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1 Introduction24

This paper is devoted to quadrature processes and their application in the numerical integration25

of two-dimensional exponential integrals (TDEI), which have been considered by several authors26

(cf. [1]-[3], [41]).27

In the general case, numerical integration represents the approximation of a functional28

I(f) :=
∫
R f(t) dµ(t), defined on a class of functions X (with respect to the measure dµ(t)), by29

another functional (quadrature rule) Qn(f) :=
∑n

ν=1Aνf(τν), which is defined using only the30

values of the function f at selected n points τν , ν = 1, . . . , n. These points are called nodes, and31

the corresponding coefficients Aν are weights. The difference Rn(f) := I(f)−Qn(f) represents32

the remainder term of the quadrature formula, which is usually constructed so that Rn(f) is33

equal to zero on some subset of X.34

The set of all algebraic polynomials of degree at most n will be denoted by Pn (⊂ P), where35

P be the set of all algebraic polynomials.36

This paper is organized as follows. In Section 2 we give a brief overview of the most37

important quadrature processes, including some historical details. The main attention is paid38

to the integral representations of TDEI functions (Section 3), as well as to the numerical39

calculation of their values using numerical integration (Section 4).40
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2 Preliminaries on quadrature processes41

In this section we give a short account on numerical integration using quadrature rules. There42

are two main approaches, originating from Isaac Newton (1647–1727) and Carl Friedrich Gauss43

(1777–1855).44

2.1 Newton approach45

Newton’s idea from 1676 about the integration of an interpolation polynomial for the function46

f : [a, b] 7→ R, on a set of equidistant points τk on [a, b], as well as later refinements by Roger47

Cotes, led to the well-known Newton-Cotes formulas for the numerical integration of functions48

on the interval [a, b], which, in addition to their theoretical significance, also have practical49

applications in the construction of so-called composite quadrature formulas (trapezoidal, Simp-50

son’s, . . .), as well as in adaptive integration.51

The well-known and the simplest composite trapezoidal rule for calculating the integral52

of the function f over the interval [a, b], using n + 1 values fk = f(τk) at equidistant nodes53

τk = a+ kh, k = 0, 1, . . . , n, with the step size h = (b− a)/n, is defined by54

I(f) =

∫ b

a

f(t) dt ≈ Tn(f ;h) := h

(
1

2
f0 + f1 + · · ·+ fn−1 +

1

2
fn

)
. (1)

For sufficiently continuously-differentiable functions, the well-known Euler-Maclaurin summa-55

tion formula56

Tn(f ;h)− I(f) =
m∑
ν=1

h2νB2ν

(2ν)!

(
f (2ν−1)(b)− f (2ν−1)(a)

)
+ Em(f)

holds, where Bk (B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30, . . .) are Bernoulli57

numbers and Em(f) is the corresponding remainder term, which can be represented as58

Em(f) = (b− a)
B2m+2h

2m+2

(2m+ 2)!
f (2m+2)(ξ), a < ξ < b.

As we can see the trapezoidal rule Tn(f ;h), given by (1), with the error term59

Tn(f ;h)− I(f) = E0(f) =
1

12
(b− a)f ′′(ξ)h2 (a < ξ < b),

converges very slowly with respect to step refinement as O(h2). Something better convergence60

O(h4) has the classical composite Simpson rule Sn(f ;h). In general, both of these formulas do61

not allow achieving high accuracy.62

However, if we restrict our analysis to the class of analytic functions with all derivatives63

f vanishing at x = a and x = b, then the discretization error is given only by the remainder64

Em(f) as m → +∞. Then the convergence with respect to step refinement is faster than any65

finite order and the trapezoidal rule becomes the method of choice. This kind of convergence66

is known as exponential convergence. Such a method, known in the literature as IMT rule was67

proposed in 1969 by Iri, Moriguti and Takasawa, but an English translation of the original68

Japanese paper was published in 1987 (cf. [16]). Error estimation for analytic functions and69

quadrature rules obtained by transformations of the integration variable were considered by70

Takahasi and Mori [34, 35]. In a survey paper Mori [31] particularly emphasized the so-called71

double exponential integration rule (DE-rule), which is characterized by a double exponential72

decay near the endpoints of the transformed integration interval. Particularly interesting are73

the cases when (a, b) = (−∞,+∞) and (0,+∞).74
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In an interesting paper Waldvogel [38] proposed as a standard the trapezoidal rule on the75

entire real line R for numerical integration of analytic functions and suggested the choice of76

an elementary transformation t = φ(x) from the interval (a, b) to (−∞,+∞). In addition,77

slow decay at infinity can be accelerated by the sinh-transformation, as well as some other78

transformations (cf. [16, 25, 30, 34, 35, 38]).79

In the case (a, b) = (−∞,+∞), formula (1) can be slightly modified as the shifted trapezoidal80

sum with step h and offset s (cf. [38]),81

I(f) =

∫ +∞

−∞
f(t) dt ≈ T (f ;h, s) := h

+∞∑
k=−∞

f(s+ kh). (2)

We note that T (f ;h, s) = T (f ;h, s+ h) and82

T
(
f ;
h

2
, s
)

=
1

2

[
T (f ;h, s) + T

(
f ;
h

2
, s+

h

2

)]
.

The latter relation is useful for the efficient transition from step h to step h/2.83

Remark 1. With the same Newton idea, one can also consider the weighted integration84 ∫ b
a
f(t)w(t) dt, where w : [a, b] 7→ R+ is a given weight function. Thus, the weighted Newton-85

Cotes formulas are given by86 ∫ b

a

f(t)w(t) dt =
∑
k

Akf(τk) +Rn(f), (3)

where the equidistant points (nodes) are taken by the step h = (b− a)/n usually as87

τk = a+ kh, k = 0, n; τk = a+ kh, k = 1, n− 1; τk = a+
(
k − 1

2

)
, k = 1, n.

Such quadrature formulas are of the interpolation type, for which the remainder term Rn(f) = 088

whenever f ∈ Pd, where d is the algebraic degree of exactness depending of the number of89

nodes. The weight coefficients Ak (Cotes numbers) can be expressed using the corresponding90

interpolation formula (cf. [23, §5.1]). Closed expressions for Cotes numbers Ak were derived in91

terms of moments and Stirling numbers of the first kind in [22].92

Remark 2. A type of interpolatory quadrature formulas, whose nodes are geometricaly dis-93

tributed in the form τk = aqk, k = 0, 1, . . . , n, were introduced in [21]. The explicit expressions94

for the coefficients Ak are also obtained using the q-binomial theorem.95

2.2 Gaussian approach96

The most significant discovery in numerical analysis in the 19th century was Gauss’s quadrature97

formulas of 1814. Gauss [9] dramatically improved Newton’s method, increasing the algebraic98

degree of exactness of the n-point quadrature formula (3) (for w(t) = 1 on (a, b) = (0, 1)) from99

n − 1 to 2n − 1, using only his result on continued fractions associated with hypergeometric100

series. It is interesting to note that Gauss determined the numerical values of nodes and weights101

for each n ≤ 7, with almost 16 significant decimal digits, which are otherwise the zeros of the102

shifted Legendre polynomial Pn(2t− 1). Twelve years after Gauss, Jacobi [17] gave an elegant103

alternative derivation of Gauss’s formulas. Further contributions and the development of this104

discovery into a theory during the second half of the nineteenth century were made by Mehler,105

Heine, Radau and many others, among whom Christoffel stands out in particular, who in 1877106

gave a significant generalization of Gauss’s formulas for arbitrary weight functions or measures,107
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thus providing a fundamental connection with orthogonal polynomials and continued fractions.108

Such formulas with a maximum (algebraic) degree of exactness are now known as the Gauss-109

Christoffel quadrature formulas. Markov, Stiltjes, Uspensky, etc. are credited with analyzing110

the error Rn(f) of these formulas in various classes of functions, as well as the convergence of a111

sequence of quadrature formulas. A nice survey of Gauss-Christoffel quadrature formulae was112

written by Gautschi [10].113

The main tool for constructing and analyzing Gauss-Christoffel quadrature rules are or-114

thogonal polynomials πk(t) related to the inner product defined by115

(p, q) =

∫
R
p(t)q(t) dµ(t) (p, q ∈ P).

It is well-known that the monic polynomials πk(t), k = 0, 1, 2, . . ., satisfy the three-term recur-116

rence relation of the form117

πk+1(t) = (t− αk)πk(t)− βkπk−1(t), k = 0, 1, 2, . . . , (4)

where π0(t) = 1 and π−1(t) = 0 (by definition).118

Remark 3. The coefficient β0 in (4) may be arbitrary, but is conveniently defined by119

β0 = µ0 =

∫
R

dµ(t).

The following result was proved by Jacobi [17]:120

Theorem 2.1. Given a positive integer m (≤ n), the quadrature formula121 ∫
R
f(t) dµ(t) =

n∑
k=1

Akf(τk) +Rn(f), (5)

has degree of exactness d = n− 1 +m if and only if the following conditions are satisfied:122

1◦ Formula (5) is interpolatory;123

2◦ The node polynomial ωn(t) = (t− τ1) · · · (t− τn) satisfies124

(∀p ∈ Pm−1) (p, ωn) =

∫
R
p(t)ωn(t) dµ(t) = 0.

According to this result, the n-point quadrature formula (5) with respect to the positive125

measure dµ(t) has the maximal algebraic degree of exactness 2n − 1. In other words, setting126

m = n is optimal (ωn = πn).127

Higher values of m (> n) are impossible. Indeed, according to 2◦, the case m = n+1 would128

require the orthogonality condition129

(∀p ∈ Pn) (p, ωn) = 0.

Choosing p = ωn (which has degree n) immediately gives (ωn, ωn) = 0. Since µ is a positive130

measure, the inner product is strictly positive for any non-zero polynomial of degree at most131

n, leading to a contradiction.132

The cases with lower m are well known:133

• when m = n − 1, the resulting formula is a Gauss–Radau quadrature rule (one of the134

endpoints a or b is included among the nodes);135

• when m = n− 2, it becomes a Gauss–Lobatto quadrature rule (τ1 = a and τn = b).136
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These rules have lower degrees of exactness than the classical Gaussian formula (typically137

2n − 2 for Radau and 2n − 3 for Lobatto with n nodes), which is the price paid for enforcing138

the boundary conditions.139

The first significant progress in the construction of Gauss-Christoffel formulas (i.e., the140

nodes τk and the weight coefficients Ak) for an arbitrary positive measure dµ on R with finite141

or unbounded support, for which all moments µk =
∫
R t

k dµ, k = 0, 1, . . ., exist and are finite142

and µ0 > 0, was made in 1969 by Golub and Welsch [14]. They reduced the construction to143

the eigenvalue problem for a symmetric tri-diagonal, the so-called Jacobi matrix,144

Jn( dµ) =



α0

√
β1 O

√
β1 α1

√
β2

√
β2 α2

. . .
. . . . . .

√
βn−1

O
√
βn−1 αn−1

 , (6)

where the sequences {αk} and {βk} are the coefficients in a three-term recurrence relation (4).145

The nodes τ1, . . ., τn are the eigenvalues of the matrix (6), and the first components vk,1 of146

the corresponding normalized eigenvectors vk =
[
vk,1 · · · vk,n

]T
(vTk vk = 1) give the weight147

coefficients (Christoffel numbers) Ak = µ0v
2
k,1, k = 1, . . . , n.148

These sequences {αk} and {βk} depend only on the measure, i.e., of the weight function149

w(t) = dµ/ dt if the measure is absolutely continuous, but unfortunately they are known, in an150

explicit form, only for some narrow classes of weight functions, such as, for example, classical151

weights (Jacobi weight on (−1, 1), generalized Laguere weight on (0,∞) and Hermite weight152

on R).153

Another significant progress occurred at the beginning of the eighties of the last century,154

when Walter Gautschi, in a series of papers, recognizing the recursive sequences {αk} and155

{βk} as fundamental quantities, and developed the so-called constructive theory of orthogonal156

polynomials on R (cf. [11, 12]).157

Thanks to the methods developed within the constructive theory of orthogonality, the cal-158

culation of the coefficients {αk} and {βk}, in a general case, is realized by numerical methods159

(see [11, 12, 27]). During their numerical construction, the problem of high instability arises,160

in relation to small perturbations of the input quantities. However, the progress that has been161

made in the last thirty years in symbolic calculation and in the so-called arithmetic of variable162

precision, today allows the generation of sequences of recursive coefficients sometimes by direct163

application of the original Chebyshev method of moments, with the use of arithmetic of suffi-164

ciently high precision, which enables numerical instability to be overcome! Such software for165

orthogonal polynomials and quadrature formulas are available today:166

•Matlab package SOPQ (Gautschi: https://www.cs.purdue.edu/archives/2002/wxg/);167

• Mathematica package OrthogonalPolynomials (cf. [6, 29]: available on the website of168

the Mathematics Institute SASA http://www.mi.sanu.ac.rs/~gvm/).169

Remark 4. A new representation of Hermite’s osculator interpolation was presented in [20],170

with the aim of constructing a weighted Hermite quadrature formula. Explicit forms for several171

special cases of quadratures are obtained, including the weighted Hermite quadrature rule with172

arithmetic and geometric knots, as well as the standard Gauss-Christoffel quadrature rule and173

the Gaussian quadrature rule using only derivatives of functions (cf. [19, 28]).174

In many situations, Gauss-Christoffel quadrature formulas give very accurate approxima-175

tions of integrals. However, in some cases these formulas have slow convergence or give very176

similar results compared to simpler methods. In a review paper, Trefethen [36] compared the177
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accuracy of the Gauss-Christoffel and Clenshaw-Curtis methods and showed that there are178

numerous cases where these two methods give results with almost equal errors, but the con-179

struction of the Clenshaw-Curtis method is much simpler. His recent work [37] on the accuracy180

of quadrature formulas is also interesting.181

3 Two dimensional exponential integrals182

The exponential integral E1(x) is defined by183

E1(z) =

∫ +∞

1

e−zt

t
dt,

and its generalization En(x) by184

En(z) =

∫ +∞

1

e−zt

tn
dt, n > 0. (7)

The exponential integral plays an important role in many subjects of physics, quantum chem-185

istry, theory of fluid flow, etc. Integrals having as weight function this integral on the positive186

real line R+ (or on a finite part [0, c], c > 0) are of interest in radiative transfer. W. Gautschi187

[13] has considered polynomials orthogonal with respect to (7).188

There is also a generalisation of (7), defined by (cf. [3])189

ε1(τ, β) =

∫ +∞

1

(t2 + β2)−1/2 exp
[
−τ(t2 + β2)1/2

]
dt,

ε2(τ, β) =

∫ +∞

1

t−2 exp
[
−τ(t2 + β2)1/2

]
dt,

ε3(τ, β) = τ

∫ +∞

1

ε2

(
τt,

β

t

)
dt,


(8)

which appears in the study of the radiative transfer in a multi-dimensional medium. Note that190

for β = 0, ε1(τ, 0) = E1(τ) and ε1(τ, 0) = E2(τ).191

Altaç [2] (see also [1]) considered the nth order generalized exponential integral functions192

εn(τ, β) (n ∈ N) in the following form193

εn(τ, β) =
1

(n− 1)!

∫ +∞

τ

(t− τ)n−1
exp
[
−
√
t2 + (τβ)2

]√
t2 + (τβ)2

dt,

or, after a change of variables t := tτ , as194

εn(τ, β) =
τn−1

(n− 1)!

∫ +∞

1

(t− 1)n−1
exp
[
−τ
√
t2 + β2

]√
t2 + β2

dt. (9)

He derived several series expansions, recurrence relations, as well as the other properties of this195

kind of integrals.196

Since (cf. [33, p. 189] for ν = 0)197 ∫ +∞

0

x
exp
[
−p
√
x2 + z2

]
√
x2 + z2

J0(cx) dx =
exp
[
−z
√
p2 + c2

]√
p2 + c2

,

where Jν(z) is the Bessel function of the first kind and order ν, defined by198

Jν(z) =
+∞∑
k=0

(−1)k

k!Γ(k + ν + 1)!

(z
2

)2k+ν
, (10)
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Eq. (9) can be expressed in the form199

εn(τ, β) =
τn−1

(n− 1)!

∫ +∞

1

(t− 1)n−1

(∫ +∞

0

%
exp
[
−t
√
%2 + τ 2

]√
%2 + τ 2

J0(β%) d%

)
dt.

After changing the order of integration and using200 ∫ +∞

1

(t− 1)n−1e−at dt =
(n− 1)!e−a

an
, a =

√
%2 + τ 2,

we finally get201

εn(τ, β) = τn−1
∫ +∞

0

J0(β%)
% e−
√
%2+τ2

(%2 + τ 2)(n+1)/2
d%. (11)

On the other side in 2015 Yardımcı et al. [41] considered the two-dimensional exponential202

integral (TDEI) functions given in the form203

εn(τ, β) =
τn−1

2π

∫ +∞

−∞

∫ +∞

−∞

e−r

rn+1
e−iβx dx dy, (12)

where r2 = x2+y2+τ 2 and n ∈ N. They proved that the function (τ, β) 7→ εn(τ, β) is uniformly204

convergent on205

D(ε) =
{

(τ, β) ∈ Ω | τ ∈ [ε,+∞), β ∈ R
}
,

and nonuniformly convergent on Ω := [0,+∞)×R. Furthermore, using these facts, the authors
concluded that for (τ, β) ∈ D(ε) the function (τ, β) 7→ εn(τ, β) satisfies the following asymptotic
formulas

εn(τ, β) = o(1), τ → +∞;

εn(τ, β) = o(1), β → ±∞;

εn(τ, β) = En(τ) + o(1), β → +∞.

Beside the problem of convergence and asymptotic behaviour, they investigated also numerical206

computations of the TDEI functions.207

Note that the previous functions (8)–(12) are two-dimensional analogs of the exponential208

integral (7).209

Now, we prove that the formulas (12) and (9) are equivalent.210

Proposition 3.1. The formulas for εn(τ, β), given by (12) and (9) are equivalent.211

Proof. If we introduce the polar coordinates (%, θ) in the integral (12): x = % cos θ, y = % sin θ,212

then (12) reduces to213

εn(τ, β) =
τn−1

2π

∫ 2π

0

∫ +∞

0

e−
√
%2+τ2

(%2 + τ 2)(n+1)/2
e−iβ% cos θ% dθ d%

= τn−1
∫ +∞

0

(
1

2π

∫ 2π

0

e−iβ% cos θ dθ

)
e−
√
%2+τ2%

(%2 + τ 2)(n+1)/2
d%,

i.e.,214

εn(τ, β) = τn−1
∫ +∞

0

J0(β%)
e−
√
%2+τ2%

(%2 + τ 2)(n+1)/2
d%, (13)

7



because of (cf. [32, p. 223])215

Jn(z) =
1

2πin

∫ 2π

0

eiz cos θ cos(nθ) dθ

and J0(−z) = J0(z), where Jν(z) is the Bessel function of the first kind and order ν, defined by216

(10). It is obvious that (13) coincides with (11), which is obtained from (9), thus completing217

the proof.218

In the sequel we give a few equivalent integral representations of εn(τ, β).219

Proposition 3.2. For τ > 0, β > 0, and n ∈ N, we have220

εn(τ, β) = e−τ
∫ +∞

0

J0(τβ
√
z(z + 2))

(z + 1)n
e−τ(z+1) dz, (14)

221

εn(τ, β) =

∫ +∞

0

J0
(
τβ
√

e2x − 1
)
e−(n−1)x−τe

x

dx (15)

and222

εn(τ, β) =

∫ +∞

0

J0(τβ sinh t)

coshn t
e−τ cosh t sinh t dt. (16)

Proof. For a given τ we introduce a new variable z (≥ 0) by means % = τ
√
z(z + 2), so that223 √

%2 + τ 2 = τ(z + 1) and d% =
τ(z + 1)√
z(z + 2)

dz.

Then, the integral (11) becomes224

εn(τ, β) = τn−1
∫ +∞

0

J0(βτ
√
z(z + 2))

e−τ(z+1)τ
√
z(z + 2)

τn+1(z + 1)n+1
· τ(z + 1)√

z(z + 2)
dz,

i.e., (14).225

In order to get (15) we use a change of variables z = ex − 1 in (14), so that z(z + 2) =226

(z + 1)2 − 1 = e2x − 1. In this way we obtain227

εn(τ, β) = e−τ
∫ +∞

0

J0(τβ
√

e2x − 1)

enx
e−τ(e

x−1)ex dx

=

∫ +∞

0

J0(τβ
√

e2x − 1)e−(n−1)x−τe
x

dx.

Finally, using the 1−1 transformation t 7→ x = log(cosh t), which maps the interval [0,+∞)228

into itself, the integral (15) reduces to (16).229

Remark 5. According to (15) or (16) we can conclude that εn(τ, β) ≤ ε1(τ, β). Since |J0(t)| ≤ 1230

for t ≥ 0, we have231 ∣∣J0(τβ√e2x − 1
)
e−(n−1)x−τe

x∣∣ ≤ e−τe
x

,

so that232

ε1(τ, β) < ε1(τ, 0) =

∫ +∞

0

e−τe
x

dx =

∫ +∞

τ

e−t

t
dt = Γ(0, τ),

where Γ(a, z) is the incomplete gamma function, defined by233

Γ(a, z) =

∫ ∞
z

ta−1e−t dt.
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Remark 6. We note that the function z 7→ J0
(
ω
√
z(z + 2)

)
(ω = τβ), which appears in the234

integral (14), can be highly oscillatory function (see Fig. 1), so this formula is not useful for235

calculating the function εn(τ, β). On the other side, the expressions (15) and (16) are acceptable236

for numerically calculating the value of εn(τ, β).237

� � � � � ��

-���

-���

���

���

���

���

���

���

Figure 1: Graphics of the function z 7→ J0
(
ω
√
z(z + 2)

)
for ω = 1 (red line) and ω = 20 (blue

line)

4 Numerical calculation of the TDEI functions238

In this section we give some alternative methods based on quadrature processes (cf. [23])239

for numerical computation of the values of the two dimensional exponential integral (TDEI)240

functions. We analyze quadrature processes based on the application of the Gauss-Laguerre241

formula, the composite trapezoidal formula, and the method of so-called integration between242

zeros of the integrand for oscillatory functions (cf. [7, p. 230]). Special methods for the inte-243

gration of fast oscillatory functions, such as those in the papers [4, 5, 15, 18, 26, 39, 40] and244

the book [8], will be the subject of future research.245

4.1 Application of Gauss-Christoffel quadrature formulas246

Computing weighted integrals of the Bessel function J0(ωx) over (0,+∞) is a complex topic247

with results that depend heavily on the chosen weight function. Only in some cases such248

integrals have the closed forms, e.g.,249 ∫ +∞

0

e−axJ0(ωx) dx =
1√

a2 + ω2
,

∫ +∞

0

xe−axJ0(ωx) dx =
a

(a2 + ω2)3/2
, . . . ,

while in most cases need specialized numerical methods are required.250

First, we consider εn(τ, β) in the integral form (11). Let Φ(%) ≡ Φ(%; τ, β, n) denote its251

integrand, which can be written as a product F (%)w(%), where w is the Laguerre weight function252

on (0,+∞), given by w(%) = e−%, and253

F (%) ≡ F (%; τ, β, n) = Φ(%; τ, β, n)e% = τn−1J0(β%)
% e−τ

2/
(
%+
√
%2+τ2

)
(%2 + τ 2)(n+1)/2

. (17)

This allows us to apply the Gauss-Laguerre quadrature formula, so we have254

εn(τ, β) =

∫ +∞

0

F (%)w(%) d% =
N∑
k=1

AkF (%k) +RN(F ), (18)
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where RN(F ) is the corresponding remainder term.255

The functions Φ(%) and F (%) for τ = 1, β = 10 and n = 2 are displayed in Figures 2 and 3,256

respectively.257

1 2 3 4
ϱ

-0.04

-0.02

0.00

0.02

Φ(ϱ)

Figure 2: Graphic of the function % 7→ Φ(%) ≡ Φ(%; 1, 10, 2) on [0, 4]

2 4 6 8 10
ϱ

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

F(ϱ)

Figure 3: Graphic of the function % 7→ F (%) ≡ F (%; 1, 10, 2) on [0, 10]

For calculating quadrature parameters (the nodes %k and the weights Ak) we use our Math-258

ematica Package OrthogonalPolynomials (cf. [6, 29]). Taking into account the oscillatory259

character and slow decay of the function % 7→ F (%) as % → +∞, we will construct Gauss-260

Laguerre quadrature formulas with a large number of nodes N(= nn), from 100 to 1000, with261

a step of 100 (and a working precision of 25 decimal digits). The corresponding commands are:262

<< orthogonalPolynomials‘263

pq[n_] := aGaussianNodesWeights[n, {aLaguerre}, WorkingPrecision -> 25,264

Precision -> 20];265

nw = Table[pq[nb],{nn,100,1000,100}];266

Here, nw[[v]] gives the nodes nw[[v]][[1]] and the weights nw[[v]][[2]] for nn = 100 v,267

where v = 1, 2, . . . , 10.268

Applying the quadrature rule (18) to the function F (%; τ, β, n), we obtain the approximative269

values of εn(τ, β), in the notation ε̃
(N)
n (τ, β). The corresponding values in the case τ = 1, β = 10270

and n = 2 are given in the second column of Table 1, and exact figures are underlined. Numbers271

in parentheses indicate decimal exponents, for example 1.24(−2) = 1.24× 10−2.272

The exact value of this TDEI function in the point (τ, β) = (1, 10) is273

ε2(1, 10) = 2.986930427685907284974203770433 . . .× 10−5,
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obtained in Wolfram Mathematica, ver. 14.3, using the high precision arithmetics with274

100 decimal digits.275

N ε̃
(N)
2 (1, 10) Err(N) jN (15%) ε̄

(jN )
2 (1, 10)

100 −2.5526893352569225(−4) 9.55 15 −2.5333617783794170(−5)
200 3.0240940409582615(−5) 1.24(−2) 30 3.0243994432526185(−5)
300 2.9882400642087742(−5) 4.38(−4) 45 2.9882404837193715(−5)
400 2.9869202414602691(−5) 3.41(−6) 60 2.9869202417527040(−5)
500 2.9869302932774400(−5) 4.50(−8) 75 2.9869302932765853(−5)
600 2.9869304302724077(−5) 8.66(−10) 90 2.9869304302724031(−5)
700 2.9869304276972022(−5) 3.78(−12) 105 2.9869304276972022(−5)
800 2.9869304276852608(−5) 2.16(−13) 120 2.9869304276852608(−5)
900 2.9869304276859088(−5) 5.17(−16) 135 2.9869304276859088(−5)

1000 2.9869304276859074(−5) 5.11(−17) 150 2.9869304276859074(−5)

Table 1: Gauss-Laguerre approximations in numerical computation of ε2(1, 10)

From this example, we can see the very slow convergence of the Gauss-Laguerre quadrature276

formula. Relative errors277

Err(N) =

∣∣∣∣∣ ε̃(N)
n (τ, β)− εn(τ, β)

εn(τ, β)

∣∣∣∣∣
are presented in the third column in Table 1. However, we can use the idea of Mastroianni278

and Monegato [24] to reduce the numerical work in computing quadrature sums. Namely, they279

proposed a truncated version where the last part of its nodes is omitted from the classical280

Gauss-Laguerre quadrature formula, i.e.,281

εn(τ, β) =

∫ +∞

0

F (%)w(%) d% =

jN∑
k=1

AkF (%k) +RjN (F ), (19)

where jN < N . Truncated sums ε̄
(N)
n (τ, β), by taking only the first 15% of terms, are presented282

in the same table (last column). The number of terms taken in quadrature sums is given in the283

penultimate column. As we can see, the values of the truncated sums, with only b15N/100c284

terms, are almost the same as those (with N terms) in the second column of Table 1.285

Thus, in calculating the approximations of TDEI functions, we use a maximum of 150286

quadrature nodes, so the numerical work is reduced many times. However, the construction of287

the high-order Gaussian formulas remains.288

Remark 7. Instead of the Gauss-Laguerre quadrature rule in (18) one can use the generalized289

Gauss-Laguerre rule with the weight function % 7→ % e−% on (0,+∞), and extracting the factor290

“%” from (17), but some improvement cannot be achieved.291

In the sequel we provide graphics (see Figure 4) for the TDEI functions εn(τ, β), n = 1, 2, 3,292

obtained using the previously described approach.293
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Figure 4: Graphics of the TDEI functions τ 7→ εn(τ, β), n = 1, 2, 3, in log-scale for some
selected values of the parameter β, when τ runs over (0, 1)

The graphics for the TDEI functions τ 7→ εn(τ, β) are given in log-scale for τ ∈ (0, 1) and294

some selected values of the parameter β ∈ {1, 3, 6, 10, 15, 20}.295

4.2 Application of the trapezoidal rule296

As we mentioned in Section 3 (Remark 6) the expressions (15) and (16) are acceptable for297

numerically calculating the value of εn(τ, β). In this part we use the second one, denoting its298

integrand by299

g(t) ≡ g(t; τ, β, n) =
J0(τβ sinh t)

coshn t
e−τ cosh t sinh t, (20)

for which300

|g(t)| ≤ |J0(τβ sinh t)| sinh t

coshn t
e−τ cosh t ≤ 2n−1 exp

(
−τ

2
et
)

(t > 0).
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Although this integrand g is oscillatory, its modulus |g(t)| has a double exponential decay, so301

that we can apply the simplest rule, the so-called composite trapezoidal rule, for numerically302

computing the integral (16).303

The trapezoidal sum (2) for integration over (−∞,+∞) can be modified for this case of304

integration on [0,+∞) in the following way. For a given step h, we define the trapezoidal305

approximation306 ∫ +∞

0

g(t) dt ≈ T (g;h) := h
+∞∑
k=1

g(kh), (21)

where the initial term (for k = 0) vanishes because g(0) = 0. Also, if we define the shifted sum307

T̃ (g;h) := h
+∞∑
k=0

g

(
h

2
+ kh

)
,

then the corresponding approximation for h/2 can be expressed as308

T

(
g;
h

2

)
=

1

2

[
T (g;h) + T̃ (g;h)

]
. (22)

Th relation (22) is useful for efficiently applying this method by successively reducing the step309

size to half the previous value. Due to the rapid decay of the modulus of integrand as t→ +∞,310

the infinite sum is replaced by a finite one and the method becomes very simple. Therefore, the311

summation in (21) should be performed for k ≤ M = bb/hc, where b is such that |g(t)| � eps312

for t > b, where eps is a suitably small value.313

Here we consider two examples: (a) (τ, β, n) = (1, 10, 2) and (b) (τ, β, n) = (1/2, 1, 1).314

(a) This case has been treated in the previous part of this section by the Gauss-Christoffel315

rule. Its integrand g(t; 1, 10, 2) is presented in Figure 5 (red line). Figure 6 (left) shows the316

integrand on the interval (3, 6). For example, |g(t)| for t = 4, 5, 6 takes the values 8.73× 10−16,317

2.30× 10−36, 1.86× 10−92, respectively, so that we can take b = 5.318

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.1

0.2

0.3

Figure 5: The integrand (20) for (τ, β, n) = (1, 10, 2) (red line) and (τ, β, n) = (1/2, 1, 1) (blue
line)
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0

1×10-7

2×10-7

3×10-7

4.0 4.5 5.0 5.5 6.0

0

5.0×10-8

1.0×10-7

1.5×10-7

2.0×10-7

2.5×10-7

Figure 6: The integrand (20) for (τ, β, n) = (1, 10, 2) (left) and (τ, β, n) = (1/2, 1, 1) (right)

In our experiment, we use the steps hν = h/2ν , ν = 0, 1, . . . , 10, where h = 1/100. The319

corresponding (finite) trapezoidal sums, denoted by Tν(τ, β, n), are given in Table 2, as well as320

their relative errors Errν(τ, β, n). Exact digits are underlined.321

ν 2ν Tν(1, 10, 2) Errν(1, 10, 2) Tν(1/2, 1, 1) Errν(1/2, 1, 1)

0 1 2.6802834709948373(−5) 1.03(−1) 0.42370204303593167 1.19(−5)
1 2 2.9102838314573682(−5) 2.57(−2) 0.42370583388315840 2.98(−6)
2 4 2.9677697247703535(−5) 6.41(−3) 0.42370678158922689 7.46(−7)
3 8 2.9821403110862998(−5) 1.60(−3) 0.42370701851538539 1.86(−7)
4 16 2.9857329022315141(−5) 4.01(−4) 0.42370707774690259 4.66(−8)
5 32 2.9866310465532772(−5) 1.00(−4) 0.42370709255478050 1.16(−8)
6 64 2.9868555824171853(−5) 2.51(−5) 0.42370709625674988 2.91(−9)
7 128 2.9869117163696290(−5) 6.26(−6) 0.42370709718224223 7.28(−10)
8 256 2.9869257498568941(−5) 1.57(−6) 0.42370709741361531 1.82(−10)
9 512 2.9869292582286575(−5) 3.92(−7) 0.42370709747145858 4.55(−11)

10 1024 2.9869301353215951(−5) 9.79(−8) 0.42370709748591940 1.14(−11)

Table 2: Approximations Sk in numerical computation of ε2(1, 10)

(b) In the second example (τ, β, n) = (1/2, 1, 1) the function g is not rapidly oscillatory (see322

Figures 5 and 6 (blue line)).323

In this case, |g(t)| for t = 5, 6, 7 takes the values 1.85 × 10−18, 1.12 × 10−45, 4.14 × 10−121,324

respectively, so that we can take b = 6. The corresponding values for Tν(1/2, 1, 1) and325

Errν(1/2, 1, 1) are presented again in Table 2. As we can see, in this case the convergence326

of the trapezoidal formula is significantly faster than in case (a).327

4.3 Integration between zeros of the integrand328

For computing the value of an integral whose integrand oscillates over (0,+∞), as is the case329

here, it may be useful to compute the positive and negative contributions separately, and then330

sum the resulting infinite series. For computing integrals between zeros, the Gauss-Lobatto331

quadrature rule at N + 2 points is suitable, since the integrand values at the endpoints of332

these subintervals are zero. Thus, this rule has the algebraic degree of exactness 2N + 1, with333

calculations of the integrand at only N nodes.334
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Figure 7: Graphics of the functions for τ = 1, β = 10, n = 2. Left: K(t; τβ) = J0(τβ sinh t)
(green) and g(t; τ, n) (blue); Right: The product F (t) = K(t; τβ)g(t; τ, n) (red)

Consider the TDEI function εn(τ, β) in the form (16). In general, it is an integral of the335

positive function t 7→ g(t; τ, n) over (0,+∞), with the oscillatory kernel K(t;ω), where336

g(t; τ, n) =
e−τ cosh t sinh t

coshn t
, K(t;ω) = J0(ω sinh t) (ω = τ β). (23)

The positive zeros of the Bessel function Jn(x): jn,k, k = 1, 2, . . . , are provided in Math-337

ematica as a mathematical function BesselJZero[n,k], suitable for both symbolic and nu-338

merical calculation (with arbitrary numerical precision).339

In our case, for example, the first M = 120 positive zeros of the kernel K(t;ω) = J0(ω sinh t),340

for ω = 10 (τ = 1, β = 10) can be obtained (with 25 decimal digits) very easy as341

zeros = Table[ArcSinh[N[BesselJZero[0,k],25]/10], {k,1,120}];342

The functions (23) (for τ = 1, β = 10, n = 2) are presented in Figure 7. The first eight zeros343

are also shown.344

Let zk, k = 1, . . . ,M , be the first M zeros of the kernel K(t; τβ) and let345 ∫ 1

−1
f(x) dx = w0f(−1) +

N∑
ν=1

wkf(xk) + wN+1f(1) +RN+2(f), (24)

be the (N + 2)-point Gauss-Lobatto quadrature rule (cf. [23, p. 330]) on the standard interval346

[−1, 1]. In order to integrate a function F on [zk−1, zk] (with F (zk−1) = F (zk) = 0), the formula347

(24) can be transformed to the corresponding quadrature rule348 ∫ zk

zk−1

F (t) dt =
zk − zk−1

2

N∑
ν=1

wkF

(
zk − zk−1

2
xν +

zk + zk−1
2

)
+R

(k)
N (F ), k = 2, . . . ,M.

If F (0) = 0, the previous rule can be also applied to the interval [0, z1], i.e., for k = 1, if we put349

z0 = 0. In our case this condition for the function F (t) = K(t; τβ)g(t; τ, n) is satisfied, because350

g(0; τ, n) = 0.351

The Gauss-Lobatto quadrature rule (24) can be constructed by using our Mathematica352

Package OrthogonalPolynomials (cf. [6, 29]). In this case, it is enough to take only N = 10353

internal nodes. The corresponding commands are:354

<< orthogonalPolynomials‘355

{al, be} = Transpose[aLegendre["ttr"] /@ Range[0, 20]];356

{nL0, wL0} = aLobattoNodesWeights[10, al, be, -1, 1, WorkingPrecision -> 30,357

Precision -> 20]358

(* Dropping the first and last nodes *)359

nL = Delete[nL0, {{1}, {12}}]; wL = Delete[wL0, {{1}, {12}}];360
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For a given {τ, β, n}, we calculate the values of the integrals over subintervals between zeros361

(the sequence terms):362

F[t_,tau_,beta_,n_] :=363

BesselJ[0, tau beta Sinh[t]] Exp[-tau Cosh[t]] (Sinh[t]/Cosh[t]^n);364

(* Set values for {tau,beta,n} *)365

seq = Table[0, {k,1,120}];366

seq[[1]] = zeros[[1]]/2 wL.F[zeros[[1]]/2 (nL+1), 1,10,2];367

Do[a = (zeros[[k]]-zeros[[k-1]])/2; b = (zeros[[k-1]]+zeros[[k]])/2;368

nT = a nL + b;369

seq[[k]] = a wL.F[nT,1,10,2], {k,2,120}];370

The obtained sequence is oscillatory and the corresponding numerical series may be slowly371

convergent, when it is necessary to apply some of the acceleration procedures (e.g., Euler-Abel372

transform, ε-transformation, Aitken’s ∆2 method, Levin’s V -transform, etc.).373

The partial sums Sk for ε2(1, 10), when k = 20(10)120, with relative errors, are presented374

in Table 3. Exact digits are underlined.

k Partial sum Sk Relative error

20 2.9406387806154546(−5) 1.55(−2)
30 2.9861740508523990(−5) 2.53(−4)
40 2.9869142274627505(−5) 5.42(−6)
50 2.9869300231936906(−5) 1.35(−7)
60 2.9869304165409176(−5) 3.73(−9)
70 2.9869304273570364(−5) 1.10(−10)
80 2.9869304276757006(−5) 3.42(−12)
90 2.9869304276855780(−5) 1.10(−13)

100 2.9869304276858963(−5) 3.67(−15)
110 2.9869304276859069(−5) 1.25(−16)
120 2.9869304276859073(−5) 4.40(−18)

Table 3: Approximations Sk in numerical computation of ε2(1, 10)

375

A good feature of this method is that when breaking the series (by taking a partial sum),376

the error we make is always smaller than the first discarded term of the series. For example, in377

the observed case, if we discard the hundred and first term 1.87553789682425808× 10−19, the378

absolute error in the partial sum S100 will be smaller than 1.88× 10−19, which means that the379

relative error is smaller than 6.28× 10−15. From Table 3 we see that it is actually 3.67× 10−15.380

5 Conclusion381

Beside the general short description of important quadrature processes, including some his-382

torical details, we considered integral representations of two-dimensional exponential integral383

(TDEI) functions, as well as their numerical calculation based on quadrature processes. Three384

methods are proposed: (1) Truncated Gauss-Christoffel quadrature formulas with respect to the385

Laguerre weight function on [0,+∞); (2) Composite trapezoidal rule; (3) Integration between386

zeros of the integrand.387

The simplest trapezoidal rule can be used when the integrand is not fast oscillating function388

and when high accuracy is not required. The truncated Gauss-Laguerre formulas are efficient to389
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apply, but the construction of the basic high-order formulas can be demanding. However, this390

is successfully solved using the available Mathematica Package OrthogonalPolynomials.391

Finally, as an alternative, integration between zero integrands is a very reliable and accurate392

method.393
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of integrals with oscillatory and singular integrand, Numer. Algorithms 85 (4), 1155–1173,439

2020.440

[19] M. Masjed-Jamei, A new type of weighted quadrature rules and its relation with orthogonal441

polynomials, Appl. Math. Comput. 188 (1), 154–165, 2007.442
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