy a three-term recurrence relation. In 
analogy to Section 3 of I-2] we write it in the form 

r k = 0 ,  1 , 2 , . . . ,  
(3 .1 )  

~r_ , ( z )  = 0,  ~ro(z)  = 1. 

Using (2'.9) in (3.1), we get, for k - 1 ,  

pk+l( z) - iO~k( z)  = ( z -  iak)[ p k ( z ) -  iOk-lp~-l(Z) ] --ilk[ pk--I( Z) -- iOt,-2pk-e( Z) ], 

and substituting here for Zpk(Z) and zpk- , (z )  the expressions obtained from the 
basic recurrence relation (2.5) yields 

[ak + i(Ok -- Ok-~ -- ak)]pk(z)  W [bk - ~k -- Ok-I(Otk q- iak-1)]pk-t(Z) 

+ i[ilkOk_2--bk_lOk_l]pk_2(z)=O, k >-- l. 

By the linear independence of the polynomials {Pr} we conclude that 

ak+i(Ok--Ok_l--Otk)=O, k->l ,  

(3.2) bk--~k--Ok- l (ak+iak--~)=O,  k>--l, 

[~kOk_2--bk_lOk_l--~O, k>-2. 

From the last relation in (3.2), and (2.11), we get 

Ok- 1 
(3.3) flk = ~ bk-1 = Ok-t( Ok-i -- iak-i) 

for k ~ 2. The first relation (3.2) gives 

(3.4) uk = 0k - 0k-1 -- iak, k >- 1. 
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To verify that (3.3) also holds for k = 1, it suffices to apply the second relation 
(3.2) for k = 1, in combination with (2.11) and (3.4) for k = 1. With ak, /3k thus 
determined, the second relations in (3.2) are automatically satisfied, as follows 
easily from (2.11). Finally, from Try(z) = z - iao = pl(z)  - iOo = z - a o -  iOo, one 
finds 

(3.40) a~o = 0o-  iao. 

Alternatively, by (2.11), we may write (3.4) and (3.40) as 

bk 
ak---- --0k-t'~ , k->l ,  

Ok- 1 

(3.5) bo mo 
OL o 

0-1 /Zo" 

We have proved: 

Theorem 3.1. Under the assumption (1.5), the ( monic, complex) polynomials {zrk} 
orthogonal with respect to the inner product (1.2) satisfy the recurrence relation 

7rk+l(Z) = (Z -- iak)~rk(z) --flkTrk-l(Z), k = O, 1, 2 , . . . ,  
(3.6) 

~ , _ , ( z )  = o,  ~'o(Z) = 1, 

where the coe~cients ak, /3k are given by (3.4) [or (3.5)] and (3.3), respectively, 
with the 0, defined in (2.10) [or (2.11)]. (The coefficient/30 in (3.6) is arbitrary; 
the definition/30 =/Zo, however, is sometimes convenient.) 

By comparing the coefficient of  z k on the left and right of (3.6), one obtains 
from (3.4o), (3.4) that 

(3.7) ~ n ( z ) = z  ~ -  iOn-l+ ~ am z " - l +  . . . .  , n.>---1. 
m=O 

4. Jaeobi Weight 

We consider now the ~case of  the Jacobi weight function 

(4.1) w ( z ) = w ~ ' ~ ) ( z ) ~ ( 1 - z ) ~ ( l + z )  ~, a > - l ,  f l > l ,  

where fractional powers are understood in t e rmso f  their principal branches. We 
first establish the existence of  the corresponding orthogonal polynomials {Zrk}. 

Theorem 4.1. We have 

f f  ~_ w~'~'~(x) (4.2) /.t o -- ~o ' ' ~  = w<'~'a)(e '~ dO = 7r + i - -  dx, 
t X 

where the integral on the right is a Cauchy principal value integral, hence Re ~o ~ 0. 
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Proof. Let C~, e > 0, be the contour formed by aD+,  with a small semicircle of 
radius e about the origin spared out. Then, by Cauchy's theorem, 

(4.3) 0 =  d z +  w ( x )  . w ( z )  
zz - t  + ~ ax  + . dz, 

�9 1X ,. I Z  

where F and c, are the circular parts of (_:~ (with radii 1 and e, respectively). 
Letting e~0 in (4.3) yields 

~ w(x) 
0 = ~o - i dx  - 7rw(O), 

1 x 

which proves (4.2). �9 

By Theorem 2.1 we therefore have 

(4.4) 7r,(z) = ~r~,~'~(z) = / 3 ~ ' ~ ( z ) -  ~("~)~ ~ t l - - 1  ~ m - - I  \ z . ] ,  

where/5~.~) are the monic Jacobi polynomials and ,,,_~n('#) is given by (2.10) with 
the identifications 

p k ( z )  = P ~ ' a ) ( z ) ,  qk ( z )  as in (2.4). 

Theorem 4.2. We have  

(4.5) 7r~'~)(z) = ( -  l ) "~ ' t3>( -z ) ,  

where  Or. deno tes  the po l ynomia l  or. with all coefficients conjugated,  (r . (  z ) = 7r.( ~). 

Proof. As is well known, /~k~'~(z)=(-1)kbk"'~(-z). Since w~'~)(z)= 
w(" ' t~) ( -z ) ,  there follows from (4.2) that 

/d, 0 ' = 

and from (2.4) that 

Consequently, by (2.10), 

qk~'~)(z) = (--1)k+lqk"'~)(--Z) .  

n ~ |  ~ V n _  1 , 

so that, finally, 

^ ; t : l (a , /3  ) D ( a d 3  ) i  _ ~ ~ 1 ~ " ~ ) ( z )  = ( - 1 ) " [ P ( . " ~ ( - z ) +  ....... ^ * v n - -  1 a n - -  1 ~, , ~ } J ,  

This, in view of (4.4), is equivalent to (4.5). �9 

The quantity t~o ~'~ is needed to generate the ,,,,-la~'~ by (2.11), and the recursion 
coefficients ak,/3k by (3.5) and (3.3). It is of some interest, therefore, to discuss 
its numerical evaluation, tn principle, tZo can be computed from the second 
expression in (4.2), since the principal value integral appearing there can be 
expressed in terms of the Jacobi function Q~o"'~(~) on the cut, evaluated at s c = 0. 
This evaluation, however, is not easy, particularly near integer values of a, where 
it is plagued by cancellation phenomena (see [3]). 
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It appears much more convenient to use the first expression in (4.2), rewritten 
in the form 

(4.6) /~r = 2"+~e -i'~/: e"("+~)~ sina ~ cos ~ dO, 

and to note that the integrand has a singularity of type 0 ~ at 0 = 0 and of type 
(~r- 0) ~ at 0 = 7r. This suggests the use of Gauss-Jacobi quadrature with para- 
meters (/3, a) (note the reversal of parameters!). Changing variables, O= 
( t+  1)~r/2, indeed yields 

(4.7) /~o '~'~= 2'~+~-%re i~-~)'/4 

f l ~,+t3),,~rsin((t+l)cr/4)'] ~rcos(f t+ 1)7r/4)] # 
• _1 e [ J L J 

where the integrand (except for the weight function w ~t~'~)) is now regular on 
[ -1 ,  1]. 

5. Symmetric Weights and Gegenbauer Weight 

We begin by establishing (1.5) for arbitrary symmetric weights not vanishing at 
the origin. 

Theorem 5.1. I f  the weight function w, in addition to the assumptions stated at 
the beginning o f  Section 2, satisfies 

w ( - z ) =  w(z)  and  w(0)>0, (5.1) 

then 

(5.2) ~o = (I, I) = 7rw(O), 

and the system o f  orthogonal polynomials {'~Tk} exists uniquely. 

Proof. Proceeding as in the proof of Theorem 4.1, we find 

~w(x) 
0 = I zo-  i - dx  - lrw(O). 

l X 

Here, the Cauchy principal value integral on the right vanishes because of 
symmetry of w. This proves (5.2). U 

Under the assumption (5.1) we have ak = 0, all k-> 0, in (2.5), hence, by (3.4o), 
(3.4), and (3.3), 

(5.3) C~o= 0o, Otk = Ok -- Ok_l , flk = O2k_~, k >_ l. 
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Furthermore, by (2.11), 

mo hi 0o=--,  0 ,=--  
/-% 0o' 

b2b4"'" b2m } 
o2o = Oo . :  : -b  ' 

(5.4) 

02,.+1 = 4  bib3 " " " b2,,+1 
b264 ~ -. ". ~ tJo 

m = 1 , 2 , 3  . . . . .  

In particular, for the Gegenbauer weight 

(5.5) w ( z )  = (1 - z2) ~- ' /2 ,  ~ > -�89 

we have pk(z)= C~(z)-- the  monic Gegenbauer polynomials--for which, as is 
well known, 

~._ r(~ +')  
bo = mo = V Zr -F'-(-~ ;-O), 

(5.6) 
.~(k+2X - 1 )  

b k = k > - I. 
4 ( k + A ) ( k + A - I ) '  

Therefore, by (2.11), 

n(n+2x-1)  1 r(;t +~) 
- , n = l , 2 , . . . ,  0 o -  ~--~F(A + 1), O, 4 ( n + A ) ( n + A - 1 )  0._~ 

and thus, by induction, 

F(A +�89 1 r ( ( k + 2 ) / 2 ) F ( A + ( k + l ) / 2 )  
O ~  Ok--A+~ F( (k+I) /2 )F(A+(k /2) )  ' (5.7) 

k = l , ~  3, 

For Z =�89 (i.e., w(z) =- 1), this reduces to equation (3.3) of [2]. 

6. The Zeros o f ~ ' . ( z )  

6.1. 

It follows from (3.1) that the 
tridiagonal) matrix 

(6.1) 

Computation of the Zeros 

zeros of ~-,(z) are the eigenvalues of the (complex, 

iot o 
/3, 

-Jn ~- 

The elements of J. are easily 
the recursion coefficients ak, 

1 : L ia I 1 

f12 iot2 . 

0 /3. ~ i~o_, 
computed from (3.4o), (3.4), (3.3), and (2.11), once 
bk for the orthogonal polynomials {Pk} are known. 
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The value of/Xo required in this computation is best obtained from the definition 
(2.7) by numerical integration, as is described, e.g., in the case of  the Jacobi 
weight at the end of  Section 4. To compute the eigenvalues of  (6.1) in the general 
case, we recommend the EISPACK routine COMQR (see, e.g., p. 277 of [4]). 

If the weight w is symmetric, then /3k = 0~_~ is positive [cf. (5.4)], and (6.1) 
can be transformed into a real matrix. It follows indeed by a similarity transforma- 
tion with the diagonal matrix /9, = diag(1, iOo, i20o01, i30o0102 . . . .  ) ~ C "• that 
the eigenvalues of (6.1) are equal to ~'~ = it/v, where B~ are the eigenvalues of the 
real nonsymmetric tridiagonal matrix aOi Oo 

- -  Ol I 01  

(6.2) - iD~J~D~ = - 0 t  a2 

0 

On --2 

�9 _ _ 0 n _ 2  " Ofn_ 1 

(w symmetric). 

These can be computed by the EISPACK routine HQR (p. 330 of [4]). 

6.2. Jacobi Weight 

For the general Jacobi weight (4.1), with parameters a > - 1 , / 3 > - 1 ,  we have 
only numerical results; they were obtained by the procedure described in the 
preceding subsection. All indications are, however, that the zeros of  -t~"a) 7 ,  for 
n -> 2 are always contained in the upper unit half disc D+ = {z ~ C: Iz] < 1, Im z > 
0}. This was verified numerically for: 

(i) ~ =-0.75(0.25)1.0, /3=-0 .75(0 .25)a  [when / 3 >~ ,  the analogous fact 
follows from (4.5)] and n = 2(1)13, 16, 17, 24, 25; 

(ii) a =-0.75(0.25)1.0,/3 = - 0 . 9 ,  -0.99, -0.999, -0.9999 and n as in (i); 
(iii) miscellaneous values a > 1,/3 < a and n as in (i). 

A proof of  this remarkable property will be given in the next subsection in the 
special case a =/3 > - 1 ,  in which case we also show that all zeros are simple. 

6.3. Symmetric Weights and Gegenbauer Weight 

We first assume that w is any symmetric weight function (subject to the conditions 
of  Theorem 2.1), 

(6.3) w ( - z )  = w(z), w(O) > O. 

Then all 0n_l > 0 [cf. (5.4)]. 
Exactly as in Section 5 of I-2] one proves: 

Theorem 6.1. I f  ~ ~ C is a zero of  rf,, then so is - ~  The zeros of  Tr, are thus 
located symmetrically with respect to the imaginary axis. Moreover, all zeros have 
positive imaginary parts and, in fact, are contained in the half strip S+ = 
{z ~ C: Im z > 0, -~n -< Re z -< ~},  where ~, is the largest zero ofpn. 
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More detailed information about the zeros is provided by the following theorem. 

Theorem 6.2. Al l  zeros o.f ~r,, are conta ined  in D ,  = { z ~ C :  [z[<l ,  l m z > 0 }  ( in 

fac t ,  in D .  n S+; cf. Theorem 6.1), with the possible  except ion o f  a single ( s imple )  
zero on the posi t ive  imaginary  axis. 

Proof. Consider first a zero ~" of r not on the imaginary axis (hence n >-2). 
By Theorem 6.1 it suffices to prove I~1 < 1. Since, again by Theorem 6.1, there is 
another zero, - ~  we have 

(6.4) 7r.(x) : p . ( x )  - i O . - l p . _ t ( x )  = ( x  - ~ ) ( x  + ~ ) r ._2 (x ) ,  

where r._ 2 ~ 0 is a polynomial of degree n -  2. Therefore, 

(6.5) 0=  r  (x-~)(x+Olr~_2(x)12w(x) dx, 
- I  - I  

where the first relation in (6.5) follows from the first relation (6.4) and the 
orthogonality of the Pk. Since 

( x  - ~ ) ( x  + ~) = x 2 - 2 ix  Im ~" -I~12, 

there follows, by taking the real part of (6.5), 

f_ (x2-1~12)lr._2(x)12w(x) dx =0, 
1 

which implies I~:1 < 1. 
By the same argument one shows that rr. cannot have two distinct zeros, or a 

double zero, on the imaginary axis, all with imaginary parts -> 1. 1 

We specialize now to Gegenbauer weights, 

(6.6) w ( z ) = ( 1 - z 2 )  ~-1~2, A >  - �89  

and denote the corresponding polynomials or. by 

(6.7) r C~.(z) - ' ~  "~ = ~ O . - i C . - l ( z ) ,  0.- i  given by (5.7). 

Here, C~ denote the monic Gegenbauer polynomials. We shall abbreviate, when 
convenient, 0 . - i =  x 0 . - -  I �9 

For a more detailed study of the zeros of r we need the following lemmas. 

Lemma 6.3. For x > O, 0 < s < 1, one has 

F ( x + l )  
(6.8) x'-S < r (x  + s) < (x + 1)'-L 

Proof. See [1]. 

Lemma 6.4. The quant i t ies  0 ._ ,  = A 0._, [cf. (5.7)] satisfy 
A 0._~<�89 /f - � 8 9  or X > l ,  

< max(0~, 0~) if 0 < X < l ,  n =2 ,3 ,  (6.9) ~< 0 . - i  . . . . .  
A =�89 0 , - i  if A = 0  or A = I .  
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Proof. An elementary computation, based on (5.7), shows that 

(6.10) A :,  0k§ if and only if A ( A - 1 ) ~ 0 .  

Furthermore, by Stirling's formula applied to (5.7), 

(6.11) lim 0~, = �89 

Therefore, if - ~ < A  < 0  or A > 1, we have 0~+2> 0~, k =  1 , 2 , 3 , . . . , h e n c e ,  by 
ax < ~- all n-> 2. This proves the first inequality in (6.9). Suppose, next, (6.11), v , - i  2, 

t h a t 0 < A < l .  Then, 0 ~ + 2 < 0 ~ , k = l , 2 , 3 , . . . , h e n c e ,  a g a i n b y ( 6 . 1 1 ) , ~ < 0 , _ t  <- ~ 
max(0~,0~) for all n->4 (and trivially for n = 2  and 3), proving the second 
relation in (6.9). Finally, if A = 0 or )t = 1, then ~ 0~_t =~, all n->2. �9 

Theorem 6.5. I f  A> -�89 then all zeros of  ~r~,(z), n->2, are contained in D+= 
{ z e C : l z ] < l ,  Im z>0} .  

Proof. By virtue of  Theorem 6.2, it suffices to show that 7rn, n -> 2, can have no 
purely imaginary zero with imaginary part -> 1. 

A Thus, consider a zero ~" = iy of 7r~. By (2.9) [or (6.7)], 

pn(iy) - iO~-lp,-t(iy) = O, 

^) t  = 0n-1. Therefore, whe rep ,  C ~ a n d 0 , _ l =  x 

pn(iy) 
~n--I  * ip~-l(iy) 

(6.12) 

Letting 

(6.13) 
pk(iy) 

tok(y) = ipk-l(iy)" k = 1, 2, 3 , . . . ,  

one finds from the recurrence formula for the Pk [cf. (2.5) and (2.6)] that 

�9 bk-__..___.~ 
tol(y) = y, tok(y)=y+tok_l(y),  k = 2 , 3 , . . . ,  

hence, since bk-1 > 0, 

tOk(y)--> 1 for y -> l .  

Therefore, the left-hand side of  (6.12) is ->1 f o r y  -> 1 and n -> 1. We now show that 

(6.14) 0~_1 < I, n->2, 

so that (6.12) cannot hold for y~- 1, when n-->2, and thus ~r, ~, n->2, cannot have 
a zero iy with y ~ 1. 



402 W. Gautschi, H. J, Landau, and G. V. Milovanovi~ 

By Lemma 6.4, the inequality (6.14) is certainly true if - � 89  <-0 or A-> 1, 
and if 0 < A  < 1 will follow from 0~ < 1, 0~< 1. Now using (5.7) and the upper 
bound in Lemma 6.3 (with x = A, s = ~), one gets 

~/-;I'(A + l) -,/-; (A + 1),t2 (-~ 
0 , -  2(a + I)F(A + ~ ) < 2 ( a  + l )  2(a + 1)t/2<--2 --< 1, 

if A > O. Likewise, 

2 r (a  + ~_______2) 2 (a +~),t2 < 1, 
0" - ,J-~(A +2)  F(A + 1)<,/-#~(A +2)  

0 < A  <1.  �9 

Theorem 6.5 does not hold for n = 1, - 3 <  ,~-<0, since the zero iao = iOo then 
has a modulus that increases from 1 to oo when )t decreases from 0 to -3.  It 
does hold, however, for n = 1, A > 0, as can be shown. 

An. alternative proof  of  Theorem 6.5, valid however only for A >0 ,  can be 
given on the basis of  RouchCs theorem, as in [2]. 

To prove the simplicity of the zeros of ~r we need 

Lemma 6.6. 

(6.15) 

satisfies the inequality The quantity O,,_l = 0,-1 

4 (n+A-1)202  ~ < n ( n + 2 A - 1 ) ,  n_>2, A > - ) .  

Proof. The right-hand side of  (6.15) is positive, since n + 2A - 1 > n - 2  > 0. From 
(5.7) we have 

F ( (n+  1)/2)F(A + (n/2))'~ 2 
4(n+A-1)20~,_i  : 2 F T n ~ ~ - n - - ' l ) - ~ ]  

[2 .(A.n-I~IV r((n+l)f2)r(a+(n/2)) }= 
= *- - i - - ) J  ~,r((n/2)+ 1)r( ,  + (n + 1)/2)) ' 

so that (6.15) becomes 

+ 1)r(a + ( .  + 1 ) /2 ) ]  2 
(6.16) \ ~ ) 7 ~ ( ] 7 U 1 7 ~  I > ~ n ( n + 2 a - 1 ) .  

This follows immediately from the lower bound in Lemma 6.3, first applied with 
x=�89 s-~,-~ and then with x = A + 3 n - ~ . ,  s=�89 �9 

Theorem 6.7. l f  A > -�89 all zeros of  ~r~,(z) are simple. 

Proof. The proof  is analogous to the one given in Section 5 of  [2] for the case 
X = ~. It suffices, of  course, to assume n-> 2. 

Let r be a zero of  zr, = 7r~. By (2.9), 

p . (~ )  = iO. -~p . - l (~) .  
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Therefore, using again (2.9), 

(6.17) ~r'(~) = p ' (~ ' )  - iO._,p'_,(~) 

1 
- p._,(~.~ [P ' (~ ' )P--~(~)  -p,(~)p'- ,(~)].  

Using 

403 

(1 - ~2)p~,(~) = ( k  + 2A)~pk(( , )  - -  2 ( k  + A)pk+ , (~ )  

to remove the derivatives on the right o f  (6.17), and employing the recurrence 
relation 

k(k  + 2A - 1) 

4(k + A - 1)(k + A) Pk-,(~'), 
p k + , ( ~ )  = 6 p k ( ~ )  

yields, after  some computa t ion ,  

p . - , (~ : )  

III 

- 1) 0 . - 1  l r , ( ~ ) = 2 ( l _ ~ Z ) ( n + , ~ _ l ) [ n ( n + 2 a _ l ) _ 4 ( n + ,  ~ 2 2 

- 2 ( 2 n  + 2), - 1 ) (n  + k, - 1)~' i0 ._,] .  

I f  ~ = a + i/3, the expression in brackets becomes  

n(n + 2)t - I)  - 4 ( n  + )t - 1)202._~ + 2(2n + 2). - 1)(n + ). - l)/30,_a 

- 2 ( 2 n  +2)t  - l ) (n  + A - 1)aiO._~ 

and is dea r ly  nonzero  by virtue o f  Lemma 6.6 a n d / 3  > O. 

T h e o r e m  7.1 .  

(7.1) 

where 

7. Di f ferent ia l  Equat ion  

The following theorem generalizes Theorem 6.1 o f  [2]. 

The polynomial r z ) in (6.7) satisfies the differential equation 

P ( z ) y " +  Q ( z ) y ' +  R ( z ) y  = 0, 

(7.2) 

2 2 P ( z ) = ( 1 - z 2 ) [ n ( n + 2 A - 1 ) - 4 ( n +  A - 1 )  O,,-i 

- 2(2n  + 2x - 1 ) (n  + x - 1)ziO,,_d, 

Q(z) = - ( 2 ) ,  + 1) [n(n  + 2 a  - 1) - 4 ( n  + ~, - 1)20~_~]z 

+ 2 ( 2 n  + 2;t - 1 ) ( n +  A - 1)(1 +2Az2)iO,,_~, 

R(z) = n2(n +2,~ )(n + 2A - 1) - 4 ( n  - 1)(n +2A - 1)(n + ;t - 1)2~_1 

-2n(n  +2; t  - l ) (2n +2.~ - 1)(n +)t  - 1)ziO._,. 
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Proof.  We only sketch the proof ,  since it is ana logous  to the one given in Sect ion 
6 of  [2]. We put  u = ( , A  i(z) ,  t , = 2 ( n + A - l ) r r A , ( z )  and  define 

O. . ) (Z)=(z- - l )  Ct/2)('~2a l)-i(,,+* -l)0,, I (Z+ l)(t/2)(n,2x l)~it,,*a I)0,, , 

Then,  

(7.3) (z 2 -  1)[~o(z)u] '  = w(z)v .  

Subs t i tu t ing  u, u', u" f rom (7.3) into G e g e n b a u e r ' s  different ia l  equa t ion  

( z " -  1 )u"+(2) t  + l ) z u ' - ( n -  1)(n+2)~ - 1)u = 0  

gives 

1 , ,  a ( z )  f oJ 
v t - - v + j  v d z = O ,  (7.4) b(z)  b(z)  z'--~l 

where  

a ( z ) = ( z 2 - 1 ) - ~ [ - n z +  2 (n+ h - l ) i O ,  i], 

b(z)  : [w( z ) ( z  2 -  l ) ] - ~ [ n ( n  +2A - 1) - 4 ( n  + X - l)zO'-._, 

- 2(2n + 2h - l ) ( n  + )~ - 1)ziO,_~]. 

Now dif ferent ia t ing  (7.4) and  mul t ip ly ing  the resul t  by  -w( z ) ( z ' -  - 1)Zb-'(z) yields  
(7.1) and  (7.2) af ter  some computa t ion .  �9 

We r emark  that  (7.1) has regula r  s ingular  po in ts  at 1, - 1 ,  c~, and  an add i t i ona l  
regular  s ingu la r  po in t  which  d e p e n d s  on n and,  by L e m m a  6.6, is l oca ted  on the 
negat ive  imag ina ry  axis.  
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