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Abstract— In many problems in telecommunications we
have to use numerical integration of functions in one or sev-
eral variables, iterative processes and summmation of series.
Very often, such problems cannot be solved by standard
methods because of their slowly convergence. In this sur-
vey, we give an account of some special quadrature methods
for such purposes.
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I. INTRODUCTION

The methods of numerical integration are very important
tools in many problems in telecommunications and related
subjects. Very often we meet ill-conditioned problems, the
problems with singularities or quasi singularities, the prob-
lems with strongly oscillatory functions, etc. Special func-
tions which appear always in the telecommunication prob-
lems have integral representations, so that we have to use
the numerical integration or some expansions in series. In
some cases, the convergence of such processes can be very
slowly and we have to use certain techniques for accelerat-
ing of such convergence. In many problems, the standard
methods require too much computation work and cannot
be successfully applied. Therefore, for problems with sin-
gularities, for integrals of strongly oscillatory functions and
others, there are a large number of special approaches. In
this survey we give an account on some special — fast and
efficient - quadrature processes. Such methods require a
knowledge of orthogonal polynomials.

This paper is organized as follows. In Section 2 we give
some basic facts concerning the orthogonality on the real
line. The classical orthogonal polynomials and some special
functions are included. Section 3 is devoted to the Gaus-
sian quadrature formulas with arbitrary weights and their
applications in finding the bit error probability of some
communication systems in the presence of noise and in-
terference, as well as in solving certain singular integrals
appearing in analysis of antennas. Integration of strongly
oscillatory functions including product quadrature formu-
las is considered in Section 4.

II. ORTHOGONALITY ON THE REAL LINE
Let P, be the set of all algebraic polynomials P (# 0)
of degree at most n and L?(a, b) be the set of all functions

such that f: |f(®)|2w(t) dt < +o0, where w is a given weight
function. The inner product is given by

b
(f,9) = / w(t) f(H)a(t) dt, (1)
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A system of polynomials {7}, where

Tk (t) = t¥ + lower degree terms, (mg, ) = ||7e||*6km,

is called a system of monic orthogonal polynomials with
respect to the inner product (., .) given by (1). Here, dgm,
is Kronecker’s delta. Such orthogonal polynomials {m}
satisfy a three-term recurrence relation

Th1(t) = (¢ — ar)mi(t) — Bemr—a(t), k>0, (2)

mo(t) =1, 7.(t) =0,

with the real coefficients a; and Br > 0. Because of or-
thogonality, we have that

_ (tme,mr) _ (mk, )
o (me, ) T (Tp—1,Th—1) 3)

The coeflicient By, which multiplies #_; = 0 in three-term
recurrence relation may be arbitrary. Sometimes, it is con-

venient to define it by G = f:w(t) dt. Then the norm of
7 can be expressed in the form

el = /(e me) = /BoBi -+ - B -

Knowing the first n of the coefficients ay, B, k =
0,1,...,n — 1, in the recurrence relation (2), we can con-
struct a symmetric tridiagonal matrix in the following way

ao\/B; 0
VB o1 VB

VB a . . @)

0 Br—1
This tridiagonal matrix J, = J,(w) is known as the Jacob:

matriz. The monic polynomial m,(t) can be expressed in
the following determinant form (cf. [1])

mn(t) = det(tl, — Jp),

where I,, is the identity matrix of the order n. It is clear
that m,(¢t) = 0 if and only if the zeros 7',5") of 7, (t) are the
same as the eigenvalues of the Jacobi matrix J,. All zeros
of m, (), n > 1, are real and distinct and are located in the
interior of the interval (a,b).

A very important class of orthogonal polynomials on an
interval of orthogonality (a,b) € R is constituted by so-
called the classical orthogonal polynomials. They are dis-
tinguished by several particular properties. Their weight
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functions w(t) satisfy a differential equation of the first or-
der (see [2]). These polynomials can be classified as the
Jacobi polynomials P,Sa’ﬂ ) (t) orthogonal on (—1,1) with
w(t) = (1-t)*(1+t)? (a, B > —1), the generalized Laguerre
polynomials L (t) orthogonal on (0, +o00) with w(t) = t*e™*
(s > —1), and finally as the Hermite polynomials Hy(t)
which are orthogonal on (—00, +00) with w(t) =e™*".

The corresponding coefficients o and (i in three-term
recurrence relation (2) for these polynomials (normalized
as monic) are given below.

() PPN (t) = 2%k (k +a + B + l)k)P,f.a’ﬁ) (t) (monic
Jacobi polynomials):

ﬂZ_aZ
T Zkta+r Bk +a+B8+2)’
P 4k(k + a)(k + B)(k + a + B)
k

T @kta+P)P(@k+a+B)Z-1)

(i) Li(t) = (—1)¥Li(t) (monic generalized Laguerre
polynomials):

ar=2k+s+1, Br=k(k+s).

(iii) Hy(t) = 27%Hy(t) (monic Hermite polynomials):

k

ak——‘ov ﬁk:'i

The most important case of Jacobi polynomials are
the Chebyshev polynomials of the first kind Ti(t) (a =
B = —1/2). The monic polynomials To(t) = 1, Tu(t) =
21-kTy(t) (k > 1) satisfy (2) with

1
Qp = 0) :61 = 9
In many applications of orthogonal polynomials it is very
important to know the recursion coeflicients o and S in
an explicit form as in the case of the classical orthogonal
polynomials. There are certain non-classical weights when
we know also these coefficients. In sequel we mention only
three of them:
1° Generalized Gegenbauer weight w(t) = |t|*(1 — t2),
p,a > —1, on [-1,1]. The (monic) generalized Gegenbauer
polynomials W,Ea’ﬁ)(t), B = (u — 1)/2, were introduced by
Lascenov [3] (see, also, Chihara [4, pp. 155-156]). These
polynomials can be expressed in terms of the Jacobi poly-
nomials,

fr=7 (k22).

k!

a8 B¢

WZ(k )(t) & (k+a+ﬂ+1)k PI:! (2t2—1),
(an@) - k' Pa’ﬁ_‘—l) 2t2 1

Worr 1) = (k+a+ﬁ+2)kx" (2t° - 1).

Notice that Wz,(,‘:ﬁ)(t) = th(:"ﬂ *1(¢). Their three-term
recurrence relation is

wedw = wePw) - W), k=0,1,...,
wehw) = o, W =1,
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where

By = k(k+a)
2k Ck+a+B)(2k+a+8+1)
By, & (k+ )k + o+ B)

2k+a+B-1)2k+a+8)’

for k = 1,2,..., except when a + 8 = —1; then 3, =
(8+1)/(a+B+2). Some applications of these polynomials
in numerical quadratures and least square approximation
with constraint were given in [5] and [6], respectively.

2° The hyperbolic weight w(t) = 1/ cosht on (—o0, +00).
The coefficients in three-term recurrence relation are given
by

w2k?

Br=—
For details and generalizations see Chihara [4, pp. 191-
193].

3° The logistic weight w(t) = e t/(1 + e7*)? on
(=00, +00). Here we have

ag =0, Bo =, (k> 1).

7‘.2 k4
a =0, fo=1 fr=_5— (k21

A system of orthogonal polynomials for which the recur-
sion coeflicients are not known explicitly will be said to be
strong non-classical orthogonal polynomials. In such cases
there are a few known approaches to compute the first n
coefficients ag, Bk, k = 0,1,...,n — 1. These then allow
us to compute all orthogonal polynomials of degree < n by
a straightforward application of the three-term recurrence
relation (2).

Omne of approaches for numerical construction of the
monic orthogonal polynomials {7} is the method of mo-
ments, or precisely, Chebyshev or modified Chebyshev al-
gorithm. The second method makes use of explicit repre-
sentations (3) in terms of the inner product (.,.). The
method is known as the Stieltjes procedure. Using a
discretization of the inner product by some appropriate
quadrature

N
(f,9) = (f,9)n = D wef(ze)g(zr), wi >0,

k=1

the corresponding method is called the discretized Stieltjes
procedure.

ITI. GAUSSIAN QUADRATURES AND APPLICATIONS

Computation of integrals is an important problem. In
this section, we consider integrals of the form

/ "R, (5)

as well as some multiple integrals, which cannot be solved
explicitly. The integration interval can be finite or infinite
and the integrand F, generally, can be singular. Some-
times a recursion formula may be found, while in other



cases series expansion may be feasible. In the most cases
we must use purely numerical methods. If we want to have
a good quadrature process with a reasonable convergence,
then the integrand should be sufficiently regular. Further-
more, singularities in its first or second derivative can be
disturbing. Also, the quasi singularities, i.e., singularities
near to the integration interval, cause remarkable deceler-
ate of the convergence. However, this problem could be
avoided in some cases by extraction of singularities and
their integration in an exact form. For example, if S (t) is
a singular part in (5) which can be exact integrated, then
the remaining nonsingular part can be computed by some
of standard numerical methods. Thus, we have

/b F(t)dt:—-/b S(t) dt—/b(S(t)—F(t)) dt.

Sometimes, another kind of extractions is also applica-
ble. Namely, in some cases, the integrand can be taken
in a multiplicative form F(t) = w(t)f(t), where w(t) is a
singular or quasi singular part of F(t) (so-called “heavy”
part) and f(t) is an enough smooth part. Under some con-
ditions on w(t) (non-negativity on (a,b), the existence of
all moments pp = f: tfw(t)dt, k = 0,1,..., and po > 0),
one can construct the weighted quadrature formulas of the
form

/ " Fydt = / ! wt) dt ~ Zn:Af,") F(r$),

including the singularity information in the quadrature pa-
rameters AY (and 7™, in general). The convergence of
such quadratures then depends only on the properties of
f(@).

One of the important uses of orthogonal polynomials is
in the construction of quadrature formulas of maximum, or
nearly maximum, algebraic degree of exactness for integrals
involving an arbitrary (nonnegative) weight w(t).

The n-point Gaussian quadrature formula

b n
[ o0 = Y i+ B, ©

has maximum algebraic degree of exactness 2n — 1,in the
sense that Rn(f) = 0 for all f € P2p—1. In formula (6),
7, = 15" are the Gauss nodes, and X, = A the Gauss
weights or Christoffel numbers. This formula is also known
as Gauss-Christoffel quadrature formula.

The nodes 7, = 5™ are the eigenvalues of the symmetric

tridiagonal Jacobi matrix Jn(w), given by (4), while the
weights A, = A are given in terms of the first components
v, of the corresponding normalized eigenvectors by

2 —
AU:/BOUV,11 U‘_‘ly"'1n7

where By = f: w(t) dt. There are well-known and efficient
algorithms, such as the QR algorithm with shifts, to com-
pute eigenvalues and eigenvectors of symmetric tridiagonal

matrices (cf. [2]).

A simple modification of the previous method can be
applied to the construction of Gauss-Radau and Gauss-
Lobatto quadrature formulas.

The simplest Gaussian formula is the Gauss-Chebyshev
formula

1 n '
f(®) m
dt = — ) + Ra(f), 7
[ A a= sl O
where 7, (v = 1,...,n) are zeros of the Chebyshev poly-
nomial T, (t) = cos(n arccost), i.e.,
(v =-1m _
Ty = €08 5, v=1,...,n. (8)

For f € C*"[-1,1] the remainder R,(f) can be represented
in the form

Balf) = gty /77O (-1<€<D).

A. Integration of the Error Function

In [7], we considered an integral which appears in
telecommunications,

B, = ﬂ_l—m/'oﬂ~--/0”erfc[c(1+é:1ckcos¢9k)]d01 ...d8,,

where ¢ and ¢ are positive constants, and the error func-
tion erfc(t) is defined by

( ) ¢ 1 +oo 2/
w(t) = erfc(t) = — e T/ dz. 9

=== [ e )
In our calculation, we used the following approximation
(0<t< +00)

erfc(t) = (a1 +agz® + asz® +agxt + asxs)e_t2/2 +¢, (10)

where z = 1/(1+pt), p = 0.23164189, and [¢| < 0.75x10~".
The coefficients ay are given by:

a; = 0.127414796, a; = —0.142248368,
a3 = 0.7107068705, ay = —0.7265760135,
as = 0.5307027145.

In order to calculate the error probability P, we put z; =
cos (k=1,...,m). Then, we get

P = i/I_dﬂ_
€ Tm —lﬁt?%

! -
/;1 ﬁ erfc[c(l +§Ck$k>]d:l:m.

Applying (7) successively m times, we obtain

Pl S 3 o1 L)) + B, )
= k=1

vi=1 Vm=1
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where E™ is the corresponding error.
Taking f(t) = erfc(a + bt) (2 = a + bt, a,b > 0), we can
find that
2n n—1 n
f(2n)(t) — b d? ( 2/2) b _82H2n—1(3),

om  dz2n—1 271,\/_

where s = z/ V2 and Hs,_1(s) is the Hermite polynomial
of degree 2n — 1. Then, for the remainder term in the
Gauss-Chebyshev formula, we get

\/7—1' b2n

m eV Han-1(v),

rn = Ru(f) =

where v = (a + b€)/V2 (-1 < £ < 1). Since (see 8

2n)!
(a0 < o2 2L,

we conclude that

\/—2n

% 5t 'lvle”’f < TK,b*",

|7n] <

where we put 1/K, = 23»~Inl /me. Notice that this esti-
mate is not depending on a. By induction, we can prove:

For the remainder ES™ in (11) the following estimate

C2n m 9
1BS| < s D o (12)
23n—1nl/me —

holds. Thus, basing on (11) we have a formula for numerical
calculation of the integral P, in the form

P~ P = ;11; Xn: i [c(l +ickm)]- (13)
=l  vm=l

If the error in (10) is such that [¢| < E, then for the total
error in the approximation (13) we have

ler| < E +1E™).

The number of nodes in the Gauss-Chebyshev formula (7)

should be taken so that the upper bound of the error E,(,m)
given in (12), be the same order as E.

b

B. Numerical Calculation of the Bit Error Probability

In this subsection we give a concrete example how to
calculate the bit error probability of a communication sys-
tem. In [9] (see also [10]) we considered a phase-coherent
communication receiver, supposing the input as a linear
combination of the signal with the amplitude A, the inter-
ference with the amplitude A; and the phase #, and the
Gaussian noise n(t),

r(t) = Acoswot + A; cos(wot + 6) + n(t),
or, in an equivalent form, as

r(t) = AR cos(wot + ¥) + n(t),
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where

R = R(cos) =+/1+2ncosf +n?,
nsiné
= t _
v RS aLnl+77cosé?’

and n = A;/A. Under an assumption of a constant phase
in the symbol interval, the conditional error probability for
the phase-coherent communication system which uses the
phase locked loop (PLL) to provide the synchronisation is

given by
P,;4 = erfc[\/2Rs cos ¢,
where R, = E/N, (E is the signal energy, Ny is the single-

sided power density spectrum of the Gaussian noise in
W /Hz), ¢ is the phase error process, and the function erfc
is defined by (9). Using a model from [11] and taking ap-
propriate parameters, after some calculation, we get the
steady-state probability density function in the form

eaoR cos ¢

P(®) = 5—7—xy To(ooR)’

where I is the modified Bessel function of the order zero
and o is a normalization constant. We put Ry = R, R*,
where R; corresponds to the case when there is no inter-
ference. Finally, we obtain the average error probability by
averaging over all ¢ and over all §,

//erfc \/ﬁRcoszﬁ)

By substitutions £ = cos ¢ and y = cosf we get

1 /1 / eoRz erfc(y/2R; Rz)
2 Jo/1-y2JaaV1I-a? I(xR)

where R = R(y) = 1+ 2ny + 2.

In order to calculate the bit error probability P, we apply
successively the Gauss-Chebyshev formula (7) in n points,
so that we get

aoR cos ¢

To (o D) dfde.

n 1 apTu T,
P, ~ P = — ,; aor,,) Zerfc 2R1r,,rk) TV Tk

where 7, = R(1,) =1+ 2n1, + 9%, v=1,...,n,and 7,
are the Chebyshev nodes given by (8). In some cases the
convergence of the Gaussian formulas Pe(") — P,, when
n — +o0, can be accelerated using some well-known tech-
niques (see [2]).

C. Gaussian Quadratures for Non-Classical Weights

In sequel we mention a few non-classical weights w(t)
for which recursion coefficients o = ax(w), Br = B (w),
k =0,1,...,n — 1, have been tabulated in the literature
and used in the construction of Gaussian quadratures.

1° Logarithmic weight w(t) = t*log(1/t), A > —1, on
(0,1). Piessens and Branders [12] considered cases when
a=0,+1/2,+1/3,—1/4,-1/5 (see also Gautschi [13]).



9° One-side Hermite weight w(t) = exp(—t?) on [0,d],
0 < ¢ < +o0. The cases ¢ = 1, n = 10, and ¢ = +o00,
n = 15, were considered by Steen, Byrne and Gelbard [14]
(see also Gautschi [15]).

3° Error function on (0, +oo) given by (9). Gaussian
quadratures for n < 12 were considered by Vigneron and
Lambin [16).

4° Reciprocal gamma function w(t) = 1/T(t) on
(0,+00). Gautschi [17] determined the recursion coeffi-
cients for n = 40 with 20 significant decimal digits (S).
This function could be useful as a probability density func-
tion in reliability theory (see Fransén [18]).

5° Einstein’s and Fermi’s weight functions on (0, +00),

and ws(t) = p(t) =

wl(t):s(t): -e—iTi
These functions arise in solid state physics. Gautschi and
Milovanovié [19] determined the recursion coefficients o
and By, for n = 40 with 255, and gave an application of the
corresponding Gauss-Christoffel quadratures to summation
of slowly convergent series.

6° The hyperbolic weights on (0, +00),

i 18] == sinht .

cosh? t cosh® t
The recursion coefficients ax, B, for n = 40 with 305,
were obtained by Milovanovié¢ [20] and used in summation
processes.

7° The modified ezponential weight on (—00, +00),

et —

and wq(t) =

g
e——t

w(t) = w1 = —m——vx,
® ®) 1+ at + Bt?

where a and 3 are real parameters such that o® < 48.
Recently Bandrauk [21] stated a problem! of finding a

computationally effective approximations for the integral

+oo &
18 :/ Hn(8)H, (8)w P (t) dt, (14)

where H,(t) is the monic Hermite polynomial of degree n.
Evidently, for @ = 8 = 0, this integral expresses the or-
thogonality of the Hermite polynomials, and I,(-,?,’g) = 0 for
m#n.

In order to compute the recursion coefficients in three-
term recurrence relation (2) for the weight w(®P)(t) on R,

we use the discretized Stieltjes procedure, with the dis-
cretization based on the Gauss-Hermite quadratures,

-t gt

Il

+00 +0co
/ P(t)w P (t) dt / -
-~ —eo 1+ at+ pBt?
N
M P(rf)

; \/1+a'r,{1+/6(¢,f’)2’

IThe original problem was stated with the Hermite polynomials
Hi(t) = 25 A(t) (k > 0).
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where P is an arbitrary algebraic polynomial, and T,fI
and M are the parameters of the N-point Gauss-Hermite
quadrature formula. We need such a procedure for each of
selected pairs (a, 8).

The integrand ¢ — Ho () Hy, ())w*P) (¢) in (14) has m +
n zeros in the integration interval and very big oscillations.
The case a = 8 = 1 and m = 10, n = 15 is displayed in
Figure 1.

40000 \
\

20000

AT
-20000 \/

-40000

-60000

-80000

v/\/\/\ AL
vy

-4 -2 ] 2 4

Fig. 1. Thecasseo=f=1landm=10,n=15

Applying the corresponding Gaussian quadratures, with
respect to the weight w(*#(t), to I&4 we get approxima-
tive formulas

N
128w QB = 3 NP Hpp (r{*P) Ha(r{9).  (15)

m,n —
v=1

In the following table we present the obtained results for
a = f = 1 in double precision arithmetic (with machine
precision 2.22 x 10716) in two cases: m = 3, n = 6, and
m = 10, n = 15. The number of nodes in quadrature
formula (15) was N = 5,10,15,20. Numbers in parentheses
indicate decimal exponents.

TABLE I
GAUSSIAN APPROXIMATION OF THE INTEGRAL I;‘;'fz,

1,1
Q10,15
-4.01134148759825(4)
3.20721013272847(4)
~2.06784419769247(4)
'-2.06784419769247(4)

N Qg's

5 | 2.63168167926273(-1)
10 | 2.63168167926273(-1)
15 | 2.63168167926273(-1)
20 | 2.63168167926273(-1)

Since the N-point Gaussian quadrature formula (15) has
maximum algebraic degree of exactness 2N — 1, we see that
obtained results are exact for every N such that 2N —1 >
m+n.

D. Singular Integrals in Analysis of a Monopole Antenna

A numerical procedure for a class of singular integrals
which appear in the analysis of a monopole antenna, coax-
ially located along the axis of a infinite conical reflector was
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considered by Milovanovié, Surutka, and Jankovi¢ in [22].
Namely, they considered the integral

iv(z)

I(a,y):/oa 'z

where j, (z) is the spherical Bessel function of the index v,
defined by

sin(a — z) dz, (16)

+00

(=D*(z/2)*
— kI[(v + k + 3/2)’

Ju(z) = )

VT o\

2 (3)

and the index v is a solution of the equation
P,(cost) =0, 17)

where P,(cos#) is the Legendre function of the the first

kind defined by
cos(v +1/2)¢ s,

V2
P, (cosf) = ?/ Vcosp — J/cosp — cosB

and 6, is the flare angle of the cone. Equation (17) has an
infinite number of solutions v (k € N).

(18)

Since
. 0, v>1,
lim M =< 1/3, v=1,
SR 400, v<1,

we see that the integrand in (16) is singular when v < 1.
This case occurs when 6; > 90°. Namely, then the first
solution of (17) is less than 1 (11 < 1). An analysis of this
equation was done in [23] (see also [24]).

The integration problem (16) was solved in [22] by ex-
traction of singularity in the form

= Cu(a)%; + /0“ Jv(z) sin(a _;) -

where C,(a) = 27~ !/msina/T'(v + 3/2). For calculation
of the spherical Bessel function the authors used a proce-
dure given in [24].

o (q)z dr,

I{a,v)

We give here an alternative procedure for (16) using only
Gaussian quadratures. In our approach we take an integral
representation of the Bessel functions.

() = [ donalahs

using the following representation for the cylindric Bessel
functions (see [25, p. 360, Eq. 9.1.20])

” 1

which holds for Rev > —1/2, we find

. z/2
]u(z = +1)/ (1

Since

Ju(2) =

Y cos(zt) dt

Ia,v) =
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and then
1

Ha,v) :A/:(g)u_1 sin(a—x)dx/l(l

—1%)¥ cos(zt) dt,
i.e.,
1
I(a,v) = A / (1= 2)G, (1) dt,
-1
where A = 1/(4T'(v + 1)) and
a v—1
aw=[ (E) sin(a — 2) cos(zt)dz (v > 0).
Jo \2
After integration by parts, this formula reduces to

2 f%rz\Y .
G’,,(t):;/o (5) [cos(a — z) cos t + ¢ sin(a — z) cos zt] dz.

Changing variables z = a(1 — £2) (¢ > 0), we get

auy=2(2)" [ ea-eracnd,

where
9(&,t) = cos[ag?] coslat(1 — €2)] + tsin[ac?] sin[at(1 — £2)].
Notice that g(+¢&, +t) = g(€,t). Because of that, we have

a/2"+1/ / w(lu

(v +1
where w(#¥)(t) = |t|#(1 — t?)” is the generalized Gegen-
bauer weight (see 1° in Sect. IT). The construction of the
corresponding Gaussian quadratures is very simple in this
case with regard to the knowledge of recursion coefficients
in an explicit form. Here also, there is a convenience in
a number of the integrand evaluations. Since the inte-
grand is even, we can get the Gaussian quadrature of de-
gree of exactness 4N — 1, taking only N (positive) points
'rl(”‘”),...,rl(\}""), as zeros of the polynomial Wé;’m(t),
(= 1)/2 (see 1° in Sect. II). Thus,

wherea=v, f =
1
/ w(“’")(t)¢(t) dt =~ 2ZA(ﬂaV)¢( (1, u))
1

and we finally get

w®) (t)g(¢, ) dédt,

(u.V)
N

4(a/2)" ! A &
Ha,v) = In(a,v) = . L ZZA Bjg(zi,yj),

F(V +1) e
where, because of simplicity, we put
R N A )

for k = 1,...,n. This quadrature formula is based on
N? nodes and gives good approximation of the integral
I(m/2,v). The obtained results rounded to 12 decimal
places, for a = n/2 and v = 0.1(0.1)1.0, are displayed in
Table II. We used our quadrature formula for N = 7. All
digits in approximation I7(n/2,v) are correct.

Table III shows the relative errors in approximations
In(m/2,v) for N = 2(1)6 and again v = 0.1(0.1)1.0. As we
can see, the convergence of approximations is fast and we
can take relatively small V in order to get a satisfactory
result.




TABLE II
APPROXIMATION OF I(x/2,v) FOR v = 0.1(0.1)1.0

Approximation I7(m/2,v)
092660539259
.113983342491
.470467111313
.661658513482
.1871535695723
.879930124888
.668250458550
.516135176348
403518784385
.318309886184
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TABLE III
RELATIVE ERRORS IN APPROXIMATIONS In (w/2,v) FOR
v = 0.1(0.1)1.0 AND N =2(1)6

v N=2 N=3 N =4 N=5 N=6
01 [ 9.2(=3) | 1.5(—4) | 1.3(-6) | 7.6(=9) | 3.0(-11)
02 | 82(-3) | 1.3(~4) | 1.1(-6) | 6.3(-9) | 2:5(-11)
0.3 | 7.2(=3) | 1.1(—4) | 9.4(-7) | 5:3(-9) | 2.1(-11)
0.4 | 6.5(-3) | 9.5(~5) | 8.0(=7) | 4.4(-9) | 1.7(-11)
0.5 | 5.8(~3) | 8.3(~5) | 6.9(=7) | 3.7(=9) | L.4(-11)
0.6 | 5.2(=3) | 7.3(=5) | 5.9(=7) | 3.1(~9) | 1.2(-11)
0.7 | 4.6(-3) | 6.4(~5) | 5.1(—7) | 2.6(-9) | 9.8(~12)
08 | 4.2(-3) | 5.6(=5) | 4.4(=7) | 2:2(-9) | 8.2(-12)
0.9 | 3.8(<3) | 4.9(-5) | 3.8(=7) | 1.9(-9) | 6.9(-12)
10 | 3.4(=3) | 4.4(=5) | 3.3(-7) | 1.6(=9) | 5.8(=12)

E. Application to Legendre Function of the First Order

Numerical calculation of the Legendre function of the
first order is also possible using Gaussian quadratures. We
start with Dirichlet-Mehler integral representation (18).
The functions P, (z) satisfy the three-term recurrence re-
lation

(v + 2)Py4a(t) = (20 + 3)tPoya (t) = (v + DP(2).  (19)

When v is an nonnegative integer, the functions P,(t) re-
duce to the Legendre polynomials orthogonal on (-1,1).

The integrand in (18) is quasi-singular at 8 = 0, ie,
when ¢t = 1. Therefore, we use an extraction in the form

P,(cosf) = cos[(v+1/2)6]P_y/2(cosb)

+_\/_2 /‘0 cos(v + 1/2)¢p — cos(v +1/2)8 b

T Jo J/cos @ — cosf ’

and then we change variables ¢ = 6(1 — z?) in order to get
an integral on (0,1). Thus, we find

1
P,(cosf) = %cos[(u%— 1/2)0]K(sin —g—) + %/(; S(,z) dz,

where

0z?

(6z)sin[(v +1/2)(0 — O] sin€ . _ 0"
) 2 3

sin'/2(8 — €) sin'/2 ¢

S(0,z) =

and K is the complete elliptic integral of the first kind.
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TABLE IV
MAXIMAL ABSOLUTE ERRORS IN CALCULATION OF P, (cosf) FOR
0<6<9AND 0 <v <2, WHEN N =5 AND N=10

N [ §=60° | 9=00° | 9=120° | @ =150°
51 89(-7) | 3.1(~6) | 1.7(-4) | 1.5(-3)
10 | 4.7(-13) | 5.9(=13) | 7.1(=11) | 1.5(-9)

For numerical calculation of the integral [, 01 S(0,z)dz we
use the standard N-point Gauss-Legendre quadrature for-
mula transformed before to (0,1), while for the complete
elliptic integral

w/2 ~1/2
K(sina) = / (1 —sin® asin®4)” " df
0

we use the well-known process of the arithmetic-geometric
mean (cf. [25, pp. 598-599]). An analysis of this quadra-
ture process shows that we must take N = 20 in the
Gauss-Legendre rule in order to get the values of P,(cos0)
for 0 < v < 2and 0 < 0 < 7 with an absolute error
less than 10~1°. Some computational problems can occur
when 8 — 7. By certain restrictions on 6, for example
0 < § < 9 < , our approximation for P, (cosf) gives bet-
ter results. The corresponding maximal absolute errors in
calculation of P, (cosf) are given in Table IV.

When the index v > 2 it is convenient to use three-term
recurrence relation (19), starting by two values P, (cos6)
and P, (cos6), where 0 < g < 1. One similar procedure
was considered in [23}.

IV. INTEGRATION OF OSCILLATING FUNCTIONS AND
PropuCT INTEGRATION RULES

In this section we consider integrals of the form

b
ImK7=Hﬂ%Khﬂ%=/uﬁVmKwﬂﬁ,&m

where (a,b) is an interval on the real line, which may be
finite or infinite, w(t) is a given weight function as before,
and the kernel K (t; z) is a function depending on a param-
eter z and such that it is highly oscillatory or has singu-
larities on the interval (a,b) or in its nearness. Usually, an
application of standard quadrature formulas to I(f; K) re-
quires a large number of nodes and too much computation
work in order to achieve a modest degree of accuracy. A
few typical examples of such kernels are:

1° Oscillatory kernel K (t;z) = €***, where £ = w is
a large positive parameter. In this class we have Fourier
integrals over (0,+oo) (Fourier transforms)

+o0 -
= [ #f0ed (> D)
0
or Fourier coefficients

() =D+t =2 [ foera, @)



< i)

b

where w = k € N. There are also some other oscillatory
integral transforms like the Bessel transforms

+o0
HM@=L #EOHM W dt (m=1,2), (22)

where w is a real parameter and H{™ (t), m = 1,2, are the
Hankel functions (see Wong [26]). Also, we mention here a
type of integrals involving Bessel functions

I,,(f;w)=/()+°oe‘t2J,,(wt)f(t2)t"+1dt, v> -1, (23)

where w is a large positive parameter.

2° Logarithmic singular kernel K(t;z) = log|t — z|,
where a < z < b.

3° Algebraic singular kernel K(t;z) = |t — z|*, where
a>-landa<z<b

Also, we mention here an important case when K (¢;z) =
1/(t — z), where a < z < b and the integral (20) is taken
to be a Cauchy principal value integral.

In this section we consider only integration of oscillatory
functions.

A. A Summary on Standard Methods

The earliest formulas for numerical integration of rapidly
oscillatory function are based on the piecewise approxima-
tion by the low degree polynomials of f(z) on the inte-
gration interval. The resulting integrals over subintervals
are then integrated exactly. A such method was obtained
by Filon [27]. The error estimate was given by Havie [28]
and Ehrenmark [29]. There are many improvements of this
method. For example, Flinn [30] used fifth-degree polyno-
mials in order to approximate f(z) taking values of func-
tion and values of its derivative at the points zogx—2, Tok—1,
and zak, and Stetter [31] used the idea of approximating
the transformed function by polynomials in 1/¢."

The construction of Gaussian formulae for oscilla-
tory weights has also been considered (cf. Gautschi [32],
Piessens [33], [34], [35]). Defining nonnegative functions
on [—1,1],

1 1 .
ug(t) = 5(1 + coskmt), wvg(t) = 5(1 + sin k7t),

the Fourier coefficients (21) can be expressed in the form
1 1
af)=2 [ fuod- [ fert)a
] ~1
and
1 1
wif)=2 [ sm@d- [
-1 -1

Now, the Gaussian formulae can be obtained for the first
integrals on the right-hand side in these equalities. For

= 1(1)12 Gautschi [32] obtained n-point Gaussian for-
mulas with 12 decimal digits when n = 1(1)8, n = 16, and
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n = 32. We mention, also, that for the interval [0, +00) and
the weight functions w;(t) = (1 + cost)(1 + t)~(3n—1+9)
and wq(t) = (1 + sint)(1 + t)~Cn—149) 5 = 1(1)10,
s = 1.05(0.05)4, the n-point formulas were constructed by
Krilov and Kruglikova [36].

Quadrature formulas for the Fourier and the Bessel
transforms (22) were derived by Wong [26).

Other formulas are based on the integration between the
zeros of cos mz or sinmz (cf. [37]-[41]). In general, if the
zeros of the oscillatory part of the integrand are located in
the points zx, £ = 1,2,...,m, on the integration interval
[a,b], where a < 73 < 73 < -+ < Zy, < b, then we can
calculate the integral on each subinterval [z;,zr+1] by an
appropriate rule. A Lobatto rule is good for this purpose
(see Davis and Rabinowitz [37, p. 121]) because of use the
end points of the integration subintervals, where the in-
tegrand is zero, so that more accuracy can be obtained
without additional computation.

There are also methods based on the Euler and other
transformations to sum the integrals over the trigonometric
period (cf. Longman [42], Hurwitz and Zweifel [43]).

B. Product Integration Rules

Consider the integral (20) with a “well-behaved” func-
tion f on (a,b). The main idea in the method of product
integration is to determine the adverse behaviour of the
kernel K in an analytic form.

Let m¢(-), k =0,1,..., be orthogonal polynomials with
respect to the weight w(t) on (a,b), and let A, and 7, (v =
1,...,n) be Christoffel numbers and nodes, respectively, of
the n-point Gaussian quadrature formula (6). Further, let
L,(f;-) be the Lagrange interpolation polynomial for the
function f, based on the zeros of 7,(t), i.e.,

n

La(f;t) = Y f(m)e(t),

v=1

where £,(t) = m,(t)/((t — T)7 (7)), v = 1,...,n. Ex-
panding it in terms of orthogonal polynomials {m,}, we
have

La(fit) = Y avm(t),

v=0

where the coefficients a,, v =0,1,...,n — 1, are given by

b
= m([m(f; Suiid = m/ w(t) Ln(f; ), (2) dt.

Since the degree of L,(f; )m,(-) < 2n — 2, we can apply
Gaussian formula (6), and then

0 = =5 2 M (e (), (24)
v k=1

because of L,(f;7,) = f(7x) foreach k =1,...,n.
Putting L, (f;t) in (20) instead of f(t) we obtain

I(f,K) = Qn(f;z) + RER(f; 3),



where "
Qulf;2) = / w(t)La(f; 0K (t;7) dt,
i€,

i) =S / w(tym, (DK () dt (25)
v=0
and Rf R( f;z) is the corresponding remainder. By b,(z)
we denote the integrals in (25),

b
b,,(a:):/ w(t)m, () K (t;z)dt, v=0,1,...,n—1. (26)

Finally, we obtain so-called the product integration rule

%) 2= i a,b,(z),

v=0

(27)

where the coefficients a, and b, (z) are given by (24) and
(26), respectively. Another form of (27) is

> Ax(@)f(7)
k=1

Qn(fiz) = (28)

where
n—1 1
Ak(x) = )‘kzwwu('ﬁc)bu(z)’ k= 1!"')’""
v=0 &

As we mentioned on the beginning of this subsection, it is
very important in this method to have b,(z) in an analytic
form. It is very convenient if we have a Fourier expansion
of the kernel K (-; ) in terms of orthogonal polynomials 7,

+00
K(t:2) = Y Bo(@)m(t).

v=0

Because of (26), we see that B, (z) = by(z)/|lm, ||
Let Kn(-;z) be the best L2-approximation of K () in

Pn—l, i.e.,
Z b (I
o [

We can see that the product integration rule (27), ie., (28),
is equivalent to the Gaussian rule applied to the function
F(-)Ka(;z). Indeed, since Ag(z) = A Kn(Tk; ), we have

nl by ) = (29)

Kn(7)) = > M f (1) Kn(Th; 7) = Qn(f; 2)-

k=1

Q7 (f()

In some applications K,(7x;z) can be computed conve-
niently by Clenshaw’s algorithm based on the recurrence
relation (2) for the orthogonal polynomials 7.

In some cases we know analytically the coefficients in an
expansion of (29). Now, we give some of such examples.

In [44, p. 560] we used

427 T2A + )

C Ty 2o k+a (W),

/ CA zwt(l tZ)A 1/2 dt =
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where C)(t) (A > —1/2) is the Gegenbauer polynomial
of degree k. Taking this exact value of the integral we
find the following expansion of e’* in terms of Gegenbauer
polynomials,
. 2\ Y
. _ piwt -k A

K(tw) = et ~ (5) r(,\)kzzoz (k 4+ A\ Jer (W)CA (),
where z € [-1, 1]. In this case, (28) reduces to the product
rule with respect to the Gegenbauer weight.

In some special cases we get: (1) For A = 1/2 - the
method of Bakhvalov-Vasil’eva [45]; (2) For A = 0 and
X = 1 - the method of Patterson [46]. An approximation
by Chebyshev polynomials was considered by Piessens and
Poleunis [47].

Taking the expansion

—(w/2)2Z k(w/2) He(®), [t] < +oo,

where Hj is the Hermite polynomxal of 2degree n, we can
calculate integrals of the form f e tewtf(t)dt. In a
similar way we can use the expansion

Hyp(z), |t| < +oo.

Z k‘22’“ 1 — zw)k+1/2

Consider now the integral I, (f;w) given by (23), which
can be reduced to the following form

L(f;w) % /:m et (wVt) f(2)t*/? dt

= %/+wt” “tH[E 2, (wV)] (O dt,
0

where we put the oscillatory kernel in the brackets. Using
the monic generalized Laguerre polynomials L¥(t), which
are orthogonal on (0, +-00) with respect to the weight t“e ™,
we get the expansion

P~ (2) e (=D w/2)*

k'F k+1/+1)

w/2)2

Li(t).

Thus, in this case the the coefﬁcxents (26) become

be(w) = (—1)k<%)u+2ke_

In 1979 Gabutti [48] investigated in details the case v = 0.
Using a special procedure in D-arithmetic on an IBM
360/75 computer he illustrated the method taking an ex-
ample with f(t) =sint and w = 20.

At the end we mention that it is possible to find exactly
I(f;w) when f(t) = e***. Namely,

L (e w) = %(%) - ila)"+1 exp [‘

The imaginary part of this gives the previous example. An
asymptotic behaviour of this integral was investigated by
Frenzen and Wong [49] (see also Gabutti [50] and Gabutti
and Lepora [51]).

w/2)?

(w/Z)Z}

1—iai
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