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Abstract: The goal of this paper is to find spherical shells that contain all of the zeros of a unilateral
polynomial with quaternionic coefficients. These bounds are derived using Geršgorin-type results for the
norms of the eigenvalues of a quaternionic matrix and matrix similarity. In addition to yielding some
interesting implications, our results also bring certain classical results of Diaz-Barrero, Egozcue, Bidkham,
and others into the quaternionic setting.
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1 Introduction and preliminaries
In geometric function theory, locating the zeros of a polynomial in the plane using various techniques and
approaches is classical and of great importance. This kind of research has previously been carried out by
several mathematicians, who have produced bounds for the moduli of the zeros of polynomials for a number
of classical problems. Gauss and Cauchy were among the first to work on this subject. Since then, the area
has progressed further due to the many articles published with the aim of finding new bounds for the zeros
of a polynomial; see, for instance, ([1], [3]). First, we give the following classical result, which is of practical
importance and gives an upper bound on the moduli of the zeros of a complex coefficient polynomial. It is
due to Cauchy (see [4, p. 122]).

Theorem 1. Let A(z) =
∑n

ν=0 aνzν be a polynomial of degree n with complex coefficients. Then all the
zeros of A(z) lie in |z| ≤ r, where r is the unique positive root of the equation

|an|zn − |an−1|zn−1 − |an−2|zn−2 − · · · − |a1|z − |a0| = 0.

We suggest the reader to consult the comprehensive books of Marden [4] and Milovanović et al. [5] for a
thorough analysis of explicit upper bounds for the zeros of a polynomial, which peaked in the early twentieth
century. The elegant conclusion cited above has led to several comparable investigations, for example, see
[6], that have since been published in the literature and provide insight into the zero bounds of a complex
coefficient polynomial in the plane. In [7], Diaz-Barrero improved the above result by establishing an
annulus containing all the zeros of a polynomial, when the inner and outer radii are expressed in terms of
binomial coefficients and Fibonacci numbers.

Theorem 2. Let A(z) =
∑n

ν=0 aνzν (aν ̸= 0, 1 ≤ ν ≤ n) be a non-constant complex polynomial. Then all
its zeros lie in the annulus C = {z ∈ C : r1 ≤ |z| ≤ r2}, where

r1 = 3
2

min
1≤ν≤n

{
2nFν

(
n
ν

)
F4n

∣∣∣∣ a0
aν

∣∣∣∣ }1/ν
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and

r2 = 2
3

max
1≤ν≤n

{
F4n

2nFν

(
n
ν

) ∣∣∣∣an−ν

an

∣∣∣∣ }1/ν

.

Here Fn is the nth Fibonacci number, namely, F0 = 0, F1 = 1 and for n ≥ 2, Fn = Fn−1 + Fn−2.
Furthermore,

(
n
ν

)
= n!

ν!(n−ν)! are the binomial coefficients.

Further, Diaz-Barrero and Egozcue in [8] used Pell numbers Pn = 2Pn−1 + Pn−2 for n ≥ 2, where P0 = 0
and P1 = 1, and determined an annulus in the complex plane containing all the zeros of a polynomial with
complex coefficients in the form of following result.

Theorem 3. Let A(z) =
∑n

ν=0 aνzν (aν ̸= 0, 1 ≤ ν ≤ n) be a polynomial with nonzero complex coefficients.
Then all its zeros lie in the ring shaped region C = {z ∈ C : r1 ≤ |z| ≤ r2}, where

r1 = 5
2

min
1≤ν≤n

{
2nPν

(
n
ν

)
P3n

∣∣∣∣ a0
aν

∣∣∣∣ }1/ν

and

r2 = 2
5

max
1≤ν≤n

{
P3n

2nPν

(
n
ν

) ∣∣∣∣an−ν

an

∣∣∣∣ }1/ν

.

Remark 1. For different classes of special numbers and polynomials, including orthogonal polynomials,
Humbert’s polynomials, Horadam polynomials and their generalizations see Ðorđević and Milovanović [9],
as well as a recent paper by Ben Romdhane and Abdelkader [10].

The bounds presented by the last two theorems above are a small selection from an extensive literature
that had its peak in the early part of the twenty-first century. The section on polynomial zeros in [5] can be
helpful for interested readers. However, we believe that sophisticated bounds, which may require the use of
computational devices, are not particularly interesting because efficient zero-computation algorithms exist.
While we have extremely useful and effective bounds for the zeros of a polynomial with complex coefficients,
our main goal is to demonstrate how these elegant results can be extended to derive zero inclusion regions
of polynomials with quaternionic variables and quaternionic coefficients. Such conclusions have applications
not just in algebra, analysis, geometry, and other subjects, but also in modern mathematical topics such
as computer graphics, control theory, signal processing, physics, and fluid dynamics.

We denote by H, the noncommutative division ring of quaternions. It consists of elements of the form
q = x0 + x1i + x2j + x3k; x0, x1, x2, x3 ∈ R, where the imaginary units i, j, k satisfy

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Every element q = x0 + x1i + x2j + x3k ∈ H is composed by the real part Re(q) = x0 and the imaginary
part Im(q) = x1i+x2j +x3k. The conjugate of q is denoted by q and is defined as q = x0 −x1i−x2j −x3k

and the norm of q is |q| =
√

qq =
√

x2
0 + x2

1 + x2
2 + x2

3. The inverse of each non zero element q of H is given
by q−1 = |q|−2q. For r > 0, we define the ball B(0, r) = {q ∈ H : |q| < r}.

The functions we consider in this paper are polynomials of the form

T (q) =
n∑

ν=0
qνaν , aν ∈ H, ν = 0, 1, 2, . . . , n, (1)

with quaternionic coefficients on the right and indeterminate on the left. Inspired by a work of Cullen [11],
Gentili and Struppa introduced the definition of regularity for these functions of quaternionic variables in
[12]. We refer the reader to [13–20] and the reference therein, for definitions and properties of quaternions
and many aspects of the theory of quaternionic regular functions. In recent times, there has been a lot
of activity in the study of regular functions, specifically polynomials of a quaternionic variable, with a
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focus on their zero bounds. As remarked above, this study finds many applications not just in geometric
function theory but also in operator theory, quantum physics, and functional calculus. Polynomials with
quaternionic coefficients located on only one side of the variable were also investigated by Janovská and
Opfer in [21, 22]. It is noted that the zeros of a polynomial of type (1) are either spherical or isolated (e.g.,
see [14, 21]). The bounds for the zeros of a polynomial with restricted coefficients have been the subject of
multiple recent publications in the literature (see, for instance, [23–32]).

In this study, bounds for the moduli of all zeros of a unilateral polynomial of type (1), without any
restriction on its coefficients, are derived with the purpose of extending some classical results.

2 Main results
Our primary findings are presented in this section. Their proofs are presented in the next section. We first
construct a spherical shell containing all zeros of a unilateral polynomial of type (1) using t-Fibonacci
numbers Ft,n = tFt,n−1 + Ft,n−2, n ≥ 2, with initial conditions Ft,0 = 0, Ft,1 = 1 and t is any positive
real number.

Theorem 4. Let T (q) =
∑n

ν=0 qνaν (aν ̸= 0, 1 ≤ ν ≤ n) be a non-constant quaternionic polynomial of
degree n. Then all the zeros of T (q) lie in the spherical shell D = {q ∈ H : r1 ≤ |q| ≤ r2}, where

r1 = min
1≤ν≤n

{
(t2 + 1)νtn−νFt,ν

(
n
ν

)
Ft,3n

∣∣∣∣ a0
aν

∣∣∣∣
}1/ν

and

r2 = max
1≤ν≤n

{
Ft,3n

(t2 + 1)νtn−νFt,ν

(
n
ν

) ∣∣∣∣an−ν

an

∣∣∣∣
}1/ν

.

Observe that the t-Fibonacci number Ft,n reduces to the Pell number Pn for t = 2. We obtain the following
quaternionic analogue of Theorem 3 by taking t = 2 in Theorem 4.

Corollary 1. Let T (q) =
∑n

ν=0 qνaν (aν ̸= 0, 1 ≤ ν ≤ n) be a non-constant quaternionic polynomial of
degree n. Then all the zeros of T (q) lie in the spherical shell D = {q ∈ H : r1 ≤ |q| ≤ r2}, where

r1 = 5
2

min
1≤ν≤n

{
2nPν

(
n
ν

)
P3n

∣∣∣∣ a0
aν

∣∣∣∣ }1/ν

and

r2 = 2
5

max
1≤ν≤n

{
P3n

2nPν

(
n
ν

) ∣∣∣∣an−ν

an

∣∣∣∣ }1/ν

.

Next, we obtain the following result: a spherical shell containing all the zeros of a unilateral polynomial
with quaternionic coefficients. A special case of this result gives the quaternionic analogue of Theorem 2.

Theorem 5. Let T (q) =
∑n

ν=0 qνaν (aν ̸= 0, 1 ≤ ν ≤ n) be a non-constant quaternionic polynomial of
degree n. Then all the zeros of T (q) lie in the spherical shell D =

{
q ∈ H : r1 ≤ |q| ≤ r2

}
, where

r1 = min
1≤ν≤n

{
(t2 + 1)n−ν(t3 + 2t)νFt,ν

(
n
ν

)
Ft,4n

∣∣∣∣ a0
aν

∣∣∣∣
}1/ν

and

r2 = max
1≤ν≤n

{
Ft,4n

(t2 + 1)n−ν(t3 + 2t)νFt,ν

(
n
ν

) ∣∣∣∣an−ν

an

∣∣∣∣
}1/ν

.
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We now discuss some consequences of Theorem 5.
For t = 1 in Theorem 5, we get the following quaternionic analogue of Theorem 2.

Corollary 2. Let T (q) =
∑n

ν=0 qνaν (aν ̸= 0, 1 ≤ ν ≤ n) be a non-constant quaternionic polynomial of
degree n. Then all the zeros of T (q) lie in the spherical shell D = {q ∈ H : r1 ≤ |q| ≤ r2}, where

r1 = 3
2

min
1≤ν≤n

{
2nFν

(
n
ν

)
F4n

∣∣∣∣ a0
aν

∣∣∣∣ }1/ν

and

r2 = 2
3

max
1≤ν≤n

{
F4n

2nFν

(
n
ν

) ∣∣∣∣an−ν

an

∣∣∣∣ }1/ν

.

Remark 2. Recall that for any t > 0, the t-Fibonacci sequence {Ft,n}n∈N is defined by

Ft,n+1 = tFt,n + Ft,n−1 for n ≥ 1, (2)

with initial conditions Ft,0 = 0 and Ft,1 = 1. Furthermore, for t = 2, we get Ft,n = Pn, where {Pn} is the
Pell sequence of polynomials defined by

Pn+1 = 2Pn + Pn−1 for n ≥ 1,

with initial conditions P0 = 0 and P1 = 1.
One obtains easily from Binet’s formula (see [33]), the following relation:

Ft,n = rn
1 − rn

2
r1 − r2

, (3)

where r1 and r2 are the roots of the characteristic equation

r2 = tr + 1,

associated with the recurrence relation (2). For t = 2, we get r1 = 1 +
√

2 and r2 = 1 −
√

2, which on using
in (3), gives

P4n = (r2n
1 + r2n

2 )(r1 + r2)

= (r2n
1 + r2n

2 )P2n

=
[
(1 +

√
2)2n + (1 −

√
2)2n

]
P2n.

Hence, for t = 2 in Theorem 5, we get the following quaternionic analogue of a result due to Bidkham and
Shashahani [34].

Corollary 3. Let T (q) =
∑n

ν=0 qνaν (aν ̸= 0, 1 ≤ ν ≤ n) be a non-constant quaternionic polynomial of
degree n. Then all the zeros of T (q) lie in the spherical shell D = {q ∈ H : r1 ≤ |q| ≤ r2}, where

r1 = 12
5

min
1≤ν≤n

{
5nPν

(
n
ν

)[
(1 +

√
2)2n + (1 −

√
2)2n

]
P2n

∣∣∣∣ a0
aν

∣∣∣∣ }1/ν

and

r2 = 5
12

max
1≤ν≤n

{[
(1 +

√
2)2n + (1 −

√
2)2n

]
P2n

5nPν

(
n
ν

) ∣∣∣∣an−ν

an

∣∣∣∣ }1/ν

.
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3 Auxiliary results
We need the following lemmas to prove our main results. The following Geršgorin-type result for the
distribution of eigenvalues of a quaternionic matrix is due to Zhang [35, Theorem 2].

Lemma 1. Let A = [aij ]n×n be a quaternionic matrix and let λ ∈ H be a left or right eigenvalue of A.
Then

|λ| ≤ max
i

n∑
j=1

|aij |.

The following lemma is due to Brenner [36, Theorem 13].

Lemma 2. Similar matrices of quaternions have the same characteristic roots.

Lemma 3. Let T (q) = qnan + qpap + qp−1ap−1 + · · · + qa1 + a0, 0 ≤ p ≤ n − 1, be a polynomial of degree
n with quaternionic coefficients. Then for every t > 0, all the zeros of T (q) lie in the ball

|q| ≤ max

{
t,

p∑
ν=0

∣∣∣∣ aν

an

∣∣∣∣ 1
tn−ν−1

}
.

Proof. Let CT be the companion matrix of the polynomial T (q), then

CT =



0 1 0 · · · 0 · · · 0

0 0 1 · · · 0 · · · 0

...
...

...
...

...

0 0 0 · · · 0 · · · 1

− a0
an

− a1
an

− a2
an

· · · −
ap

an
· · · 0


.

Taking a diagonal matrix A = diag
(

1
tn−1 ,

1
tn−2 , . . . ,

1
t
, 1

)
, where t > 0, we form the matrix

A−1CT A =



0 t 0 · · · 0 · · · 0

0 0 t · · · 0 · · · 0

...
...

...
...

...

0 0 0 · · · 0 · · · t

− a0
an

1
tn−1 − a1

an

1
tn−2 − a2

an

1
tn−3 · · · −

ap

an

1
tn−p−1 · · · 0


.

Now, applying Lemma 1 to the rows, it follows that the left eigenvalues of A−1CT A lie in the ball

|q| ≤ max

{
t,

p∑
ν=0

∣∣∣∣ aν

an

∣∣∣∣ 1
tn−v−1

}
. (4)

The matrix A−1CT A is similar to the matrix CT , it follows by using Lemma 2 that all the zeros of T (q)
which are the left eigenvalues of CT lie in the ball defined by (4). This completes the proof of Lemma 3.

Lemma 4. Let T (q) =
∑n

ν=0 qνaν (aν ̸= 0, 1 ≤ ν ≤ n) be a non-constant quaternionic polynomial of
degree n. If bν ∈ H, ν = 1, 2, . . . , n, such that

n∑
ν=1

|bν | = 1,
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then all the zeros of T (q) lie in the spherical shell E = {q ∈ H : r1 ≤ |q| ≤ r2}, where

r1 = min
1≤ν≤n

∣∣∣∣bν
a0
aν

∣∣∣∣1/ν

and

r2 = max
1≤ν≤n

∣∣∣∣ 1
bν

an−ν

an

∣∣∣∣1/ν

.

Proof. By Lemma 3, it follows by taking p = n − 1 and replacing ν by n − ν, that all the zeros of T (q) lie
in the ball

|q| ≤ max

{
t,

n∑
ν=1

∣∣∣∣an−ν

an

1
tv−1

∣∣∣∣
}

, (5)

for every t > 0. We take

t = max
1≤ν≤n

∣∣∣∣ 1
bν

an−ν

an

∣∣∣∣ 1
ν

,

then ∣∣∣∣ 1
bν

an−ν

an

∣∣∣∣ ≤ tν , ν = 1, 2, . . . , n.

Hence
n∑

ν=1

∣∣∣∣an−ν

an

∣∣∣∣ 1
tν−1 ≤ t

n∑
ν=1

|bν |

= t.

Using this in (5), it follows that all the zeros of T (q) lie in the ball |q| ≤ r2. This proves the second part
of Lemma 4. To prove the first part of Lemma 4, we use the second part. If a0 = 0, then there is nothing
to prove. Assume that a0 ̸= 0, and consider the reciprocal polynomial

F (q) = qn ∗ T

(
1
q

)
= qna0 + qn−1a1 + · · · + qan−1 + an,

of degree n. By the second part of Lemma 4, we get all the zeros of F (q) lie in the ball

|q| ≤ max
1≤ν≤n

∣∣∣∣ 1
bν

aν

a0

∣∣∣∣1/ν

= max
1≤ν≤n

∣∣∣∣∣∣ 1
bν

a0
aν

∣∣∣∣∣∣
1/ν

= max
1≤ν≤n


1∣∣∣∣bν

a0
aν

∣∣∣∣1/ν


= 1

min
1≤ν≤n

∣∣∣∣bν
a0
aν

∣∣∣∣1/ν

= 1
r1

.
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As T (q) = qn ∗ F (1/q), it follows that all the zeros of T (q) lie in

|q| ≥ r1 = min
1≤ν≤n

∣∣∣∣bν
a0

aνaν

∣∣∣∣1/ν

. (6)

The desired result follows by combining (5) and (6).

The following lemma is due to Diaz-Barrero and Egozcue [37, Theorem 1].

Lemma 5. Let τ and σ be the roots of the quadratic equation x2 − tx−s = 0, being t, s strictly positive real
numbers. Define the two sequence {An}n∈N and {Bn}n∈N by Bn =

∑n−1
ν=0 τνσn−1−ν and An = cτn + dσn,

where c and d are real constants. If η ≥ 2, then
n∑

ν=0

(
n

ν

)
(sBη−1)n−νBν

η Aν = Aηn.

4 Proofs of the main results
Proof of Theorem 4. After setting s = 1 in Lemma 5, we have τ, σ be the roots of x2 − tx − 1 = 0. Also
taking c = 1/

√
t2 + 4, d = −1/

√
t2 + 4, so that the t-Fibonacci number Ft,n is given by

An = cτn + dσn = Ft,n.

Further for η = 3, we have B2 = t, B3 = t2 + 1, and note that Ft,0 = 0, we get the identity

n∑
ν=1

(t2 + 1)νtn−νFt,ν

(
n

ν

)
= Ft,3n.

Let

bν =
(t2 + 1)νtn−νFt,ν

(
n
ν

)
Ft,3n

, ν = 1, 2, . . . , n.

Therefore, we have
n∑

ν=1
|bν | =

n∑
ν=1

bν =
n∑

ν=1

(t2 + 1)νtn−νFt,ν

(
n
ν

)
Ft,3n

= 1,

and, hence from Lemma 4, all the zeros of T (q) lie in the spherical shell D =
{

q ∈ H : r1 ≤ |q| ≤ r2
}

,
where

r1 = min
1≤ν≤n

∣∣∣∣bν
a0
aν

∣∣∣∣1/ν

= min
1≤ν≤n

∣∣∣∣∣ (t2 + 1)νtn−νFt,ν

(
n
ν

)
Ft,3n

a0
aν

∣∣∣∣∣
1/ν

and

r2 = max
1≤ν≤n

∣∣∣∣ 1
bν

an−ν

an

∣∣∣∣1/ν

= max
1≤ν≤n

∣∣∣∣∣ Ft,3n

(t2 + 1)νtn−νFt,ν

(
n
ν

) an−ν

an

∣∣∣∣∣
1/ν

.

This completes the proof of Theorem 4.
Proof of Theorem 5. For s = 1 and η = 4, we proceed as in the proof of Theorem 4, and obtain

B3 = t2 + 1, B4 = t3 + 2t. Additionally, take note that Ft,0 = 0 yields the identity

n∑
ν=1

(t2 + 1)n−ν(t3 + 2t)νFt,ν

(
n

ν

)
= Ft,4n.
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Let

bν =
(t2 + 1)n−ν(t3 + 2t)νFt,ν

(
n
ν

)
Ft,4n

, ν = 1, 2, . . . , n.

Therefore, we have
n∑

ν=1
|bν | =

n∑
ν=1

bν =
n∑

ν=1

(t2 + 1)n−ν(t3 + 2t)νFt,ν

(
n
ν

)
Ft,4n

= 1,

and, hence from Lemma 4, all the zeros of T (q) lie in the spherical shell D =
{

q ∈ H : r1 ≤ |q| ≤ r2
}

,
where

r1 = min
1≤ν≤n

∣∣∣∣bν
a0
aν

∣∣∣∣1/ν

= min
1≤ν≤n

∣∣∣∣∣ (t2 + 1)n−ν(t3 + 2t)νFt,ν

(
n
ν

)
Ft,4n

a0
aν

∣∣∣∣∣
1/ν

and

r2 = max
1≤ν≤n

∣∣∣∣ 1
bν

an−ν

an

∣∣∣∣1/ν

= max
1≤ν≤n

∣∣∣∣∣ Ft,4n

(t2 + 1)n−ν(t3 + 2t)ν
(

n
ν

) an−ν

an

∣∣∣∣∣
1/ν

.

This completes the proof of Theorem 5.

Remark 3. All the main results of this study are largely dependent on the Lemma 4. It has applications that
go beyond the findings of this investigation. It can yield various conclusions about spherical shells containing
all the zeros of a polynomial with quaternionic coefficients if the sequence {bν} is chosen appropriately. The
Lucas sequence {Ln}, for example, is defined by

Ln = Ln−2 + Ln−1 for n ≥ 2,

with the initial conditions L0 = 2, L1 = 1. Using an identity (see [38, p. 54]) concerning these numbers,
namely:

n∑
ν=1

Lν = Ln+2 − 3,

and take
bν = Lν

Ln+2 − 3
, ν = 1, 2, . . . , n,

then by the above identity, we have

n∑
ν=1

|bν | =
n∑

ν=1

Lν

Ln+2 − 3
= 1.

On using this in Lemma 4, we see that all the zeros of T (q) =
∑n

ν=1 qνaν lie in the spherical shell
F = {q ∈ H : r∗

1 ≤ |q| ≤ r∗
2}, where

r∗
1 = min

1≤ν≤n

{
Lν

Ln+2 − 3

∣∣∣∣ a0
aν

∣∣∣∣}1/ν

and

r∗
2 = max

1≤ν≤n

{
Ln+2 − 3

Lν

∣∣∣∣an−ν

an

∣∣∣∣ }1/ν

.

Remark 4. We end this section by using the identity (see [38, p. 55]), namely:

n∑
ν=1

L2
ν = LnLn+1 − 2, n ≥ 1,



G. V. Milovanović et al., On spherical shells containing all zeros 9

and take
bν = L2

ν

LnLn+1 − 2
, ν = 1, 2, . . . , n.

Then by the above identity, we have
n∑

ν=1
|bν | =

n∑
ν=1

L2
ν

LnLn+1 − 2
= 1.

On using this in Lemma 4, we see that all the zeros of T (q) =
∑n

ν=1 qνaν lie in the spherical shell
F =

{
q ∈ H : r∗∗

1 ≤ |q| ≤ r∗∗
2

}
, where

r∗∗
1 = min

1≤ν≤n

{
L2

ν

LnLn+1 − 2

∣∣∣∣ a0
aν

∣∣∣∣}1/ν

and

r∗∗
2 = max

1≤ν≤n

{
LnLn+1 − 2

L2
ν

∣∣∣∣an−ν

an

∣∣∣∣ }1/ν

.

Remark 5. The famous Geršgorin theorem is one of the fundamental theorems in complex matrix theory. It
ensures that all the eigenvalues of a matrix over C are contained in the Geršgorin discs. The main obstacle in
the study of quaternionic matrices is the non-commutative multiplication of quaternions. Firstly, Ax = λx

and Ax = xλ, in the quaternionic setting (where A is a square quaternionic matrix and λ is a quaternion),
are two very different systems of equations; in fact, they are so unlike from one another that there is
typically no relationship between them. The fact is that a quaternion λ is a left eigenvalue of a square
matrix A if and only if A − λI is singular, since Ax = λx is equivalent to (A − λI)x = 0, while this is not
true in case of right eigenvalues. Secondly, it is nowadays well-known that the right eigenvalue problem
(which is not defined by a linear operator since A − Iλ is not linear when A is a square quaternionic matrix
and λ a quaternion) is in reality coming from the notion of S-spectrum (for reference see [2]) which boils
down to the search of right eigenvalues when dealing with matrices.

5 Conclusions
The classical and fundamental approaches dealing with the derivation of zero inclusion regions of regular
polynomials have their own intrinsic value in geometric function theory. They play an equally significant
role in contemporary studies that address these kinds of issues. Here, by using the generalized t-Fibonacci
numbers and their various properties, we constructed a framework to establish various zero inclusion regions
in the form of spherical shells of a regular unilateral polynomial of a quaternionic variable.
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