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ABSTRACT. Let L, be the Lorentz class of nonnegative polynomials on [—1, 1].
Extremal problems of Markov type, in L2 norm with Jacobi weight, on the set
Ly, or on its subset, are investigated.

1. Introduction. In this paper we consider some extremal problems for non-
negative algebraic polynomials on [—1,1] in L? metric with Jacobi weight w(z) =
(1-z)%(1+z)? (o, 8 > —1). These problems are related to some previous results
due to Varma [9-13], Milovanovi¢ [6], Erdos and Varma [2], and also to the classi-
cal inequalities of A. Markov (5], P. Erdos [1], G. G. Lorentz [3, 4], and G. Szeg6
(8]

Let L, be the set of algebraic polynomials of the form

n

11)  Pu(@) =) b(-2*Q+2)"*, b 20(k=0,1,...,n)

k=0
These polynomials (transformed to [0,1]) were introduced by G. G. Lorentz (3]
and studied extensively by J. T. Scheick [7]. A subset of the Lorentz class Ly for
which PV (=1) = P V(1) =0 (s = 1,...,m) will be denoted by L™ . Notice
that L;O) D Lﬁ,l) D ---, where Lﬁlo) = L,. The corresponding representation of a

. (m) .

polynomial P, from L, "’ is

n—m
(12)  Pu(@) =) (-1 +2)"*, 20 (k=m,...,n—m).

k_

Let w(z) = (1 — 2)*(1 + z)?, ,8 > —1, and ||f||?> = (f, f), where
(rho=[ w@f@@)ds (L9 (1),

The object of this paper is to determine

2
(13) oM(ap = sp ALl
Paeri\(oy IFPnll*

where m = 0,1,...,[n/2]. The corresponding problem in the class L for the
uniform norm was considered by G. G. Lorentz (4].
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Some auxiliary results, necessary in solving problem (1.3), are presented in §2.
The central issue of the paper, the determination of the best constant in (1.3), is
given in §3. Some corollaries and special cases of importance are included.

2. Some auxiliary results. We begin this section by proving four lemmas.
LEMMA 2.1. If P, € Ly, then for every z € [—1,1] the inequality
(2.1) (1= 2%)(Po(2)* = Py (2)Pu(2)) < nPa(2)? = 22Py(2) Py (2)
holds.
PROOF. Putting t = (1 — z)/(1 + z) and
[1+t\" 1-t N
0= (1) P (1) = Lttt
k=0
we obtain
(14 2)"Qn(t) = Pa(z),
2(1+ 2)""1Q)(t) = nPy(z) — (1 + z) Pl (z),
4(1+2)"2Q"(t) = n(n — 1)Py(z) — 2(n — 1)(1 + 2) P.(z) + (1 + )2 P! (z).
Substituting Qn,Q@,,, and Q! from the last three relations in the inequality
tQn(t)? - Qu()QR ()] < Qn(®)Qn(t),  t20,

which was proved in [B], we obtain (2.1).
REMARK 2.1. Inequality (2.1) can be represented in the form

Now, we define the following integrals:

1

I, :(a,B) = /_1(1 —-z)*(1+ z)ﬂPn(z)P,(f)(z) dz (t=0,1,2),
1

Jn(a, B) = / (1 - 2)%(1 + 2)° P, (2)? da.

-1

LEMMA 2.2. If P, € L,, then for a,3 > 0 the following recurrence relations
are valid:

I‘n,2(a7 ﬂ) = C"In,l(a - I,IB) - IBI‘n,l(aaIB - 1) - J‘n(aa 13)7
2In,1(a7 ﬂ) = C‘I‘n,O(a - la IB) - IBI‘n,O(a’ IB - 1)

However, if P, € Lg), then the first relation holds for a, 8 > —1, and the second
of them for o, 3 > —2.

The ﬁroof of this lemma is a simple application of integration by parts and will
be omitted.
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Integrating (2.1) we obtain
LEMMA 2.3. If P, € L, (or Lﬁ,l)), then for a, 8 >0 (or > —1),
In(e, B) Snlpo(a—1,8—1) + Inz(e, B) — Ini(e—1,8) + Ina(a, 8- 1).

From Lemmas 2.2 and 2.3 there immediately follows
LEMMA 2.4. If P, € L, (or Lgl)), then for a,3 > 1 (or > —1), the inequality

4Jp(a,8) < (@ = 1) I, 0(a = 2,8) + (8 — 1)%In0(a, B —2)
+[2n+a+ 8 —2af)po(a—1,8-1)

holds.

REMARK 2.2. If P, € L, and a = 3 = 1, the above inequality is also valid.
Namely, we then have

In(1,1) < $1n0(0,0).
Also, when oo =1 and 8 > 1, we have

4Jn(1,8) < (B—1)*In,0(1,6 = 2) + (2n + 1 = B)In0(0, 8 — 1).
A symmetric result holds for « > 1 and § = 1.

Now let n € N, m =0,1,...,[n/2], and Ay, = [2m,2n — 2m]. We define the
rational function f: A, — R by

(e —1) (8-1)

t+a—-1)(z+a) (@Cn-z+B-1)2n—-z+0)
2n+a+ 0B -2ap0
(z+a)2n—z+p6)
The parameters o and § can take the values

(a) o, 62 1ifm=0;

(b) a,f>-1ifm > 1.

In order to find the maximum of f(z) on the interval A, ,, we investigate the
derivative

flz) = (
(2.2)
+

7'@) = L
(z+a-1D(z+a)2n—z+B-1)2n—z+F)*
where R is a polynomial of degree five and whose coefficients depend on «, , and
n. It is easy to see that
1° R(0) < 0,R(2n) > 0;
2° R has the unique zero £ in (0, 2n).
Based on the above we can conclude that

(2.3) ex f (z) = max(f(2m), f(2n — 2m)).

Now, we consider two cases
(a) m=0 (a,B > 1). Since

f(2n)—f(0)=( (B-a)(B+a+4n—1)

nt+a-1)(2n+a)2n+B-1)(2n+p)’
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FIGURE 1

we have sgn(f(2n) — f(0)) = sgn(8 — a), and then we find

4n?
(2'4) zlénAay).(,o f(I) = (2"’! + - 1)(2n + /\) ’

(b) m > 1 (a, 8 > —1). The maximum of f(z) on A, ,, is given by (2.3). The
domination of the value f(2m) with respect to f(2n—2m), and conversely, changes
in the points of the a0 plane for which

9(e, B) = f(2n — 2m) — f(2m) =0
is valid. It is easy to show that

A = min(a, 8).

3
g(a)IB) = (:B - a) Z Qk]‘akﬂ],
k,j=0
where gx; = g;k, that is, g(a, ) = ¢(8, @) (a symmetry with respect to the straight

line 8 = a). The curve g(a,8) = 0, where m and n are the parameters, has
three branches, one of them 1is, obviously, the straight line § = a. The region



EXTREMAL PROBLEMS FOR LORENTZ CLASSES 287

a, > —1 contains the branch which has the horizontal asymptote oo = a(m,n)
and the vertical asymptote 8 = a(m,n) (because of a symmetry in reference to the
straight line 8 = ), where

4m? + n? — 4mn + V/16m2n2 + 16m4 + n2 — 32m3n
a(m,n) = o > 0.

To illustrate graphically the regions of domination and the corresponding bounds,
the case when m = 1 and n = 8 is displayed in Figure 1. The horizontal and vertical
asymptotes are given by o = a(1,8) = 0.57 and 8 = a(1,8) = 0.57. In the shaded
region the inequality f(2) < f(14) holds.

3. Main results. In this section we give the results related to problem (1.3).
We begin with the following assertion.

THEOREM 3.1. If P, € L, and a,8 > 1, then the best constant C,(,O)(a, B),
defined in (1.3), is given by

n*(2n+a+p)(2n+a+p+1)

(3:1) (e, B) = A2+ N2n+Ar-1)

where A = min(a, §).

PROOF. We suppose that P, € Ly, i.e. that P, is given by (1.1). Then

2n
P, (2)% = Zak (1—-z)k(1 4 z)2 K, ax >0,
k=0
and
2n
I1Pall? = Ino(e, B) = Y 07 (e, B),
k=0

where s{(a, 8) = 22"+t*+A+1q, B(k + a + 1,2n — k + 8+ 1) and B is the beta
function. Using Lemma 2.4 we obtain

16J,(0,8) < (2n+a+B)(2n+a+p+1) Zs(") (o, B)Hi(x, B).
k=0

Hy is defined by means of the function f, given by (2.2), namely, Hx(a,8) =
f(k), k=0,1,...,2n. From the last inequality it follows that

, 1
PP < gg(on -+t B)an+at5+1) (max Helod)) 1P

Thus, we have
1
(0) —
(3.2) Ci (e, B) < fp(2n+a+BH2n+a+p+ 1) (oé‘}c‘é’én Hk(a,ﬂ)) :

where the maximum on the right-hand side is given by (2.4).

In order to show that C(O)(a, B), defined in (3.1), is the best possible, i.e. that
(3.2) reduces to an equality, we consider the polynomials pno(z) = (1 + z)" and
Pnn(z) = (1 — z)". Since

”p:'z,0”2 = 01(1,0) (a,ﬂ)l|pn,0”2, ﬂ S a,
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and
“p'/n,n”2 = Cv(zo)(a’ ﬂ)"pn,nll2a B2 a,

we conclude that p,o(z) is an extremal polynomial for 8 < «, and pn () for
B2 a.

COROLLARY 3.2. IfP€ L,, then
n(n+1)(2n + 3)
4(2n +1)

This result was obtained by P. Erdos and A. K. Varma [2] (see, also, Varma
[11]).

Using a consideration similar to the previous one, we can prove the following
assertion for the class of polynomials L{™ (1 < m < [n/2)).

c(1,1) =

THEOREM 3.3. IfP € L (1<m<[n/?), a,B > -1, we have
1
Ccim(a, B) = E(2n +a+0)(2n + o+ B+ 1) max(Ham(e, B), Han—2m (e, B)),
where Hi(a, 8) = f(k) and f is given by (2.2).
Especially interesting cases appear when oo = . Then we have

THEOREM 3.4. fPeL{™, m>1, a=8> -1, then

(n+ a)(2n + 2a + 1)[a(a — 1)n? + 2m(n — m)(n — 1 + 3a — 20°)]

(m) —
Cr™ (e B) = 22m+a—1)(2m+a)(2n - 2m+ o —1)(2n — 2m + a)

In the special cases when o = 0 (Legendre case), « = —1/2 (Chebyshev case),
and a = 1, we have

COROLLARY 3.5. IfPe L™, m>1, then
n(n—-1)(2n+1)

3.3) . Cm(0,0) = 4(2m —-1)(2n—2m —1)’
m 1 1)\ _ 2n(2n — 1)[3n? + 8m(n — m)(n — 3)]
(34) ci™ (‘5’ —§> ~ (4m-3)(4m —1)(4n —4m - 3)(4n —4m — 1)’
™ _ n(n+1)(2n+3)
(3.5) Cam(L,1) = 4(2m +1)(2n —2m + 1)’

REMARK 3.1. From Corollary 3.2 we see that (3.5) holds and for m = 0 too.
REMARK 3.2. For m = 1, the best constants (3.3) and (3.4) reduce to

(3.6) o (0,0) = 2 4_(2173(_2’;; )
and

L 1 1) _ 2n(2n-1)(11n? — 32n 4 24)
(3.7 O <_§’ "5) - 3(4n —5)(d4n —17)

REMARK 3.3. It is of interest to note that Erdos and Varma [2] proved that
the best constant in the Lorentz class L,, (n > 2) for o = 8 = 0 is the same one as

that in (3.6), i.e. C3(0,0) = C"(0,0).
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