

1 Quadrature processes and numerical computation of the
2 two dimensional exponential integrals

3 Gradimir V. Milovanović

4 **Abstract**

5 Integral representations of two-dimensional exponential integral (TDEI) functions and
6 their numerical computation based on quadrature processes are treated. In addition to
7 a general brief description of important quadrature processes, including some historical
8 details, three methods for numerical calculation of TDEI functions are presented in par-
9 ticular. Precisely, the construction and application of the truncated Gauss-Christoffel
10 quadrature formulas, the composite trapezoidal rule, and the method of integration be-
11 tween zeros of the integrand to the calculation of the values of TDEI functions in various
12 situations are given. A series of numerical examples are given, including error analysis.

14 **2020 Mathematics Subject Classifications:** 33F05, 33C45, 41A55, 65D30, 65D32

16 **Keywords:** Two dimensional exponential integral, quadrature process, trapezoidal rule,
17 Gaussian quadrature formula, double-exponential transformation, orthogonality, three-term re-
18 currence relation

19 ¹SERBIAN ACADEMY OF SCIENCES AND ARTS, KNEZA MIHAILA 35, 11000 BEOGRAD,
20 SERBIA

22 ²UNIVERSITY OF NIŠ, FACULTY OF SCIENCES AND MATHEMATICS, 18000 NIŠ, SERBIA

23 **Email(s):** gvm@mi.sanu.ac.rs

24 **1 Introduction**

25 This paper is devoted to quadrature processes and their application in the numerical integration
26 of two-dimensional exponential integrals (TDEI), which have been considered by several authors
27 (*cf.* [1]-[3], [41]).

28 In the general case, numerical integration represents the approximation of a functional
29 $I(f) := \int_{\mathbb{R}} f(t) d\mu(t)$, defined on a class of functions X (with respect to the measure $d\mu(t)$), by
30 another functional (quadrature rule) $Q_n(f) := \sum_{\nu=1}^n A_\nu f(\tau_\nu)$, which is defined using only the
31 values of the function f at selected n points τ_ν , $\nu = 1, \dots, n$. These points are called nodes, and
32 the corresponding coefficients A_ν are weights. The difference $R_n(f) := I(f) - Q_n(f)$ represents
33 the remainder term of the quadrature formula, which is usually constructed so that $R_n(f)$ is
34 equal to zero on some subset of X .

35 The set of all algebraic polynomials of degree at most n will be denoted by \mathcal{P}_n ($\subset \mathcal{P}$), where
36 \mathcal{P} be the set of all algebraic polynomials.

37 This paper is organized as follows. In Section 2 we give a brief overview of the most
38 important quadrature processes, including some historical details. The main attention is paid
39 to the integral representations of TDEI functions (Section 3), as well as to the numerical
40 calculation of their values using numerical integration (Section 4).

41 2 Preliminaries on quadrature processes

42 In this section we give a short account on numerical integration using quadrature rules. There
 43 are two main approaches, originating from Isaac Newton (1647–1727) and Carl Friedrich Gauss
 44 (1777–1855).

45 2.1 Newton approach

46 Newton's idea from 1676 about the integration of an interpolation polynomial for the function
 47 $f : [a, b] \mapsto \mathbb{R}$, on a set of equidistant points τ_k on $[a, b]$, as well as later refinements by Roger
 48 Cotes, led to the well-known Newton-Cotes formulas for the numerical integration of functions
 49 on the interval $[a, b]$, which, in addition to their theoretical significance, also have practical
 50 applications in the construction of so-called composite quadrature formulas (trapezoidal, Simp-
 51 son's, ...), as well as in adaptive integration.

52 The well-known and the simplest composite trapezoidal rule for calculating the integral
 53 of the function f over the interval $[a, b]$, using $n + 1$ values $f_k = f(\tau_k)$ at equidistant nodes
 54 $\tau_k = a + kh$, $k = 0, 1, \dots, n$, with the step size $h = (b - a)/n$, is defined by

$$I(f) = \int_a^b f(t) dt \approx T_n(f; h) := h \left(\frac{1}{2} f_0 + f_1 + \dots + f_{n-1} + \frac{1}{2} f_n \right). \quad (1)$$

55 For sufficiently continuously-differentiable functions, the well-known Euler-Maclaurin summa-
 56 tion formula

$$T_n(f; h) - I(f) = \sum_{\nu=1}^m \frac{h^{2\nu} B_{2\nu}}{(2\nu)!} (f^{(2\nu-1)}(b) - f^{(2\nu-1)}(a)) + E_m(f)$$

57 holds, where B_k ($B_0 = 1$, $B_1 = -1/2$, $B_2 = 1/6$, $B_3 = 0$, $B_4 = -1/30$, ...) are Bernoulli
 58 numbers and $E_m(f)$ is the corresponding remainder term, which can be represented as

$$E_m(f) = (b - a) \frac{B_{2m+2} h^{2m+2}}{(2m+2)!} f^{(2m+2)}(\xi), \quad a < \xi < b.$$

59 As we can see the trapezoidal rule $T_n(f; h)$, given by (1), with the error term

$$T_n(f; h) - I(f) = E_0(f) = \frac{1}{12} (b - a) f''(\xi) h^2 \quad (a < \xi < b),$$

60 converges very slowly with respect to step refinement as $O(h^2)$. Something better convergence
 61 $O(h^4)$ has the classical composite Simpson rule $S_n(f; h)$. In general, both of these formulas do
 62 not allow achieving high accuracy.

63 However, if we restrict our analysis to the class of analytic functions with all derivatives
 64 f vanishing at $x = a$ and $x = b$, then the discretization error is given only by the remainder
 65 $E_m(f)$ as $m \rightarrow +\infty$. Then the convergence with respect to step refinement is faster than any
 66 finite order and the trapezoidal rule becomes the method of choice. This kind of convergence
 67 is known as *exponential convergence*. Such a method, known in the literature as *IMT rule* was
 68 proposed in 1969 by Iri, Moriguti and Takasawa, but an English translation of the original
 69 Japanese paper was published in 1987 (*cf.* [16]). Error estimation for analytic functions and
 70 quadrature rules obtained by transformations of the integration variable were considered by
 71 Takahasi and Mori [34, 35]. In a survey paper Mori [31] particularly emphasized the so-called
 72 *double exponential integration rule* (DE-rule), which is characterized by a double exponential
 73 decay near the endpoints of the transformed integration interval. Particularly interesting are
 74 the cases when $(a, b) = (-\infty, +\infty)$ and $(0, +\infty)$.

75 In an interesting paper Waldvogel [38] proposed as a standard the trapezoidal rule on the
 76 entire real line \mathbb{R} for numerical integration of analytic functions and suggested the choice of
 77 an elementary transformation $t = \phi(x)$ from the interval (a, b) to $(-\infty, +\infty)$. In addition,
 78 slow decay at infinity can be accelerated by the sinh-transformation, as well as some other
 79 transformations (cf. [16, 25, 30, 34, 35, 38]).

80 In the case $(a, b) = (-\infty, +\infty)$, formula (1) can be slightly modified as the *shifted trapezoidal*
 81 *sum* with step h and offset s (cf. [38]),

$$I(f) = \int_{-\infty}^{+\infty} f(t) dt \approx T(f; h, s) := h \sum_{k=-\infty}^{+\infty} f(s + kh). \quad (2)$$

82 We note that $T(f; h, s) = T(f; h, s + h)$ and

$$T\left(f; \frac{h}{2}, s\right) = \frac{1}{2} \left[T(f; h, s) + T\left(f; \frac{h}{2}, s + \frac{h}{2}\right) \right].$$

83 The latter relation is useful for the efficient transition from step h to step $h/2$.

84 **Remark 1.** With the same Newton idea, one can also consider the weighted integration
 85 $\int_a^b f(t)w(t) dt$, where $w : [a, b] \mapsto \mathbb{R}^+$ is a given weight function. Thus, the weighted Newton-
 86 Cotes formulas are given by

$$\int_a^b f(t)w(t) dt = \sum_k A_k f(\tau_k) + R_n(f), \quad (3)$$

87 where the equidistant points (nodes) are taken by the step $h = (b - a)/n$ usually as

$$\tau_k = a + kh, \quad k = \overline{0, n}; \quad \tau_k = a + kh, \quad k = \overline{1, n-1}; \quad \tau_k = a + \left(k - \frac{1}{2}\right), \quad k = \overline{1, n}.$$

88 Such quadrature formulas are of the interpolation type, for which the remainder term $R_n(f) = 0$
 89 whenever $f \in \mathcal{P}_d$, where d is the algebraic degree of exactness depending of the number of
 90 nodes. The weight coefficients A_k (Cotes numbers) can be expressed using the corresponding
 91 interpolation formula (cf. [23, §5.1]). Closed expressions for Cotes numbers A_k were derived in
 92 terms of moments and Stirling numbers of the first kind in [22].

93 **Remark 2.** A type of interpolatory quadrature formulas, whose nodes are geometricaly dis-
 94 tributed in the form $\tau_k = aq^k$, $k = 0, 1, \dots, n$, were introduced in [21]. The explicit expressions
 95 for the coefficients A_k are also obtained using the q -binomial theorem.

96 2.2 Gaussian approach

97 The most significant discovery in numerical analysis in the 19th century was Gauss's quadrature
 98 formulas of 1814. Gauss [9] dramatically improved Newton's method, increasing the algebraic
 99 degree of exactness of the n -point quadrature formula (3) (for $w(t) = 1$ on $(a, b) = (0, 1)$) from
 100 $n - 1$ to $2n - 1$, using only his result on continued fractions associated with hypergeometric
 101 series. It is interesting to note that Gauss determined the numerical values of nodes and weights
 102 for each $n \leq 7$, with almost 16 significant decimal digits, which are otherwise the zeros of the
 103 shifted Legendre polynomial $P_n(2t - 1)$. Twelve years after Gauss, Jacobi [17] gave an elegant
 104 alternative derivation of Gauss's formulas. Further contributions and the development of this
 105 discovery into a theory during the second half of the nineteenth century were made by Mehler,
 106 Heine, Radau and many others, among whom Christoffel stands out in particular, who in 1877
 107 gave a significant generalization of Gauss's formulas for arbitrary weight functions or measures,

thus providing a fundamental connection with orthogonal polynomials and continued fractions. Such formulas with a maximum (algebraic) degree of exactness are now known as the *Gauss-Christoffel quadrature formulas*. Markov, Stiltjes, Uspensky, etc. are credited with analyzing the error $R_n(f)$ of these formulas in various classes of functions, as well as the convergence of a sequence of quadrature formulas. A nice survey of Gauss-Christoffel quadrature formulae was written by Gautschi [10].

The main tool for constructing and analyzing Gauss-Christoffel quadrature rules are orthogonal polynomials $\pi_k(t)$ related to the inner product defined by

$$(p, q) = \int_{\mathbb{R}} p(t)q(t) d\mu(t) \quad (p, q \in \mathcal{P}).$$

It is well-known that the monic polynomials $\pi_k(t)$, $k = 0, 1, 2, \dots$, satisfy the three-term recurrence relation of the form

$$\pi_{k+1}(t) = (t - \alpha_k)\pi_k(t) - \beta_k\pi_{k-1}(t), \quad k = 0, 1, 2, \dots, \quad (4)$$

where $\pi_0(t) = 1$ and $\pi_{-1}(t) = 0$ (by definition).

Remark 3. The coefficient β_0 in (4) may be arbitrary, but is conveniently defined by

$$\beta_0 = \mu_0 = \int_{\mathbb{R}} d\mu(t).$$

The following result was proved by Jacobi [17]:

Theorem 2.1. *Given a positive integer m ($\leq n$), the quadrature formula*

$$\int_{\mathbb{R}} f(t) d\mu(t) = \sum_{k=1}^n A_k f(\tau_k) + R_n(f), \quad (5)$$

has degree of exactness $d = n - 1 + m$ if and only if the following conditions are satisfied:

- 1° Formula (5) is interpolatory;
- 2° The node polynomial $\omega_n(t) = (t - \tau_1) \cdots (t - \tau_n)$ satisfies

$$(\forall p \in \mathcal{P}_{m-1}) \quad (p, \omega_n) = \int_{\mathbb{R}} p(t)\omega_n(t) d\mu(t) = 0.$$

According to this result, the n -point quadrature formula (5) with respect to the positive measure $d\mu(t)$ has the maximal algebraic degree of exactness $2n - 1$. In other words, setting $m = n$ is optimal ($\omega_n = \pi_n$).

Higher values of m ($> n$) are impossible. Indeed, according to 2°, the case $m = n + 1$ would require the orthogonality condition

$$(\forall p \in \mathcal{P}_n) \quad (p, \omega_n) = 0.$$

Choosing $p = \omega_n$ (which has degree n) immediately gives $(\omega_n, \omega_n) = 0$. Since μ is a positive measure, the inner product is strictly positive for any non-zero polynomial of degree at most n , leading to a contradiction.

The cases with lower m are well known:

- when $m = n - 1$, the resulting formula is a *Gauss-Radau* quadrature rule (one of the endpoints a or b is included among the nodes);
- when $m = n - 2$, it becomes a *Gauss-Lobatto* quadrature rule ($\tau_1 = a$ and $\tau_n = b$).

137 These rules have lower degrees of exactness than the classical Gaussian formula (typically
 138 $2n - 2$ for Radau and $2n - 3$ for Lobatto with n nodes), which is the price paid for enforcing
 139 the boundary conditions.

140 The first significant progress in the construction of Gauss-Christoffel formulas (i.e., the
 141 nodes τ_k and the weight coefficients A_k) for an arbitrary positive measure $d\mu$ on \mathbb{R} with finite
 142 or unbounded support, for which all moments $\mu_k = \int_{\mathbb{R}} t^k d\mu$, $k = 0, 1, \dots$, exist and are finite
 143 and $\mu_0 > 0$, was made in 1969 by Golub and Welsch [14]. They reduced the construction to
 144 the eigenvalue problem for a symmetric tri-diagonal, the so-called Jacobi matrix,

$$J_n(d\mu) = \begin{bmatrix} \alpha_0 & \sqrt{\beta_1} & & & \mathbf{0} \\ \sqrt{\beta_1} & \alpha_1 & \sqrt{\beta_2} & & \\ & \sqrt{\beta_2} & \alpha_2 & \ddots & \\ & & \ddots & \ddots & \sqrt{\beta_{n-1}} \\ \mathbf{0} & & & \sqrt{\beta_{n-1}} & \alpha_{n-1} \end{bmatrix}, \quad (6)$$

145 where the sequences $\{\alpha_k\}$ and $\{\beta_k\}$ are the coefficients in a three-term recurrence relation (4).
 146 The nodes τ_1, \dots, τ_n are the eigenvalues of the matrix (6), and the first components $v_{k,1}$ of
 147 the corresponding normalized eigenvectors $\mathbf{v}_k = [v_{k,1} \ \dots \ v_{k,n}]^T$ ($\mathbf{v}_k^T \mathbf{v}_k = 1$) give the weight
 148 coefficients (Christoffel numbers) $A_k = \mu_0 v_{k,1}^2$, $k = 1, \dots, n$.

149 These sequences $\{\alpha_k\}$ and $\{\beta_k\}$ depend only on the measure, i.e., of the weight function
 150 $w(t) = d\mu/dt$ if the measure is absolutely continuous, but unfortunately they are known, in an
 151 explicit form, only for some narrow classes of weight functions, such as, for example, classical
 152 weights (Jacobi weight on $(-1, 1)$, generalized Laguere weight on $(0, \infty)$ and Hermite weight
 153 on \mathbb{R}).

154 Another significant progress occurred at the beginning of the eighties of the last century,
 155 when Walter Gautschi, in a series of papers, recognizing the recursive sequences $\{\alpha_k\}$ and
 156 $\{\beta_k\}$ as fundamental quantities, and developed the so-called *constructive theory of orthogonal*
 157 *polynomials on \mathbb{R}* (cf. [11, 12]).

158 Thanks to the methods developed within the constructive theory of orthogonality, the cal-
 159 culation of the coefficients $\{\alpha_k\}$ and $\{\beta_k\}$, in a general case, is realized by numerical methods
 160 (see [11, 12, 27]). During their numerical construction, the problem of high instability arises,
 161 in relation to small perturbations of the input quantities. However, the progress that has been
 162 made in the last thirty years in symbolic calculation and in the so-called arithmetic of variable
 163 precision, today allows the generation of sequences of recursive coefficients sometimes by direct
 164 application of the original Chebyshev method of moments, with the use of arithmetic of suffi-
 165 ciently high precision, which enables numerical instability to be overcome! Such software for
 166 orthogonal polynomials and quadrature formulas are available today:

- MATLAB package **SOPQ** (Gautschi: <https://www.cs.purdue.edu/archives/2002/wxg/>);
- MATHEMATICA package **OrthogonalPolynomials** (cf. [6, 29]: available on the website of
 169 the Mathematics Institute SASA <http://www.mi.sanu.ac.rs/~gvm/>).

170 **Remark 4.** A new representation of Hermite's osculator interpolation was presented in [20],
 171 with the aim of constructing a weighted Hermite quadrature formula. Explicit forms for several
 172 special cases of quadratures are obtained, including the weighted Hermite quadrature rule with
 173 arithmetic and geometric knots, as well as the standard Gauss-Christoffel quadrature rule and
 174 the Gaussian quadrature rule using only derivatives of functions (cf. [19, 28]).

175 In many situations, Gauss-Christoffel quadrature formulas give very accurate approxima-
 176 tions of integrals. However, in some cases these formulas have slow convergence or give very
 177 similar results compared to simpler methods. In a review paper, Trefethen [36] compared the

accuracy of the Gauss-Christoffel and Clenshaw-Curtis methods and showed that there are numerous cases where these two methods give results with almost equal errors, but the construction of the Clenshaw-Curtis method is much simpler. His recent work [37] on the accuracy of quadrature formulas is also interesting.

3 Two dimensional exponential integrals

The exponential integral $E_1(x)$ is defined by

$$E_1(z) = \int_1^{+\infty} \frac{e^{-zt}}{t} dt,$$

and its generalization $E_n(x)$ by

$$E_n(z) = \int_1^{+\infty} \frac{e^{-zt}}{t^n} dt, \quad n > 0. \quad (7)$$

The exponential integral plays an important role in many subjects of physics, quantum chemistry, theory of fluid flow, etc. Integrals having as weight function this integral on the positive real line \mathbb{R}^+ (or on a finite part $[0, c]$, $c > 0$) are of interest in radiative transfer. W. Gautschi [13] has considered polynomials orthogonal with respect to (7).

There is also a generalisation of (7), defined by (cf. [3])

$$\left. \begin{aligned} \varepsilon_1(\tau, \beta) &= \int_1^{+\infty} (t^2 + \beta^2)^{-1/2} \exp[-\tau(t^2 + \beta^2)^{1/2}] dt, \\ \varepsilon_2(\tau, \beta) &= \int_1^{+\infty} t^{-2} \exp[-\tau(t^2 + \beta^2)^{1/2}] dt, \\ \varepsilon_3(\tau, \beta) &= \tau \int_1^{+\infty} \varepsilon_2\left(\tau t, \frac{\beta}{t}\right) dt, \end{aligned} \right\} \quad (8)$$

which appears in the study of the radiative transfer in a multi-dimensional medium. Note that for $\beta = 0$, $\varepsilon_1(\tau, 0) = E_1(\tau)$ and $\varepsilon_1(\tau, 0) = E_2(\tau)$.

Altaç [2] (see also [1]) considered the n^{th} order generalized exponential integral functions $\varepsilon_n(\tau, \beta)$ ($n \in \mathbb{N}$) in the following form

$$\varepsilon_n(\tau, \beta) = \frac{1}{(n-1)!} \int_{\tau}^{+\infty} (t - \tau)^{n-1} \frac{\exp[-\sqrt{t^2 + (\tau\beta)^2}]}{\sqrt{t^2 + (\tau\beta)^2}} dt,$$

or, after a change of variables $t := t\tau$, as

$$\varepsilon_n(\tau, \beta) = \frac{\tau^{n-1}}{(n-1)!} \int_1^{+\infty} (t - 1)^{n-1} \frac{\exp[-\tau\sqrt{t^2 + \beta^2}]}{\sqrt{t^2 + \beta^2}} dt. \quad (9)$$

He derived several series expansions, recurrence relations, as well as the other properties of this kind of integrals.

Since (cf. [33, p. 189] for $\nu = 0$)

$$\int_0^{+\infty} x \frac{\exp[-p\sqrt{x^2 + z^2}]}{\sqrt{x^2 + z^2}} J_0(cx) dx = \frac{\exp[-z\sqrt{p^2 + c^2}]}{\sqrt{p^2 + c^2}},$$

where $J_{\nu}(z)$ is the Bessel function of the first kind and order ν , defined by

$$J_{\nu}(z) = \sum_{k=0}^{+\infty} \frac{(-1)^k}{k! \Gamma(k + \nu + 1)!} \left(\frac{z}{2}\right)^{2k+\nu}, \quad (10)$$

199 Eq. (9) can be expressed in the form

$$\varepsilon_n(\tau, \beta) = \frac{\tau^{n-1}}{(n-1)!} \int_1^{+\infty} (t-1)^{n-1} \left(\int_0^{+\infty} \varrho \frac{\exp[-t\sqrt{\varrho^2 + \tau^2}]}{\sqrt{\varrho^2 + \tau^2}} J_0(\beta\varrho) d\varrho \right) dt.$$

200 After changing the order of integration and using

$$\int_1^{+\infty} (t-1)^{n-1} e^{-at} dt = \frac{(n-1)! e^{-a}}{a^n}, \quad a = \sqrt{\varrho^2 + \tau^2},$$

201 we finally get

$$\varepsilon_n(\tau, \beta) = \tau^{n-1} \int_0^{+\infty} J_0(\beta\varrho) \frac{\varrho e^{-\sqrt{\varrho^2 + \tau^2}}}{(\varrho^2 + \tau^2)^{(n+1)/2}} d\varrho. \quad (11)$$

202 On the other side in 2015 Yardimci et al. [41] considered the two-dimensional exponential
203 integral (TDEI) functions given in the form

$$\varepsilon_n(\tau, \beta) = \frac{\tau^{n-1}}{2\pi} \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{e^{-r}}{r^{n+1}} e^{-i\beta x} dx dy, \quad (12)$$

204 where $r^2 = x^2 + y^2 + \tau^2$ and $n \in \mathbb{N}$. They proved that the function $(\tau, \beta) \mapsto \varepsilon_n(\tau, \beta)$ is uniformly
205 convergent on

$$D(\epsilon) = \{(\tau, \beta) \in \Omega \mid \tau \in [\epsilon, +\infty), \beta \in \mathbb{R}\},$$

and nonuniformly convergent on $\Omega := [0, +\infty) \times \mathbb{R}$. Furthermore, using these facts, the authors
concluded that for $(\tau, \beta) \in D(\epsilon)$ the function $(\tau, \beta) \mapsto \varepsilon_n(\tau, \beta)$ satisfies the following asymptotic
formulas

$$\begin{aligned} \varepsilon_n(\tau, \beta) &= o(1), & \tau \rightarrow +\infty; \\ \varepsilon_n(\tau, \beta) &= o(1), & \beta \rightarrow \pm\infty; \\ \varepsilon_n(\tau, \beta) &= E_n(\tau) + o(1), & \beta \rightarrow +\infty. \end{aligned}$$

206 Beside the problem of convergence and asymptotic behaviour, they investigated also numerical
207 computations of the TDEI functions.

208 Note that the previous functions (8)–(12) are two-dimensional analogs of the exponential
209 integral (7).

210 Now, we prove that the formulas (12) and (9) are equivalent.

211 **Proposition 3.1.** *The formulas for $\varepsilon_n(\tau, \beta)$, given by (12) and (9) are equivalent.*

212 *Proof.* If we introduce the polar coordinates (ϱ, θ) in the integral (12): $x = \varrho \cos \theta$, $y = \varrho \sin \theta$,
213 then (12) reduces to

$$\begin{aligned} \varepsilon_n(\tau, \beta) &= \frac{\tau^{n-1}}{2\pi} \int_0^{2\pi} \int_0^{+\infty} \frac{e^{-\sqrt{\varrho^2 + \tau^2}}}{(\varrho^2 + \tau^2)^{(n+1)/2}} e^{-i\beta\varrho \cos \theta} \varrho d\theta d\varrho \\ &= \tau^{n-1} \int_0^{+\infty} \left(\frac{1}{2\pi} \int_0^{2\pi} e^{-i\beta\varrho \cos \theta} d\theta \right) \frac{e^{-\sqrt{\varrho^2 + \tau^2}} \varrho}{(\varrho^2 + \tau^2)^{(n+1)/2}} d\varrho, \end{aligned}$$

214 i.e.,

$$\varepsilon_n(\tau, \beta) = \tau^{n-1} \int_0^{+\infty} J_0(\beta\varrho) \frac{e^{-\sqrt{\varrho^2 + \tau^2}} \varrho}{(\varrho^2 + \tau^2)^{(n+1)/2}} d\varrho, \quad (13)$$

215 because of (cf. [32, p. 223])

$$J_n(z) = \frac{1}{2\pi i^n} \int_0^{2\pi} e^{iz \cos \theta} \cos(n\theta) d\theta$$

216 and $J_0(-z) = J_0(z)$, where $J_\nu(z)$ is the Bessel function of the first kind and order ν , defined by
217 (10). It is obvious that (13) coincides with (11), which is obtained from (9), thus completing
218 the proof. \square

219 In the sequel we give a few equivalent integral representations of $\varepsilon_n(\tau, \beta)$.

220 **Proposition 3.2.** *For $\tau > 0$, $\beta > 0$, and $n \in \mathbb{N}$, we have*

$$\varepsilon_n(\tau, \beta) = e^{-\tau} \int_0^{+\infty} \frac{J_0(\tau\beta\sqrt{z(z+2)})}{(z+1)^n} e^{-\tau(z+1)} dz, \quad (14)$$

221

$$\varepsilon_n(\tau, \beta) = \int_0^{+\infty} J_0(\tau\beta\sqrt{e^{2x}-1}) e^{-(n-1)x-\tau e^x} dx \quad (15)$$

222 and

$$\varepsilon_n(\tau, \beta) = \int_0^{+\infty} \frac{J_0(\tau\beta \sinh t)}{\cosh^n t} e^{-\tau \cosh t} \sinh t dt. \quad (16)$$

223 *Proof.* For a given τ we introduce a new variable z (≥ 0) by means $\varrho = \tau\sqrt{z(z+2)}$, so that

$$\sqrt{\varrho^2 + \tau^2} = \tau(z+1) \quad \text{and} \quad d\varrho = \frac{\tau(z+1)}{\sqrt{z(z+2)}} dz.$$

224 Then, the integral (11) becomes

$$\varepsilon_n(\tau, \beta) = \tau^{n-1} \int_0^{+\infty} J_0(\beta\tau\sqrt{z(z+2)}) \frac{e^{-\tau(z+1)} \tau\sqrt{z(z+2)}}{\tau^{n+1}(z+1)^{n+1}} \cdot \frac{\tau(z+1)}{\sqrt{z(z+2)}} dz,$$

225 i.e., (14).

226 In order to get (15) we use a change of variables $z = e^x - 1$ in (14), so that $z(z+2) = 227 (z+1)^2 - 1 = e^{2x} - 1$. In this way we obtain

$$\begin{aligned} \varepsilon_n(\tau, \beta) &= e^{-\tau} \int_0^{+\infty} \frac{J_0(\tau\beta\sqrt{e^{2x}-1})}{e^{nx}} e^{-\tau(e^x-1)} e^x dx \\ &= \int_0^{+\infty} J_0(\tau\beta\sqrt{e^{2x}-1}) e^{-(n-1)x-\tau e^x} dx. \end{aligned}$$

228 Finally, using the 1-1 transformation $t \mapsto x = \log(\cosh t)$, which maps the interval $[0, +\infty)$
229 into itself, the integral (15) reduces to (16). \square

230 **Remark 5.** According to (15) or (16) we can conclude that $\varepsilon_n(\tau, \beta) \leq \varepsilon_1(\tau, \beta)$. Since $|J_0(t)| \leq 1$
231 for $t \geq 0$, we have

$$|J_0(\tau\beta\sqrt{e^{2x}-1}) e^{-(n-1)x-\tau e^x}| \leq e^{-\tau e^x},$$

232 so that

$$\varepsilon_1(\tau, \beta) < \varepsilon_1(\tau, 0) = \int_0^{+\infty} e^{-\tau e^x} dx = \int_\tau^{+\infty} \frac{e^{-t}}{t} dt = \Gamma(0, \tau),$$

233 where $\Gamma(a, z)$ is the incomplete gamma function, defined by

$$\Gamma(a, z) = \int_z^\infty t^{a-1} e^{-t} dt.$$

234 **Remark 6.** We note that the function $z \mapsto J_0(\omega\sqrt{z(z+2)})$ ($\omega = \tau\beta$), which appears in the
 235 integral (14), can be highly oscillatory function (see Fig. 1), so this formula is not useful for
 236 calculating the function $\varepsilon_n(\tau, \beta)$. On the other side, the expressions (15) and (16) are acceptable
 237 for numerically calculating the value of $\varepsilon_n(\tau, \beta)$.

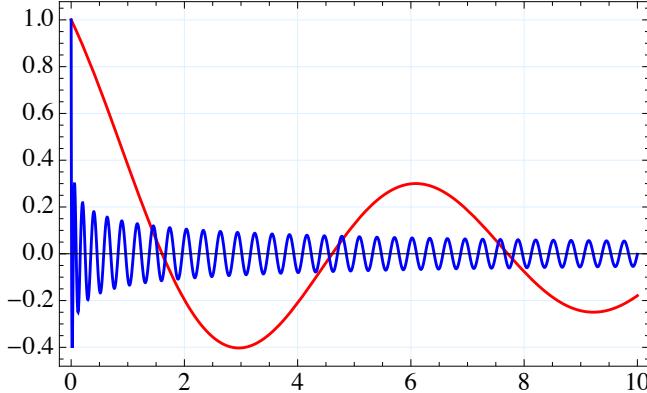


Figure 1: Graphics of the function $z \mapsto J_0(\omega\sqrt{z(z+2)})$ for $\omega = 1$ (red line) and $\omega = 20$ (blue line)

238 4 Numerical calculation of the TDEI functions

239 In this section we give some alternative methods based on quadrature processes (cf. [23])
 240 for numerical computation of the values of the two dimensional exponential integral (TDEI)
 241 functions. We analyze quadrature processes based on the application of the Gauss-Laguerre
 242 formula, the composite trapezoidal formula, and the method of so-called *integration between*
 243 *zeros of the integrand* for oscillatory functions (cf. [7, p. 230]). Special methods for the inte-
 244 gration of fast oscillatory functions, such as those in the papers [4, 5, 15, 18, 26, 39, 40] and
 245 the book [8], will be the subject of future research.

246 4.1 Application of Gauss-Christoffel quadrature formulas

247 Computing weighted integrals of the Bessel function $J_0(\omega x)$ over $(0, +\infty)$ is a complex topic
 248 with results that depend heavily on the chosen weight function. Only in some cases such
 249 integrals have the closed forms, e.g.,

$$\int_0^{+\infty} e^{-ax} J_0(\omega x) dx = \frac{1}{\sqrt{a^2 + \omega^2}}, \quad \int_0^{+\infty} x e^{-ax} J_0(\omega x) dx = \frac{a}{(a^2 + \omega^2)^{3/2}}, \quad \dots,$$

250 while in most cases need specialized numerical methods are required.

251 First, we consider $\varepsilon_n(\tau, \beta)$ in the integral form (11). Let $\Phi(\varrho) \equiv \Phi(\varrho; \tau, \beta, n)$ denote its
 252 integrand, which can be written as a product $F(\varrho)w(\varrho)$, where w is the Laguerre weight function
 253 on $(0, +\infty)$, given by $w(\varrho) = e^{-\varrho}$, and

$$F(\varrho) \equiv F(\varrho; \tau, \beta, n) = \Phi(\varrho; \tau, \beta, n) e^\varrho = \tau^{n-1} J_0(\beta \varrho) \frac{\varrho e^{-\tau^2/(\varrho + \sqrt{\varrho^2 + \tau^2})}}{(\varrho^2 + \tau^2)^{(n+1)/2}}. \quad (17)$$

254 This allows us to apply the Gauss-Laguerre quadrature formula, so we have

$$\varepsilon_n(\tau, \beta) = \int_0^{+\infty} F(\varrho)w(\varrho) d\varrho = \sum_{k=1}^N A_k F(\varrho_k) + R_N(F), \quad (18)$$

255 where $R_N(F)$ is the corresponding remainder term.

256 The functions $\Phi(\varrho)$ and $F(\varrho)$ for $\tau = 1$, $\beta = 10$ and $n = 2$ are displayed in Figures 2 and 3,
257 respectively.

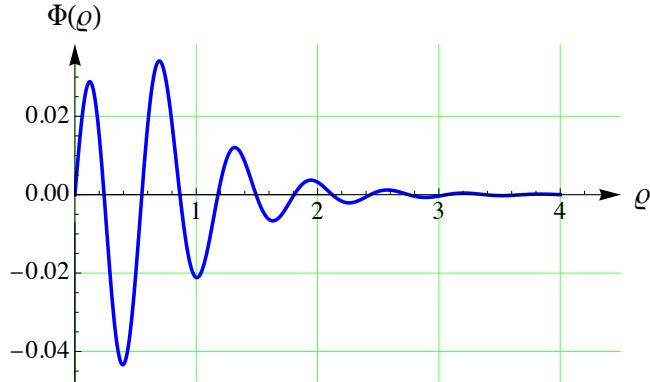


Figure 2: Graphic of the function $\varrho \mapsto \Phi(\varrho) \equiv \Phi(\varrho; 1, 10, 2)$ on $[0, 4]$

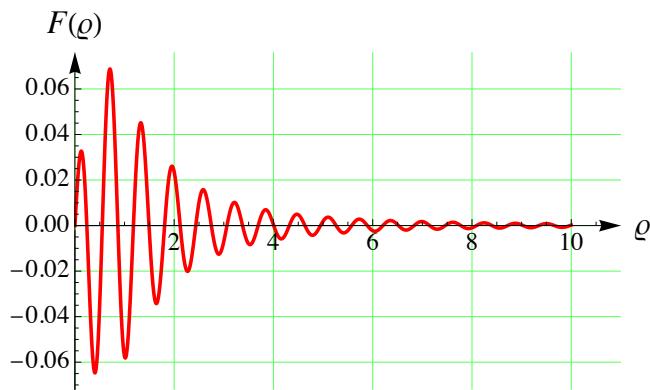


Figure 3: Graphic of the function $\varrho \mapsto F(\varrho) \equiv F(\varrho; 1, 10, 2)$ on $[0, 10]$

258 For calculating quadrature parameters (the nodes ϱ_k and the weights A_k) we use our MATH-
259 EMATICA Package **OrthogonalPolynomials** (cf. [6, 29]). Taking into account the oscillatory
260 character and slow decay of the function $\varrho \mapsto F(\varrho)$ as $\varrho \rightarrow +\infty$, we will construct Gauss-
261 Laguerre quadrature formulas with a large number of nodes $N (= \text{nn})$, from 100 to 1000, with
262 a step of 100 (and a working precision of 25 decimal digits). The corresponding commands are:

```
263 << orthogonalPolynomials'
264 pq[n_] := aGaussianNodesWeights[n, {aLaguerre}, WorkingPrecision -> 25,
265 Precision -> 20];
266 nw = Table[pq[nb], {nn, 100, 1000, 100}];
```

267 Here, $nw[[v]]$ gives the nodes $nw[[v]][[1]]$ and the weights $nw[[v]][[2]]$ for $nn = 100$ v,
268 where $v = 1, 2, \dots, 10$.

269 Applying the quadrature rule (18) to the function $F(\varrho; \tau, \beta, n)$, we obtain the approximative
270 values of $\varepsilon_n(\tau, \beta)$, in the notation $\tilde{\varepsilon}_n^{(N)}(\tau, \beta)$. The corresponding values in the case $\tau = 1$, $\beta = 10$
271 and $n = 2$ are given in the second column of Table 1, and exact figures are underlined. Numbers
272 in parentheses indicate decimal exponents, for example $1.24(-2) = 1.24 \times 10^{-2}$.

273 The exact value of this TDEI function in the point $(\tau, \beta) = (1, 10)$ is

$$\varepsilon_2(1, 10) = 2.986930427685907284974203770433\dots \times 10^{-5},$$

274 obtained in WOLFRAM MATHEMATICA, ver. 14.3, using the high precision arithmetics with
 275 100 decimal digits.

N	$\tilde{\varepsilon}_2^{(N)}(1, 10)$	$\text{Err}(N)$	j_N (15%)	$\bar{\varepsilon}_2^{(j_N)}(1, 10)$
100	$-2.5526893352569225(-4)$	9.55	15	$-2.5333617783794170(-5)$
200	$3.0240940409582615(-5)$	$1.24(-2)$	30	$3.0243994432526185(-5)$
300	$2.9882400642087742(-5)$	$4.38(-4)$	45	$2.9882404837193715(-5)$
400	$2.9869202414602691(-5)$	$3.41(-6)$	60	$2.9869202417527040(-5)$
500	$2.9869302932774400(-5)$	$4.50(-8)$	75	$2.9869302932765853(-5)$
600	$2.9869304302724077(-5)$	$8.66(-10)$	90	$2.9869304302724031(-5)$
700	$2.9869304276972022(-5)$	$3.78(-12)$	105	$2.9869304276972022(-5)$
800	$2.9869304276852608(-5)$	$2.16(-13)$	120	$2.9869304276852608(-5)$
900	$2.9869304276859088(-5)$	$5.17(-16)$	135	$2.9869304276859088(-5)$
1000	$2.9869304276859074(-5)$	$5.11(-17)$	150	$2.9869304276859074(-5)$

Table 1: Gauss-Laguerre approximations in numerical computation of $\varepsilon_2(1, 10)$

276 From this example, we can see the very slow convergence of the Gauss-Laguerre quadrature
 277 formula. Relative errors

$$\text{Err}(N) = \left| \frac{\tilde{\varepsilon}_n^{(N)}(\tau, \beta) - \varepsilon_n(\tau, \beta)}{\varepsilon_n(\tau, \beta)} \right|$$

278 are presented in the third column in Table 1. However, we can use the idea of Mastroianni
 279 and Monegato [24] to reduce the numerical work in computing quadrature sums. Namely, they
 280 proposed a truncated version where the last part of its nodes is omitted from the classical
 281 Gauss-Laguerre quadrature formula, i.e.,

$$\varepsilon_n(\tau, \beta) = \int_0^{+\infty} F(\varrho) w(\varrho) d\varrho = \sum_{k=1}^{j_N} A_k F(\varrho_k) + R_{j_N}(F), \quad (19)$$

282 where $j_N < N$. Truncated sums $\bar{\varepsilon}_n^{(N)}(\tau, \beta)$, by taking only the first 15% of terms, are presented
 283 in the same table (last column). The number of terms taken in quadrature sums is given in the
 284 penultimate column. As we can see, the values of the truncated sums, with only $\lfloor 15N/100 \rfloor$
 285 terms, are almost the same as those (with N terms) in the second column of Table 1.

286 Thus, in calculating the approximations of TDEI functions, we use a maximum of 150
 287 quadrature nodes, so the numerical work is reduced many times. However, the construction of
 288 the high-order Gaussian formulas remains.

289 **Remark 7.** Instead of the Gauss-Laguerre quadrature rule in (18) one can use the generalized
 290 Gauss-Laguerre rule with the weight function $\varrho \mapsto \varrho e^{-\varrho}$ on $(0, +\infty)$, and extracting the factor
 291 “ ϱ ” from (17), but some improvement cannot be achieved.

292 In the sequel we provide graphics (see Figure 4) for the TDEI functions $\varepsilon_n(\tau, \beta)$, $n = 1, 2, 3$,
 293 obtained using the previously described approach.

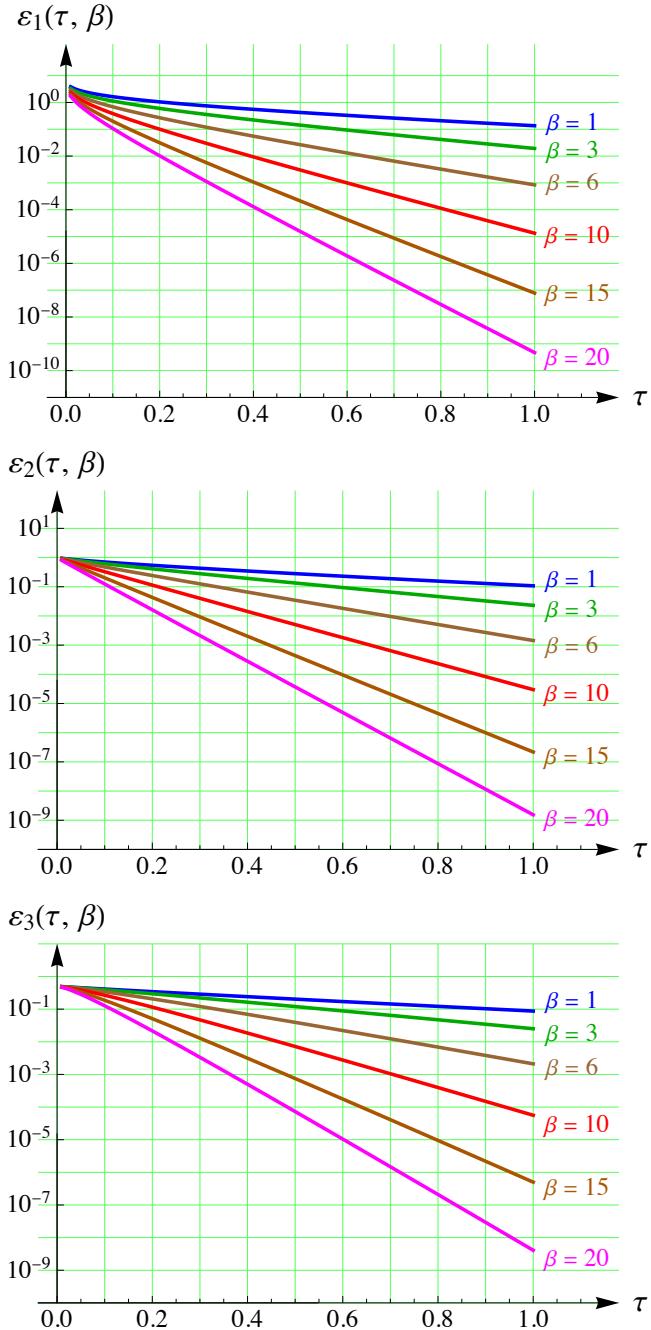


Figure 4: Graphics of the TDEI functions $\tau \mapsto \varepsilon_n(\tau, \beta)$, $n = 1, 2, 3$, in log-scale for some selected values of the parameter β , when τ runs over $(0, 1)$

294 The graphics for the TDEI functions $\tau \mapsto \varepsilon_n(\tau, \beta)$ are given in log-scale for $\tau \in (0, 1)$ and
 295 some selected values of the parameter $\beta \in \{1, 3, 6, 10, 15, 20\}$.

296 **4.2 Application of the trapezoidal rule**

297 As we mentioned in Section 3 (Remark 6) the expressions (15) and (16) are acceptable for
 298 numerically calculating the value of $\varepsilon_n(\tau, \beta)$. In this part we use the second one, denoting its
 299 integrand by

$$g(t) \equiv g(t; \tau, \beta, n) = \frac{J_0(\tau \beta \sinh t)}{\cosh^n t} e^{-\tau \cosh t} \sinh t, \quad (20)$$

300 for which

$$|g(t)| \leq \frac{|J_0(\tau \beta \sinh t)| \sinh t}{\cosh^n t} e^{-\tau \cosh t} \leq 2^{n-1} \exp\left(-\frac{\tau}{2} e^t\right) \quad (t > 0).$$

301 Although this integrand g is oscillatory, its modulus $|g(t)|$ has a double exponential decay, so
 302 that we can apply the simplest rule, the so-called composite trapezoidal rule, for numerically
 303 computing the integral (16).

304 The trapezoidal sum (2) for integration over $(-\infty, +\infty)$ can be modified for this case of
 305 integration on $[0, +\infty)$ in the following way. For a given step h , we define the trapezoidal
 306 approximation

$$\int_0^{+\infty} g(t) dt \approx T(g; h) := h \sum_{k=1}^{+\infty} g(kh), \quad (21)$$

307 where the initial term (for $k = 0$) vanishes because $g(0) = 0$. Also, if we define the shifted sum

$$\tilde{T}(g; h) := h \sum_{k=0}^{+\infty} g\left(\frac{h}{2} + kh\right),$$

308 then the corresponding approximation for $h/2$ can be expressed as

$$T\left(g; \frac{h}{2}\right) = \frac{1}{2} [T(g; h) + \tilde{T}(g; h)]. \quad (22)$$

309 Th relation (22) is useful for efficiently applying this method by successively reducing the step
 310 size to half the previous value. Due to the rapid decay of the modulus of integrand as $t \rightarrow +\infty$,
 311 the infinite sum is replaced by a finite one and the method becomes very simple. Therefore, the
 312 summation in (21) should be performed for $k \leq M = \lfloor b/h \rfloor$, where b is such that $|g(t)| \ll \text{eps}$
 313 for $t > b$, where eps is a suitably small value.

314 Here we consider two examples: (a) $(\tau, \beta, n) = (1, 10, 2)$ and (b) $(\tau, \beta, n) = (1/2, 1, 1)$.

315 (a) This case has been treated in the previous part of this section by the Gauss-Christoffel
 316 rule. Its integrand $g(t; 1, 10, 2)$ is presented in Figure 5 (red line). Figure 6 (left) shows the
 317 integrand on the interval $(3, 6)$. For example, $|g(t)|$ for $t = 4, 5, 6$ takes the values 8.73×10^{-16} ,
 318 2.30×10^{-36} , 1.86×10^{-92} , respectively, so that we can take $b = 5$.

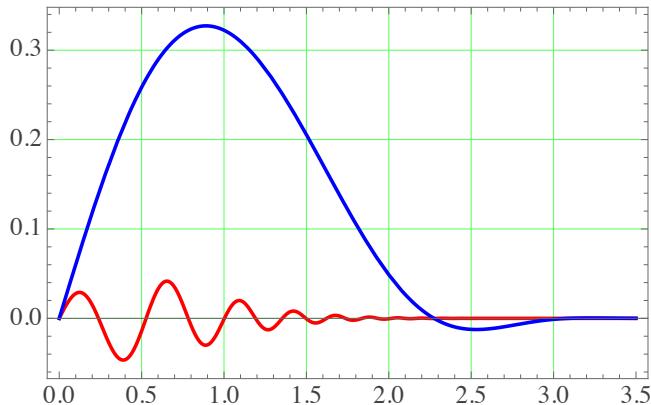


Figure 5: The integrand (20) for $(\tau, \beta, n) = (1, 10, 2)$ (red line) and $(\tau, \beta, n) = (1/2, 1, 1)$ (blue line)

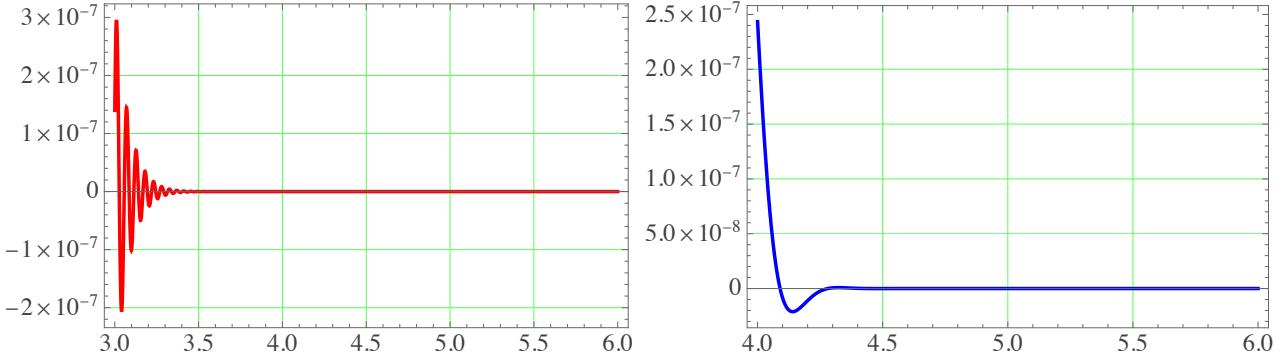


Figure 6: The integrand (20) for $(\tau, \beta, n) = (1, 10, 2)$ (left) and $(\tau, \beta, n) = (1/2, 1, 1)$ (right)

319 In our experiment, we use the steps $h_\nu = h/2^\nu$, $\nu = 0, 1, \dots, 10$, where $h = 1/100$. The
 320 corresponding (finite) trapezoidal sums, denoted by $T_\nu(\tau, \beta, n)$, are given in Table 2, as well as
 321 their relative errors $\text{Err}_\nu(\tau, \beta, n)$. Exact digits are underlined.

ν	2^ν	$T_\nu(1, 10, 2)$	$\text{Err}_\nu(1, 10, 2)$	$T_\nu(1/2, 1, 1)$	$\text{Err}_\nu(1/2, 1, 1)$
0	1	<u>2.6802834709948373</u> (-5)	1.03(-1)	<u>0.42370204303593167</u>	1.19(-5)
1	2	<u>2.9102838314573682</u> (-5)	2.57(-2)	<u>0.42370583388315840</u>	2.98(-6)
2	4	<u>2.9677697247703535</u> (-5)	6.41(-3)	<u>0.42370678158922689</u>	7.46(-7)
3	8	<u>2.9821403110862998</u> (-5)	1.60(-3)	<u>0.42370701851538539</u>	1.86(-7)
4	16	<u>2.9857329022315141</u> (-5)	4.01(-4)	<u>0.42370707774690259</u>	4.66(-8)
5	32	<u>2.9866310465532772</u> (-5)	1.00(-4)	<u>0.42370709255478050</u>	1.16(-8)
6	64	<u>2.9868555824171853</u> (-5)	2.51(-5)	<u>0.42370709625674988</u>	2.91(-9)
7	128	<u>2.9869117163696290</u> (-5)	6.26(-6)	<u>0.42370709718224223</u>	7.28(-10)
8	256	<u>2.9869257498568941</u> (-5)	1.57(-6)	<u>0.42370709741361531</u>	1.82(-10)
9	512	<u>2.9869292582286575</u> (-5)	3.92(-7)	<u>0.42370709747145858</u>	4.55(-11)
10	1024	<u>2.9869301353215951</u> (-5)	9.79(-8)	<u>0.42370709748591940</u>	1.14(-11)

Table 2: Approximations S_k in numerical computation of $\varepsilon_2(1, 10)$

322 (b) In the second example $(\tau, \beta, n) = (1/2, 1, 1)$ the function g is not rapidly oscillatory (see
 323 Figures 5 and 6 (blue line)).

324 In this case, $|g(t)|$ for $t = 5, 6, 7$ takes the values 1.85×10^{-18} , 1.12×10^{-45} , 4.14×10^{-121} ,
 325 respectively, so that we can take $b = 6$. The corresponding values for $T_\nu(1/2, 1, 1)$ and
 326 $\text{Err}_\nu(1/2, 1, 1)$ are presented again in Table 2. As we can see, in this case the convergence
 327 of the trapezoidal formula is significantly faster than in case (a).

328 4.3 Integration between zeros of the integrand

329 For computing the value of an integral whose integrand oscillates over $(0, +\infty)$, as is the case
 330 here, it may be useful to compute the positive and negative contributions separately, and then
 331 sum the resulting infinite series. For computing integrals between zeros, the Gauss-Lobatto
 332 quadrature rule at $N + 2$ points is suitable, since the integrand values at the endpoints of
 333 these subintervals are zero. Thus, this rule has the algebraic degree of exactness $2N + 1$, with
 334 calculations of the integrand at only N nodes.

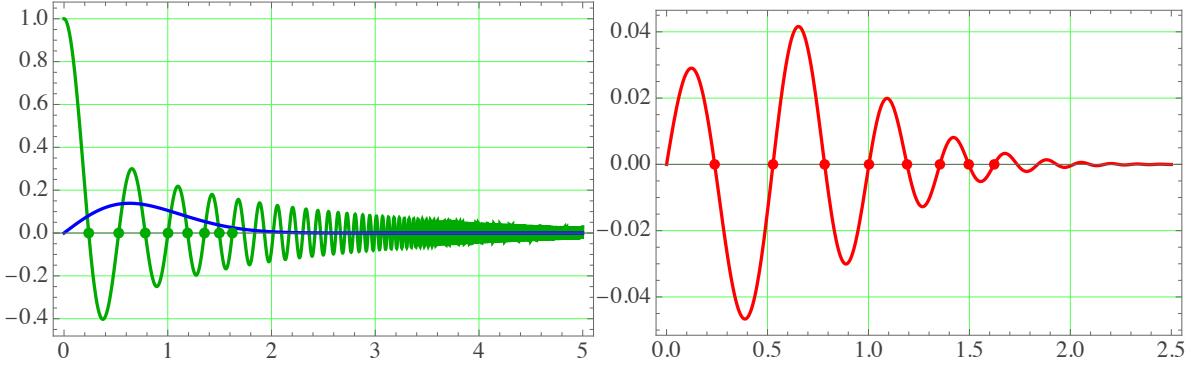


Figure 7: Graphics of the functions for $\tau = 1$, $\beta = 10$, $n = 2$. Left: $K(t; \tau\beta) = J_0(\tau\beta \sinh t)$ (green) and $g(t; \tau, n)$ (blue); Right: The product $F(t) = K(t; \tau\beta)g(t; \tau, n)$ (red)

335 Consider the TDEI function $\varepsilon_n(\tau, \beta)$ in the form (16). In general, it is an integral of the
 336 positive function $t \mapsto g(t; \tau, n)$ over $(0, +\infty)$, with the oscillatory kernel $K(t; \omega)$, where

$$g(t; \tau, n) = \frac{e^{-\tau \cosh t} \sinh t}{\cosh^n t}, \quad K(t; \omega) = J_0(\omega \sinh t) \quad (\omega = \tau \beta). \quad (23)$$

337 The positive zeros of the Bessel function $J_n(x)$: $j_{n,k}$, $k = 1, 2, \dots$, are provided in MATHEMATICA as a mathematical function `BesselJZero[n, k]`, suitable for both symbolic and numerical calculation (with arbitrary numerical precision).

340 In our case, for example, the first $M = 120$ positive zeros of the kernel $K(t; \omega) = J_0(\omega \sinh t)$,
 341 for $\omega = 10$ ($\tau = 1$, $\beta = 10$) can be obtained (with 25 decimal digits) very easy as

342 `zeros = Table[ArcSinh[N[BesselJZero[0, k], 25]/10], {k, 1, 120}]`;

343 The functions (23) (for $\tau = 1$, $\beta = 10$, $n = 2$) are presented in Figure 7. The first eight zeros
 344 are also shown.

345 Let z_k , $k = 1, \dots, M$, be the first M zeros of the kernel $K(t; \tau\beta)$ and let

$$\int_{-1}^1 f(x) dx = w_0 f(-1) + \sum_{\nu=1}^N w_\nu f(x_\nu) + w_{N+1} f(1) + R_{N+2}(f), \quad (24)$$

346 be the $(N + 2)$ -point Gauss-Lobatto quadrature rule (*cf.* [23, p. 330]) on the standard interval
 347 $[-1, 1]$. In order to integrate a function F on $[z_{k-1}, z_k]$ (with $F(z_{k-1}) = F(z_k) = 0$), the formula
 348 (24) can be transformed to the corresponding quadrature rule

$$\int_{z_{k-1}}^{z_k} F(t) dt = \frac{z_k - z_{k-1}}{2} \sum_{\nu=1}^N w_\nu F\left(\frac{z_k - z_{k-1}}{2} x_\nu + \frac{z_k + z_{k-1}}{2}\right) + R_N^{(k)}(F), \quad k = 2, \dots, M.$$

349 If $F(0) = 0$, the previous rule can be also applied to the interval $[0, z_1]$, i.e., for $k = 1$, if we put
 350 $z_0 = 0$. In our case this condition for the function $F(t) = K(t; \tau\beta)g(t; \tau, n)$ is satisfied, because
 351 $g(0; \tau, n) = 0$.

352 The Gauss-Lobatto quadrature rule (24) can be constructed by using our MATHEMATICA
 353 Package `OrthogonalPolynomials` (*cf.* [6, 29]). In this case, it is enough to take only $N = 10$
 354 internal nodes. The corresponding commands are:

```
355 << orthogonalPolynomials
356 {al, be} = Transpose[aLegendre["ttr"] /@ Range[0, 20]];
357 {nL0, wL0} = aLobattoNodesWeights[10, al, be, -1, 1, WorkingPrecision -> 30,
  Precision -> 20]
358 (* Dropping the first and last nodes *)
359 nL = Delete[nL0, {{1}, {12}}]; wL = Delete[wL0, {{1}, {12}}];
```

361 For a given $\{\tau, \beta, n\}$, we calculate the values of the integrals over subintervals between zeros
 362 (the sequence **terms**):

```

363 F[t_,tau_,beta_,n_] :=
364   BesselJ[0, tau beta Sinh[t]] Exp[-tau Cosh[t]] (Sinh[t]/Cosh[t]^n);
365 (* Set values for {tau,beta,n} *)
366 seq = Table[0, {k,1,120}];
367 seq[[1]] = zeros[[1]]/2 wL.F=zeros[[1]]/2 (nL+1), 1,10,2];
368 Do[a = (zeros[[k]]-zeros[[k-1]])/2; b = (zeros[[k-1]]+zeros[[k]])/2;
369   nT = a nL + b;
370   seq[[k]] = a wL.F[nT,1,10,2], {k,2,120}];
```

371 The obtained sequence is oscillatory and the corresponding numerical series may be slowly
 372 convergent, when it is necessary to apply some of the acceleration procedures (e.g., Euler-Abel
 373 transform, ε -transformation, Aitken's Δ^2 method, Levin's V -transform, etc.).

374 The partial sums S_k for $\varepsilon_2(1, 10)$, when $k = 20(10)120$, with relative errors, are presented
 in Table 3. Exact digits are underlined.

k	Partial sum S_k	Relative error
20	<u>2.9406387806154546</u> (-5)	1.55(-2)
30	<u>2.9861740508523990</u> (-5)	2.53(-4)
40	<u>2.9869142274627505</u> (-5)	5.42(-6)
50	<u>2.9869300231936906</u> (-5)	1.35(-7)
60	<u>2.9869304165409176</u> (-5)	3.73(-9)
70	<u>2.9869304273570364</u> (-5)	1.10(-10)
80	<u>2.9869304276757006</u> (-5)	3.42(-12)
90	<u>2.9869304276855780</u> (-5)	1.10(-13)
100	<u>2.9869304276858963</u> (-5)	3.67(-15)
110	<u>2.9869304276859069</u> (-5)	1.25(-16)
120	<u>2.9869304276859073</u> (-5)	4.40(-18)

Table 3: Approximations S_k in numerical computation of $\varepsilon_2(1, 10)$

375 A good feature of this method is that when breaking the series (by taking a partial sum),
 376 the error we make is always smaller than the first discarded term of the series. For example, in
 377 the observed case, if we discard the hundred and first term $1.87553789682425808 \times 10^{-19}$, the
 378 absolute error in the partial sum S_{100} will be smaller than 1.88×10^{-19} , which means that the
 379 relative error is smaller than 6.28×10^{-15} . From Table 3 we see that it is actually 3.67×10^{-15} .
 380

381 5 Conclusion

382 Beside the general short description of important quadrature processes, including some his-
 383 torical details, we considered integral representations of two-dimensional exponential integral
 384 (TDEI) functions, as well as their numerical calculation based on quadrature processes. Three
 385 methods are proposed: (1) *Truncated Gauss-Christoffel quadrature formulas with respect to the*
 386 *Laguerre weight function on $[0, +\infty)$* ; (2) *Composite trapezoidal rule*; (3) *Integration between*
 387 *zeros of the integrand*.

388 The simplest trapezoidal rule can be used when the integrand is not fast oscillating function
 389 and when high accuracy is not required. The truncated Gauss-Laguerre formulas are efficient to

390 apply, but the construction of the basic high-order formulas can be demanding. However, this
391 is successfully solved using the available MATHEMATICA Package `OrthogonalPolynomials`.
392 Finally, as an alternative, integration between zero integrands is a very reliable and accurate
393 method.

394 Acknowledgments

395 This paper is dedicated to Professor Manuel López-Pellicer on the occasion of his 81st Anniver-
396 sary.

397 **Author Contributions:** This paper has only one author.

398 **Conflict of Interest:** The author declares no conflict of interest.

399 **Funding (Financial Disclosure):** The work of the author was supported in part by the Serbian
400 Academy of Sciences and Arts (Project Φ-96).

401 References

- 402 [1] Z. Altaç, *Integrals involving Bickley and Bessel functions in radiative transfer, and gener-
403 alized exponential integral functions*, J. Heat Transfer **118** (4), 789–792, 1996.
- 404 [2] Z. Altaç, *Exact series expansions, recurrence relations, properties and integrals of the
405 generalized exponential integral functions*, J. Quant. Spectrosc. Radiat. Transfer **104** (2),
406 310–325, 2007.
- 407 [3] W. F. Breig and A. L. Crosbie, *Numerical computation of a generalized exponential integral
408 function*, Math. Comp. **28** (128), 575–579, 1974.
- 409 [4] R. Chen, *Numerical approximations to integrals with a highly oscillatory Bessel kernel*,
410 Appl. Numer. Math. **62** (5), 636–648, 2012.
- 411 [5] R. Chen, *On the evaluation of Bessel transformations with the oscillators via asymptotic
412 series of Whittaker functions*, J. Comput. Appl. Math. **250**, 107–121, 2013.
- 413 [6] A. S. Cvetković and G. V. Milovanović, *The Mathematica package “OrthogonalPolynomi-
414 als”*, Facta Univ. Ser. Math. Inform. **19**, 17–36, 2004.
- 415 [7] Ph. J. Davis and Ph. Rabinowitz, *Methods of numerical integration* (Second Edition),
416 Comput. Sci. Appl. Math., Academic Press, Orlando, FL, 1984.
- 417 [8] A. Deaño, D. Huybrechs and A. Iserles, *Computing highly oscillatory integrals*, Soc. Indust.
418 Appl. Math. (SIAM), Philadelphia, PA, 2018.
- 419 [9] C. F. Gauss, *Methodus nova integralium valores per approximationem inveniendi*, Com-
420 ment. Soc. Regiae Sci. Gottingensis Recent. Werke III **3**, 163–196, 1814.
- 421 [10] W. Gautschi, *A survey of Gauss-Christoffel quadrature formulae*, In: *E. B. Christoffel –
422 The influence of his work on mathematics and the physical sciences* (Ed. by P. L. Butzer
423 and F. Fehér), Birkhäuser, Basel, 1981, 72–147.
- 424 [11] W. Gautschi, *On generating orthogonal polynomials*, SIAM J. Sci. Stat. Comput. **3** (3),
425 289–317, 1982.

- 426 [12] W. Gautschi, *Orthogonal polynomials: Applications and computation*, Acta Numer. **5**,
 427 45–119, 1996.
- 428 [13] W. Gautschi, *Polynomials orthogonal with respect to exponential integrals*, Numer. Algo-
 429 rithms **70** (1), 215–226, 2015.
- 430 [14] G. H. Golub and J. H. Welsch, *Calculation of Gauss quadrature rules*, Math. Comp. **23**
 431 (106), 221–230, 1969.
- 432 [15] D. Huybrechs and S. Vandewalle, *On the evaluation of highly oscillatory integrals by ana-
 433 lytic continuation*, SIAM J. Numer. Anal. **44** (3), 1026–1048, 2006.
- 434 [16] M. Iri, S. Moriguti and Y. Takasawa, *On certain quadrature formula*, J. Comput. Appl.
 435 Math. **17** (1), 3–20, 1987.
- 436 [17] C. G. J. Jacobi, *Über Gauß' neue Methode, die Werte der Integrale nähерungsweise zu
 437 finden*, J. Reine Angew. Math. **30**, 301–308, 1826.
- 438 [18] D. Kılıç Kurtoğlu, A. I. Hasçelik and G. V. Milovanović, *A method for efficient computation
 439 of integrals with oscillatory and singular integrand*, Numer. Algorithms **85** (4), 1155–1173,
 440 2020.
- 441 [19] M. Masjed-Jamei, *A new type of weighted quadrature rules and its relation with orthogonal
 442 polynomials*, Appl. Math. Comput. **188** (1), 154–165, 2007.
- 443 [20] M. Masjed-Jamei and G. V. Milovanović, *Weighted Hermite quadrature rules*, Electron.
 444 Trans. Numer. Anal. **45**, 476–498, 2016; ISSN 1068-9613.
- 445 [21] M. Masjed-Jamei, G. V. Milovanović and M. A. Jafari, *Explicit forms of weighted quadra-
 446 ture rules with geometric nodes*, Math. Comput. Modelling **53** (5–6), 1133–1139, 2011;
 447 <https://doi.org/10.1016/j.mcm.2010.11.076>.
- 448 [22] M. Masjed-Jamei, G. V. Milovanović and M. A. Jafari, *Closed expressions for coef-
 449 ficients in weighted Newton-Cotes quadratures*, Filomat **27** (4), 649–658, 2013; DOI:
 450 10.2298/FIL1304649M.
- 451 [23] G. Mastroianni and G. V. Milovanović, *Interpolation processes: Basic theory and applica-
 452 tions*, Springer Monographs in Mathematics, Springer-Verlag, Berlin–Heidelberg, 2008.
- 453 [24] G. Mastroianni and G. Monegato, *Truncated quadrature rules over $(0, \infty)$ and Nyström
 454 type methods*, SIAM J. Numer. Anal. **41** (5), 1870–1892, 2003.
- 455 [25] G. V. Milovanović, *Expansions of the Kurepa function*, Publ. Inst. Math. (Beograd) (N.S.)
 456 **57** (71), 81–90, 1995.
- 457 [26] G. V. Milovanović, *Numerical calculation of integrals involving oscillatory and singular
 458 kernels and some applications of quadratures*, Comput. Math. Appl. **36** (10), 19–39, 1998.
- 459 [27] G. V. Milovanović, *Orthogonal polynomials on the real line*, In: Walter Gautschi: Selected
 460 Works and Commentaries (Volume 2), (Ed. by C. Brezinski and A. Sameh), Birkhäuser,
 461 Basel, 2013.
- 462 [28] G. V. Milovanović and A. S. Cvetković, *Gaussian quadrature rules using function deriva-
 463 tives*, IMA J. Numer. Anal. **31** (2), 358–377, 2011.

- 464 [29] G. V. Milovanović and A. S. Cvetković, *Special classes of orthogonal polynomials and*
 465 *corresponding quadratures of Gaussian type*, Math. Balkanica **26** (1–2), 169–184, 2012.
- 466 [30] G. Monegato and L. Scuderi, *Quadrature rules for unbounded intervals and their applica-*
 467 *tion to integral equations*, In: Approximation and computation: in honor of Gradimir V.
 468 Milovanović, (Ed. by W. Gautschi, G. Mastroianni and Th. M. Rassias), Springer Optim.
 469 Appl. **42**, Springer, New York, 185–208, 2011.
- 470 [31] M. Mori, *Quadrature formulas obtained by variable transformation and DE-rule*, J. Com-
 471 put. Appl. Math. **12–13**, 119–130, 1985.
- 472 [32] F. W. J. Olver, D. W. Lozier, R. F. Boisvert and Ch. W. Clark, *NIST handbook of math-*
 473 *ematical functions*, Cambridge Univ. Press, New York, 2010.
- 474 [33] A. P. Prudnikov, Yu. A. Brychkov and O. I. Marichev, *Integrals and series, Vol. 2: special*
 475 *functions*, Gordon and Breach Sci. Publ., New York, 1986.
- 476 [34] H. Takahasi and M. Mori, *Error estimation in the numerical integration of analytic func-*
 477 *tions*, Rep. Comput. Centre Univ. Tokyo **3**, 41–108, 1970.
- 478 [35] H. Takahasi and M. Mori, *Quadrature formulas obtained by variable transformation*, Nu-
 479 *mer. Math. **21** (3)*, 206–219, 1973.
- 480 [36] L. N. Trefethen, *Is Gauss quadrature better than Clenshaw-Curtis?*, SIAM Rev. **50** (1),
 481 67–87, 2008; <https://doi.org/10.1137/060659831>.
- 482 [37] L. N. Trefethen, *Exactness of quadrature formulas*, SIAM Rev. **64** (1), 132–150, 2022.
- 483 [38] J. Waldvogel, *Towards a general error theory of the trapezoidal rule*, In: *Approximation and*
 484 *computation: in honor of Gradimir V. Milovanović* (Ed. by W. Gautschi, G. Mastroianni
 485 and Th. M. Rassias), Springer Optim. Appl. (Volume 42), Springer, New York, 267–282,
 486 2011.
- 487 [39] Z. Xu and G. V. Milovanović, *Efficient method for the computation of oscillatory Bessel*
 488 *transform and Bessel Hilbert transform*, J. Comput. Appl. Math. **308**, 117–137, 2016.
- 489 [40] Z. Xu, G. V. Milovanović and S. Xiang, *Efficient computation of highly oscillatory integrals*
 490 *with Hankel kernel*, Appl. Math. Comput. **261**, 312–322, 2015.
- 491 [41] S. Yardımcı, M. Olgun and Ç. Can, *Numerical computation and properties of the two*
 492 *dimensional exponential integrals*, Hacet. J. Math. Stat. **45** (4), 975–990, 2015.