FILOMAT (Ni3) 9:3 (1995), 517542

Algebra, Logic & Discrete Mathematics INVITED LECTURE
Nis, April 14-16, 1995.

SOME NONSTANDARD TYPES OF
ORTHOGONALITY (A SURVEY)

Gradimir V. Milovanovié

ABsTRACT. This survey is devoted to some nonstandard types of orthogonal
polynomials in the complex plane. Under snitable integrability conditions on
w, we consider polynomials orthogonal on a circular arc with respect to a
non-Hermitian complex inner product as well as Geronimus® version of or-
thogonality on a contour in the complex plane. Also, we introdnce a class of
polynomials orthogonal on some selected radial rays in the complex plane. ln
both of cases we investigate their existence and nnigneness, recurrence rela-
tions, representations and connections with standard polynomials orthogonal
on the real line. We also give an introduction to the general theary of orthog-
onality on the real line and the unit circle. Zero distributions of nonstandard
types of orthogonal polynomials are considered.

1. Introduction

The orthogonal systems play an important role in many branches of math-
ematics, physics and other applied and computational sciences. Especially,
orthogonal polynomial systems appear in the Gaussian quadrature processes,
the least square approximation of functions, differential and difference equa-
tions, Fourier series, etc.

In this survey we maiuly consider some classes of nonstandard orthogonal
polynomials. The paper is organized as follows. In Section 2 we discuss two
standard types of orthogonal polynomials — polynomials orthogonal on the
real line and polynemials orthogonal on the unit eircle. The most important
properties of such polynomials are presented. Under suitable integrability
conditions on a weight function, in Section 3 we consider polynomials or-
thogonal on the semicircle with respect to a complex-valued inner product.
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A generalization of such nonstandard orthogonal polynomials on a circular
arc in the complex plane is treated in Section 4. (Geronimus’ version of or-
thogonality on a contour in the complex plane for polynomials orthogonal
on the semicircle or on a circular arc is considered in Section 5. Sections 6
and 7 are devoted to a uew class of orthogonal polynomials on some selected
radial rays in the complex plane. We investigate the existence and unique-
ness, recurrence relations, representations and the connection with standard
polynomials orthogonal on the real line. Also, the distribution of zeros of
such polynomials is included.

2. Standard types of orthogonal polynomials

A standard type of orthogonality is one on the real line with respect to
a given non-negative measure dA(f). Namely, let \: R — R be a fixed non-
decreasing function with infinitely many points of increase for which all mo-
ments y; = fll t* dA(t), k = 0,1,..., exist and are finite. Then the improper
Stieltjes integral fn P(t)dA(t) exists for every polynomial £. By the applica-
tion of the Lebesgue-Stieltjes integral f“ f(t)dA(t) to characteristic functions
of sets, the function A engenders a Lebesgue-Stieltjes measure dA(t), which
is known also as m-distribution (cf. Freud [10]). Moreover, if t — A(t) is
an absolutely continnous function, then we say that A'(t) = w(t) is a weight
Junetion. In that case, the measure dA can he express as dA(t) = w(t)dt,
where the weight function ¢ ~ w(#) is a non-negative and measurable in
Lebesgue’s sense for which all moments exists and pp = flt w(t)dt > 0.

In the general case the function A can be written in the form A = A, +
As + Aj, where A, is absolutely continuous, A is singular, and A; is a jump
function.

The set of points of increase of t — A(t), so-called the support of the
measure, we denote by supp(dA). It is always an infinite and closed set. If
supp(dA) is hounded, then the smallest closed interval containing supp(dA)
we will denote by A(dA).

Using the measure dA(t) we can define the inner product ( f, g), by

@1)  (fig)= ]H FOD ANt (f.g € LA(R) = LA(R;dN)),

and consider a system of {monic) orthogonal polynomials {pi(t)} such that

pr(t) = t* + terms of lower degree (k=0,1,...),
[Pks Pn) =0, k '# ., (p"-'rpﬂ} = “pn":! > 0.
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For any m-distribution dA(#) there exists a unique system of polynomials
{pe(1)}.

A general property of the inner product (2.1) that (1f, ¢) = ( f, tg) provides
the three-term recurrence relation for the {monic) orthogonal polynomials
pilt),

(2.2) Pr1(t) = (= ag )pel(t) — bepi—1(2). k=0,1,2,...,
polt) =1, p_y(t)=0.

The recursion coefficients can be expressed in terms of inner product (cf,
Milovanovi¢, Mitrinovié¢, Rassias [31, p. 33])

(tpk, Pi) (Pis Pic)
= R (k> 0), b= ——2RT (k> 1)
e (Pr.Pr) (k20), b (Pr—1,Pk=1) ( )

The coefficient by, which mnﬂtiplie;ﬂ' p—1(t) = 0 in three-term recurrence
relation may be arbitrary. Sometimes, it is convenient to define it by by =
o = f“ dA(t). Then the norm of p,, can be express in the form

IPull = V(paspn) = Vbgby <<+ b, .

An interesting and very important property of polynomials p,(t), n > 1,
is the distribution of zeros. Namely, all zeros of p, () are real and distinct
and are located in the interior of the interval A(dX). Also, the zeros of py,(t)
and p,4+1(1) interlace, i.e.,

Ti,“+” < *r::") < T}C:_-:” (k=1,....,n; n €N),

where *r{_"’, k=1,...,n, denote the zeros of p,(t) in an increasing order

(n) {n)
T <Ty << i,

It is easy to prove that the zeros -r,(;“) of p.(t) are the same as the eigen-
values of the following tridiagonal matrix

- ag \/5'1_ 0O
Vi w Vo

gy = Ju(dA) = Vb ay ,

Vbua

. O b1 fly—1 4
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which is known as the Jacobi matriz. Also, the monic polynomial p, (%) can
be expressed in the following determinant form

Fu(t) = det(th, — Jy),

where [,, is the identity matrix of the order n.

Suppose that A(dA) = [a,b]. Since every interval (a, b) can be transformed
by a linear transformation to one of following intervals: (—1,1), (0, +00),
(~oc, +0), we can restrict the consideration (without loss of generality ) only
to these three intervals. A very important class of orthogonal polynomials on
an interval of orthogonality («,b) € R is constituted by so-called the classical
orthogonal polynoemials. Their weight functions w(t) satisfy the differential
equation

d
H(A(i)m(t]) = B(t)w(t),

where
l_tzt if (ﬂ-b)=(_111)1
Aty =4 ¢, if (a.b)=(0,+00),
1! if (ﬂ.,b): [_m'r""m)!

and B(t) is a polynomial of the first degree.

The classical orthogonal polynomials {Qx} on (a,b) can be specificated
as the Jacobi polynomials P{,n‘m(t] (@, > —1) on (~1,1), the generalized
Laguerre polynomials Li(t) (s > —1) on (0,+0oc), and finally as the Hermite
polynomials Hy(t) on (—oc,+0c), with the weight functions

to (L= )14+, tette™t,  te®

(a, 3,8 > 1),
respectively. These polynomials have many nice particular properties (cf. [9],
[25], [29), [31], [40], [43]). Some characterizations of the classical polynomials
were given in [2-3], [5-6], [9], [20], [23].

There are several classes of orthogonal polynomials which are in certain
sense close to the classical orthogonal polynomials, so-called semi-classical
polynomials.

In many applications of orthogonal polynomials it is very important to
know the recursion coefficients a; and by. If dA(t) is one of the classical
measures, then a; and by are known explicitly. Furthermore, there are cer-
tain non-classical cases when we know also these coefficients. For example,
we mention here the generalized (fegenbauer weight w(t) = [¢|*(1 — t2),
p,a > —1, on [—1,1] (see Lascenov [22] and Chihara [9, pp. 155-156]), the
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hyperbolic weight w(i) = 1/ coshi on (=00, +00) ([9. pp. 191-193]), and the
logistic weight w(t) = et /(1 + e~1)? on (-0, +00).

A system of orthogonal polynomials for which the recursion coefficients
are not known explicitly will be said to be strong non-classical orthogonal
polynomials. In such cases there are a few known approaches to compute
the first n coefficients ay, by, k = 0,1,... ,n — 1. Furthermore, for such a
purpose there is the package ORTHPOL developed by Gautschi [12]. These
coefficients then allow us to compute all orthogonal polynomials of degree
< n by a straightforward application of the three-term recurrence relation
(2.2).

Another type of orthogonality is orthegonality on the unit circle. The
polynomials orthogonal on the unit circle with respect to a given weight
function have been introduced and studied by Szegt [41-43] and Smirnov
[37-38]. A more general case was considered by Achieser and Krein [1],
Geronimus [16-17], P. Nevai [35-36], Alfaro and Marcellan [4], Marcelldn and
Sansigre [24], etc. These polynomials are linked with many questions in the
theory of time series, digital filters, statistics, image processing, scattering
theory, control theory and so on.

The inner product is defined by

1 2w

(F9)= 55 | S(e*)a(c)du(8),

where dpu(#) is a finite positive measure on the interval [0, 2r] whose support
is an infinite set. In that case there is a unique system of (monic) orthogonal
polynomials {¢}ien,- If @ — u(#) is an absolutely continuous function on
[0,27], then we say that u'(8) = w(#) is a weight function.

The monic orthogonal polynomials {¢} on the unit circle |z| = 1 satisfy
the recurrence relations

Pre1(2) = 2¢0(2) 4 O (0)04(2),  Phyq(2) = di(2) + drga(0)zi(2),
for k=0,1,..., where ¢}(z) = z¥ox(1/2).

As we can see these recurrence relations are not three-term relations like
(2.2). The values ¢,(0) are called reflection parameters or Szegd parameters.
Defining a sequence of parameters {ai} by ar = —dp41(0), £ = 0, 1,...,

Geronimus [18, Chapter VIII] derived the following three-term recurrence
relations:

A1 Pks1(2) = (G112 + @ )Pk(2) — Grz(1 = |ag—1|*)pr-1(2),
ak—10t41(2) = (k=12 + i )i(2) — ar2(1 = |ag=1]*)k_4(2),
where k € N and ¢p(2) = 1, ¢(2) = z — ay.
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3. Orthogonality on the semicircle
Polynomials orthogonal on the semicircle
lo={z€Clz=¢" 0<06<r)}

have been introduced by Gautschi and Milovanovi¢ [14-15]. The inner prod-
uct is given by

(f.g) = fr f(=)9(=) i) d.

where [ is the semicircle I' = {z € C| =z = ¢'*,0 < # < 7}. Alternatively,

(f~y)=[:. Fle*®)g(e*®) db.

This inner product is not Hermitian, but the corresponding (monic) orthog-
onal polynomials {mi¢$ exist uniguely and satisfy a three-term recurrence
relation of the form

rH_,[z} =(z- iak)rrk(z) - hewe_1(2), k=0,1,2,...,
m_1(2) =0, m(z)=1.

Notice that the inner product possesses the property (zf,¢) = (f, zg).

The general case of complex polynomials orthogonal with respect to a
complex weight function was considered by Gautschi, Landaun and Milo-
vanovi¢ [13]). Namely, let w:(—1,1) — Ry be a weight function which can
be extended to a function w(z) holomorphic in the half disc

Dy ={zeC||z] < 1,Imz > 0},
and

B )= [ M@ i = [ g .

Together with (3.1) consider the inner product

l _— B
(3.2) ol = [ feig@ote) s

which is positive definite and therefore generates a unique set of real (monic)
orthogonal polynomials {p}:

[Pk p] =0 for k£m and  [pe,pu] >0 for k=m (k,me Np).
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On the other hand, the inner product (3.1) is not Hermitian; the second
factor g is not conjugated and the integration is not with respect to the
measure |w(e'®)| df. The existence of correspounding orthogonal polynomials,
therefore. is not guaranteed.

We call a system of complex polynomials {7} erthogonal on the semicir-
cle if

(T, M) =0 for k#m and (mg,m,)>0 for k=m (k,m € Np).

where we assume that 7, is monic of degree k.

The existence of the orthogonal polynomials {m} can be established as-
suming only that

(3.3) Re(1,1) = R.P/ w(e'?)df £ 0.
1]

Assume that the weight function w is positive on (-1, 1), holomorphic in
D, and such that the integrals in (3.1) and {3.2} exist for smooth f and ¢
(possibly) as improper integrals. We also assume that the condition (3.3) is
satisfied.

Let (., £ > 0, denote the boundary of D, with small circular parts of
radius € and centres at +1 spared out and let P be the set of all algebraic
polynomials. Further, let I, and (', 4, be the circular parts of (', with radii
1 and &, respectively.

Then, using Cauchy’s theorem and assmming that w is such that for all
ge P
{(1.4) lim / g(zyu{z)dz = 0.
E—iﬂ (?d.* 5
we obtain

|
(3.5) 0=/ g[z)tn(z]d:-r:/g(:)m[:)ff:+/ gle)w(z)de, g€ P
L Ir -1

The (monic, real) polynomials {p;}, orthogonal with respect to the inner
product (3.2), as well as the associated polynomials of the second kind,

1 -y .
qﬂz):j M!w(:ﬂ)d:rr (k=01,2,...),

1 =
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are known to satisfy a three-term recurrence relation of the form

(36) Ye+1 = (.‘.’ — g )Yk — bkyk—] (k =0,12...),

where

(3.7) -1 =0, yo=1 for {p} and y_1=—1, yo =0 for {g:}.

Denote by my, and u, the moments associated with the inner products (3.1)
and (3.2), respectively,

pe = (25, 1), my = [«%, 1], k>0,

where, in view of (3.7), by = mq.

Gautschi, Landau and Milovanovi¢ [13] proved the following result:

Theorem 3.1. Let w be a weight function, positive on (~1, 1), holomorphic
inDy ={ze€C||z| <1, Imz > 0}, and such that (3.4) is satisficd and the
integrals in (3.5) exist (possibly) as improper integrals. Assume in addition
that

Re(1,1) = R.p/ w(e'®)df £ 0.
0

Then there exists a unigque system of (monie, complez) orthogonal polyno-
mials {x;.} relative to the inner product (3.1). Denoting by {p.} the (monic,
real ) orthogonal polynomials velative to the inner product (3.2), we have

(3.8) () = pr(2) — il pea(z)  (K=0,1,2,...),
where
#opk(0) + 1g,.(0) .

3.9 B = - k=0,1,2,...).
(3.9) 1 et (0) = qer(0) ’
Alternatively,
) ) by
(3.10) 8, = iap + (E=0,1,2,...); f_1 = po,

B

where ay., by, are the recursion coefficients in (3.6) and py = (1,1). In par-
ticular, all 8. are real (in fact, positive) if ap = 0 for all k > 0. Finally,

(3.11) (mp,mi) = Opa[prormea] #0 (R=1,2,...), (70, o) = po.
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As we can see, relation (3.8), with (3.9), gives a connection between or-
thogonal polynomials on the semicircle and the standard polynomials or-
thogonal on [—1, 1] with respect to the same weight function w. The norms
of these polynomials are in relation (3.11).

In the sequel we assume that condition (3.3) is satisfied, so that the or-
thogonal polynomials {m.} exist. Since (zf,¢) = (f.zg), it is known that
they must satisfy a three-term recurrence relation

(; 12) W‘H—l['!) = (2 =t )me(2) = Bemie—1(2), k=0,12,...,
o m-1(z) =0, mo(z)=1.

Using the representation (3.8), we can find a connection between the coef-
ficients in (3.12) and the corresponding coeflicients in the three-term recur-
rence relation (3.6) for polynomials {pi} (see [13]):

Theorem 3.2. Under the assumption (3.3), the (monic, complez) poly-
nomials {m;} orthogonal with respect to the inner product (3.1) satisfy the
recurrence relation (3.12), where the coefficients vy, 3 are given by

. Gr_
ap = B — 0.7 — 1ay, 3 = ﬂk 1

b1 = By (01 — iag_1),
k—2

Jor k> 1 and ag = 0y — iag, with the 8y, defined in Theorem 3.1.

Alternatively, the coeflicients rr;, can be expressed in the form

by bg g
.= —f,_ _— k=1, = — = —
i kor Ok - 8T e

It is interesting to consider the zero distribution of polynomials m,(2).
From (3.12) it follows that the zeros of m,(z) are the eigenvalues of the
(complex, tridiagonal) matrix

gun 1 0 1
M im 1
(3.13) J, = By i . \
. - 1
L O .Hn-l in’n—l-

where ay and jJ; are given in Theorem 3.2,

If the weight w is symmetric, i.e.,

(3.14) w(—z) = w(z), w(0) > 0,
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then pg = (1,1) = 7w(0) > 0, a), = 0, 8, > 0, for all k& > 0, and
LTH :ﬂo, “kzak_ﬂk—h {ik:ﬂi_], k:_"’ 1.

In that case J, can be transformed into a real nonsymmetric tridiagonal
matrix

i {Ep ﬂn 0 T
—9“ L1 4] 8]
f’n = _iD:IJuD'u = —91 kg o 1
’ Hu-—-!
L 0 _ﬂu—! LLITE

where D, = diag(1, iy, i*88,,°056,6,,...) € C**". The eigenvalues 1,
v=1,...,n, of A, can be calculated using the EISPACK subroutine HQR
(see [39]). Then all the zeros (,, » = 1,... .n,of (=) are given by (, = i,
r=1,....n

In [13] we proved the following result for a symmetric weight (3.14):

Theorem 3.3. Al zervs of 1, are located symmetrically with respect to the
itaginary azis and contained in Dy = {z€ C||z| < 1, Im z > 0}, with the
possible exception of a single (simplc) zero on the positive imaginary aris.

If we define the half strip $4 = {z€ C|Im=z > 0, =, € Rez < .},
where £, is the largest zero of the real polynomial p,,. then we can prove
that all zeros of m,, are also in 54 (see [13] and [15]). Thus, all zeros are
contamed in Dy NS,.

For the Gegenbauer weight w(z) = (1 — z*)*~12, A > —1/2, the excep-
tional case from Theorem 3.3 can only arise if n = | and —1/2 < A < 0.
Likewise, no exceptional cases seem to occur for Jacobi weights w(z) =
(1 =2)"(1+4 2)%, o, 3 > —1,if u > 2, as was observed by several numerical
computations (see [13]). However, in a general case, Gautschi [11] exhibited
symmetric functions w for which =,.( -: w), for arbitrary fixed n, has a zero
iy with y > 1.

Some applications of these polynomials in numerical integration and nu-
merical differentiation can be found in [K], [26-28].

4. Orthogonality on a circular arc

A generalization of polynomials orthogonal on the semicircle was given
by M.G. de Bruin [7] for the circular arc

Fr={2€C|z=-iR+e*VRI+1,p<0 <7~ p tang = R}.
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He considered the polynomials {rff} orthogonal on 'y with respect to the
complex inner product

T
(4.1) (f.g) = ] F1(8)g1(8)un (8) db.
"]

where ¢ € (0.7/2), and for f(z) the function fi(#) is defined by

fi(8) = f(—iﬂ-'l'f'w\/ R* + l)._ K = tan ¢.

Alternatively, the inner product (4.1) can be expressed in the form

(4.2) (f9)= [ f(2)g(z)w(z)iz - B dz.

s

Under suitable integrahility conditions on the weight function w, which
is positive on (—1, 1) and is holomorphic in the moon-shaped region

M+={zEC||z+iﬂ'.|{ h’.2+l,|m:'}0},

where R > 0. the polynomials {7} orthogonal on the circular are I'g with
respect Lo the complex inner product (4.1) always exist and have similar
properties like polynomials orthogonal on the semicircle.

For R = 0 the arc I'y reduces to the semicircle I', and polynomials {x '}
to {7 }. It is easy to prove that the condition

T

RRL w(z)iz— R) ' dz = Rl:'/ wy(8)df # 0

is automatically satisfied for £ > 0 in contrast 1o the case B = 0 (see
condition (3.3)).

Quite analogous results to Theorems 3.1-3.4 were proved by de Bruin [7].
For example, for polynomials {x;} (the upper index R is omitted) equalities
(3.8) and (3.11), as well as the three-terin recurrence relation (3.12) hold,
where now the 8, is given by

i b

0= —R+iag+—— (k=0,1,2,...);  6_; = pio,
L

instead of (3.10). Also, for the symmetric weight, w(z) = w(—z), all zeros of

7, are contained in My with the possible exception of just one simple zero

situated on the positive imaginary axis.
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Let {m,} be the set of polynomials orthogonal on the cirenlar are I'g, with
respect to the inner product (4.1), i.e., (4.2). Milovanovié and Rajkovié [33]
introduced the polynowmials {7} orthogonal on the symmetric down circular
arc I'y, with respect to the inner product defined by

(4.3) (fr9)" = / f(=)g (=) + R)~ dz,
T

where I'; = {z €Clz = iR+ ¢ *VRI+ 1,0 < 8 < 7 — @, tanp = R}.
Such polynomials are called dual orthogonal polynomials with respect to
polynomials {m,}.

Let M be a lentil-shaped region with the boundary dM = I'r U I, i.e.,

M={zeCllzxiR| < VR + 1},
where B > 0.

We assume that w is a weight funetion, positive on (-1, 1), holomorphic
in M, and such that the integrals in (4.2), (4.3), and (3.2) exist for s;mooth
functions f and g (possibly) as improper integrals. Under the same addi-
tional conditions on w and f, like previous, we have

1
0=/f[z)1::(.:}r£z+j flz)w{=)de,
r -1

where I’ = Ig or I'j,. Then both systems of the orthogonal polynomials
{7} and {r}} exist uniquely.

The inner products in (4.2) and (4.3) define the moment functionals
Lz =, e =(s51) = / w(z)(iz — R)™ dz
Iy

and
Lk =pg, pp=0T= f w(z)iz + R) ™ dz,
r‘—

respectively. Using the moment determinants, we can express the (monic)
polynomials 7 and 7} as

o 1 o HE
| Hi fiz HE41
Te(z) = A :
Hi=1  Jk H2k—1
1 z =k
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and
woowo o ng
| I 15 #E-H
Te(z)=—1| : s
AL . . -
ey Ky g
1 z =k
where
Mo M1 et k-t - T i1
M H2 Heg pHyoop3 M
Ak= . . .ﬁZ: .
Prk-1  Jlk Pag [ 13g—2

We can prove that 77(Z) = mi(z). as well as the relation
mi(2) = prl(z) — 05 pe—r(2)- k=0.1.2,...,

where .
(g k)

0, = — S
k=17 [pkmts Pr—]

k=1,2,.... Y= Mg-
Here, 8;_, = —Bi_q1, where 8,_y is the corresponding coefficient in the
polynomial m.

Also, the following theorem holds:

Theorem 4.1. The dual (monic) orthogonal polynomials {7} satisfy the
threc-term recurrence relation

Tep(2) = (2 —dag)wi(z) = Bmp_ (=), k=0,12,...,

m2(z) =0, mg(z) =1,

with o = —a and B = A,., where oy and B;, are the eocfficients in the
corresponding recurrence relation for the polynomials {m}.

Using dual polynomials we can give a very short proof that 8.y > 0
(k > 0) for a symmetric weight w(z) = w(—3). Namely, since (mg, Tg) =
Bk —1[Pr—1.Pr=1] it is enough to prove that (my,mg) > 0. In this symmetric
case, #,_y is real and we have #_, = —f,_; and

w(x)

ir — R

1
(Teomg) = (mp, wp) = / Gz w(z)iz = R 1dz = —/ (+(x) dx,
-1

s
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where (/(z) = pe(2)® + 83 _, pr—1(2)°. Then

Vo w(x) ! w(x)
: = G(r)———dr +1 (i x)——— dx.
(mg, i) R]_l '{I)R*+x1dr+:/_,r' (I)R3+:¢:2 dx
Since x +— (7(x) is an even positive function, the second integral on the
right-hand side vanishes and (wg,m;) > 0.

One complicated proof of the previous result was given in [7].

5. Geronimus’ version of orthogonality

In the paper [21], J. W. Jayne considered the Geronimus® concept of or-
thogonality for recursively generated polynomials. Ya. L. Geronimus proved
that a sequence of polynomials {p;}, which is orthogonal on a finite interval
on real line, is also orthogonal in the sense that there is a weight function
z v+ x(z) having one or more singularities inside a simple curve (' and such
that '

1 0, k s
(5.1) (Pher P} = Ef pi(2)palz)x(z)dz = { #m
-

Ry s k = m.

Following Geronimus [19] and Jayne [21], Milovanovi¢ and Rajkovi¢ [32]
determined such a complex weight function z — y(z), for (monic) polyno-
mials {7} orthogonal on the semicircle I, and also for the corresponding
polynomials {7 '} orthogonal on the circular arc I'x (R > 0).

Denoting by (” any positively oriented simple closed contour surrounding
some circle [z] = r > 1, we assume that

(5'2) I{Z] = Zwkz_", wy = 1.
k=1

for |z| > 1, aud express z" as a linear combination of the monic polynomials
o, m =0, 1,... ,n, which are orthogonal on the semicircle I', with respect
to the inner product (3.1). Thus,

(5.3) =) YuwTul2)

th:‘TF (5“1 rm] = Tﬂ.'lll(w'lu’“-'l'rl]! m = 01 l'! R qu“g thp inner pmdur:.t
(5.1) and the representation (5.2), we obtain

1 1 sk ;
Y= — @ 2"v(z)d: = — 2V dz = ]
(=", 1) i ﬁ x(=)e i f.gwk Z = Weg
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On the other hand, because of (5.3) and the orthogonality condition (5.1),
we find

(3“1 1) = (Z YruamnTmlz), 1) = Z Tu,m("rmw l)s

=0 =0
e, (2" 1) = y,0{mo-ma) = Yuoho. Thus, we have w1y = ¥, 0ho = Yup.
because hy = w; = 1.

Finally, using the moments g, = (=", 1), we obtain w, 4+, = p,, /o, n > 0,
and

1 — ;
(5.4) W)= —> w7 E> L
Ho k=1

where we need the convergence of this series for |z] > r > 1.

Suppose that w be a weight function, nonnegative on (-1, 1), holomorphic
in Dy =4z € Cl|z|] < 1, Im =z > 0}, integrable over 3D, and such that
(3.3) is satisfied. Then the moments y; can he expressed in the form

e /. Vow(x) )
= Wz)iz) ' dz = (0) — v.p. T
o = /rﬂ( Wiz)" ' d : (nru{D] v.p [-1 . dx

1
fi =/zkw[z)(iz)" d:::i] o lule)de, k> 1.
r

-1

and

These moments are included in the series (5.4).

Supposing that the weight function w has such mowments g, which provide
the convergence of the series (5.4), for all z outside some circle |z} = r > 1
lying interior to (7, Milovanovié¢ and Rajkovié [32] proved:

Theorem 5.1. The monic polynomials {r.}, which are orthogonal on the
semicirele I' wnth respect to the inner product (3.1), are also orthogonal in
the sense of (H.1), where

. 1 .
(1+l/ ""‘“)dx). 2| > 7> 1,
Mo J_4 z—=x

w(x)

x(z) =

by | =—

and
dr.

1
po = mw(0) + i\'.p.j
-1

In Gegenbauer case they obtained the following result:
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Corollary 5.2. Let w(z) = (1 — 2)*Y2 X > —1/2. The monic polyno-
mials {7}, which are orthogonal on the unit semicirele with respect to the
inner product (3.1), are also orthogonal in the sense of (5.1), where

(z) = 1 i A+ 1) F(l | 1 )

" T T A 1 1T
Y =g F(A+1) TR
where F is the (Jauss hypergeometric serics and T is the gamma function.

In Legendre case {A = 1/2) we have

l i
({z)= -+ —1
x(z) =+ —log

where the interval from —1 to 1 on the real axis is rousidered as a branch
cut.

The corresponding complex weight for polynomials {r*} (R > 0) orthog-
onal on the circular arc I'g was also derived in [32] in the form

1 1 (R+ix)w(e)

)= — : . iz zZi>r > 1,
X = L P
where .
R+ ix
ﬂ'ﬂ = » wi’ﬂ(l‘]flf

6. Orthogonality on the radial rays in the complex plane

In this section we start with a new type of nonstandard orthogonality on
some radial rays in the complex plane. Suppose that we have M points in
the complex plane, z, = a,e'?* € C, s = 0,1,... .M -1, with different argu-
ments @,. Some of a, (or all) can be oo, The case M = 5 is shown in Fig. 6.1.
We can define an inner product on these radial rays €; in the complex plane
which connect the origin z = 0 and the points z,, s = 0,1,... M — 1.

Namely,
A -1

(fr9)= ), r"“’"’l f(2)9(2) [w(z)] dz,

=0
where z — w(z) is a suitable function (complex weight).
Since, this product can be expressed in the form

M=1 o, _
(fg)= z A f(ze™® ) g(xeie:) [w(we')| da,

=0
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we see that
M=1 .,
10=3 [ 1) ufecn) i >,
s=0 Y0

except when f(z) = 0.

Fig. 6.1

We will consider here only the case when M is an even number and
ws=ms/m,s=0,1,...,2m—1. Thus, let m € N aund £¢, £1, ..., £294-1 be
(2m)th roots of unity, i.e., £, = exp(irs/m), s = 0.1,...,2m — 1. We will
study orthogonal polynomials relative to the inner product

2m—1 .
(6.1) (G= 3 &' [ s ds.

s={) e
Suppose that a, = 1 for each s and let z — w(z) be a holomorphic function
such that

|w(ze,)| = w(z), s=0,1,....2m—1,

and ¥ — w(x) be a weight function on (0,1) (nonnegative on (0,1) and
fﬂl w(xz)dx > 0). Then, (6.1) can be written in the form

1 s2m=—1
(6.2) (r9)= | (Z f(ms,)y(we,l)-wtmm.

a=0
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In the case m = 1, (6.2) becomes

l e e .
(fo) = f_ Sl ut) ds.

so we have the standard case of polynomials orthogonal on (=1,1) with
respect to the weight fanction = — w(x).

The inner product {6.2) has the following property:
Lemma 6.1. (z™f.g) = (f,z™g).
Proof. Since &' = 7™ = (=1)* we have

2r=—=1

(=™ f.9) = f (Zj e f(ze,)g(we ,})urmdr

2=l
2m—=1

1
-[) (z flaeeg)emetmg(xe })u{.r} &

=0

=(f,z"g). O

The moments are given by

2m—1

63 ma= = (2

a=0

1
Ei“")/ wFHw(x)dr, p,g>0.
L]

Hp=2mn+v, n=[pf/(2m)], and 0 < v < 2m — 1, it is easy to verify

that
Emz—l ) 2m—1 , Ine ifer=20,
Ey = E £, =
2 &5 s 0 ifl<p<2m-1.
s=0 =0

Thus, g, in (6.3) is different from zero only if p = ¢ (mod 2m); otherwise
Mg = 0. Using the moment determinants

Hoo ot HN-10
fon Hn BN=11
Ap=1, An=1] . , > 1,
BoN-1 A N-1 0 HN-1.N-1

we can prove the following existence result for the {itonic) orthogonal poly-
nomials {wN(z)}?,}g’o with respect to the inner product (6.2) (see Milovanovié

[30]):
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Theorem 8.2. If Ay > 0 for all N > | the monic polynomials {mn( z)}}':’m
orthogonal with respect to the inner product (6.2), exist uniguely.

It is well known that an orthogonal sequence of polynomials satisfies a
three-term recurrence relation if the inner product has the property (2 f,g) =
(fyzg). In our case the corresponding property is given by (z™f,g) =
(f,z™g) (see Lemma 6.1) and the following result holds:

Theorem 6.3. Let the inner product (-,-) be given by (6.2) and let the
corresponding system of monic orthogonal polynomials {ﬂw{z‘]}?{,:u ezist.
They satisfy the recurrence relation

(6-4) 7rN+m(:) =z"rN(z) = bnTN_wm(z), N Zm,
wn(z)=2", N=0.1,....2m— 1,

- (Tny 2" TN—m) _ ||1"'1'\l'l|2

6.5 by = = = .
( ) (ﬂ-N—nnu ﬂ-N—nm) IIWN-m“l

In a simple case when m = 2 and w(x) = 1, i.e.. when the inner product
(-,-) is given by

1 e — — e s —
6:6) ()= [ [A@50 + Hix)alEE) + [0l + S~ il .

we can calculate directly the coeflicient by in the recurrence relation (6.4).
The moments are given by
4

fpg = (2P,27)=¢ pHg+ 1’
0, otherwise.

p = q(mod4),

Thus,if p=4i+ v and ¢ =45+ v, v € {0,1.2,3}, we have

4
i+ HN+2v+1"7

Paid v dider = 11} :: 0.

Our purpose is to evaluate the moment determinants

foo 10 e EN-10

fo1 Hi1 Hn-1,1
An = i

foNn-1 MIN—-1 """ HNIN-]
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In order to make it, for every &k € N, we define the determinants

oo 0 g4 O
0 w2 0 pg2

. |#oa 0 paq O

Ce=10 pw 0 pas ’

Hagp—22k-2

g1 0 sy O

0 paz 0 jpm
s 0 pss O
De=10 sz 0 pn; ’

Feag—12k-1

which can be expressed in terms of the determinants E([}") =1 and

o [ LY TN e Hafn—1)4ve
Mo 44 g v 440 e .ull[u—l]-{-u.l-{-u

EY =
Bodn-—1)+r Hited(n-1+r °°° Ha(n-1)+ra(n—1)+v

where v = 0,1,2,3.

Interpreting these determinaunts in terms of Hilbert-type determinants and
using Cauchy’s formula (see Muir [34, p. 345]) '

n ﬁ (ﬂi_ﬂj]“’!‘_bj)
] _ i>i=

fi=1 IT (a:i +b;)

1,3=1

[+
ﬂ.“ + bi

with a; = 4¢ and b; = 47 + 2 — 7, we abtain (see [30])

(0! (n = 1))
n—=1n-=1

T I1(4i+45+20+1)
i=0 j=0

E‘('lu) = 41;2

, n=1,

Also, we can prove that

2 & 1] . 0 2
Ci = Ei‘}’zﬂif,’z, keven) > 2, Ci = B3y 1y 0B pyns Klodd) > 1,
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as well as

Dy = EM gR) kleven) > 2; Dy = g E®

k2 Sk et n)/2 Egk=ryjar K(odd) > 1.

Using the same technignes we find that
Agp = CpDy and  Agpyy = Cigy Dy

Combining these equalities we obtain:
Lemma 6.4. We have
Ay = EQEMER E®
Apnsr = ELLEDEPED)
Agugr = ES:!I Et(a.l-:l EXED®,
Agpga = Eﬂ] Ewl EL.-::I E®.
We note, first of all, that Ay > 0 for all N > 1, and therefore, the

orthogonal polynomials {mx(2)} %>, with respect to the inner product (6.6)
exist uniquely, and

» Ani
(mn,7n) = [lenl)? = "E'L > 0.
N

Theorem 8.5. The (monie) polynomials {wpn(z) I,":u, orthogonal with re-
speet to the inner product (6.6), satisfy the recurrence relation
(6.7) wn+2(2) = 22an(z) — byanoa(z), N 22,

wn(z) =2, N=0,1,2,3,

where

1602
(B + 21 — 3)(Bn+2v + 1)
(4n + 20 — 3)?
(B + 20 — 3)(Bn+ 2r + 1)

if #v=0,1,
(ﬁ.ﬂ) blu+u =

if »v=23.

Proof. Because of (6.5), the coefficients by can be expressed in the form

lenl?  Angr An—z
by = = .
[l —2||? Ay  Ano’

N >2.
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In order to find these quotients we need a quotient of the determinants EX.

According to the previous equalities we get
_ 2
Puir 4 (JpAk=nt )
EW  Bn420 4] oo Ak 420 4] ' =

and ELVJEN = af(20 + 1)
Then, for » = 0, 1 we find

v @)
A‘tu+:«+l /-"'ldu+v _ Efl.q.)l ./E(

Agin=tytv+3] Dg(n-1)4u+2 _,fl"H);'Ef*"_";ﬂ '

b4rt+y =

i.e., o,
l6n-

(8n 42 —3)(Bu+ 20+ 1)

Similarly, for ¥ = 2,3, we have

b-lu+v -

. v}
b _ Adngosr [ Dangs L+1/Et
LHE Y ﬁ"“_!_y_1 /ﬁ411+u—2 ,(:,;__l ')/E[It 23!
i.e.,
(4n + 20 — 3)?
b-iﬂ+u - O

(Bn + 20— 3)(8n+ 20 4+ 1)

From (6.R) we conclude that
1
by — 1 as N — +m,

just like in Szegd’s theory for orthogonal polynomials on the interval (—1,1).

Since . |
el = { el L
N =

bnbn -z -+ -bs||m]]®, N odd,
and [lmoll® = Aq1/Ap = poo = 4 (Ao = 1),

lmil)* = Aa/Ar = pooptns /1oo = pnr = 4/3,

we can define by = 4, by = 4/3, so that (6.7) holds for every N > 0, where

Toa(z)=74(2) =0, m(2) =1, m(z) =z
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Finally, we can determine the norms of the polynomials {wx(z)}. Let
N=4dn+v, n=[N/4], 0<r <3 Since

(1)
. A A E
lanll? = =4 = bt o _ndl

AN B Agngr - E!,y) '
we have
lxnll* = 4 . 0N <3,
2N + 1 - =
=1

Hhk—n+1)
2 _ > 4.
Il Imansoll* = Snt 20+ 1 ( H A + 20 + 1 ) » N 24

7. A representation of w(z) and zeros

In this section we again consider the general rase of the inner product
(6.2) for which the corresponding system of the monic orthogonal polyno-
mials {7mn(z)}}, exists and satisfies the recurrence relation (6.4). Based
on this recurrence relation, we can conclude and easily prove that wy(z) are
incomplete polynomials with the following representation (see Milovanovic

[30]):

Theorem 7.1. The polynomials from Theorvem 6.3 can be expressed in the
form

(7.1)  Tammgnl2) = 2%¢0N(2*™), v=0,1,....2m—-1; n=0,1,...,

where q“ )(i), v=0,1,...,2m—1, arc monic ;mfynmumlx of ezact degree n,
which satisfy the three-term recurrence relation

¢ (t) = (1 — dNgl(2) = b (1), m=0,1,...,

7.2
(72 @'t =1 ¢Jt)y=0.

The recursion coefficients a,i," Y and bgf’} are given in terms of the b-coefficients

as
a, ”} =by+ bngm- bL") =byn_mbyn, N =2mn+ v

The threp—term recurrence relation (7.2) shows that the monic polynomial

systems {4’ (t)}n-m v =0,2,...,2m — 1, are orthogonal. The following
theorem gives this orthogonality:
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Theorem 7.2. Let r — w(x) be a weight function in the inner product

(6.2) which guarantees the existence of the polynomials mn(z), 1.€., q,(‘y}[ t),
rv=0,1,..., 2m— 1, determined by (7.1). For any v € {0,1,...,2m — 1},

the sequence of polynomials { qf;"’(t}}i’fé ix orthogonal on (0, 1) with respect

to the weight funetion t — w,(t) = {3y =2m}2m gy q1/2m)

As we can see the question of the existence of the polynomials 7 (z) is

reduced to the existence of polynowmials q}f‘(t}, orthogonal on (0, 1) with
respect to the weight function w,(t), for every v = 0, 1,... ,2m - 1.
The next result gives the zero distribution of the polynomials mn(z) (see

(30]):

Theorem 7.3. Let N =2mn+wv, n=[Nf2m], » € {0,1,...,2m—1}. All
zeros of the polynomial wx(2) are simple and located symmetrically on the
radial rays l,, s = 0,1,... ,2m — 1, with the possible czception of a multiple
zero of order v at the origin z = 0.

At the end we mention that an analogne of the Jacobi polynomials and
the corresponding problem with the generalized Laguerre polynomials were
treated in [30].
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