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Quadrature processes and numerical computation of the
two dimensional exponential integrals

Gradimir V. Milovanovi¢

Abstract

Integral representations of two-dimensional exponential integral (TDEI) functions and
their numerical computation based on quadrature processes are treated. In addition to
a general brief description of important quadrature processes, including some historical
details, three methods for numerical calculation of TDEI functions are presented in par-
ticular. Precisely, the construction and application of the truncated Gauss-Christoffel
quadrature formulas, the composite trapezoidal rule, and the method of integration be-
tween zeros of the integrand to the calculation of the values of TDEI functions in various
situations are given. A series of numerical examples are given, including error analysis.
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1 Introduction

This paper is devoted to quadrature processes and their application in the numerical integration
of two-dimensional exponential integrals (TDEI), which have been considered by several authors
(cf. [1-[3], [41)).

In the general case, numerical integration represents the approximation of a functional
I(f) == [ f(t)dpu(t), defined on a class of functions X (with respect to the measure du(t)), by
another functional (quadrature rule) Q,(f) := > _, A, f(7,), which is defined using only the
values of the function f at selected n points 7,,, v = 1, ..., n. These points are called nodes, and
the corresponding coefficients A, are weights. The difference R, (f) := I(f) — Qn(f) represents
the remainder term of the quadrature formula, which is usually constructed so that R, (f) is
equal to zero on some subset of X.

The set of all algebraic polynomials of degree at most n will be denoted by P,, (C P), where
P be the set of all algebraic polynomials.

This paper is organized as follows. In Section 2 we give a brief overview of the most
important quadrature processes, including some historical details. The main attention is paid
to the integral representations of TDEI functions (Section 3), as well as to the numerical
calculation of their values using numerical integration (Section 4).

1



a1

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

2 Preliminaries on quadrature processes

In this section we give a short account on numerical integration using quadrature rules. There
are two main approaches, originating from Isaac Newton (1647-1727) and Carl Friedrich Gauss
(1777-1855).

2.1 Newton approach

Newton’s idea from 1676 about the integration of an interpolation polynomial for the function
f :]a,b] = R, on a set of equidistant points 74 on [a, b, as well as later refinements by Roger
Cotes, led to the well-known Newton-Cotes formulas for the numerical integration of functions
on the interval [a,b], which, in addition to their theoretical significance, also have practical
applications in the construction of so-called composite quadrature formulas (trapezoidal, Simp-
son’s, ...), as well as in adaptive integration.

The well-known and the simplest composite trapezoidal rule for calculating the integral
of the function f over the interval [a,b], using n + 1 values fr = f(7) at equidistant nodes
T = a+ kh, k=0,1,...,n, with the step size h = (b — a)/n, is defined by

b
= [ ram T = (Gt e fik 6. )

For sufficiently continuously-differentiable functions, the well-known Euler-Maclaurin summa-
tion formula

AUDE TRy 2”32" (F2D(b) — F* (@) + En(f)

holds, where By (By = 1, By = —1/2, B, = 1/6, By = 0, By = —1/30, ...) are Bernoulli
numbers and E,,(f) is the corresponding remainder term, which can be represented as

BQerQ h2m—|—2

mf(2m+2)(f)> a<&<b

En(f) = (b—a)
As we can see the trapezoidal rule T,,(f;h), given by (1), with the error term

To(fsh) = I(f) = Eo(f) = (b—a)f "(©h* (a<&<b),

12
converges very slowly with respect to step refinement as O(h?). Something better convergence
O(h*) has the classical composite Simpson rule S,,(f;h). In general, both of these formulas do
not allow achieving high accuracy.

However, if we restrict our analysis to the class of analytic functions with all derivatives
f vanishing at * = a and x = b, then the discretization error is given only by the remainder
E.(f) as m — +oo. Then the convergence with respect to step refinement is faster than any
finite order and the trapezoidal rule becomes the method of choice. This kind of convergence
is known as exponential convergence. Such a method, known in the literature as IMT rule was
proposed in 1969 by Iri, Moriguti and Takasawa, but an English translation of the original
Japanese paper was published in 1987 (¢f. [16]). Error estimation for analytic functions and
quadrature rules obtained by transformations of the integration variable were considered by
Takahasi and Mori [34, 35]. In a survey paper Mori [31] particularly emphasized the so-called
double exponential integration rule (DE-rule), which is characterized by a double exponential
decay near the endpoints of the transformed integration interval. Particularly interesting are
the cases when (a,b) = (—o0, +00) and (0, +00).
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In an interesting paper Waldvogel [38] proposed as a standard the trapezoidal rule on the
entire real line R for numerical integration of analytic functions and suggested the choice of
an elementary transformation ¢ = ¢(x) from the interval (a,b) to (—oo,+oc). In addition,
slow decay at infinity can be accelerated by the sinh-transformation, as well as some other
transformations (c¢f. [16, 25, 30, 34, 35, 38]).

In the case (a,b) = (—o0, +00), formula (1) can be slightly modified as the shifted trapezoidal
sum with step h and offset s (cf. [38]),

“+oo

I(f) = f@)dt = T(f;h,s):=h Y f(s+kh). (2)

k=—o00

We note that T'(f;h,s) =T(f;h,s+ h) and

7(5:59) = glrusnar +7 (g4 3))

The latter relation is useful for the efficient transition from step h to step h/2.

Remark 1. With the same Newton idea, one can also consider the weighted integration
fab f()w(t)dt, where w : [a,b] — RT is a given weight function. Thus, the weighted Newton-
Cotes formulas are given by

[ et =Y A () + Ra(), 3)

where the equidistant points (nodes) are taken by the step h = (b — a)/n usually as

mw=a+kh, k=0,n m=a+kh k=1n—-1;, Tn=a-+ (k—%), k=1 n.
Such quadrature formulas are of the interpolation type, for which the remainder term R,,(f) = 0
whenever f € P;, where d is the algebraic degree of exactness depending of the number of
nodes. The weight coefficients A; (Cotes numbers) can be expressed using the corresponding
interpolation formula (cf. [23, §5.1]). Closed expressions for Cotes numbers Ay were derived in
terms of moments and Stirling numbers of the first kind in [22].

Remark 2. A type of interpolatory quadrature formulas, whose nodes are geometricaly dis-
tributed in the form 7, = ag®, k = 0,1,...,n, were introduced in [21]. The explicit expressions
for the coefficients Ay are also obtained using the ¢-binomial theorem.

2.2 Gaussian approach

The most significant discovery in numerical analysis in the 19th century was Gauss’s quadrature
formulas of 1814. Gauss [9] dramatically improved Newton’s method, increasing the algebraic
degree of exactness of the n-point quadrature formula (3) (for w(t) =1 on (a,b) = (0,1)) from
n — 1 to 2n — 1, using only his result on continued fractions associated with hypergeometric
series. It is interesting to note that Gauss determined the numerical values of nodes and weights
for each n < 7, with almost 16 significant decimal digits, which are otherwise the zeros of the
shifted Legendre polynomial P,(2t — 1). Twelve years after Gauss, Jacobi [17] gave an elegant
alternative derivation of Gauss’s formulas. Further contributions and the development of this
discovery into a theory during the second half of the nineteenth century were made by Mehler,
Heine, Radau and many others, among whom Christoffel stands out in particular, who in 1877
gave a significant generalization of Gauss’s formulas for arbitrary weight functions or measures,
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thus providing a fundamental connection with orthogonal polynomials and continued fractions.
Such formulas with a maximum (algebraic) degree of exactness are now known as the Gauss-
Christoffel quadrature formulas. Markov, Stiltjes, Uspensky, etc. are credited with analyzing
the error R, (f) of these formulas in various classes of functions, as well as the convergence of a
sequence of quadrature formulas. A nice survey of Gauss-Christoffel quadrature formulae was
written by Gautschi [10].

The main tool for constructing and analyzing Gauss-Christoffel quadrature rules are or-
thogonal polynomials 7 () related to the inner product defined by

(p,q) = /Rp(t)Q(t) du(t) (p,q e P).

It is well-known that the monic polynomials 7, (t), kK = 0, 1,2, ..., satisfy the three-term recur-
rence relation of the form

Tk+1 (t) = (t - O‘k)’ﬁk(t) - ﬂk/frk—l(t)? k= 07 17 2a SR (4)
where my(t) = 1 and 7_1(t) = 0 (by definition).

Remark 3. The coefficient 5y in (4) may be arbitrary, but is conveniently defined by

Bo = po = / ).

The following result was proved by Jacobi [17]:

Theorem 2.1. Given a positive integer m (< n), the quadrature formula

[ 1Ot = 3= Ausn) + i), (5)

has degree of exactness d =n — 1+ m if and only if the following conditions are satisfied:
1° Formula (5) is interpolatory;
2° The node polynomial w,(t) = (t — 1)+ (t — 7,,) satisfies

(Ve Prr)  (prin) = / plt)en(£) du(t) = 0.

According to this result, the n-point quadrature formula (5) with respect to the positive
measure du(t) has the maximal algebraic degree of exactness 2n — 1. In other words, setting
m = n is optimal (w, = m,).

Higher values of m (> n) are impossible. Indeed, according to 2°, the case m = n+1 would
require the orthogonality condition

(Vp € Pp) (p, wn) = 0.

Choosing p = w,, (which has degree n) immediately gives (w,,w,) = 0. Since p is a positive
measure, the inner product is strictly positive for any non-zero polynomial of degree at most
n, leading to a contradiction.

The cases with lower m are well known:

e when m = n — 1, the resulting formula is a Gauss—Radau quadrature rule (one of the
endpoints a or b is included among the nodes);

e when m = n — 2, it becomes a Gauss—Lobatto quadrature rule (1 = a and 7, = b).
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These rules have lower degrees of exactness than the classical Gaussian formula (typically
2n — 2 for Radau and 2n — 3 for Lobatto with n nodes), which is the price paid for enforcing
the boundary conditions.

The first significant progress in the construction of Gauss-Christoffel formulas (i.e., the
nodes 75, and the weight coefficients Ay) for an arbitrary positive measure dp on R with finite
or unbounded support, for which all moments u; = fR thdu, k = 0,1,..., exist and are finite
and po > 0, was made in 1969 by Golub and Welsch [14]. They reduced the construction to
the eigenvalue problem for a symmetric tri-diagonal, the so-called Jacobi matrix,

a0 VB o
VB ar VB
Jn(dp) = VB e ; (6)

O Bn—l Qp—1

where the sequences {ay} and {8} are the coefficients in a three-term recurrence relation (4).
The nodes 7, ..., 7, are the eigenvalues of the matrix (6), and the first components vg; of
the corresponding normalized eigenvectors v, = [Uk,l vk,n]T (vIvy = 1) give the weight
coefficients (Christoffel numbers) Ay = povy |, k=1,...,n.

These sequences {ay} and {5} depend only on the measure, i.e., of the weight function
w(t) = dp/ dt if the measure is absolutely continuous, but unfortunately they are known, in an
explicit form, only for some narrow classes of weight functions, such as, for example, classical
weights (Jacobi weight on (—1,1), generalized Laguere weight on (0, 00) and Hermite weight
on R).

Another significant progress occurred at the beginning of the eighties of the last century,
when Walter Gautschi, in a series of papers, recognizing the recursive sequences {ay} and
{Br} as fundamental quantities, and developed the so-called constructive theory of orthogonal
polynomials on R (cf. [11, 12]).

Thanks to the methods developed within the constructive theory of orthogonality, the cal-
culation of the coefficients {ay} and {8}, in a general case, is realized by numerical methods
(see [11, 12, 27]). During their numerical construction, the problem of high instability arises,
in relation to small perturbations of the input quantities. However, the progress that has been
made in the last thirty years in symbolic calculation and in the so-called arithmetic of variable
precision, today allows the generation of sequences of recursive coefficients sometimes by direct
application of the original Chebyshev method of moments, with the use of arithmetic of suffi-
ciently high precision, which enables numerical instability to be overcome! Such software for
orthogonal polynomials and quadrature formulas are available today:

e MATLAB package SOPQ (Gautschi: https://www.cs.purdue.edu/archives/2002/wxg/);

e MATHEMATICA package OrthogonalPolynomials (cf. [6, 29]: available on the website of
the Mathematics Institute SASA http://www.mi.sanu.ac.rs/~gvm/).

Remark 4. A new representation of Hermite’s osculator interpolation was presented in [20],
with the aim of constructing a weighted Hermite quadrature formula. Explicit forms for several
special cases of quadratures are obtained, including the weighted Hermite quadrature rule with
arithmetic and geometric knots, as well as the standard Gauss-Christoffel quadrature rule and
the Gaussian quadrature rule using only derivatives of functions (c¢f. [19, 28]).

In many situations, Gauss-Christoffel quadrature formulas give very accurate approxima-
tions of integrals. However, in some cases these formulas have slow convergence or give very
similar results compared to simpler methods. In a review paper, Trefethen [36] compared the
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accuracy of the Gauss-Christoffel and Clenshaw-Curtis methods and showed that there are
numerous cases where these two methods give results with almost equal errors, but the con-
struction of the Clenshaw-Curtis method is much simpler. His recent work [37] on the accuracy
of quadrature formulas is also interesting.

3 Two dimensional exponential integrals

The exponential integral F(z) is defined by

and its generalization E,(z) by

+oo —zt
E.(z) = /1 ¢ —dt, n>0. (7)

The exponential integral plays an important role in many subjects of physics, quantum chem-
istry, theory of fluid flow, etc. Integrals having as weight function this integral on the positive
real line R (or on a finite part [0,c|, ¢ > 0) are of interest in radiative transfer. W. Gautschi
[13] has considered polynomials orthogonal with respect to (7).

There is also a generalisation of (7), defined by (¢f. [3])

\

+o00
A B) = [ (4B e e+ ) at

eo(7, B) = /1+O° 2 exp[—7(t2 + ﬁz)l/z} dt, (8)

es(t,B) = 7'/1%0 E9 (Tt, g) dt, )

which appears in the study of the radiative transfer in a multi-dimensional medium. Note that
for =0, e1(7,0) = Ey(7) and €1(7,0) = Es(7).

Altag [2] (see also [1]) considered the n'™ order generalized exponential integral functions
en(7,8) (n € N) in the following form

[y VG
) =gy [ e

or, after a change of variables t := t7, as
-t /+°°(t B 1)n_lexp[—7'\/t2 + 52] &
(n—=1!J, V2 + 52

He derived several series expansions, recurrence relations, as well as the other properties of this
kind of integrals.

Since (cf. [33, p. 189] for v = 0)
B exp|[—zy/p* + ]

/+OO . exp [—p\/;pQ + 22} JO(Ca:) Ay —
0 Va? + 22 VD2 c?

where J,(z) is the Bessel function of the first kind and order v, defined by

= —1)* 2N 2k
Tolz) = kz:% KT ( ( v+ 1) (5) ’ (10)

6

en(T, ) = (9)
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Eq. (9) can be expressed in the form

en(T, ) = %/1 00(25—1)”‘1 (/0 OOQeXp[\_/%:T }Jo(ﬁa) d@) dt.

After changing the order of integration and using
+o0 — 1)le—@
/ (t _ 1)n—1e—at dt — ua a = /92 _|_ 7—27
1 a"

we finally get
. +oo Qe—\/gz—i-—Tz
En(7—7 B) =T /0 JO(BQ) (Q2 + 7-2)(7L+1)/2

On the other side in 2015 Yardimcr et al. [41] considered the two-dimensional exponential
integral (TDEI) functions given in the form

do. (11)

+oo ptoo -7

e 7 dz dy, (12)

where r? = 22+ y*+72 and n € N. They proved that the function (7, 3) — &,(7, 3) is uniformly
convergent on

D(e) = {(T, B) € Q|1 € [e,+0), B € ]R},

and nonuniformly convergent on €2 := [0, +00) x R. Furthermore, using these facts, the authors
concluded that for (7, 8) € D(e) the function (7, ) — €,(7, 5) satisfies the following asymptotic
formulas

en(T,8) = o(1), T — 400;
en(7,8) = 0(1), B — Fo0;
en(7,B) = En(1) +0(1), B — 4o0.

Beside the problem of convergence and asymptotic behaviour, they investigated also numerical
computations of the TDEI functions.

Note that the previous functions (8)—(12) are two-dimensional analogs of the exponential
integral (7).

Now, we prove that the formulas (12) and (9) are equivalent.

Proposition 3.1. The formulas for e,(7, 3), given by (12) and (9) are equivalent.

Proof. Tf we introduce the polar coordinates (p,#) in the integral (12): z = pcosf, y = psinb,
then (12) reduces to

2r p+oo 0 +7'2

En(Ta ﬂ) = € iBQCOSQQdedQ

27T

27 £/ 2+7’2
= 7_n—l/ ( / —lﬁgcose de) e ¢ 0 dQ,
0 ot J, (0% + 72)(nt1)/2

(0% + 72)(nt1)/2

(02 +7.2 (n+1)/2

ie.,

+o0
(7, B) = 771 /0 Jo(Bo) o, (13)
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because of (c¢f. [32, p. 223])

1 2m )
Jn(z) = /0 %% cos(nf) dh

27mrin

and Jo(—z) = Jo(z), where J,(2) is the Bessel function of the first kind and order v, defined by
(10). It is obvious that (13) coincides with (11), which is obtained from (9), thus completing
the proof. n

In the sequel we give a few equivalent integral representations of €, (7, 3).

Proposition 3.2. For >0, >0, and n € N, we have

en(T,B) = €77 /Om WIIVAEA D) rter dz, (14)

(z+1)»

+o00o
en(T, ) = / Jo(TBVe? — 1)e’("’1)9“7ez dz (15)
0
and

o Jo(rBsinht) b
(. 8) = JONTPSMAY) (—reosht Gingy ¢ df. 16
en(T, B) /0 e e sin (16)

Proof. For a given 7 we introduce a new variable z (> 0) by means o = 74/2(z + 2), so that

T(z+1)
R+ =1(z41 and do = ——=d=.
0 ( ) ¢ Vz(z+2)

Then, the integral (11) becomes

() —7(2+1) /
5n(7—,6) :Tn—l /+ JO(BT Z(Z—|—2))e +1T Z<Z+2) T(Z+1) dZ,
0

7—n+1(z+1)n+1 Z(Z—|—2)

ie., (14).
In order to get (15) we use a change of variables z = e¢* — 1 in (14), so that z(z + 2) =
(z+1)> =1 =¢* — 1. In this way we obtain

—+o00 or 1 .
calri) = [ M= D e
0

e” dx
e

+oo
= / Jo(1Vex — 1)e~(=De=me" g
0
Finally, using the 1 —1 transformation ¢ — x = log(cosh t), which maps the interval [0, +00)
into itself, the integral (15) reduces to (16). O
Remark 5. According to (15) or (16) we can conclude that &, (7, 8) < e1(7, 8). Since |Jo(t)| < 1

for t > 0, we have
{JO (TﬂM)e—(n—l)x—Tex S e—Tex

Y

so that
+oo -t

+oo
e1(1,B) < e1(7,0) = / e ™ dr = / eT dt =T(0,7),
0 T

where T'(a, z) is the incomplete gamma function, defined by

[(a,z) :/ t* et dt.

8
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Remark 6. We note that the function z — Jo(w+/2(z +2)) (w = 7/3), which appears in the
integral (14), can be highly oscillatory function (see Fig. 1), so this formula is not useful for
calculating the function e, (7, #). On the other side, the expressions (15) and (16) are acceptable
for numerically calculating the value of €, (7, 8).

10f
0.8
0.6]
04/

Figure 1: Graphics of the function z — Jo(wy/z(z + 2)) for w =1 (red line) and w = 20 (blue
line)

4 Numerical calculation of the TDEI functions

In this section we give some alternative methods based on quadrature processes (cf. [23])
for numerical computation of the values of the two dimensional exponential integral (TDEI)
functions. We analyze quadrature processes based on the application of the Gauss-Laguerre
formula, the composite trapezoidal formula, and the method of so-called integration between
zeros of the integrand for oscillatory functions (c¢f. [7, p. 230]). Special methods for the inte-
gration of fast oscillatory functions, such as those in the papers [4, 5, 15, 18, 26, 39, 40] and
the book [8], will be the subject of future research.

4.1 Application of Gauss-Christoffel quadrature formulas

Computing weighted integrals of the Bessel function Jy(wz) over (0,400) is a complex topic
with results that depend heavily on the chosen weight function. Only in some cases such
integrals have the closed forms, e.g.,

1
B Va2 + w?’

while in most cases need specialized numerical methods are required.

First, we consider €,(7, 3) in the integral form (11). Let ®(o) = ®(p;7,3,n) denote its
integrand, which can be written as a product F'(9)w(g), where w is the Laguerre weight function
on (0,400), given by w(p) = e~¢, and

a

+oo
A we*”Jo(wx) dx = m, cee

+o00o
/ e Jy(wz)de
0

1 g7/ e+ V/E+7?)
F(o) = F(oi7,8,n) = (o5 7, f,n)e = 7" Jo(Bo) (@ + )2 (17)

This allows us to apply the Gauss-Laguerre quadrature formula, so we have

en(T,8) = / " F(ouw(e)do= 3" AcF(g0) + Ru(F). (18)

9
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where Ry (F) is the corresponding remainder term.
The functions ®(p) and F(p) for 7 =1, § = 10 and n = 2 are displayed in Figures 2 and 3,
respectively.

(o)

0.02
0.00 0
-0.02

-0.04

Figure 2: Graphic of the function ¢ — ®(9) = ®(p; 1,10,2) on [0, 4]

F(o)

0.06 h
0.04

0.02 N/\
0.00 I\/\I\AAA‘AA-_-

Vzvvvyvvz"'s‘ 0> ¢

-0.02}
~0.04} u
~0.06] N

Figure 3: Graphic of the function ¢ — F(g) = F(p;1,10,2) on [0, 10]

For calculating quadrature parameters (the nodes gy and the weights Ay) we use our MATH-
EMATICA Package OrthogonalPolynomials (cf. [6, 29]). Taking into account the oscillatory
character and slow decay of the function ¢ — F(p) as ¢ — 400, we will construct Gauss-
Laguerre quadrature formulas with a large number of nodes N (= nn), from 100 to 1000, with
a step of 100 (and a working precision of 25 decimal digits). The corresponding commands are:

<< orthogonalPolynomials®

pqln_] := aGaussianNodesWeights[n, {alaguerre}, WorkingPrecision -> 25,
Precision -> 20];

nw = Table[pq[nb]l,{nn,100,1000,1003}];

Here, nw[[v]] gives the nodes nw[[v]] [[1]] and the weights nw[[v]] [[2]] for nn = 100v,
where v=1,2,...,10.

Applying the quadrature rule (18) to the function F'(g; 7, 5,n), we obtain the approximative
values of &, (7, 3), in the notation é;N)(T, B). The corresponding values in the case 7 = 1, 5 = 10
and n = 2 are given in the second column of Table 1, and exact figures are underlined. Numbers
in parentheses indicate decimal exponents, for example 1.24(—2) = 1.24 x 1072,

The exact value of this TDEI function in the point (7, 8) = (1,10) is

£5(1,10) = 2.986930427685907284974203770433 ... x 1072,

10
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obtained in WOLFRAM MATHEMATICA, ver. 14.3, using the high precision arithmetics with
100 decimal digits.

N M1, 10) Err(N) | jn (15%) £9™(1,10)
100 —2.5526893352569225(—4) 9.55 15 —2.5333617783794170(—5)
200 3.0240940409582615(—5) 1.24(—2) 30 3.0243994432526185(—5)
300 2.9882400642087742(—5) 4.38(—4) 45 2.9882404837193715(—5)
400 2.9869202414602691(—5) 3.41(—6) 60 2.9869202417527040(—5)
500 2.9869302932774400(—5) 4.50(—8) 75 2.9869302932765853(—5)
600  2.9869304302724077(—5) 8.66(—10) 90 2.9869304302724031(—5)
700 2.9869304276972022(—5) 3.78(—12) | 105 2.9869304276972022(—5)
800  2.9869304276852608(—5) 2.16(—13) | 120 2.9869304276852608(—5)
900  2.9869304276859088(—5) 5.17(—16) | 135 2.9869304276859088(—5)
1000 2.9869304276859074(—5) 5.11(—17) | 150 2.9869304276859074(—5)

Table 1: Gauss-Laguerre approximations in numerical computation of £5(1,10)

From this example, we can see the very slow convergence of the Gauss-Laguerre quadrature
formula. Relative errors

n (T B) — enl(T, B)
en(T, )

are presented in the third column in Table 1. However, we can use the idea of Mastroianni
and Monegato [24] to reduce the numerical work in computing quadrature sums. Namely, they
proposed a truncated version where the last part of its nodes is omitted from the classical
Gauss-Laguerre quadrature formula, i.e.,

Err(N) =

+oo N
Srf) = [ Plowle)do =Y AF (@) + Ri(P) (19)
k=1
where jn < N. Truncated sums E%N) (7, 5), by taking only the first 15% of terms, are presented
in the same table (last column). The number of terms taken in quadrature sums is given in the
penultimate column. As we can see, the values of the truncated sums, with only |15N/100]
terms, are almost the same as those (with N terms) in the second column of Table 1.
Thus, in calculating the approximations of TDEI functions, we use a maximum of 150
quadrature nodes, so the numerical work is reduced many times. However, the construction of
the high-order Gaussian formulas remains.

Remark 7. Instead of the Gauss-Laguerre quadrature rule in (18) one can use the generalized
Gauss-Laguerre rule with the weight function g — pe 2 on (0, +00), and extracting the factor
“o” from (17), but some improvement cannot be achieved.

In the sequel we provide graphics (see Figure 4) for the TDEI functions &, (7, 5), n = 1,2, 3,
obtained using the previously described approach.
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Figure 4: Graphics of the TDEI functions 7 — &,(7,5), n = 1,2,3, in log-scale for some
selected values of the parameter 3, when 7 runs over (0, 1)

The graphics for the TDEI functions 7 — ¢,(7, §) are given in log-scale for 7 € (0,1) and
some selected values of the parameter § € {1, 3,6, 10, 15,20}.

4.2 Application of the trapezoidal rule

As we mentioned in Section 3 (Remark 6) the expressions (15) and (16) are acceptable for
numerically calculating the value of €, (7, 5). In this part we use the second one, denoting its
integrand by

Jo(TBsinht)

—71cosht _:
ht 20
cosh™t © SR, (20)

g(t) =g(t;7,B,n) =

for which

()] < |Jo(T/5sinh t)|sinh ¢ .

—Tcosht < 2n71 (_Z t) t>0).
- cosh™ ¢ - P T ( )

12



301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

Although this integrand g is oscillatory, its modulus |g(¢)| has a double exponential decay, so
that we can apply the simplest rule, the so-called composite trapezoidal rule, for numerically
computing the integral (16).

The trapezoidal sum (2) for integration over (—oo,400) can be modified for this case of
integration on [0, +0c) in the following way. For a given step h, we define the trapezoidal
approximation

[ sttae = Ty = 13 gtom), 1)

where the initial term (for k£ = 0) vanishes because g(0) = 0. Also, if we define the shifted sum

+00

~ h

T(g;h) :=h g g <§+kh> :
k=0

then the corresponding approximation for h/2 can be expressed as

T (g; g) - % [T(g; h) +T(g; h)} : (22)

Th relation (22) is useful for efficiently applying this method by successively reducing the step
size to half the previous value. Due to the rapid decay of the modulus of integrand as ¢t — +o0,
the infinite sum is replaced by a finite one and the method becomes very simple. Therefore, the
summation in (21) should be performed for k < M = |b/h|, where b is such that |g(t)| < eps
for ¢t > b, where eps is a suitably small value.

Here we consider two examples: (a) (7, 8,n) = (1,10,2) and (b) (7, 5,n) = (1/2,1,1).

(a) This case has been treated in the previous part of this section by the Gauss-Christoffel
rule. Its integrand g¢(t;1,10,2) is presented in Figure 5 (red line). Figure 6 (left) shows the
integrand on the interval (3,6). For example, |g(t)| for t = 4, 5,6 takes the values 8.73 x 10716,
2.30 x 10736, 1.86 x 10792, respectively, so that we can take b = 5.

03l
02l
01"
0.0+ ~——
00 05 10 15 20 25 30 35

Figure 5: The integrand (20) for (7, 5,n) = (1,10, 2) (red line) and (7, 5,n) = (1/2,1,1) (blue
line)
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Figure 6: The integrand (20) for (7, 8,n) = (1,10,2) (left) and (7, 8,n) = (1/2,1,1) (right)

In our experiment, we use the steps h, = h/2", v = 0,1,...,10, where h = 1/100. The
corresponding (finite) trapezoidal sums, denoted by T, (7, §,n), are given in Table 2, as well as
their relative errors Err, (7, 5,n). Exact digits are underlined.

v v T,(1,10,2) Err,(1,10,2) | T,(1/2,1,1) Err,(1/2,1,1)
0 1 2.6802834709948373(—5)  1.03(—1) | 0.42370204303593167  1.19(—5)
1 2 2.9102838314573682(—5)  2.57(—2) | 0.42370583388315840  2.98(—6)
2 4 2.9677697247703535(—5)  6.41(—3) | 0.42370678158922689  7.46(—7)
3 8 2.9821403110862998(—5)  1.60(—3) | 0.42370701851538539  1.86(—7)
4 16 2.9857329022315141(—5)  4.01(—4) | 0.42370707774690259  4.66(—8)
5 32 2.9866310465532772(—5)  1.00(—4) | 0.42370709255478050  1.16(—8)
6 64 2.9868555824171853(—5)  2.51(—5) | 0.42370709625674988  2.91(—9)
7 128 2.9869117163696290(—5)  6.26(—6) | 0.42370709718224223  7.28(—10)
8 256 2.9869257498568941(—5)  1.57(—6) | 0.42370709741361531  1.82(—10)
9 512 2.9869292582286575(—5)  3.92(—7) | 0.42370709747145858  4.55(—11)
10 1024 2.9869301353215951(—5)  9.79(—8) | 0.42370709748591940  1.14(—11)

Table 2: Approximations Sy in numerical computation of £2(1, 10)

(b) In the second example (7, 5,n) = (1/2,1,1) the function g is not rapidly oscillatory (see
Figures 5 and 6 (blue line)).

In this case, |g(t)| for t = 5,6, 7 takes the values 1.85 x 10718, 1.12 x 107, 4.14 x 1072},
respectively, so that we can take b = 6. The corresponding values for 7,(1/2,1,1) and
Err,(1/2,1,1) are presented again in Table 2. As we can see, in this case the convergence
of the trapezoidal formula is significantly faster than in case (a).

4.3 Integration between zeros of the integrand

For computing the value of an integral whose integrand oscillates over (0, 4+00), as is the case
here, it may be useful to compute the positive and negative contributions separately, and then
sum the resulting infinite series. For computing integrals between zeros, the Gauss-Lobatto
quadrature rule at N + 2 points is suitable, since the integrand values at the endpoints of
these subintervals are zero. Thus, this rule has the algebraic degree of exactness 2N + 1, with
calculations of the integrand at only N nodes.
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Figure 7: Graphics of the functions for 7 = 1, § = 10, n = 2. Left: K(t;78) = Jo(7fsinht)
(green) and g(t;7,n) (blue); Right: The product F(t) = K(t;76)g(t;7,n) (red)

Consider the TDEI function &,(7, 8) in the form (16). In general, it is an integral of the
positive function ¢ — g(t; 7,n) over (0, +00), with the oscillatory kernel K (¢;w), where

S cosht sinht

T K(t;w) = Jo(wsinht) (w=7p). (23)

g(t;7,n) =

The positive zeros of the Bessel function J,,(z): jnx, k= 1,2,..., are provided in MATH-
EMATICA as a mathematical function BesselJZero [n,k], suitable for both symbolic and nu-
merical calculation (with arbitrary numerical precision).

In our case, for example, the first M = 120 positive zeros of the kernel K (t;w) = Jy(w sinht),
for w =10 (7 = 1, = 10) can be obtained (with 25 decimal digits) very easy as

zeros = Table[ArcSinh[N[BesselJZero[0,k],25]1/10], {k,1,120}];

The functions (23) (for 7 = 1, § = 10, n = 2) are presented in Figure 7. The first eight zeros
are also shown.
Let zx, k=1,..., M, be the first M zeros of the kernel K (¢;73) and let

/ f dI = wof —|— Zwkf xk + U)N+1f( ) + R]\p,.g(f), (24)

be the (N + 2)-point Gauss-Lobatto quadrature rule (cf. [23, p. 330]) on the standard interval
[—1,1]. In order to integrate a function F on [zx_1, 2| (with F(zx—1) = F(z) = 0), the formula
(24) can be transformed to the corresponding quadrature rule

2k _ N _
/ F(t)dt:%zwkp (Zk ZZk_lxy+Zk +2Zk_1) +R§\I/€)<F)7 k=2...,M.

Zk-1 v=1

If F(0) = 0, the previous rule can be also applied to the interval [0, z1], i.e., for & = 1, if we put
2o = 0. In our case this condition for the function F(t) = K(t;70)g(t; T, n) is satisfied, because
g(0;7,n) = 0.

The Gauss-Lobatto quadrature rule (24) can be constructed by using our MATHEMATICA
Package OrthogonalPolynomials (cf. [6, 29]). In this case, it is enough to take only N = 10
internal nodes. The corresponding commands are:

<< orthogonalPolynomials®

{al, be} = Transposel[alegendre["ttr"] /@ Range[0O, 20]];

{nLO, wLO} = aLobattoNodesWeights[10, al, be, -1, 1, WorkingPrecision -> 30,
Precision -> 20]

(* Dropping the first and last nodes *)

nL = Delete[nLO, {{1}, {12}}]; wL = Delete[wLO, {{1}, {12}}];
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For a given {7, §,n}, we calculate the values of the integrals over subintervals between zeros
(the sequence terms):

F[t_,tau_,beta_,n_] :=
BesselJ[0, tau beta Sinh[t]] Exp[-tau Cosh[t]] (Sinh[t]/Cosh[t] n);

(* Set values for {tau,beta,n} *)

seq = Table[0, {k,1,120}];

seq[[1]] = zeros[[1]]/2 wL.F[zeros[[1]]/2 (nL+1), 1,10,2];

Do[a = (zeros[[k]]-zeros[[k-11]1)/2; b = (zeros[[k-1]]+zeros[[k]])/2;
nT = a nL. + b;

seq[[k]] = a wL.F[nT,1,10,2], {k,2,120}];

The obtained sequence is oscillatory and the corresponding numerical series may be slowly
convergent, when it is necessary to apply some of the acceleration procedures (e.g., Euler-Abel
transform, e-transformation, Aitken’s A? method, Levin’s V-transform, etc.).

The partial sums Sy for £5(1,10), when k& = 20(10)120, with relative errors, are presented
in Table 3. Exact digits are underlined.

k Partial sum Sy, Relative error

20 2.9406387806154546(—5) 1.55(—2)
30 2.9861740508523990(—5)
40 2.9869142274627505(—5)
50 2.9869300231936906(—5)
60 2.9869304165409176(—5) 9
70 2.9869304273570364(—5) 1.10(—1
(—5) 1
(—5)
(—5)
(—5)
(=5)

80 2.9869304276757006
90 2.9869304276855780
100 2.9869304276858963
110 2.9869304276859069
120 2.9869304276859073

Table 3: Approximations S in numerical computation of e2(1, 10)

A good feature of this method is that when breaking the series (by taking a partial sum),
the error we make is always smaller than the first discarded term of the series. For example, in
the observed case, if we discard the hundred and first term 1.87553789682425808 x 10719, the
absolute error in the partial sum S;go will be smaller than 1.88 x 107!, which means that the
relative error is smaller than 6.28 x 107, From Table 3 we see that it is actually 3.67 x 1071,

5 Conclusion

Beside the general short description of important quadrature processes, including some his-
torical details, we considered integral representations of two-dimensional exponential integral
(TDEI) functions, as well as their numerical calculation based on quadrature processes. Three
methods are proposed: (1) Truncated Gauss-Christoffel quadrature formulas with respect to the
Laguerre weight function on [0,+00); (2) Composite trapezoidal rule; (3) Integration between
zeros of the integrand.

The simplest trapezoidal rule can be used when the integrand is not fast oscillating function
and when high accuracy is not required. The truncated Gauss-Laguerre formulas are efficient to
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apply, but the construction of the basic high-order formulas can be demanding. However, this
is successfully solved using the available MATHEMATICA Package OrthogonalPolynomials.
Finally, as an alternative, integration between zero integrands is a very reliable and accurate
method.
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