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Abstract — Zusammenfassung

On the Convergence Order of a Modified Method for Simultaneous Finding Polynomial Zeros. Using
Newton’s corrections and Gauss-Seidel approach, a modification of single-step method [1] for the
simultaneous finding all zeros of an n-th degree polynomial is formulated in this paper. It is shown that R-
order of convergence-of the presented method is at least 2 (14 1,), where 7, (1, 2) is the unique positive
zero of the polynomial J, (z)=1" — — 1. Fuster convergence of the modified method in reference to the
similar methods is attained without additional calculations. Comparison is performed in the example of
an algebraic equation.

Uber die Konvergenz Ordnung der modifizierten Methode zur gleichzeitigen Ermittlung der Polynom-
wurzeln. In dieser Arbeit wird eine Modifikation einer Einschritt-Methode [1] zur gleichzeitigen
Ermittlung aller Nullstellen eines Polynoms a-ter Ordnung unter Verwendung des Gauss-Seidel-
Vorgehens und Newtonscher Korrekturen vorgestellt. Es wird gezeigt, daB die R-Ordnung der
vorgestellten Methode mindestens 2 (14 1,) betrdgt, wobei 7,(1, 2) die eindeutige positive Wurzel des
Polynoms f, (t)=1"—1— 1 darstellt. Es wird eine schnellere Konvergenz der modifizierten Methode im
Vergleich zu #hnlichen Methoden erreicht, und zwar ohne zusétzlichen Rechenaufwand. Ein
Vergleichsbeispiel mit einer algebraischen Gleichung wird prisentiert.

AMS Subject Classification: 65HOS.

Key words: Determination of polynomial zeros, simultaneous iterative methods, accelerated con-
vergence, R-order of convergence.

1. Introduction

Consider a polynomial P of degree n>1
P(z)=z2"+a,., 2" '+ . . +a,z+a,=[] (z—r) (a€C),
j=1
with simple real or complex zeros 7, ..., r,. Let z¢, ..., z, be distinct approximations
for these zeros.
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Using the logarithmic derivative of P(z) in the point z=z,, we get

P'(z 1

)y -

P(z) [ zi—r; z,-~ri iz1 Lk
. JjFi
ie.
! (i=1 ) (1.1
V.,=—=2zZ.— 1=1,...,1).
Y P(zy) - 1
P(z) /=1 zi—¥;
JjFi

Putting ;= Z;in (1.1), where Z; is new approximation for the zero r;, and taking some
approximations for »; (j#1) on the right-hand side of the above identity, some
iterative processes for the simultaneous finding zeros of the polynomial P follow

from (1.1):

For r;:=z; (j#1i) we obtain the well-known total-step method

. 1
Zl,:Z.—

Pz " 1
P(z) B

(i=1,....n), (12)

j=1 ZiT%j

JFi
which has been the subject of many papers ([31,[4], [5], [6], [7]). The convergence
order of this method is three.

Let r;:=2; (j<i) and r;:=z; (j>1), then single-step method follows from (1.1)

R 1 :
Zi=z,— P 121 i I (i=1,...,n) (1.3)
P(z) D zi—% ;557

(see [1], [5]). Alefeld and Herzberger have proved in [1] that the R-order of
convergence of this method is at least 2+ 4, (> 3), where ¢, > 1 is the unique positive
zero of the polynomial p,(0)=0¢"—0o—2.

Taking
V}ZZZJ'*”AZJ:ZJ_I;,((ZZJ‘)) (#9
}
in (1.1) we obtain
f,=1z;— ) 2 ! I (i=1,...,n), (1.9
P(z) —j:I z—2;—Az;

j#i
which is considered in {8]. It is shown in this paper that the iterative process (1.4) has
the convergence order equal to four.

Finally, for

rpi=2, (j<i) and rp=z;+dAz;=z,—
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we have

Z=1z,— .
= P’(zi)_‘i R 1
P(Zi) j=1 Zi—ij j=it+1 Zl_Z‘}_—AZJ

The last iterative formula will be considered in this paper. Note that (1.5) is
combination of the formulas (1.3) and (1.4).

Assume that 2%, ..., z© are distinct and sufficiently good approximations for the
€108 1y, ...,7,. Taking z;=2™, 2,=5""Y and

Az= A7 = ~P(A™)P (4")

{Newton’s correction), starting from (1.5) we obtain the following iterative process
for the simultaneous determination of polynomial complex zeros:

Smt1) _ Sm ‘ 1
Y C IS ; i
P(™) oAM=t n Awm = — A
. 1.6)
(i=1,...,n). (

In the next section, we shall prove that the method (1.6) converges with the R-order
of convergence higher than 4 for sufficiently good starting values z{, ..., z.

2. Convergence Analysis

Ortega and Rheinboldt have introduced in [9] the following definition of the
convergence order:

Definition: Let IP be an iterative process with the limit point . Then the quantity
+ o0 if R,(IP,r)=0 for all pe[1, + o0),
inf {pe[1, +0)|R,(IP,r)=1} otherwise
is called the R-order of IP at r.
R, (IP,r) is called the R-factor of IP at r and is defined by
R, (IP,r)=sup {R,{z"}[{z"} e C(IP,r)} (1=p<+0),

0x(IP,r)= {

where
lim sup || g™ —r||*/™

m=+ oo

ifp=1,
B2 i sup 107 it 1,

and C(IP,r) is the set of all sequences produced by /P and converging to .

We shall use this definition for analysis of the convergence order of the iterative
method (1.6).
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Let m=0,1,... be the index of iteration and let

d=min |r,—r;], WW=z"—r,

)
i#j g

wi™=z" 4 Az (Newton approximation),

nogm

( ¥,
F0m) : -
g"=%
' j=1 ng)_rj
Ji
gy G0 g G )
LS @y =AYy S E ) -

It is easy to show that Newton’s method can be written in the form

A(m) 4(m)
g; g;
(m) _ J (m) _ I (m)
Wi — ;= I+g™ (" —r)= [+g™ oy 2.1

Similarly, for the iterative process (1.6) we have
(m)

m gl m n X
2 +1)=ri+1+ gim (Z™—r) (i=1,..,n,m=0,1,..),
wherefrom
()
DEm—%l) ,_g'__ v(m) (z:l,,n, }’}’220,1,~u)~ (2'2)
L+g™

Suppose that the initial conditions
1 d
[P <—=o— (i=1,...,n) (2.3)
q 2n—1

are satisfied. Then, for i#j, we have

|20 —r |21 =120 — | >d ———,

2n—1
(20— 20220 —r| = 2P =1, > {d— 4 \._4 ,
2n—1 2n—1
wherefrom
2(n—1 2n—3_ 1
|20 —r;|> (1) and |z§°)—z§°)\>—n——g—v (2.4
q

We shall now determine the estimate for | ¥’ |. On the basis of (2.3) and (2.4) we have

1 1
19110 2 T<ilv§°>l<7 (2.5)
#: , _]l 2
] i
Then, from (2.1), for m=0 it follows
149 t
|rj— Wi £ —L 5 [ [<q| v} P <—. (2.6)
=g q
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Since, for i#j

2n-3 _ 1
|Z§°’—W§°)lzlZ§°)—Vj|—|rj_W§°’|> %;
according to the previous estimates we find
= ¢
L |02, 2.7

|20 =7, |20 =w®| "2(n—1)
Estimate the values |t{"| and |g{”’|. In regard to (2.2) we obtain

191
B (1)|_1__|_§)T|; O (i=1,...,n). (2.8)

Since
- (2(10) —7y) (”j_ W§0))

g0 =]y
j=2 (2(10)-”;)(2(10)_%0)) ’

applying (2.3) and (2.7) we find
: | v(lO) | <—1_5
2( ) ¢ 2

wherefrom, according to (2.8), it follows

0) |

lg1

1
[P <o | <—.
q
Using the above consideration and the inequality
1
| 20— 2] 20— r = >

we successively obtain for i=2, ..., n the following estimates:

2 3 n 1
(0) < (0) (1) 0) |2 <—
190 <] of 1(2( _1)z| AT _1) L |> -

j=i+1
q2 1
1< (S 1o 3 7)<
- j=1 j=i+1
Applying mathematical induction we prove that the inequality
q2 1
e <L fofm <Z o g Y |u"">12> (29)
j=i+1 q

hold for every m=0,1,....

Theorem: Under the conditions (2.3), the iterative process (1.6) is convergent with the
R-order

OR ((16)9;’)22(1 +Tn)7
where t,€(1,2) is the unique positive root of the equation
f=t"—1-1

and r=[ryr,...r,]7 is the limit point.
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Proof: Substituting q|vi™ |=Hh" in (2.9), we get

1 i—=1 n
o< Loomr (S0 S o). 210
n— j=1

j=itl
where i=1,...,n and m=0,1,.... On the basis of (2.3), i’ <1 holds for each
i=1,...,n. If we put h=maxh®, then

1<ign
HKO<h<l (i=1,....,n).

According to (2.10) we conclude that the iterative process is convergent. Further, we

can write 1y
HOZHT (=1, m=0,1, ).

Defining the matrix B by B=2 A, where

(11
I
A= | 0 ,
11
11 0.0 1]

the vectors a™ =[u{™ ... ™7 can successively be calculated b
1 n y y

u" U =Bu™ (m=0,1,...).
with #® =[1...1]7. The proof is by induction and will be omitted. The matrix 4 is
the same as the corresponding matrix in [2, Ch. 8] and consequently, following the
proof given in [2] (see, also [1]), we conclude that

0x((1.6),r)Zp(B)=2p(4), 211
where p(A4) and p(B) are the spectral radii of 4 and B.
The characteristic polynomial f, of the matrix A is

fD)=0—1)"—(A-1)—1.
Putting t=4A—1, we obtain

fo=f,1+1)=1"—71~1.

Since f,(1)=—1<0 and f,(2)=2"—3>0, there is a zero 1,e(l,2). Besides, by
Descartes’ rule of signs, there can be no other positive zero of 7, (). Hence, we
conclude that p (4) =1+ 1,. According to this, from (2.11) we find a lower bound for
the R-order of the iterative method (1.6)

0x((1.6),r)22(1+7,). W

The lower bound for Og((1.6),r) given by p(B)=2(1+r7,), is tabulated for
n=2(1)10.

Table 1

n P 3 4 5 6 7 g | o 101

p(B) 5.236 4.649 \ 4.441 4.335 4.269 4.226 4.194 L4'170 4.152 ‘
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3. Numerical Results

In order to test the modified method (1.6), the routine on FORTRAN 1V was written
for PDP 11/40 system in double precision arithmetic. First, before calculating new
approximations, the values

A= PP EY)  (=1,.m),

which appear in front of the sums in (1.6), were calculated. The same values were
used as the correction terms in the second sum too. Thus, the iterative process (1.6)
does not require the additional calculation of the values of P and P’ in reference to
the methods (1.2), (1.3) and (1.4). Comparing with Nourein’s modification (1.4), the
method (1.6): (i) requires less numerical operations and (ii) occupies less storage
space at digital computer because of the use of the previous calculated approxi-
mations in the same iteration.

According to the previous remarks and the fact that the convergence order is higher
than 4, we conclude that the modified method (1.6) has the advantage in reference to
the methods (1.2), (1.3) and (1.4), obtained from (1.1). This conclusion is illustrated
numerically in the example of the algebraic equation

77 4+22—102*—-22—2z+10=0

which the exact zeros are r; =2, 7, 3= +1,ry s= £1i,7s ;= —1+2i. As the initial
approximations the following complex numbers were taken:

A0=22 29 =12+0.1i, £0=—08-0.1i, 20 =0.1+12i,
0= —0.1-08i, 20=—11422i, 20=—1.1—-18i.

These starting values were chosen under weaker conditions than (2.3) ((2.3) requires
|29 —r,| <q=1/13=0.077, in the example we have | 2” —r;| <0.224 ~2.9 q). Many
examples of the algebraic equations show that the initial distances | z —r;| can be
chosen to be considerably greater than g, defined by (2.3). The condition (2.3) is
required to be strong because the convergence analysis is done using crude estimates
and weak inequalities.

The numerical results, obtained after the first and the second iteration applying the
method (1.6), are shown in Table 2.

Table 2
m=1 m=2

Z4m 1.99936 —4.46 x 10~ %i 2.0000000000003951 +3.03 x 10713

z5m 1.001124+2.02 %1073 0.9999999999401543 — 6.69 x 1011

Z4m —1.00054+7.35 x 107§ —1.0000000000141856 +4.12 x 10™13

zZm —2.06x10734+1.002261i 1.43 x 1071 4.0.9999999999529638 i

2 3.26 x 1073 —1.00179 i 2.94 x 10713 —1,0000000000003203 i

2 —1.00010+1.99957 — 1.0000000000000003 + 1.9999999999999997 i
2m —0.99990 — 2.00005 i — 1.0000000000000000 — 2.0000000000000000 i




178 G. V. Milovanovi¢ and M. S. Petkovi¢: On the Convergence Order of a Modified Method

Let 7™ =[z™ ... 277 be the vector of approximations to the zeros in m-th iteration.
Take Euklid’s norm

n 1/2
e(m):= H z(m)__r”E:<Z !Z?")—I’ilz>

i=1
as a measure of closeness of approximations with regard to the exact zeros. In order
to compare the method (1.6) with the methods (1.2), (1.3) and (1.4), the above
equation was solved with the same initial values applying the mentioned methods.
The corresponding values ™ for every process are given in Table 3.

Table 3
m 1.2) (1.3) (14) (1.6)
1 2.80x 1072 1.78 x 102 9.96x 1073 549 %1073
2 4.01x1079 847x1077 219%107° 1.03x 1071

From the above table, faster convergence of the method (1.6) is evident.
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