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Abstract

A family of nonstandard Gauss-Jacobi-Lobatto quadratures for numeri-

cal calculating integrals of the form
∫ 1
−1 f

′(x)(1−x)α dx, α > −1, is derived
and applied to approximation of the usual fractional derivative. A software
implementation of such quadratures was done by the recent Mathematica
package OrthogonalPolynomials (cf. [A.S. Cvetković, G.V. Milovanović,
Facta Univ. Ser. Math. Inform. 19 (2004), 17–36] and [G.V. Milovanović,
A.S. Cvetković, Math. Balkanica 26 (2012), 169–184]). Several numerical
examples are presented and they show the effectiveness of the proposed
approach.

MSC 2010 : Primary 65D30; Secondary 33C45, 41A55, 65D32

Key Words and Phrases: fractional derivative, quadrature rule, Gauss-
ian quadrature, nodes, weights, software implementation, Mathematica
package

1. Introduction

Fractional calculus (including the operators of fractional order integra-
tion and differentiation) has been often used in modelling many physical
and engineering problems. We refer the reader to [2, 3, 21, 22, 25, 36, 38] for

c© 2014 Diogenes Co., Sofia
pp. 1075–1099 , DOI: 10.2478/s13540-014-0215-z



1076 S. Esmaeili, G.V. Milovanović

a general theory, as well as a description of the main applications in fields
ranging from mechanics, biology to biomechanics, diagnostic imaging, elec-
trochemistry, finance, sustainable environment and renewable energy. A
theory of the generalized fractional calculus, as well as the corresponding
applications, can be found in a monograph written by Kiryakova [23]. We
also mention a few the most cited papers on this subject [17, 26, 27, 5].

The fractional derivative Dq
∗f(t) in the Caputo version [6] and the

Riemann–Liouville fractional derivative 0D
q
t f(t), where 0 < q < 1, are

defined by

Dq
∗f(t) =

1

Γ(1− q)

∫ t

0
f ′(s)(t− s)−q ds, t > 0, (1.1)

0D
q
t f(t) =

1

Γ(1− q)

d

dt

∫ t

0
f(s)(t− s)−q ds, t > 0, (1.2)

respectively [36]. It is well-known that the fractional derivative of Riemann–
Liouville and Caputo type are closely linked by the following relationship:

0D
q
t f(t) =

f(0)

tqΓ(1− q)
+Dq

∗f(t). (1.3)

The operator of fractional derivative is more complicated than the classical
one, and its calculation is also more difficult than in the integer order case.

In this paper we construct a quadrature method for approximating the
fractional derivative defined by (1.1) or (1.2). Although there is compre-
hensive literature on the numerical methods for solving equations involving
fractional derivatives and integrals (cf. [8, 9, 11, 3, 10, 35]), there seems to
exist a few literature on automatic quadrature for the fractional derivatives,
see e.g. [20, 24, 39].

Let w(x) be a nonnegative weight function on the interval (a, b) that
vanishes only at isolated points. We consider an n-point quadrature formula∫ b

a
f(x)w(x) dx =

n∑
k=1

Akf(xk) +Rn[f ], (1.4)

where the sum Qn[f ] =
∑n

k=1Akf(xk) provides an approximation to the

integral
∫ b
a f(x)w(x) dx and Rn[f ] is the corresponding error. We shall

always require a ≤ x1 < x2 < · · · < xn ≤ b. In the quadrature sum Qn[f ],
the points xk are called the nodes and Ak are the weights of the quadrature
formula (1.4). The mentioned quadrature rules use the information on
the integrand only at some selected points xk, k = 1, . . . , n (the values of
the function f). Such quadratures will be called the standard quadrature
formulae, see [4, 28, 40].
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The quadrature formula (1.4) with the maximal algebraic degree of
exactness 2n − 1 is called the Gaussian quadrature formula. Indeed, if Pd

be the set of all algebraic polynomials of degree at most d then in the
Gaussian quadrature formula (1.4) we have Rn[p] = 0 for all p ∈ P2n−1.

This paper is organized as follows. In Section 2 we give a short account
on Gauss-Jacobi quadrature rules and the corresponding Lobatto modifica-
tion. Some remarks on nonstandard Gaussian quadratures are mentioned
in Section 4. Main result on the Gauss-Jacobi-Lobatto nonstandard quad-
rature is proved in Section 4, as well as the corresponding software imple-
mentation in Mathematica. Finally, applications to an approximation of
fractional derivatives and numerical examples are presented in Sections 5
and 6, respectively. Several numerical examples show the effectiveness of
the proposed approach.

2. Gauss–Jacobi quadrature rules and the Lobatto modification

Let wα,β(x) := (1 − x)α(1 + x)β with parameters α, β > −1 be the
Jacobi weight function on the interval (−1, 1). The Jacobi polynomials,

denoted by P
(α,β)
n (x), are mutually orthogonal on the interval (−1, 1) with

respect to the wα,β(x). This means that∫ 1

−1
P (α,β)
n (x)P (α,β)

m (x)wα,β(x) dx = 0 n �= m. (2.1)

An n-point quadrature rule for the weight function wα,β is called a formula
of the type ∫ 1

−1
f(x)wα,β(x) dx =

n∑
k=1

wα,β
k f(xα,βk ) +Rn[f ]. (2.2)

A quadrature rule (2.2) with degree of exactness n−1 is called interpolatory.
These are precisely those obtained by interpolation, that is, for which

wα,β
j =

∫ 1

−1
�j(x)w

α,β(x) dx, j = 1, . . . , n, (2.3)

where �j ∈ Pn−1 are the Lagrange polynomials associated with the nodes

xα,βk such that �j(x
α,β
k ) = δjk, for j, k = 1, . . . , n.

We now discuss the relation between the Jacobi polynomials and the
Gauss–type quadratures. The mechanism of a Gauss–type quadrature is to
seek the best numerical approximation of an integral by selecting optimal
nodes at which integrand is evaluated. It can be proved that the nodes

xα,βk in a Gauss–Jacobi quadrature are the roots of the Jacobi polynomial

P
(α,β)
n , that is

P (α,β)
n (xα,βk ) = 0, k = 1, . . . , n. (2.4)
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All nodes xα,βk are real, distinct, and contained in the open interval (−1, 1).

The weights wα,β
k are known in closed form as

wα,β
k =

2α+β+1

n!Γ(n+ α+ β + 1)
· Γ(n+ α+ 1)Γ(n + β + 1)(

1− (
xα,βk

)2) [
d

dx
P (α,β)
n

(
xα,βk

)]2 , (2.5)

where k = 1, . . . , n (see, for instance, [28, p. 325]). We can thus conclude

that the quadrature formula (2.2) with the nodes xα,βk prescribed by (2.4)

and the weights wα,β
k given by (2.3), has degree of exactness 2n−1, the max-

imum value that can be achieved using interpolatory quadrature formulae
with n nodes. This optimal formula is called the (standard) Gauss–Jacobi
quadrature formula.

As n increases, finding roots of P
(α,β)
n become an ill-conditioned and

time consuming problem. An alternative and today standard approach for
finding the nodes and the weights of a Gaussian quadrature rule is to use
the Golub-Welsch algorithm [15, 14].

Let kα,βn be the leading coefficient of P
(α,β)
n (x), i.e.,

kα,βn =
(n+ α+ β + 1)n

2nn!
.

It is well known that there exists a unique sequence of monic orthogonal

polynomials πα,β
n (x) = P

(α,β)
n (x)/kα,βn . They can be generated by the three

term recurrence relation [14, 28]

πα,β
k+1(x) = (x− αJ

k )π
α,β
k (x)− βJ

k π
α,β
k−1(x), k ≥ 0, (2.6)

with starting values πα,β
−1 = 0, πα,β

0 = 1, and with the recursion coefficients

αJ
k =

β2 − α2

(2k + α+ β)(2k + α+ β + 2)
, k ≥ 0,

βJ
k =

4k(k + α)(k + β)(k + α+ β)

(2k + α+ β)2((2k + α+ β)2 − 1)
, k ≥ 1.

This approach is based on determining the eigenvalues and normalized
eigenvectors of the symmetric tridiagonal Jacobi matrix

Jn = tridiag
(
βJ ,αJ ,βJ

) ∈ R
n×n, (2.7)

where

αJ = (αJ
0 , α

J
1 , . . . , α

J
n−1)

T ∈ R
n, βJ =

(√
βJ
1 , . . . ,

√
βJ
n−1

)T ∈ R
n−1.

The elements of this matrix are obtained from the coefficients of the three-
term recurrence relation (2.6). The nodes xα,βk in (2.2) are the eigenvalues
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of the matrix Jn and the corresponding weights wα,β
k may be obtained from

the first components of the normalized eigenvectors. For more details we
refer the reader to [14, 15, 28]. An efficient algorithm for computation
of Gauss–Jacobi quadrature nodes and weights for any n ≥ 100 has been
recently presented in [18].

The (n+2)–points Gauss–Lobatto quadrature rule for the Jacobi weight
function is an interpolatory quadrature rule of the following form∫ 1

−1
f(x)wα,β(x) dx = λα,β

0 f(−1) +

n∑
k=1

λα,β
k f(ζα,βk ) + λα,β

n+1f(1) +Rα,β
n [f ],

(2.8)

with the maximal algebraic degree of exactness. The internal nodes ζα,βk
are the zeros of the orthogonal polynomial of degree n with respect to the
weight function x �→ (1 − x2)wα,β(x) (cf. [28, pp. 330–332]). In this case,

the Gauss–Lobatto points ζα,βk are the zeros of the polynomial
d

dx
P

(α,β)
n+1 (x).

It is well known that the Gauss–Lobatto quadrature (2.8) has degree of
exactness 2n + 1, see [14, 28].

3. Nonstandard quadratures of Gaussian type

In many cases it is not possible to measure the exact value of the func-
tion f at points xk, so that a standard quadrature cannot be applied.
Thus, if the information data {f(xk)}nk=1 in the standard quadrature (1.4)

is replaced by {A hkf(xk)}nk=1, where A h is an extension of some linear

operator A h : P → P, h ≥ 0, where P is the set of all algebraic polynomials,
we get a non-standard quadrature formula [33]∫ b

a
f(x)w(x) dx =

n∑
k=1

wk(A
hkf)(xk) +Rm[f ], (3.1)

where w is a positive weight function on [a, b].
In the sequel, we consider a non-standard m-point (m > 2) interpola-

tory quadrature of Gaussian type (precisely, of the Gauss-Lobatto type),∫ b

a
g′(x)w(x) dx =

m∑
k=1

wkg(xk) +Rm[g], (3.2)

which is exact on the set P2m−3, i.e., Rm(P2m−3) = 0. If we put g(x) =∫ x
c f(t) dt, where c is some constant, formula (3.2) reduces to∫ b

a
f(x)w(x) dx =

m∑
k=1

wk

∫ xk

c
f(t) dt+Rm[f ],
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which is a special case of the generalized nonstandard (operator) formulae
(3.2) of Gaussian type.

Theorem 3.1. Given an integer k with 0 ≤ k ≤ m, the quadrature
formula (3.2) has degree of exactness d = m− 1 + k if and only if both the
following conditions are satisfied:

(a) Formula (3.2) is interpolatory.

(b) The node polynomial �(x) :=
∏m

ν=1(x− xν) satisfies∫ b

a

(
�(x)p(x)

)′
w(x) dx = 0, (3.3)

for all p ∈ Pk−1.

P r o o f. To prove this, we will follow a manner similar to that used
in [14]. We first prove the necessity of (a) and (b). Since, by assumption,
the degree of exactness is d = m− 1 + k ≥ m− 1, condition (a) is trivial.
condition (b) also follows immediately, since, for any p ∈ Pk−1, the product
�(x)p(x) is in Pm−1+k; hence,∫ b

a

(
�(x)p(x)

)′
w(x) dx =

m∑
ν=1

wν�(xν)p(xν) = 0.

To prove the sufficiency of (a) and (b), we must show that for any p ∈
Pm−1+k we have Rm[p] = 0 in (3.2). Given any such p, divide it by �, so
that

p(x) = q(x)�(x) + r(x), q ∈ Pk−1, r ∈ Pm−1,

where q(x) is the quotient and r(x) is the corresponding remainder. There
follows ∫ b

a
p′(x)w(x) dx =

∫ b

a

(
�(x)q(x)

)′
w(x) dx+

∫ b

a
r′(x)w(x) dx

The first integral on the right vanishes by (b), since q ∈ Pk−1, whereas the
second, by (a), since r ∈ Pm−1, equals

m∑
ν=1

wνr(xν)

by virtue of (a). But

r(xν) = p(xν)− q(xν)�(xν) = p(xν),

so that indeed
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∫ b

a
p′(x)w(x)dx =

m∑
ν=1

wνp(xν)

that is, Rn[p] = 0. This completes the proof. �

4. Gauss-Jacobi-Lobatto nonstandard quadratures

As an interesting special case for application to fractional derivatives,
we consider the nonstandard Gauss–Lobatto quadrature rule, with respect
to a special Jacobi weight wα,0(x) = (1− x)α, α > −1,∫ 1

−1
g′(x)wα,0(x) dx = λα,0

0 g(−1) +
n∑

k=1

λα,0
k g(ξα,1k ) + λα,0

n+1g(1) +Rα,0
n [g].

(4.1)
Our main result can be stated in the following form:

Theorem 4.1. Let −1 = ξα,10 < ξα,11 < · · · < ξα,1n < ξα,1n+1 = 1 be the

zeros of the polynomial (1− x2)P
(α,1)
n (x), and let the weights λα,0

k be as

λα,0
k =

αwα,1
k

1− (ξα,1k )2
, k = 1, . . . , n, (4.2)

and

λα,0
0 = −2α

n2 + (α + 2)n + 1

(n+ 1)(n + α+ 1)
, λα,0

n+1 = −λα,0
0 −

n∑
k=1

λα,0
k , (4.3)

where wα,1
k , k = 1, . . . , n, are the Christoffel numbers in the standard

Gauss-Jacobi quadrature with respect to the weight function wα,1(x) =

(1− x)α(1 + x), α > −1, which correspond to the nodes ξα,1k , k = 1, . . . , n.
Then the quadrature formula (4.1) has the maximal degree of precision,

i.e., it is exact for each polynomial of degree at most 2n+ 1.

P r o o f. Suppose that ω(x) = (1− x2)P
(α,1)
n (x) and

λα,0
k =

∫ 1

−1
�′k(x)w

α,0(x) dx, k = 0, 1, . . . , n+ 1, (4.4)

where �k ∈ Pn+1 are the Lagrange polynomials associated with the nodes

ξα,1k . It is obvious that the quadrature (4.1) with these weights (4.4) is
at least interpolatory. According to Theorem 3.1, it is enough to show
the orthogonality relation (3.3) for each p ∈ Pn−1. To do this, we apply
integration by parts to obtain∫ 1

−1

(
ω(x)p(x)

)′
wα,0(x) dx = α

∫ 1

−1
P (α,1)
n (x)p(x)wα,1(x) dx = α〈P (α,1)

n , p〉.
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Then, because of orthogonality of P
(α,1)
n to Pn−1 with respect to wα,1 on

(−1, 1), we conclude that

(∀p ∈ Pn−1)

∫ 1

−1

(
ω(x)p(x)

)′
wα,0(x) dx = α〈P (α,1)

n , p〉 = 0.

Now, we denote the “node” polynomial by �(x) = (x2 − 1)πn(x), where

πn ≡ πα,1
n is the monic Jacobi polynomial with parameters α and β = 1.

In order to compute the weights λα,0
k , corresponding to the set of nodes

ξα,1k , we use the formulas (4.4).
Since �′(x) = 2xπn(x) + (x2 − 1)π′

n(x), for the endpoints ±1, we have

�′(ξα,10 ) = �′(−1) = −2πn(−1), �′(ξα,1n+1) = �′(1) = 2πn(1).

At the zeros of the Jacobi polynomial πn, we have

�′(ξα,1k ) =
((
ξα,1k

)2 − 1
)
π′
n(ξ

α,1
k ), k = 1, . . . , n.

The corresponding Lagrange polynomials associated with the nodes ξα,1k ,

�k(x) =
�(x)

�′(ξα,1k )
(
x− ξα,1k

) , k = 0, 1, . . . , n+ 1, (4.5)

can be expressed in the following form

�0(x) =
(1− x)πn(x)

2πn(−1)
, �n+1(x) =

(1 + x)πn(x)

2πn(1)
and

�k(x) =
1− x2

1− (
ξα,1k

)2 · πn(x)

π′
n(ξ

α,1
k )

(
x− ξα,1k

) , k = 1, . . . , n.

Now we need derivatives of the Lagrange polynomials, i.e.,

�′0(x) =
(1− x)π′

n(x)− πn(x)

2πn(−1)
, �′n+1(x) =

(1 + x)π′
n(x) + πn(x)

2πn(1)

and

�′k(x) =
1

1− (
ξα,1k

)2
{
−2x �Gk (x) + (1− x2)

d

dx

[
�Gk (x)

]}
, k = 1, . . . , n,

where �Gk (x), k = 1, . . . , n, are Lagrange polynomials associated with the

nodes ξα,1k for which∫ 1

−1
�Gk (x)w

α,1(x) dx = wα,1
k , k = 1, . . . , n,

where wα,1
k are the Christoffel numbers in the corresponding Gauss-Jacobi

quadrature rule with respect to the weight wα,1 on (−1, 1).
Thus, for k = 1, . . . , n, we get
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λα,0
k =

∫ 1

−1
�′k(x)w

α,0(x) dx

=
1

1− (
ξα,1k

)2
{∫ 1

−1
[(1− x)− (1 + x)]�Gk (x)w

α,0(x) dx

+

∫ 1

−1
(1− x2)

d

dx

[
�Gk (x)

]
wα,0(x) dx

}

=
1

1− (
ξα,1k

)2
{∫ 1

−1
�Gk (x)w

α+1,0(x) dx−
∫ 1

−1
�Gk (x)w

α,1(x) dx

+

∫ 1

−1

d

dx

[
�Gk (x)

]
wα+1,1(x) dx

}
.

Using integration by parts, the last integral becomes∫ 1

−1

d

dx

[
�Gk (x)

]
wα+1,1(x) dx = (α+ 1)

∫ 1

−1
�Gk (x)w

α,1(x) dx

−
∫ 1

−1
�Gk (x)w

α+1,0(x) dx,

so that we get

λα,0
k =

α

1− (ξα,1k )2

∫ 1

−1
�Gk (x)w

α,1(x) dx =
αwα,1

k

1− (ξα,1k )2
, k = 1, . . . , n,

i.e., (4.2).
For k = 0 we have

λα,0
0 =

∫ 1

−1
�′0(x)w

α,0(x) dx

=
1

2πn(−1)

∫ 1

−1

[
(1− x)π′

n(x)− πn(x)
]
wα,0(x) dx

=
1

2πn(−1)

{∫ 1

−1
π′
n(x)w

α+1,0(x) dx−
∫ 1

−1
πn(x)w

α,0(x) dx

}
.

Since∫ 1

−1
π′
n(x)w

α+1,0(x) dx = −πn(−1)2α+1 + (α+ 1)

∫ 1

−1
πn(x)w

α,0(x) dx,

we get
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λα,0
0 =

1

2πn(−1)

{
α

∫ 1

−1
πn(x)w

α,0(x) dx− 2α+1πn(−1)

}
.

If we introduce the so-called function of the second kind (cf. [28, p. 117])

fn(z) =

∫ 1

−1

πn(x)

z − x
wα,1(x) dx

we see that for z = −1, it reduces to

fn(−1) = −
∫ 1

−1

πn(x)

1 + x
wα,1(x) dx = −

∫ 1

−1
πn(x)w

α,0(x) dx,

so that

λα,0
0 = −α

2
· fn(−1)

πn(−1)
− 2α. (4.6)

In order to determine fn(−1) we start with the following equality for
Jacobi polynomials (cf. [1, p. 304])

(2n + α+ 1)P (α,0)
n (x) = (n + α+ 1)P (α,1)

n (x) + (n+ α)P
(α,1)
n−1 (x).

Transforming it to monic polynomials, multiplying by wα,0(x), and inte-
grating it over (−1, 1), we obtain the folloing relation

(2n+ α+ 1)fn(−1) +
2n(n+ α)

2n+ α
fn−1(−1) = −2n+ α+ 1

α+ 1
2α+1δn,0, (4.7)

where δi,j is Kronecker’s delta. This gives

f0(−1) = − 2α+1

α+ 1
, fn(−1) = − 2n(n+ α)

(2n + α)(2n + α+ 1)
fn−1(−1), n ≥ 1,

i.e.,

fn(−1) = (−1)n+1 2n+α+1n!

(n+ α+ 1)n+1
, n = 0, 1, 2, . . . .

Since πn(−1) = πα,1
n (−1) = (−1)n2n(n + 1)!/(n + α + 2)n, from (4.6)

we find λα,0
0 in the form given in (4.3).

Finally, because of
∑n+1

k=0 λ
α,0
k = 0, we obtain the second formula in

(4.3). �

Remark 4.1. The weights at the endpoints can be also expressed in
the form

λα,0
0 = − 2α

α+ 1
− α

2

n∑
k=1

wα,1
k

1 + ξα,1k

, λα,0
n+1 =

2α

α+ 1
− α

2

n∑
k=1

wα,1
k

1− ξα,1k

.
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Thus, there are simple explicit formulae for the weights λα,0
j , j =

0, 1, . . . , n + 1. An alternative way for finding these coefficients are con-
sidered in [12].

4.1. Software implementation

The construction of the Gauss-Jacobi-Lobatto nonstandard quadrature
(4.1) for an arbitrary n ∈ N and each α > −1 can be realized very easy
by our Mathematica package OrthogonalPolynomials (see [7] and [34]).
Alternatively, for this purpose there is also Gautschi’s package SOPQ writ-
ten in Matlab (cf. [31]). These packages provide many other calcula-
tions with orthogonal polynomials and different quadrature rules, and they
are downloadable fromWeb Sites: http://www.mi.sanu.ac.rs/~gvm/ and
http://www.cs.purdue.edu/archives/2002/wxg/codes/, respecively.

The corresponding Mathematica code for constructing parameters of
the quadrature formula (4.1) is:

<< orthogonalPolynomials‘

LobattoParam[n_,alpha_,digits_]:=Module[{node,lambda,weight,k,a0,an1},

{node,weight} = aGaussianNodesWeights[n,{aJacobi,alpha,1},

WorkingPrecision -> digits+5, Precision->digits];

a0 = 2^alpha(alpha/((n+1)(n+alpha+1))-1);

lambda = alpha*weight/(1-node^2);

an1 = -(a0+Sum[lambda[[k]],{k,1,n}]);

lambda=N[Append[Prepend[lambda,a0],an1],digits];

node=N[Append[Prepend[node,-1],1],digits]; Return[{node,lambda}]];

Variable–precision arithmetic enables us to calculate parameters (nodes
and weights) in (4.1), named as node and lambda, i.e.,

node = (ξα,10 , ξα,11 , . . . , ξα,1n+1) and lambda = (λα,0
0 , λα,0

1 , . . . , λα,0
n+1),

with an arbiytrary precision. The input parameter digits defines the so-
called working precision in the form WorkingPrecision -> digits+5.

For example, taking digits-> 20 for α = −1/2 and n = 5 we get the
following results:

In[1]:= {node, lambda} = LobattoParam[5, -1/2, 20]

Out[1]= {{-1.0000000000000000000, -0.78566926929466497066,

-0.34243721374692749946, 0.19893554984718572955,

0.68075005442268573279, 0.96270659305743529348,

1.0000000000000000000},

{-0.71782052029543460810, -0.072612263768525365535,

-0.16642116952156041977, -0.37516617602834936907,

-1.1131007878331247823, -10.292032937247316885,

12.737153854694311430}}

http://www.mi.sanu.ac.rs/~gvm/
http://www.cs.purdue.edu/archives/2002/wxg/codes/
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The corresponding Matlab code for constructing parameters of the
quadrature formula (4.1) is:

function [node,lambda]=LobattoParam(n,q)

ab=r_jacobi(n,-q,1); xw=gauss(n,ab);

node=xw(:,1); omega=xw(:,2);

lambda(1)= -2^(-q)*(q/((n+1)*(n-q+1))+1);

lambda(2:n+1)=-q*omega(1:n)./(1-node(1:n).^2);

lambda(n+2)= -sum(lambda(1:n+1));

node=[-1 node’ 1];

5. Applications to an approximation of fractional derivatives

Let f(s) be a sufficiently well-behaved function in [−1, 1]. If f(s) is
defined in [0, t] instead of [−1, 1], then change of variable s = t

2(1 + x)

could transform f(s) into g(x) := f( t2(1 + x)), where x ∈ [−1, 1]. Rewrite
the definition (1.1) in the equivalent form

Dq
∗f(t) =

2q

tqΓ(1− q)

∫ 1

−1
g′(x)(1− x)−q dx. (5.1)

To approximate the integral in (5.1), we use the nonstandard quadrature
(4.1) with α := −q, i.e.,

(∀g ∈ P2n+1)

∫ 1

−1
g′(x)w−q,0(x) dx =

n+1∑
k=0

λ−q,0
k g(ξ−q,1

k ), (5.2)

where ξ−q,1
k are the zeros of the polynomial (1 − x2)P

(−q,1)
n (x), and the

weights λ−q,0
j are given by (4.2) and (4.3), in which α := −q. Thanks to the

representation (5.1), the following approximation of the Caputo fractional
derivative (1.1)

Dq
�f(t) ≈ Dq

�,nf(t) :=
2q

tqΓ(1− q)

n+1∑
k=0

λ−q,0
k f(t−q,1

k ) (5.3)

holds, where

t−q,1
k =

t

2

(
ξ−q,1
k + 1

)
.

The relationship (1.3) leads to

0D
q
t f(t) ≈ 0D

q
t,nf(t) :=

f(0)

tqΓ(1− q)
+Dq

�,nf(t). (5.4)
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6. Numerical examples

In this section, we present some numerical experiments to illustrate
and test the behavior of the approach described in the previous sections.
In some examples the exact solutions of the fractional derivative can be
expressed in terms of the Mittag-Leffler function of two parameters Eα,β(z),
defined by the series expansion

Eα,β(z) =

∞∑
k=0

zk

Γ(kα+ β)
, α > 0, β ∈ R. (6.1)

The mathematical function MittagLefflerE[alpha,beta,z] is implemen-
ted in Mathematica and it is suitable for both symbolic and numerical
calculation. Calculations in Matlab are considered in [13, 16, 37].

In our examples we consider the absolute error en(f ; t) at the point t,
defined by

eqn(t) ≡ eqn(f ; t) = | 0Dq
t f(t)− 0D

q
t,nf(t) |, (6.2)

where 0D
q
t,nf(t) is numerical value obtained by (5.4). We use also the

maximum of eqn(t) taken over certain interval A, i.e.,

Eq
n ≡ Eq

n(f) = max
t∈A

eqn(f ; t) = max
t∈A

| 0Dq
t f(t)− 0D

q
t,nf(t) |.

In numerical calculations in our examples, the usual set A = (0, 1] will be
always replaced by a discrete set, viz.

{
tj = j/1000, j = 1, 2, . . . , 1000

}
.

Thus,

Ẽq
n ≡ Ẽq

n(f) = max
1≤j≤1000

|0Dq
t f(tj)− 0D

q
t,nf(tj)|. (6.3)

Example 6.1. In order to show numerically that the quadrature
rule (5.2) has an algebraic degree of exactness 2n + 1, we take two types
of algebraic polynomials. The first are the shifted Jacobi polynomials

P
(−q,0)
m (2t− 1) and the second ones are monomials tγ , 0 < t ≤ 1.

In the first case, the exact solution of the fractional derivative is

0D
q
tP

(−q,0)
m (2t− 1) =

m!t−q

Γ(m− q + 1)
P (0,−q)
m (2t− 1).

Using the quadrature formula (5.3) for n = 5 and q = 1/2 , and taking

the sequence of Jacobi polynomials {P (−1/2,0)
m (2t−1)}12m=0 we calculate the

corresponding sequence {Ẽq
n}12m=0:{

0.× 10−16, 0.× 10−17, 0.× 10−17, 0.× 10−17, 0.× 10−17, 0.× 10−17, 0.× 10−17,

0.× 10−17, 0.× 10−17, 0.× 10−17, 0.× 10−17, 0.× 10−18, 0.4335
}
,
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from which we see that the algebraic degree of exactness is d = 11 that is
predicted by Theorem 4.1.

Similarly, we can conclude from the second case for f(t) = tγ , for which

0D
q
t t

γ =
Γ(1 + γ)

Γ(1 + γ − q)
tγ−q, γ > −1.

The corresponding sequence Ẽq
n for γ = 0, 1, . . . , 12 (the maximum of the

errors on (0, 1]), defined by (6.3), with the same quadrature (n = 5 and
q = 1/2), is{
0.× 10−18, 0.× 10−19, 0.× 10−19, 0.× 10−19, 0.× 10−19, 0.× 10−19, 0.× 10−19,

0.× 10−19, 0.× 10−19, 0.× 10−19, 0.× 10−18, 0.× 10−18, 2.55× 10−7
}
.

Using the same quadrature (q = 1/2 and n = 5), the maximum of the

errors Ẽ
1/2
n for f(t) = tγ , when γ runs over [1, 12], is presented in Figure 1

(left) in log10-scale. As we can see the quadrature formula is exact in the
cases when γ is an positive integer less than 12. In the same figure we give
also the corresponding graphics for cases when n = 10, n = 15 and n = 20.
Notice that these quadratures are exact for γ ∈ {0, 1, . . . , 2n+1}. The case
q = 9/10 is corresponding graphics are presented in Figure 1 (right).

Figure 1. Maximum of log10 Ẽ
q
n for f(t) = tγ , q = 1/2 (left)

and q = 9/10 (right), for quadratures with n = 5(5)20 nodes
(graphics from top to bottom), when γ runs over interval [1, 12]

Now we consider the error e
1/2
n (f ; t), defined by (6.2), for a simple power

function f(t) = tγ with an algebraic singularity. We take γ = 1/2, 3/2, 7/2,
and 11/2, and apply the Gauss-Lobatto quadratures (5.3) with n = 5, 10,
15, and 20 nodes (plus two fixed nodes at ±1). The corresponding graphics
in log-scale are presented in Figure 2.

As we can see the error e
1/2
n (f ; t) for a small γ (= 1/2) is almost con-

stant for each t in the interval (0, 1), but the convergence of the quadrature
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γ n = 5 n = 10 n = 15 n = 20 n = 30 n = 60 n = 90 n = 120

1
2 5.88(−4) 9.03(−5) 2.87(−5) 1.26(−5) 3.86(−6) 5.01(−7) 1.50(−7) 6.38(−8)

1
4 2.83(−3) 5.92(−4) 2.28(−4) 1.14(−4) 4.28(−5) 7.80(−6) 2.86(−6) 1.40(−6)

1
8 5.89(−3) 1.44(−3) 6.10(−4) 3.30(−4) 1.35(−4) 2.93(−5) 1.19(−5) 6.24(−6)

1
16 8.45(−3) 2.23(−3) 9.92(−4) 5.52(−4) 2.39(−4) 5.63(−5) 2.40(−5) 1.31(−5)

Table 1. Errors e
1/2
n (f ; 1/2) in quadrature sums with

n = 5(5)20 and n = 30(30)120, for γ = 1/2, 1/4, 1/8, and 1/16

formulas (5.3) is rather slow, especially when γ is closer to zero. For ex-

ample, for γ = 1/2, 1/4, 1/8, and 1/16, the errors e
1/2
n (f ; t) at t = 1/2 are

given in Table 1 for quadrature rules with n = 5(5)20 and n = 30(30)120
nodes. Numbers in parentheses indicate decimal exponents. For γ > 1 the
convergence is satisfactory.

Figure 2. Graphics of log10 e
q
n(f ; t) for f(t) = tγ and t runs

over (0, 1), when n = 5(5)20 (graphics from top to bottom) in
the cases: (above) γ = 1/2 (left) and γ = 3/2 (right); (below)
γ = 7/2 (left) and γ = 11/2 (right)
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Remark 6.1. Problems with algebraic or/and logarithmic singulari-
ties can be solved using Müntz systems and quadratures of this type (cf.
[30, 32, 11]) or using a procedure proposed in [20].

Example 6.2. For our second experiment we consider fractional dif-
ferentiation by ploting sin(t) on the interval [0, 4π] (already used in [19]),
together with its derivatives of order q = 1/10, 2/10, . . . , 9/10, as drawn
in Figure 3. Fractional derivatives have been calculated using the quadra-
ture rule (5.3) with n = 5. As one can see, each curve is approximately a
translation of sin(t) by a distance qπ/2 to the left.

Figure 3. The function sin(t) on [0, 4π] together with its deriva-
tives of order k/10, k = 1, 2, . . . , 9

Example 6.3. We compute 0D
q
t f(t) for f(t) = sin(λt) and t ∈ [0, π].

The exact value of the fractional derivative of this function is given by
[39, 41]

0D
q
t sin(λt) = λt1−qE2,2−q(−λ2t2),

where the Mittag-Leffler function is defined in (6.1).

In Figure 4 we present graphics of the functions sin(λx), λ = 1, 2, 3
(left), and their derivatives of order q = 1/2 (right), obtained by the Gauss-
Lobatto quadrature rule (5.3) with n = 5 internal nodes. Since the sin-
function is smooth, this quadrature rule converges very fast. In order to
illustrate this fact we present in Table 2 the numerical results 0D

q
t,n sin(λt)

for t = π/2, q = 1/2, λ = 2 and λ = 3, taking n = 2(1)8 internal nodes
in the Gauss-Lobatto quadrature rule (5.3), as well as the corresponding
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Figure 4. Graphics of the functions sin(λx), λ = 1, 2, 3 (left),
and their derivatives obtained by the numerical quadrature (5.3)
with n = 5 (right)

n 0D
q
t,n sin(2t) rqn(2; t) 0D

q
t,n sin(3t) rqn(3; t)

2 −1.0568638589376709 8.69(−4) −1.2640813951622687 2.41(−3)

3 −1.0577933376552489 9.59(−6) −1.2672323502405542 7.79(−5)

4 −1.0577831205699668 6.58(−8) −1.2671318332287842 1.39(−6)

5 −1.0577831905482818 3.08(−10) −1.2671336100910347 1.59(−8)

6 −1.0577831902213884 1.04(−12) −1.2671335897303999 1.29(−10)

7 −1.0577831902224960 2.69(−15) −1.2671335898951450 7.81(−13)

8 −1.0577831902224932 5.41(−18) −1.2671335898941501 3.67(−15)

Table 2. Gaussian approximations 0D
q
t,n sin(λt) and the corre-

sponding relative errors rqn(λ; t) for f(t) = sin(λt) and q = 1/2 at
t = π/2

relative errors

rqn(λ; t) =

∣∣∣∣ 0D
q
t,n sin(λt) − 0D

q
t sin(λt)

0D
q
t sin(λt)

∣∣∣∣ .
In each entry the first digit in error is bolded and underlined.

The maximal absolute errors in Gaussian approximations over the whole
interval (0, π) (taking 1000 equidistant points tj = jπ/1000, j = 1, . . . , 1000)
are presented in Table 3.

Example 6.4. We compute 0D
q
t f(t) for f(t) = (t+ν)q−1 and t ∈ [0, 1].

The exact value of the fractional derivative of this function is given by [39]

0D
q
t (t+ ν)q−1 =

1

Γ(1− q)

(ν
t

)q 1

t+ ν
.
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n 4 6 8 10 12

λ = 1 4.93(−8) 7.81(−13) 4.05(−18)

λ = 2 1.73(−5) 3.42(−9) 2.32(−13) 6.80(−18)

λ = 3 1.50(−3) 2.41(−6) 1.13(−9) 2.12(−13) 1.91(−17)

Table 3. Maximal absolute errors in Gaussian approximations

0D
q
t,n sin(λt), when t ∈ (0, π], q = 1/2, λ = 1, 2, 3 and n = 4(2)12

The actual maximum error Ẽq
n, defined by (6.3), is plotted in Figure 5 in a

semi-log coordinate system as a function of n for q = 1/2 and four values
of the parameter ν (= 0.1, 0.2, 0.5 and 1.0).

Figure 5. log10 Ẽ
q
n versus n for q = 1/2 with ν = 0.1, 0.2, 0.5, 1.0

As we can see that Ẽq
n decreases rapidly. It is worth noting that the

convergence rate is dependent of the regularity of the integrand in the
neighborhood of t = 0. As one can see, in the case that ν tends to zero,
the quadrature rule converges slowly.

Example 6.5. For exponential functions f1(t;λ) = eλt and f2(t;λ) =

cosh(
√
λ t), t ∈ [0, 1], the exact values of the fractional derivative 0D

q
t fk(t;λ),

k = 1, 2, are given in terms of the Mittag-Leffler function (6.1) (cf. [36, 41])
as

0D
q
t e

λt = t−qE1,1−q(λt)
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n 4 6 8 10

λ = 1/2 1.28(−10) 1.20(−16)

f1 λ = 1 3.32(−7) 4.81(−12) 2.36(−17)

λ = 2 2.36(−3) 4.49(−7) 3.71(−11) 1.20(−15)

λ = 1/2 3.25(−9) 1.21(−14) 1.51(−20)

f2 λ = 1 1.71(−7) 2.48(−12) 1.22(−17)

λ = 2 1.18(−5) 6.59(−10) 1.27(−14) 1.05(−19)

Table 4. Maximal absolute errors Ẽq
n(fk), k = 1, 2, λ =

1/2, 1, 2, over (0, 1], in Gaussian approximations for q = 1/2, with
n = 4(2)10 internal nodes

and

0D
q
t cosh(

√
λ t) = t−qE2,1−q(λt

2).

The maximal absolute errors in Gaussian approximations Ẽq
n(fk), k = 1, 2,

over the whole interval (0, 1), defined by (6.3), are presented in Table 4.

Example 6.6. Finally, we compute 0D
q
t f(t) for f(t) = ta/2Ja

(
2
√
t
)

and t ∈ [0, 1], where Ja(z) is the Bessel function of the first kind and order
a, defined as a solution of the so-called Bessel differential equation

z2
d2y

dz2
+ z

dy

dz
+ (z2 − a2)y = 0,

which can be expressed in the power form expansion around z = 0,

Ja(z) =
∞∑
k=0

(−1)k

k!Γ(k + a+ 1)

(z
2

)2k+a
.

The exact value of the fractional derivative of this function is given by
[36, 41]

0D
q
t f(t) = t(a−q)/2Ja−q

(
2
√
t
)
,

Since the original function

f(t) = f(t; a) = ta/2Ja
(
2
√
t
)
=

∞∑
k=0

(−1)k

k!Γ(k + a+ 1)
tk+a,

we see that f is an analytic function when a ∈ N0, so that for such values
of the parameter a we expect fast convergence of the quadrature rule (5.3).
However, in other cases this function has an algebraic singularity at t = 0.

As a decreases to zero, the convergence of our quadrature rule slows
down considerably. In Figure 6 we present graphics of the maximal error

Ẽq
n(f( · ; a)) for q = 1/2, obtained by three different quadrature rules with



1094 S. Esmaeili, G.V. Milovanović

n = 5, 10, and 20 internal nodes, when the parameter a in the function
runs over (0, 3.5). It is clear that the rapidly increasing of accuracy achieved
when the parameter a tends to an integer, i.e., when f becomes an analytic
function.

Figure 6. Graphics of log10[Ẽ
1/2
n (f( · ; a))] for n = 5, 10, and

20 (from top to bottom), when 0 < a < 3.5

Figure 7. The values log10[e
1/2
n (f ; t)], 0 < t < 1, for n = 2, 3, 4

internal nodes (graphics from top to bottom), when a = 2 (left)
and a = 3 (right)

Thus, for a ∈ N0 the convergence of the quadrature rule (5.3) is very

fast! The errors e
1/2
n (f ; t), 0 < t < 1, in approximation of fractional deriva-

tive 0D
q
t f(t) by quadrature rules with a small number of nodes (n = 2, 3, 4)

are presented in Figure 7 (in log-scale) for a = 2 (left) and a = 3 (right).
On the other side, taking much more nodes (up to n = 120), for a

small a, viz. a = 1/2, the convergence is very slow (see Figure 8 (left)).
Something faster convergence is achieved for a = 3/2 (Figure 8 (right)).
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8

7
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5

4

Figure 8. The values log10[e
1/2
n (f ; t)], 0 < t < 1, for n =

10, 20, 30, 60, 120 internal nodes (graphics from top to bottom),
when a = 1/2 (left) and a = 3/2 (right)

However, if a is sufficiently large the convergence rate becomes quite
satisfactory, as is given in Figure 9 (left) for a = 7/2, where we used
n = 5(5)20 and n = 30 internal nodes in the corresponding quadrature rule
(5.3).

Figure 9. (left) The values log10[e
1/2
n (f ; t)], 0 < t < 1, a =

7/2, for n = 5, 10, 15, 20, 30 internal nodes (graphics from top to

bottom); (right) log10[Ẽ
q
n(f( · ; a))], a = 3/2, versus n for q =

1/10, 1/2, and 9/10

Finally, in Figure 9 (right) we present the actual maximum error Ẽq
n(f),

defined by (6.3), in a semi-log coordinate system as a function of n for
a = 3/2 and three values of q (= 1/10, 1/2, and 9/10). As we can see the

behaviour of Ẽq
n(f) is very similar with respect to q.



1096 S. Esmaeili, G.V. Milovanović
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