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1. Introduction. Let Wn be the set of all algebraic polynomials of

exact degree n, all coefficients of which are nonnegative, i.e.,

n
= = 2 = eee,n— , > .
W {pnl P (x) kZO a x, a z0(k=0,1, n-1), a_ 0}
Let l|f|!2 = (f,f), where
(£,9) = [ w(x)£(x)g(x)dx (f,g€L%[0,=)),
0

with generalized Laguerre weight function w(x)=x°‘e—x (a>-1).

In a previous paper [2] G.V. Milovanovié found a complete soluti-
on of the following problem of A.K. Varma [5]: Determine the best con-

stant in the inequality

2 2
'
R cn(a)upnll (P EW),
i.e.,
2
e i
Cn(a) = sup >
e

pew el
Also, G.V. Milovanovié and R.%Z. DPordevié [4] considered a similar
problem for Freud's weight function w(x) = xaexp(-xs) (¢>=-1, s>0) on

[O,m). A survey about extremal problems of Markov's type for algebraic

polynomials is given in [3].
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In this paper we consider an extremal problem for higher deriva-
tives of polynomials

(m),, 2
2™

(1.1) Cn m((!) = sup (1 smsn),

‘ pew 2 IF
n n
with respect to generalized Laguerre weight function.

The subset of Wn for which a .= ... =a =0 (i.e. Pn(O) = ... =

0 m-1
= Pl:m-l) = 0) we denote by Wx:-l. Note that the supremum in (1.1) is at-

tained for some pnew’;"l. Indeed,

(m) (m) (m)
2™ I .5
sup — = —_— = e
m-1 m-1 P
PEW 2l P EW 1P QI P EW 12,1l
- SR 20
0 m-1
m-1 X
= 2 N
where Qm_l(x) kio a, x (ak 0)

2. Main result. At first, we define the integrals

-xP(k)

n (x)zdx, k=0,1,...,m,

J (a) = [x%
K 0

where Pne W:_l. Using Lemma 3 from [2] we can conclude that for a >2k -

-2m-1 the following inequalities hold

2
43, (@) s 3, (@) + (1-2003, _ (a-1) + (a-1)°3, _ (a-=2), k=1,...,m.

From these inequalities the following result follows:

Yemma 1. The coefficients B;k) in the inequalities
x K (k)
473 (a) = § B, 'J (a-i), k=0,1,...,m,
k i=0 i 0

satisfy the following recurrence relations

(k)_ _(k=1) (k)_ (k=1)_ . . (k-1)
By =Bg + By =B + (1-2a)8" ',
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e gy 12a) 8T (1m0 287D ion, L, 2x-2,
i i i-1 i-2

(k) _ oy (k1) o2 (k-1) ) _ o 2 (k-1)
Bak-17 (1720 By o +(1=a) By 370 By = (1= "By 5 -

Lemma 2. If the coefficients B:{m) are as in Lemma 1, the following identity
(m)

om B. 2, .2 _ 2
i . k” (k-2) (2:)( 2m+2) (a>=1, k 2 2m)
i=0 (k+a) (k+a)
(s)_
holds, where P = p(p-1)...(p-s+1).

Proof of this lemma can be given by the mathematical induction.

Remark. If we define arg(a) = (a-l)z(u-3)2...(u-2m+1)2, the coeffi-

cients Bi(m) can be expresed in the form

i
8(m) _ (-1)

i .
om-i 11 A g(w), i=0,1,...,2m,

where A 1is the standard forward difference operator.

Theorem. The beet constant Cn m(u) defined in (1.1) is
’

2
_(“L)(;m_) , -1<a sa
(2m+ @) !
(2.1) c (a) =
n,m
nz(n-l)z...(n-m+1)2
(2m) ! @z an,m !

(2n+ @)

where o« o ig the unique positive root of the equation

’

(2n+q) 2™ n.2
(2.2) —(Zm) = (m) .
(2m+ a)
Wm-l o k
Proof. Let PEW T, i.e., P (x) = ) ax  (a >0 and other a z0).
k=m
Then
2n
2 k
P (x)" = 1 b, x (b, > 0 and other b _z 0)
k=2m B k
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and

2 2n
Jy@) =jlp |I= 7§ p [ (k+a+1),
0 n k
k=2m

where T is the gamma function. Using Lemma 1, for k=m, we obtain

2n 2m (m)
"7 @) s § b ] B F(k+a-i+1)> ,
m k\. i
k=2m i=0
i.e.,
2n
(2.3) @ s B m (@b, T (k+at1),
k=2m
where
(m)
B () = L é? g(m I(k+a-i+1) 1 2m B,
= = o Tr T = — \.',
k,m 4" i=0 I(k+a+1) 4" i=0 (k+q) (1)
or, because of Lemma 2,
- (a) = kz(k-2)2...(k-2m+2)2
k/m 4" (k+a) (2m)
From (2.3) it follows that
2
IIP(m”I s ( max H () |l |I?
n 2m sk s2p Kem n
and so we have
C (a) = max H (o),
n,m 2m sk s2n Kk/m
where
HZm,m(a) C1f -1 < o = an’m ’
max H (a) =
k,m
2m sk s2n ’ " @) if a2 o ,
2n,m n,m

and % is the unique pPositive root of the equation (2.2).
’

In order to show that Cn m(al defined in (2.1) is best possible,
’

i.e. that ¢ (o) = max
n,m

H (@), we consider P (x) = x" 4 Ax™
2m sk s2n k/m n

~ 2~
(Az 0) and set Q n) = ”P‘m)H /”PnHZ. Since Q n(0)=H (@) ang’

2n,m
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lim Q_ (A = 4 (a), we conclude that B (x) =x" is an extremal po-
A+ D,m 2m,m n

lynomial for aza m If -1 <a san m’ there exists a sequence of poly-

’
nomials, for example, pn k(x)==xn + kx™, k=1,2,..., for which
’
. (m) 2 2 _

Lin [lp™ 11 %/lIp, 17 = c

k+ o

’

(@) .

’

The case m=1, where

1 -1<q 3
(2+0a) (1+q) * R N
(2.4) Cp (@ = 2
(2n+a) (2n+a-1) ' %S @ <=,
and
(2.5) o = = 1

2 1/2
N G 1= 2 (nl) ((17n“+2n+1) 3n+1),

was considered in [2].

Note that Cn m(cz) can be found by (2.4) and (2.5) as
’

= cee a
Cn,m(a’ cn,l(u)cn-l,l(a) Cn-m+1,1‘ )
but only for
(2.6) a2 max{un,an_l,...,un_m+1} = o

(The sequence (an) is decreasing).

3. Some considerations about roots un n° In this section we consider
4
the equation (2.2). For m=1,

the root of this equation is given by (2.5).
If we put m:=n-m in (2.2), we see that «

=q . For example,
n,n-m n,m
= o 1= an. So we will only investigate the cases when 25 m <
4
s[(n+1)/2] . Let

a
n,m-1

(2n+a) (2m) 2m

B +k+2n-2m .
fla) = = grirencem (a><1).
(2m+a) (2™ o @tk

Since :
2m 1
f'(@) = -2(n-m)f(a) |

<0
k=1 (x+k) (a+k+2n=-2m)

for all @ > -1, the function f(a) is decreasing.
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. 2
Firstly, let n=3 and m=2. Then we have f£(1/2) =li4§:-3- > (g) =9,

that means 03'2 >1/2.

Now, we consider a case when nz 4 and m2 2. Since

) 2
4 2
£(1/2) = (4n+1)il - 4n+1 o gReRE) ,
(4m+1)!! (4(n-m) +1)!! (4m+1) (4(n-m) +1) qm) ,2m] {(n-m) ) (Z(n-m))
Hm

An~m) n-m

using improved Wallis' inequality [1]

we obtain

2
£(1/2) > § (I‘:) Vh (4m) h (4n-4m) h (2n) ,

where h(x) = (2x+1)/(x+1). For 2sm s [(n+1)/2] and nz 4 we have

h(4m)h(4n-4m)h(2n) z h(8)h(4n-8)h(2n) 2 h(B)3 = (17/9)3.

2
Since 1%(17/9)3/2= 1.019... > 1, we get that £(1/2) > (;) , that means

un n > 1/2. On the other hand, because of (2.6), we can conclude that
r

a s a . So we have
n,m n-m+1

s o .
n,m n-m+1

In the special case, when n+ +%, we have

2
(mt). *
(a+l)2m' 1<<xsu.m,
lim C (@) =
n - o 2.
1 2 ot
—4m ’ a Qm ’

where (p)s =p(p+l)...(p+s-1) and u;l is the unique root of equation

@+1), = ™ (m1) 2.

-]

We note that a*l* =a_ = (V17 - 3)/2.
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