EXTREMAL PROBLEMS FOR LORENTZ CLASSES OF NONNEGATIVE POLYNOMIALS IN L^2 METRIC WITH JACOBI WEIGHT GRADIMIR V. MILOVANOVIĆ AND MIODRAG. S. PETKOVIĆ (Communicated by R. Daniel Mauldin) ABSTRACT. Let L_n be the Lorentz class of nonnegative polynomials on [-1,1]. Extremal problems of Markov type, in L^2 norm with Jacobi weight, on the set L_n or on its subset, are investigated. 1. Introduction. In this paper we consider some extremal problems for non-negative algebraic polynomials on [-1,1] in L^2 metric with Jacobi weight $w(x) = (1-x)^{\alpha}(1+x)^{\beta}$ $(\alpha,\beta>-1)$. These problems are related to some previous results due to Varma [9–13], Milovanović [6], Erdös and Varma [2], and also to the classical inequalities of A. Markov [5], P. Erdös [1], G. G. Lorentz [3, 4], and G. Szegő [8]. Let L_n be the set of algebraic polynomials of the form (1.1) $$P_n(x) = \sum_{k=0}^n b_k (1-x)^k (1+x)^{n-k}, \qquad b_k \ge 0 \ (k=0,1,\ldots,n).$$ These polynomials (transformed to [0,1]) were introduced by G. G. Lorentz [3] and studied extensively by J. T. Scheick [7]. A subset of the Lorentz class L_n for which $P_n^{(i-1)}(-1) = P_n^{(i-1)}(1) = 0$ (i = 1, ..., m) will be denoted by $L_n^{(m)}$. Notice that $L_n^{(0)} \supset L_n^{(1)} \supset \cdots$, where $L_n^{(0)} \equiv L_n$. The corresponding representation of a polynomial P_n from $L_n^{(m)}$ is $$(1.2) P_n(x) = \sum_{k=m}^{n-m} b_k (1-x)^k (1+x)^{n-k}, b_k \ge 0 (k=m,\ldots,n-m).$$ Let $w(x) = (1-x)^{\alpha}(1+x)^{\beta}, \ \alpha, \beta > -1, \text{ and } ||f||^2 = (f, f), \text{ where}$ $$(f,g) = \int_{-1}^{1} w(x)f(x)g(x) dx \qquad (f,g \in L^{2}(-1,1)).$$ The object of this paper is to determine (1.3) $$C_n^{(m)}(\alpha, \beta) = \sup_{P_n \in L_n^{(m)} \setminus \{0\}} \frac{\|P_n'\|^2}{\|P_n\|^2},$$ where $m=0,1,\ldots,[n/2]$. The corresponding problem in the class $L_n^{(0)}$ for the uniform norm was considered by G. G. Lorentz [4]. Received by the editors November 6, 1986. 1980 Mathematics Subject Classification (1985 Revision). Primary 26C05, 41A44. Some auxiliary results, necessary in solving problem (1.3), are presented in §2. The central issue of the paper, the determination of the best constant in (1.3), is given in §3. Some corollaries and special cases of importance are included. ## 2. Some auxiliary results. We begin this section by proving four lemmas. LEMMA 2.1. If $P_n \in L_n$, then for every $x \in [-1,1]$ the inequality $$(2.1) (1-x^2)(P'_n(x)^2 - P''_n(x)P_n(x)) \le nP_n(x)^2 - 2xP_n(x)P'_n(x)$$ holds. PROOF. Putting t = (1 - x)/(1 + x) and $$Q_n(t) = \left(\frac{1+t}{2}\right)^n P_n\left(\frac{1-t}{1+t}\right) = \sum_{k=0}^n b_k t^k,$$ we obtain $$\begin{split} &(1+x)^nQ_n(t)=P_n(x),\\ &2(1+x)^{n-1}Q_n'(t)=nP_n(x)-(1+x)P_n'(x),\\ &4(1+x)^{n-2}Q_n''(t)=n(n-1)P_n(x)-2(n-1)(1+x)P_n'(x)+(1+x)^2P_n''(x). \end{split}$$ Substituting Q_n, Q'_n , and Q''_n from the last three relations in the inequality $$t[Q'_n(t)^2 - Q_n(t)Q''_n(t)] \le Q'_n(t)Q_n(t), \qquad t \ge 0,$$ which was proved in [6], we obtain (2.1). REMARK 2.1. Inequality (2.1) can be represented in the form $$\frac{d}{dx}\left\{(x^2-1)\frac{P_n'(x)}{P_n(x)}\right\} \le n.$$ Now, we define the following integrals: $$I_{n,i}(\alpha,\beta) = \int_{-1}^{1} (1-x)^{\alpha} (1+x)^{\beta} P_n(x) P_n^{(i)}(x) dx \qquad (i=0,1,2),$$ $$J_n(\alpha,\beta) = \int_{-1}^{1} (1-x)^{\alpha} (1+x)^{\beta} P_n'(x)^2 dx.$$ LEMMA 2.2. If $P_n \in L_n$, then for $\alpha, \beta > 0$ the following recurrence relations are valid: $$I_{n,2}(\alpha,\beta) = \alpha I_{n,1}(\alpha - 1,\beta) - \beta I_{n,1}(\alpha,\beta - 1) - J_n(\alpha,\beta),$$ $$2I_{n,1}(\alpha,\beta) = \alpha I_{n,0}(\alpha - 1,\beta) - \beta I_{n,0}(\alpha,\beta - 1).$$ However, if $P_n \in L_n^{(1)}$, then the first relation holds for $\alpha, \beta > -1$, and the second of them for $\alpha, \beta > -2$. The proof of this lemma is a simple application of integration by parts and will be omitted. Integrating (2.1) we obtain LEMMA 2.3. If $$P_n \in L_n$$ (or $L_n^{(1)}$), then for $\alpha, \beta > 0$ (or > -1), $$J_{n}(\alpha,\beta) \leq nI_{n,0}(\alpha-1,\beta-1) + I_{n,2}(\alpha,\beta) - I_{n,1}(\alpha-1,\beta) + I_{n,1}(\alpha,\beta-1).$$ From Lemmas 2.2 and 2.3 there immediately follows LEMMA 2.4. If $P_n \in L_n$ (or $L_n^{(1)}$), then for $\alpha, \beta > 1$ (or > -1), the inequality $$4J_n(\alpha,\beta) \le (\alpha-1)^2 I_{n,0}(\alpha-2,\beta) + (\beta-1)^2 I_{n,0}(\alpha,\beta-2) + [2n+\alpha+\beta-2\alpha\beta] I_{n,0}(\alpha-1,\beta-1)$$ holds. REMARK 2.2. If $P_n \in L_n$ and $\alpha = \beta = 1$, the above inequality is also valid. Namely, we then have $$J_n(1,1) \le \frac{n}{2} I_{n,0}(0,0).$$ Also, when $\alpha = 1$ and $\beta > 1$, we have $$4J_n(1,\beta) \le (\beta-1)^2 I_{n,0}(1,\beta-2) + (2n+1-\beta)I_{n,0}(0,\beta-1).$$ A symmetric result holds for $\alpha > 1$ and $\beta = 1$. Now let $n \in \mathbb{N}$, $m = 0, 1, \dots, \lfloor n/2 \rfloor$, and $\Delta_{n,m} = \lfloor 2m, 2n - 2m \rfloor$. We define the rational function $f: \Delta_{n,m} \to R$ by (2.2) $$f(x) = \frac{(\alpha - 1)^2}{(x + \alpha - 1)(x + \alpha)} + \frac{(\beta - 1)^2}{(2n - x + \beta - 1)(2n - x + \beta)} + \frac{2n + \alpha + \beta - 2\alpha\beta}{(x + \alpha)(2n - x + \beta)}.$$ The parameters α and β can take the values - (a) $\alpha, \beta \geq 1$ if m = 0; - (b) $\alpha, \beta > -1$ if $m \ge 1$. In order to find the maximum of f(x) on the interval $\Delta_{n,m}$, we investigate the derivative $$f'(x) = \frac{R(x)}{[(x+\alpha-1)(x+\alpha)(2n-x+\beta-1)(2n-x+\beta)]^2},$$ where R is a polynomial of degree five and whose coefficients depend on α, β , and n. It is easy to see that - $1^{\circ} R(0) < 0, R(2n) > 0;$ - 2° R has the unique zero ξ in (0, 2n). Based on the above we can conclude that (2.3) $$\max_{x \in \Delta_{n,m}} f(x) = \max(f(2m), f(2n-2m)).$$ Now, we consider two cases (a) $m = 0 \ (\alpha, \beta \ge 1)$. Since $$f(2n) - f(0) = \frac{(\beta - \alpha)(\beta + \alpha + 4n - 1)}{(2n + \alpha - 1)(2n + \alpha)(2n + \beta - 1)(2n + \beta)},$$ FIGURE 1 we have $$\operatorname{sgn}(f(2n)-f(0))=\operatorname{sgn}(\beta-\alpha)$$, and then we find $$(2.4) \qquad \max_{x\in\Delta_{n,0}}f(x)=\frac{4n^2}{(2n+\lambda-1)(2n+\lambda)}, \qquad \lambda=\min(\alpha,\beta).$$ (b) $m \ge 1$ $(\alpha, \beta > -1)$. The maximum of f(x) on $\Delta_{n,m}$ is given by (2.3). The domination of the value f(2m) with respect to f(2n-2m), and conversely, changes in the points of the $\alpha 0\beta$ plane for which $$g(\alpha, \beta) \equiv f(2n - 2m) - f(2m) = 0$$ is valid. It is easy to show that $$g(\alpha, \beta) = (\beta - \alpha) \sum_{k,j=0}^{3} q_{kj} \alpha^{k} \beta^{j},$$ where $q_{kj}=q_{jk}$, that is, $g(\alpha,\beta)=g(\beta,\alpha)$ (a symmetry with respect to the straight line $\beta = \alpha$). The curve $g(\alpha, \beta) = 0$, where m and n are the parameters, has three branches, one of them is, obviously, the straight line $\beta = \alpha$. The region $\alpha, \beta > -1$ contains the branch which has the horizontal asymptote $\alpha = a(m, n)$ and the vertical asymptote $\beta = a(m, n)$ (because of a symmetry in reference to the straight line $\beta = \alpha$), where $$a(m,n) = \frac{4m^2 + n^2 - 4mn + \sqrt{16m^2n^2 + 16m^4 + n^2 - 32m^3n}}{2n} > 0$$ To illustrate graphically the regions of domination and the corresponding bounds, the case when m=1 and n=8 is displayed in Figure 1. The horizontal and vertical asymptotes are given by $\alpha=a(1,8)\cong 0.57$ and $\beta=a(1,8)\cong 0.57$. In the shaded region the inequality f(2)< f(14) holds. **3. Main results.** In this section we give the results related to problem (1.3). We begin with the following assertion. THEOREM 3.1. If $P_n \in L_n$ and $\alpha, \beta \geq 1$, then the best constant $C_n^{(0)}(\alpha, \beta)$, defined in (1.3), is given by (3.1) $$C_n^{(0)}(\alpha,\beta) = \frac{n^2(2n+\alpha+\beta)(2n+\alpha+\beta+1)}{4(2n+\lambda)(2n+\lambda-1)},$$ where $\lambda = \min(\alpha, \beta)$. PROOF. We suppose that $P_n \in L_n$, i.e. that P_n is given by (1.1). Then $$P_n(x)^2 = \sum_{k=0}^{2n} a_k (1-x)^k (1+x)^{2n-k}, \qquad a_k \ge 0,$$ and $$||P_n||^2 = I_{n,0}(\alpha,\beta) = \sum_{k=0}^{2n} s_k^{(n)}(\alpha,\beta),$$ where $s_k^{(n)}(\alpha,\beta)=2^{2n+\alpha+\beta+1}a_kB(k+\alpha+1,2n-k+\beta+1)$ and B is the beta function. Using Lemma 2.4 we obtain $$16J_n(\alpha,\beta) \le (2n+\alpha+\beta)(2n+\alpha+\beta+1) \sum_{k=0}^{2n} s_k^{(n)}(\alpha,\beta) H_k(\alpha,\beta).$$ H_k is defined by means of the function f, given by (2.2), namely, $H_k(\alpha, \beta) \equiv f(k), k = 0, 1, \ldots, 2n$. From the last inequality it follows that $$||P'_n||^2 \le \frac{1}{16} (2n + \alpha + \beta)(2n + \alpha + \beta + 1) \left(\max_{0 \le k \le 2n} H_k(\alpha, \beta) \right) ||P_n||^2.$$ Thus, we have $$(3.2) C_n^{(0)}(\alpha,\beta) \le \frac{1}{16}(2n+\alpha+\beta)(2n+\alpha+\beta+1)\left(\max_{0\le k\le 2n} H_k(\alpha,\beta)\right),$$ where the maximum on the right-hand side is given by (2.4). In order to show that $C_n^{(0)}(\alpha,\beta)$, defined in (3.1), is the best possible, i.e. that (3.2) reduces to an equality, we consider the polynomials $p_{n,0}(x) = (1+x)^n$ and $p_{n,n}(x) = (1-x)^n$. Since $$||p'_{n,0}||^2 = C_n^{(0)}(\alpha,\beta)||p_{n,0}||^2, \qquad \beta \le \alpha,$$ and $$||p'_{n,n}||^2 = C_n^{(0)}(\alpha,\beta)||p_{n,n}||^2, \qquad \beta \ge \alpha$$ we conclude that $p_{n,0}(x)$ is an extremal polynomial for $\beta \leq \alpha$, and $p_{n,n}(x)$ for $\beta > \alpha$. COROLLARY 3.2. If $P \in L_n$, then $$C_n^{(0)}(1,1) = \frac{n(n+1)(2n+3)}{4(2n+1)}.$$ This result was obtained by P. Erdös and A. K. Varma [2] (see, also, Varma [11]). Using a consideration similar to the previous one, we can prove the following assertion for the class of polynomials $L_n^{(m)}$ $(1 \le m \le \lfloor n/2 \rfloor)$. THEOREM 3.3. If $$P \in L_n^{(m)}$$ $(1 \le m \le \lfloor n/2 \rfloor)$, $\alpha, \beta > -1$, we have $$C_n^{(m)}(\alpha,\beta) = \frac{1}{16}(2n + \alpha + \beta)(2n + \alpha + \beta + 1)\max(H_{2m}(\alpha,\beta), H_{2n-2m}(\alpha,\beta)),$$ where $H_k(\alpha, \beta) \equiv f(k)$ and f is given by (2.2). Especially interesting cases appear when $\alpha = \beta$. Then we have THEOREM 3.4. If $$P \in L_n^{(m)}$$, $m \ge 1$, $\alpha = \beta > -1$, then $$C_n^{(m)}(\alpha,\beta) = \frac{(n+\alpha)(2n+2\alpha+1)[\alpha(\alpha-1)n^2 + 2m(n-m)(n-1+3\alpha-2\alpha^2)]}{2(2m+\alpha-1)(2m+\alpha)(2n-2m+\alpha-1)(2n-2m+\alpha)}.$$ In the special cases when $\alpha=0$ (Legendre case), $\alpha=-1/2$ (Chebyshev case), and $\alpha=1$, we have COROLLARY 3.5. If $P \in L_n^{(m)}$, $m \ge 1$, then (3.3) $$C_n^{(m)}(0,0) = \frac{n(n-1)(2n+1)}{4(2m-1)(2n-2m-1)},$$ $$(3.4) C_n^{(m)}\left(-\frac{1}{2}, -\frac{1}{2}\right) = \frac{2n(2n-1)[3n^2 + 8m(n-m)(n-3)]}{(4m-3)(4m-1)(4n-4m-3)(4n-4m-1)},$$ (3.5) $$C_n^{(m)}(1,1) = \frac{n(n+1)(2n+3)}{4(2m+1)(2n-2m+1)}$$ REMARK 3.1. From Corollary 3.2 we see that (3.5) holds and for m = 0 too. REMARK 3.2. For m = 1, the best constants (3.3) and (3.4) reduce to (3.6) $$C_n^{(1)}(0,0) = \frac{n(n-1)(2n+1)}{4(2n-3)}$$ and (3.7) $$C_n^{(1)}\left(-\frac{1}{2}, -\frac{1}{2}\right) = \frac{2n(2n-1)(11n^2 - 32n + 24)}{3(4n-5)(4n-7)}.$$ REMARK 3.3. It is of interest to note that Erdös and Varma [2] proved that the best constant in the Lorentz class L_n $(n \ge 2)$ for $\alpha = \beta = 0$ is the same one as that in (3.6), i.e. $C_n^{(0)}(0,0) = C_n^{(1)}(0,0)$. ## REFERENCES - P. Erdös, On extremal properties of the derivatives of polynomials, Ann. of Math. (2) 41 (1940), 310-313. - 2. P. Erdös and A. K. Varma, An extremum problem concerning algebraic polynomials, Acta Math. Hungar. 47 (1986), 137-143. - 3. G. G. Lorentz, The degree of approximation by polynomials with positive coefficients, Math. Ann. 151 (1963), 239-251. - 4. ____, Derivatives of polynomials with positive coefficients, J. Approx. Theory 1 (1968), 1-4. - 5. A. A. Markov, On a problem of D. I. Mendeleev, Zap. Imp. Akad. Nauk, St. Petersburg 62 (1889), 1-4. (Russian) - 6. G. V. Milovanović, An extremal problem for polynomials with nonnegative coefficients, Proc. Amer. Math. Soc. 94 (1985), 423-426. - J. T. Scheick, Inequalities for derivatives of polynomials of special type, J. Approx. Theory 6 (1972), 354-358. - 8. G. Szegö, Some problems of approximations, Magyar Tud. Akad. Mat. Kutato Int. Dozl. 2 (1964), 3-9. - 9. A. K. Varma, An analogue of some inequalities of P. Turán concerning algebraic polynomials having all zeros inside [-1, 1], Proc. Amer. Math. Soc. 55 (1976), 305-309. - 10. _____, An analogue of some inequalities of P. Turán concerning algebraic polynomials having all zeros inside [-1, 1]. II, Proc. Amer. Math. Soc. 69 (1978), 25-33. - 11. _____, Some inequalities of algebraic polynomials having real zeros, Proc. Amer. Math. Soc. 75 (1979), 243-250. - 12. _____, Derivatives of polynomials with positive coefficients, Proc. Amer. Math. Soc. 83 (1981), 107-112. - 13. _____, Some inequalities of algebraic polynomials having all zeros inside [-1,1], Proc. Amer. Math. Soc. 88 (1983), 227-233. FACULTY OF ELECTRONIC ENGINEERING, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NIŠ, P. O. BOX 73, 18000 NIŠ, YUGOSLAVIA