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Abstract. In this paper, we revisit two recently published papers on the iterative

approximation of fixed points by Kumam et al. [Numer. Funct. Anal. Optim. 40

(2019), 1644–1677] and Maniu [Numer. Funct. Anal. Optim. 41 (2020), 929-949]

and reproduce convergence, stability, and data dependency results presented in

these papers by removing some strong restrictions imposed on parametric control

sequences. We confirm the validity and applicability of our results through various

non-trivial numerical examples. We suggest a new method based on the iteration

algorithm given by Thakur et al. [J. Inequal. Appl. 2014, 328 (2014), 15 pp.] to

solve the two-point second-order boundary value problems. Furthermore, based

on the above mentioned iteration algorithm and S-iteration algorithm, we pro-

pose two new gradient type projection algorithms and applied them to supervised

learning. In both applications, we present some numerical examples to demon-

strate the superiority of the newly introduced methods in terms of convergence,

accuracy, and computational time against some earlier methods.

1. Introduction and preliminaries

Throughout this paper, K is a Banach space, C is a nonempty, closed, and convex

subset of K, T is a self map of C, and F (T ) = {p : Tp = p} denotes the set of fixed

points of T .

To recall a mapping T : C → C is called a contraction if for all x, y ∈ C, there

exists a δ ∈ [0, 1) such that

‖Tx− Ty‖ ≤ δ ‖x− y‖ . (1.1)
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A mapping T : C → C belongs to the class D(a, b, c, d, e) if for all x, y ∈ C,

‖Tx− Ty‖ ≤ a ‖x− y‖+ b ‖x− Tx‖+ c ‖y − Ty‖

+ d ‖x− Ty‖+ e ‖y − Tx‖ , (1.2)

where a, b, c, d, e are real numbers in [0, 1] satisfying certain conditions (see [1]).

The iterative approximation of fixed points plays a crucial role in finding solutions

to a large number of problems encountered in various research areas. The study of

fixed point iteration algorithms, which has considerable literature in the field of

fixed point theory begins with the Picard iterative algorithm [2]. Subsequently,

due to the failure of the Picard iterative algorithm to converge to the fixed points

of non-expansive mappings, the iteration algorithms were introduced by Mann [3],

Krasnoselskij [4], Noor [5], and Ishikawa [6] and their various features were studied

by many researchers within the framework of different structures.

In line with the extension of application fields of iteration algorithms, many iter-

ation algorithms have been recently introduced with the claim of faster convergence

rate and their qualitative features such as convergence, rate of convergence, stabil-

ity, and data dependence have been intensively examined (see [7]–[14] and references

therein).

In 2007, Agarwal et al. [15] introduced an S-iterative algorithm as follows






x0 ∈ C,

xn+1 = (1− αn) Txn + αnTyn,

yn = (1− βn)xn + βnTxn,

(1.3)

where {αn} , {βn} are real sequences in (0, 1) for all n ∈ N.

S-iterative algorithm (1.3) is independent of the Mann, Krasnoselskij, and Ishikawa

iteration algorithms, and performs better than the mentioned iteration algorithms

when converging to the fixed points of various classes of mappings (see [15]). For

this reason, S-iteration algorithm (1.3) has been studied in detail in terms of its

various features in many works.
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Motivated by the performance of S-iterative algorithm and on going research in

this direction, Thakur et al. [16] have designed an iteration algorithm as follows





x0 ∈ C,

xn+1 = (1− αn) Txn + αnTyn,

yn = (1− βn) zn + βnTzn,

zn = (1− γn)xn + γnTxn,

(1.4)

where {αn} , {βn}, {γn} are real sequences in (0, 1) for all n ∈ N.

It has been shown in [16] that iterative algorithm (1.4) converges faster than

various iteration algorithms including the Picard, Mann, Ishikawa, and S-iteration

algorithms for contractions in the sense of Berinde [17].

Very recently, Kumam et al. [1] and Maniu [18] have employed S-iterative al-

gorithm (1.3) of a mapping belonging to the class D(a, b, c, d, e) and the iterative

algorithm (1.4) of a contraction mapping, respectively. In these papers, some con-

vergence, stability, and data dependence results are obtained under certain strong

conditions imposed on the real sequences {αn} , {βn}, {γn} in (0, 1).

The purpose of this paper is to revisit the above mentioned papers of Kumam et

al. [1] and Maniu [18] and to reproduce their convergence, stability, and data depen-

dence results without any conditions imposed on the real sequences {αn} , {βn}, {γn}
in (0, 1). We present some non-trivial numerical examples to illustrate our theoretical

results. Our theoretical results can be seen as refinement and substantial improve-

ment of the corresponding results in [1, 18, 19]. Motivated by the performance and

achievements of iterative algorithm (1.4), we propose a new method based on this

iterative algorithm to approximate the exact solutions of two-point second order

boundary value problems. We give several test examples that will demonstrate the

superiority of the newly introduced method in terms of accuracy, the number of

iterations to obtain the required accuracy and convergence rate in relation to an-

other method defined by Bello et al. [19]. As a second application, we propose two

new gradient type projection algorithms based on S-iterative algorithm (1.3) and

iterative algorithm (1.4) and apply them to supervised learning which is a subfield

of supervised machine learning. The numerical experiments presented herein show

that much better results can be achieved when compared to the traditional gradient
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projection algorithm by applying new gradient type projection algorithms to the

machine learning.

2. Convergence Theorems

In this section, we prove that the convergence of the iterative algorithm (1.4) for

the contraction mappings and S-iterative algorithm (1.3) for the mappings belong-

ing to the class D (a, b, c, d, e) are independent of any choice of the real sequences

{αn} , {βn} , {γn} in (0, 1).

Maniu [18] proved the following theorem:

Theorem 1 ([18]). Let C be a nonempty, closed, and convex subset of a Banach

space K, and T : C → C be a contraction mapping. Let {xn} be an iterative sequence

generated by (1.4), with {αn} , {βn} , {γn} in (0, 1), satisfying
∑∞

n=0 αnβnγn = ∞.

Then {xn} converges strongly to the unique fixed point of T .

Remark 1. The following inequality

‖xn+1 − p‖ ≤ δ(n+1)
n∏

k=0

[
1− (1− δ)2 αkβkγk

]
‖x0 − p‖ , (2.1)

where 1 − (1− δ)2 αkβkγk < 1 as δ ∈ (0, 1) and αk, βk, γk ∈ (0, 1) for all k, was

obtained in the proof of Theorem 4.5 in [18]. Since

n∏

k=0

[
1− (1− δ)2 αkβkγk

]
< 1

for all n ∈ N, the above inequality becomes

‖xn+1 − p‖ ≤ δ(n+1) ‖x0 − p‖ . (2.2)

By passing to the limit in (2.2), we obtain limn→∞ ‖xn+1 − p‖ = 0. Indeed, δ ∈ (0, 1)

and limn→∞ δ(n+1) = 0.

Hence, the condition
∑∞

n=0 αnβnγn = ∞ on the real sequences {αn} , {βn} , {γn} ⊂
(0, 1) in Theorem 1 is superfluous.

The following example shows that the convergence of the iterative algorithm (1.4)

is independent of any choice of the real sequences {αn} , {βn} , {γn} ⊂ (0, 1).



ITERATIVE APPROXIMATION OF FIXED POINTS AND APPLICATIONS 5

Example 1. Let K be the Banach space (C [0, 1] , ‖·‖∞), where ‖·‖∞ is the supre-

mum norm on C [0, 1] defined by ‖·‖∞ = {sup |x(t)| : t ∈ [0, 1]}. Consider the fol-

lowing first order initial value problem (IVP)

x′(t) =
1

2
x(t)− t, x (0) = 0. (2.3)

The existence of solutions of IVP (2.3) is equivalent to finding a fixed point of an

integral operator T : C [0, 1] → C [0, 1] defined by

T (x(t)) = x (0) +

∫ t

0

[
1

2
x (τ)− τ

]
dτ. (2.4)

Observe that the operator T in (2.4) is a contraction with δ = 1/2 and thus, it has

a unique fixed point x∗ (t) = 2t − 4et/2 + 4 in C [0, 1]. Hence, by Theorem 1 and

Remark 1, the iterative algorithm (1.4) generated by T in (2.4) converges to x∗ (t)

for the initial function x0 = 0 and any choice of real sequences {αn} , {βn} , {γn} ⊂
(0, 1).

We consider now the following nine cases (presented in Figure 1):

Case 1. If αn =
1

n+ 1
, βn =

1

n + 1
, γn =

1

n + 1
, then

∞∑

n=0

αnβnγn < ∞;

Case 2. If αn =
1

n+ 1
, βn =

1

n2 + 1
, γn =

1

n+ 1
, then

∞∑

n=0

αnβnγn < ∞;

Case 3. If αn = βn = γn =
1

3
√
n+ 1

, then

∞∑

n=0

αnβnγn = ∞;

Case 4. If αn =
n

n+ 1
, βn =

1

n3 + 1
, γn =

1

n2 + 1
, then

∞∑

n=0

αnβnγn < ∞;

Case 5. If αn = βn =
1

n+ 1
, γn =

1

n2 + 1
, then

∞∑

n=0

αnβnγn < ∞;

Case 6. If α0 = β0 = 0, and αn = βn =
1

n3
, γn =

1

3
, then

∞∑

n=0

αnβnγn < ∞;

Case 7. If αn = βn = γn =
1

n4 + 1
, then

∞∑

n=0

αnβnγn < ∞;

Case 8. If αn = γn =
1

n2 + 3
, βn =

n

n+ 1
, then

∞∑

n=0

αnβnγn < ∞;

Case 9. If αn =
1

n2 + 3
, βn = γn =

n

n+ 1
, then

∞∑

n=0

αnβnγn < ∞.
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Figure 1. Cases 1, 2, 3 (first line), 4, 5, 6 (second line), and 7, 8, 9

(third line) in Example 1

As we can see the iterative algorithm (1.4) generated by T in (2.4) and the initial

function x0 = 0 converges to x∗(t) = 2t− 4et/2 +4 for all the above Cases 1–9. The

corresponding errors in these nine cases are presented in Figure 2.

Kumam et al. [1] proved the following theorem:

Theorem 2 ([1]). Let C be a nonempty, closed subset of a Banach space K, and

T : C → C be an operator in D(a, b, c, d, e) with 0 ≤ a, b, c, d, e ≤ 1, a + 2b + c +

2d+ 3e < 1. Then the sequence {xn}∞n=0 generated by (1.3) with
∑∞

n=0 αn = ∞ and
∑∞

n=0 βn < ∞, converges to the unique fixed point of T , say p.

Remark 2. The following inequality

‖xn+1 − p‖ ≤
(
a + b+ d+ 2e

1− b− e

)[
1− αnβn

(
1− a+ b+ d+ 2e

1− b− e

)]
‖xn − p‖ (2.5)
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Figure 2. The errors in Cases 1–9 in Example 1

where 0 ≤ a, b, c, d, e ≤ 1, a+ 2b+ c+ 2d+ 3e < 1 and αn, βn ∈ (0, 1) for all n, was

obtained in the proof of Theorem 3.1 in [1]. Since 1 − αnβn

(
1− a+b+d+2e

1−b−e

)
< 1 for

all n ∈ N, the above inequality becomes

‖xn+1 − p‖ ≤
(
a + b+ d+ 2e

1− b− e

)
‖xn − p‖ ,

which implies that

‖xn+1 − p‖ ≤ Θ(n+1) ‖x0 − p‖ , (2.6)

where Θ = (a+ b+ d+ 2e)/(1− b− e) < 1 as a+ 2b+ c+ 2d+ 3e < 1. By passing

to the limit in (2.6), we obtain limn→∞ ‖xn+1 − p‖ = 0.

Therefore, the conditions
∑∞

n=0 αn = ∞ and
∑∞

n=0 βn < ∞ on the real sequences

{αn} , {βn} ⊂ (0, 1) in Theorem 2 are redundant.

The following example shows that convergence of iterative algorithm (1.3) is in-

dependent of any choice of the real sequences {αn} , {βn} ⊂ (0, 1).

Example 2. Let K be the Banach space (C [0, 1] , ‖ · ‖∞), where ‖ · ‖∞ is the supre-

mum norm on C [0, 1] defined by ‖x‖∞ = {sup |x(t)| : t ∈ [0, 1]}. Define an operator
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T on K by

T (x(t)) =





γx(t) +

∫ t

0

βe−α(t−s)x (s) ds, 0 ≤ x(t) ≤ A,

ρx(t) +

∫ t

0

βe−α(t−s)x (s) ds, A < x(t),

(2.7)

where s ∈ [0, t], α > β > 0, and 0 < ρ < γ < 1 (see also [20]). The operator T in

(2.7) belongs to the class

D

(
β

α (1− 2γ)
, 0,

γ

1− 2γ
,

γ

1− 2γ
, 0

)
.

Indeed,

Case A. If 0 ≤ x(t), y(t) ≤ A, then we have

x(t)− T (x(t)) = (1− γ) x (t)−
∫ t

0

βe−α(t−s)x (s) ds

and

T (x(t)) =
γ

1− γ

[
x(t)− T (x(t)) +

1

γ

∫ t

0

βe−α(t−s)x (s) ds

]
,

which implies

‖Tx− Ty‖∞ ≤ γ

1− γ
‖x− Tx‖∞ +

γ

1− γ
‖y − Ty‖∞

+
1

1− γ

(∫ t

0

βe−α(t−s)ds

)
‖x− y‖∞

≤ γ

1− γ
‖x− Tx‖∞ +

γ

1− γ
‖y − Ty‖∞ +

β

α (1− γ)
‖x− y‖∞ ,

which further gives

‖Tx− Ty‖∞ ≤ β

α (1− 2γ)
‖x− y‖∞ +

γ

1− 2γ
‖y − Ty‖∞ +

γ

1− 2γ
‖x− Ty‖∞ .

Hence,

T ∈ D

(
β

α (1− 2γ)
, 0,

γ

1− 2γ
,

γ

1− 2γ
, 0

)
.

Case B. If 0 ≤ x(t) ≤ A < y(t), then we have

‖Tx− Ty‖∞ ≤ γ

1− γ
‖x− Tx‖∞ +

ρ

1− ρ
‖y − Ty‖∞

+max

{
1

1− γ
,

1

1− ρ

}(∫ t

0

βe−α(t−s)ds

)
‖x− y‖∞
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≤ γ

1− γ
‖x− Tx‖∞ +

γ

1− γ
‖y − Ty‖∞ +

β

α (1− γ)
‖x− y‖∞ ,

as 0 < ρ < γ < 1. Similar to Case A, we obtain

‖Tx− Ty‖∞ ≤ β

α (1− 2γ)
‖x− y‖∞ +

γ

1− 2γ
‖y − Ty‖∞ +

γ

1− 2γ
‖x− Ty‖∞ ,

which implies that

T ∈ D

(
β

α (1− 2γ)
, 0,

γ

1− 2γ
,

γ

1− 2γ
, 0

)
.

Case C. If A < x(t), y(t), then following the same lines as in Cases A and B, we

obtain that

T ∈ D

(
β

α (1− 2γ)
, 0,

γ

1− 2γ
,

γ

1− 2γ
, 0

)
.

Now, the operator T in (2.7) belongs to the class D
(

β
α(1−2γ)

, 0, γ
1−2γ

, γ
1−2γ

, 0
)

and by [1, Theorem 2.4], it has a unique fixed point, say x∗(t) if γ < 1
5

(
1− β

α

)
.

Hence, by Theorem 2 and Remark 2, the iterative algorithm (1.3) associated to T

in (2.7) converges to x∗(t) for an initial guess x0(t) and any choice of real sequences

{αn} , {βn} ⊂ (0, 1). For instance, if we put α = 2, β = 1, γ = 1/12, and ρ = 1/15

in (2.7) and consider the following choices of real sequences {αn} , {βn} ⊂ (0, 1):

Case 1. If αn = βn =
2n

2n+ 10
, then we have

∞∑

n=0

αn = ∞,

∞∑

n=0

βn = ∞, which

implies

∞∑

n=0

αnβn = ∞;

Case 2. If αn =
3n+ 5

4n+ 7
, βn =

1

n3 + 5
, then we have

∞∑

n=0

αn = ∞,

∞∑

n=0

βn < ∞,

which implies

∞∑

n=0

αnβn < ∞;

Case 3. If αn = βn =
1

n3 + 5
, then we have

∞∑

n=0

αn < ∞,

∞∑

n=0

βn < ∞, which

implies

∞∑

n=0

αnβn < ∞;

Case 4. If αn =
1

n2 + 4
, βn =

n + 1

4n+ 1
, then we have

∞∑

n=0

αn < ∞,
∞∑

n=0

βn = ∞,

which implies
∞∑

n=0

αnβn < ∞.
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Then Figure 3 shows that the iterative algorithm (1.3) generated by T in (2.7),

with α = 2, β = 1, γ = 1/12, and ρ = 1/15 and the initial function x0 = t

converges to the unique fixed point x∗(t) = 0 of T for all the above Cases 1–4. The
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Figure 3. Cases 1, 2 (first line), and 3, 4 (second line) in Example 2

corresponding errors in these four cases are presented in Figure 4.

Remark 3. Nova [20] has defined a class of discontinuous operators as follows: Let

C be a subset of a Banach space K. An operator T : C → C belongs to the class

D (a, b) if

‖Tx− Ty‖ ≤ a ‖x− y‖+ b [‖x− Tx‖+ ‖y − Ty‖] (2.8)

for all x, y ∈ C, and 0 ≤ a, b ≤ 1. This class of operators turned out to be a versatile

tool in the study of fixed points (cf. [21]–[22]).

The operators satisfying condition (2.8) was actually introduced independently

by Ćirić [23], Reich [24] and Rus [25], and it was sometimes referred to under the

generic name Ćirić-Reich-Rus operators. It is also claimed in [20] that the operator T
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Figure 4. The errors in Cases 1–4 in Example 2

defined by (2.7), where s ∈ [0, t], α, β > 0, and 0 < ρ < γ < 1, is in D
(

β
α(1−γ)

, γ
1−γ

)

and it has a unique fixed point if

0 < γ < min

{
1

2
,
1

3

(
1− β

α

)}
. (2.9)

However, we observe that the condition (2.9) must be replaced by

0 < γ <
1

3

(
1− β

α

)
,

as always 1
3

(
1− β

α

)
< 1

2
. Otherwise, let us say 1

3

(
1− β

α

)
≥ 1

2
, then we have −1

2
≥ β

α

which contradicts the assumption α, β > 0.

3. Stability Results

In this section, we reconsider the stability result in [18] for the contraction map-

pings.

Let us recall some known concepts and results.

Definition 1 ([26], [27]). Let T : C → C be a mapping. Define an iteration

algorithm by

xn+1 = f (T, yn) (3.1)
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such that {xn} converges to a fixed point p of T . Let {yn} be an arbitrary sequence

in C. Set

εn = ‖yn+1 − f (T, yn)‖
for n ≥ 1. The iterative algorithm (3.1) is said to be T -stable or stable w.r.t. T if

the following condition is satisfied:

lim
n→∞

εn = 0 if and only if lim
n→∞

yn = p.

Lemma 1 ([28]). Let θ be a real number in [0, 1] and (sn)n∈N a sequence of positive

numbers such that limn→∞ sn = 0. Then, for any sequence of positive numbers

(sn)n∈N satisfying

bn+1 ≤ θbn + sn,

one has

lim
n→∞

bn = 0.

Maniu [18] obtained the following stability result for iteration algorithm (1.4):

Theorem 3 ([18]). Let K, C and T be as in Theorem 1. Consider the sequence

generated by (1.4), {αn}, {βn}, {γn} in (0, 1) , satisfying
∑∞

n=0 αnβnγn = ∞. Then

the iterative algorithm (1.4) is T -stable.

In the following theorem we show that the stability of the iterative algorithm

(1.4) w.r.t. contraction mappings is independent of any choice of sequences {αn}∞n=0,

{βn}∞n=0 and {γn}∞n=0 in (0, 1):

Theorem 4. Let K, C and T be as in Theorem 1. Then the iterative sequence {xn}
generated by iterative algorithm (1.4) with {αn} , {βn} , {γn} ⊂ (0, 1) is T -stable.

Proof. Let {un} be an arbitrary sequence in C. Define a sequence {εn} in R
+ by

εn = ‖un+1 − (1− αn) Tun − αnTvn‖ , (3.2)

where vn = (1− βn)wn + βnTwn and wn = (1− γn)un + γnTun for all n ∈ N. Let

limn→∞ εn = 0. We prove that limn→∞ yn = p.

It follows from (1.1), (1.4), (3.2) and the fact that 1− αnβnγn (1− δ)2 < 1 for all

n ∈ N that

‖un+1 − p‖ ≤ ‖un+1 − xn+1‖+ ‖xn+1 − p‖
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≤ ‖un+1 − (1− αn)Tun − αnTvn‖+ (1− αn) ‖Txn − Tun‖

+ αn ‖Tyn − Tvn‖+ ‖xn+1 − p‖

≤ εn + (1− αn) δ ‖xn − un‖+ αnδ ‖yn − vn‖+ ‖xn+1 − p‖

≤ εn + δ {1− αn + αn [1− βn (1− δ)] [1− γn (1− δ)]} ‖xn − un‖

+ ‖xn+1 − p‖

≤ εn + δ
{
1− αnβn (1− δ)− αnγn (1− δ)

+ αnβnγn (1− δ)2
}
‖xn − un‖+ ‖xn+1 − p‖

= εn + δ
[
1− αnβnγn (1− δ)2

]
‖xn − un‖+ ‖xn+1 − p‖

≤ δ ‖un − p‖+ εn + δ ‖xn − p‖+ ‖xn+1 − p‖ (3.3)

for all n ∈ N.

Now, we put bn = ‖un − p‖, θ = δ ∈ [0, 1) and

sn = εn + δ ‖xn − p‖+ ‖xn+1 − p‖

for all n ∈ N.

By Theorem 1 and Remark 1, we have

lim
n→∞

‖xn − p‖ = lim
n→∞

‖xn+1 − p‖ = 0.

Using this fact together with the assumption lim
n→∞

εn = 0, we obtain that lim
n→∞

sn =

0. Now it can be easily checked that inequality (3.3) fulfills all the conditions of

Lemma 1 and so by its conclusion, we have lim
n→∞

un = p.

Conversely, assume that limn→∞ un = p. By (1.1), (1.4) and (3.2), we obtain that

εn = ‖un+1 − (1− αn) Tun − αnTvn‖

≤ ‖un+1 − xn+1‖+ ‖xn+1 − (1− αn)Tun − αnTvn‖

≤ ‖un+1 − xn+1‖+ ‖(1− αn) Txn + αnTyn − (1− αn)Tun − αnTvn‖

≤ ‖un+1 − xn+1‖+ (1− αn) ‖Txn − Tun‖+ αn ‖Tyn − Tvn‖

≤ ‖un+1 − xn+1‖+ (1− αn) δ ‖xn − un‖+ αnδ ‖yn − vn‖

≤ ‖un+1 − xn+1‖+ Γn ‖xn − un‖ , (3.4)
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where Γn = δ {1− αn (1− [1− βn (1− δ)] [1− γn (1− δ)])} for all n ∈ N. Since

{αn} , {βn} , {γn} ⊂ (0, 1) and δ ∈ [0, 1),

0 ≤ Γn < 1 for all n ∈ N,

that is, Γn is a bounded sequence of positive numbers. On the other hand, we have

0 ≤ ‖un+1 − xn+1‖ ≤ ‖un+1 − p‖+ ‖p− xn+1‖ ,

0 ≤ Γn ‖xn − un‖ ≤ Γn ‖xn − p‖+ Γn ‖p− un‖ for all n ∈ N. (3.5)

By Theorem 1, Remark 1 and the assumption limn→∞ un = p, the inequalities in

(3.5) lead to limn→∞ ‖un+1 − xn+1‖ = limn→∞ Γn ‖xn − un‖ = 0. Now, taking the

limit on both sides of (3.4) leads to limn→∞ ǫn = 0. Thus {xn} is T -stable. �

Remark 4. (i) The technique of the proof of Theorem 4 is slightly different than

that of Theorem 3.

(ii) The proof of Theorem 4 shows that the condition
∑∞

n=0 αnβnγn = ∞ on the

real sequences {αn} , {βn} , {γn} ⊂ (0, 1) in Theorem 3 is superfluous.

Example 3. Let K be the Banach space (C1 [0, 1] , ‖·‖∞), where ‖ · ‖∞ is the supre-

mum norm on C1 [0, 1] defined by ‖x‖∞ = {sup |x(t)| : t ∈ [0, 1]}. Consider the

following boundary value problem (BVP)

x′′(t) + tx(t) = t3 + 2, t ∈ [0, 1] (3.6)

subject to

x (0) = 0, x (1) = 1. (3.7)

The exact solution of BVP defined in (3.6)–(3.7) is given by x(t) = t2. The existence

of solutions of BVP (3.6)–(3.7) is equivalent to finding a continuous solution of an

integral equation given by

T (x(t)) = x(t) +

∫ 1

0

G (t, s) f (s, x, x′) ds, (3.8)

where

f (t, x, x′) = x′′(t) + tx (t)− t3 − 2, (3.9)

and

G (t, s) =





s (1− t) , 0 ≤ s ≤ t,

t (1− s) , t ≤ s ≤ 1.
. (3.10)
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The mapping T : C1 [0, 1] → C [0, 1] defined by (3.8)–(3.10) is a contraction mapping

with the contractivity factor

1

4
√
3

sup
[0,1]×R3

∣∣∣∣
df

dx

∣∣∣∣ < 1,

Then, by Theorem 1 and Remark 1, the iteration algorithm (1.4) associated to

T in (3.8) converges to the exact solution x(t) = t2 of T in (3.8). Furthermore,

by Theorem 4, the iterative algorithm (1.4) associated to T in (3.8) is T−stable

independent of any choice of real sequences {αn} , {βn} , {γn} ⊂ (0, 1). Indeed, we

have the following cases:

Case 1. Let yn(t) = t2 + t/(n10 + 1) for all n ∈ N, t ∈ [0, 1]. It is easy to see that

yn(t) → t2 = x(t) = T (x(t)) as n → ∞. Let αn = 1/(n + 2), βn = 1/(n + 1),

γn = 1/(n+ 1) for any n ∈ N, so that

∞∑

n=0

αn = ∞,
∞∑

n=0

βn = ∞,
∞∑

n=0

γn = ∞,
∞∑

n=0

αnβnγn < ∞

and set εn = ‖yn+1 − F (T, yn)‖∞, where F stands for the iterative algorithm (1.4).

Then, Table 1 and Figure 5 show that εn → 0, when n → ∞. Numbers in paren-

theses indicate the decimal exponents, e.g., 2.234(−5) means 2.234× 10−5.

Table 1. Values of εn(t) = |yn+1 − F (T, yn)| for n = 25 and n = 50(50)250

t ε25(t) ε50(t) ε100(t) ε150(t) ǫ200(t) ǫ250(t)
0.1 4.2750(−16) 2.6922(−19) 1.7796(−22) 2.5585(−24) 1.2881(−25) 1.2833(−26)
0.2 8.5379(−16) 5.3724(−19) 3.5476(−22) 5.0968(−24) 2.5648(−25) 2.5543(−26)
0.3 1.2757(−15) 8.0099(−19) 5.2739(−22) 7.5628(−24) 3.8008(−25) 3.7817(−26)
0.4 1.6880(−15) 1.0554(−18) 6.9086(−22) 9.8699(−24) 4.9474(−25) 4.9130(−26)
0.5 2.0833(−15) 1.2932(−18) 8.3815(−22) 1.1897(−23) 5.9360(−25) 5.8747(−26)
0.6 2.4523(−15) 1.5052(−18) 9.6028(−22) 1.3487(−23) 6.6788(−25) 6.5725(−26)
0.7 2.7833(−15) 1.6802(−18) 1.0462(−21) 1.4450(−23) 7.0685(−25) 6.8911(−26)
0.8 3.0627(−15) 1.8049(−18) 1.0830(−21) 1.4560(−23) 6.9780(−25) 6.6942(−26)
0.9 3.2749(−15) 1.8638(−18) 1.0557(−21) 1.3558(−23) 6.2609(−25) 5.8244(−26)
1.0 3.4020(−15) 1.8396(−18) 9.4713(−22) 1.1148(−23) 4.7512(−25) 4.1035(−26)

Case 2. Let yn(t) = nt2/(n + 1) for all n ∈ N, t ∈ [0, 1]. Observe that yn(t) →
t2 = x(t) = T (x(t)) as n → ∞. Let αn = (n + 1)/(n + 2), βn = (n + 2)/(n + 3),
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Figure 5. Convergence behavior of εn(t) = |yn+1 − F (T, yn)| for n = 20(5)45
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γn = 1/(n+ 1) for all n ∈ N, so that

∞∑

n=0

αn = ∞,

∞∑

n=0

βn = ∞,

∞∑

n=0

γn = ∞,

∞∑

n=0

αnβnγn = ∞

and set εn = ‖yn+1 − F (T, yn)‖∞ where F stands for the iterative algorithm (1.4).

Graphics of t 7→ εn(t) = |yn+1 − F (T, yn)| for t ∈ [0, 1] and n = 50(50)300 are

presented in Figure 6.

As we can see the convergence εn → 0 in this case is very slowly regarding the

previous case; for example, the values of ε400(t) are of order 10−4.

4. Data Dependency Results

In this section, we reconsider the data dependence results in [1] and [18].

Let us recall some known concepts and results.

Definition 2 ([28]). Let T, T̃ : C → C be two mappings. Then T̃ is said to be an

approximate operator of T if there exists ε > 0 such that

∥∥Tx− T̃ x
∥∥ ≤ ε (4.1)

for all x ∈ C.

Maniu [18] obtained the following data dependence result:

Theorem 5 ([18]). Let K, C, and T be as in Theorem 1. Let T̃ be an approximate

mapping of contraction mapping T , with maximum admissible error ε. Let {xn}
be an iterative sequence generated by (1.4) and define an iterative sequence {x̃n} as

follows: 




x̃0 ∈ C,

x̃n+1 = (1− αn) T̃ x̃n + αnT̃ ỹn,

ỹn = (1− βn) z̃n + βnT̃ z̃n,

z̃n = (1− γn) x̃n + γnT̃ x̃n,

(4.2)

with real sequences {αn} , {βn} , {γn} in [0, 1], satisfying αnβnγn ≥ 1
2
, βn ≥ 1

2
for all

n ∈ N. If Tp = p and T̃ p̃ = p̃, such that limn→∞ x̃n = p̃, then

‖p− p̃‖ ≤ 7ε

(1− δ)2
. (4.3)
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Remark 5. At a first glance in the hypotheses of Theorem 5, one can immediately

see that the condition αnβnγn ≥ 1
2
for all n ∈ N implies the condition βn ≥ 1

2
for all

n ∈ N as {αn} , {βn} , {γn} in (0, 1) for all n ∈ N. Hence, the condition βn ≥ 1
2
for

all n ∈ N in Theorem 5 is redundant.

We now improve Theorem 5 as follows.

Theorem 6. Let K, C, and T be as in Theorem 1 and T̃ be an approximate mapping

of T , with maximum admissible error ε > 0. Let {xn}∞n=0 and {x̃n}∞n=0 be the iterative

sequences generated by (1.4) and (4.2) with real sequences {αn} , {βn} , {γn} in (0, 1)

for all n ∈ N, respectively. If Tp = p and T̃ p̃ = p̃, such that limn→∞ x̃n = p̃, then

‖p− p̃‖ ≤
(
1 + 2δ

1− δ

)
ε. (4.4)

Proof. It follows from (1.1), (1.4), and (4.2) that

‖xn+1 − x̃n+1‖ =
∥∥∥(1− αn)Txn + αnTyn − (1− αn) T̃ x̃n − αnT̃ ỹn

∥∥∥

≤ (1− αn)
∥∥∥Txn − T̃ x̃n

∥∥∥+ αn

∥∥∥Tyn − T̃ ỹn

∥∥∥

≤ (1− αn) ‖Txn − T x̃n‖+ (1− αn)
∥∥∥T x̃n − T̃ x̃n

∥∥∥

+ αn ‖Tyn − T ỹn‖+ αn

∥∥∥T ỹn − T̃ ỹn

∥∥∥

≤ (1− αn) δ ‖xn − x̃n‖+ (1− αn) ε+ αnε+ αnδ ‖yn − ỹn‖

≤ (1− αn) δ ‖xn − x̃n‖+ (1− αn) ε+ αnε

+ αnδ {(1− βn (1− δ)) ‖zn − z̃n‖+ βnε}

≤ (1− αn) δ ‖xn − x̃n‖+ (1− αn) ε+ αnε

+ αnδ {(1− βn (1− δ)) {(1− γn (1− δ)) ‖xn − x̃n‖+ γnε}+ βnε}

= δ {1− αn + αn (1− βn (1− δ)) (1− γn (1− δ))} ‖xn − x̃n‖

+ {1− αn + αn + αnδ (1− βn (1− δ)) γn + αnδβn} ε

≤ δ [1− αnβn (1− δ)] ‖xn − x̃n‖

+ {1 + αnδ (1− βn (1− δ)) γn + αnδβn} ε. (4.5)

Since {αn} , {βn} , {γn} in (0, 1) for all n ∈ N and δ ∈ [0, 1),

1− βn (1− δ) < 1,
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1− αnβn (1− δ) < 1 for all n ∈ N. (4.6)

Applying inequalities in (4.6) to (4.5), we obtain that

‖xn+1 − x̃n+1‖ ≤ δ ‖xn − x̃n‖+ (1 + 2δ) ε for all n ∈ N. (4.7)

By Theorem 1 and Remark 1, we have limn→∞ xn+1 = limn→∞ xn = p. By passing

to the limit in (4.7) and then using the facts limn→∞ xn+1 = limn→∞ xn = p and the

continuity of the norm, as well as the assumption limn→∞ x̃n+1 = limn→∞ x̃n = p̃,

we get that

lim
n→∞

‖xn+1 − x̃n+1‖ ≤ δ lim
n→∞

‖xn − x̃n‖+ (1 + 2δ) ε,

which implies that

‖p− p̃‖ ≤
(
1 + 2δ

1− δ

)
ε.

�

Remark 6. (i) The technique of the proof of Theorem 6 is slightly different than

that of Theorem 5.

(ii) The proof of Theorem 6 shows that the conditions αnβnγn ≥ 1
2
, βn ≥ 1

2
for all

n ∈ N on the real sequences {αn} , {βn} , {γn} ⊂ (0, 1) in Theorem 5 are superfluous.

(iii) Since δ ∈ [0, 1) and ε > 0,

(1 + 2δ) (1− δ) ≤ 9

8
< 7,

which implies that (
1 + 2δ

1− δ

)
ε <

7ǫ

(1− δ)2
.

Hence, the estimate

‖p− p̃‖ ≤
(
1 + 2δ

1− δ

)
ε

obtained in Theorem 6 is sharper than the estimate ‖p− p̃‖ ≤ 7ε/(1− δ)2 in The-

orem 5.

(iv) By imposing an additional condition limn→∞ αn = 0 on the real sequence

{αn} ⊂ (0, 1) in Theorem 6, a much better estimate for upper bound for the error

in approximating p̃ by p can be obtained as follows:

‖p− p̃‖ ≤ ε

1− δ
.



20 E. HACIOĞLU, F. GÜRSOY, S. MALDAR, Y. ATALAN, G. V. MILOVANOVIĆ

Example 4. Let K be the Banach space (C1 [0, 1] , ‖ · ‖∞), where ‖ · ‖∞ is the supre-

mum norm on C1 [0, 1] defined by ‖x‖∞ = {sup |x (t)| : t ∈ [0, 1]}. Consider BVP

(3.6)–(3.7) given in Example 3 and the following BVP

x′′(t) + tx(t) = t3 + 2 +
t

k
, t ∈ [0, 1] , (4.8)

subject to

x (0) = 0, x (1) = 1. (4.9)

By Example 3, we know that the exact solution of BVP (3.6)–(3.7) is the function

x∗(t) = t2, the existence of solutions of BVP (3.6)–(3.7) is equivalent to finding

a continuous solution of the integral operator T : C1 [0, 1] → C1 [0, 1] defined by

(3.8)–(3.10 ) which is a contraction mapping with the contractivity factor

δ =
1

4
√
3

sup
[0,1]×R3

∣∣∣∣
df

dx

∣∣∣∣ =
1

4
√
3
< 1.

On the other hand, the existence of solutions of BVP (4.8)–(4.9) is equivalent to

finding a continuous solution of an integral operator T̃ : C1 [0, 1] → C1 [0, 1] defined

by

T̃ (x(t)) = x(t) +

∫ 1

0

G (t, s) f̃ (s, x, x′) ds, (4.10)

where

f̃ (t, x, x′) = x′′ (t) + tx(t)− t3 − 2− t

k
(4.11)

and

G (t, s) =

{
s (1− t) , 0 ≤ s ≤ t,

t (1− s) , t ≤ s ≤ 1.
(4.12)

Observe that T̃ → T as k → ∞. For k = 1, we have

∥∥Tx− T̃ x
∥∥
∞ =

∥∥∥∥
∫ 1

0

G (t, s) f (s, x, x′) ds−
∫ 1

0

G (t, s) f̃ (s, x, x′) ds

∥∥∥∥
∞

=

∥∥∥∥
∫ t

0

s(1− t)s ds+

∫ 1

t

t(1− s)s ds

∥∥∥∥
∞

=

∥∥∥∥
t(2t+ 1)(t− 1)2

6
− t3(t− 1)

3

∥∥∥∥
∞

∼= 0.06415,
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which implies
∥∥T (x(t))− T̃ (x (t))

∥∥
∞ ≤ ε for all t ∈ [0, 1] ,

where ε = 0.066. Thus, we consider the operator T̃ as an approximate operator of

T in the sense of Definition 2. Let x̃∗(t) be an exact solution of BVP (4.8)–(4.9).

Consider the following cases for the real sequences {αn} , {βn} , {γn} ⊂ (0, 1):

Case 1. Let

αn =
1

n+ 2
, βn =

1

n+ 1
, γn =

1

n+ 1

for all n ∈ N, so that

∞∑

n=0

αn = ∞,

∞∑

n=0

βn = ∞,

∞∑

n=0

γn = ∞,

∞∑

n=0

αnβnγn < ∞.

Case 2. Let

αn =
n+ 1

n+ 2
, βn =

n+ 2

n+ 3
, γn =

1

n+ 1

for all n ∈ N, so that

∞∑

n=0

αn = ∞,
∞∑

n=0

βn = ∞,
∞∑

n=0

γn = ∞,
∞∑

n=0

αnβnγn = ∞.

For Cases 1–2, the iterative algorithm (1.4) associated to the operator T in (3.8)–

(3.10) and the iterative algorithm (4.2) of the operator T̃ in (4.10)–(4.12) with initial

functions x0 = x̃0 = 0, converges to x∗(t) and x̃∗(t), respectively, as shown in Table 2

and Figure 7.
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Figure 7. Case 1 (left) and Case 2 (right)
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Table 2. The difference of x10− x̃10, where x10 and x̃10 are 10th step

of sequences generated by the iteration algorithm (1.4) of T and the

iterative algorithm (4.2) of T̃ with initial functions x0 = x̃0 = 0,

respectively.

Case 1 Case 2

t x10 − x∗ x̃10 − x̃∗ x10 − x∗ x̃10 − x̃∗
0.1 −1.0137(−22) −1.2966(−22) −1.2127(−16) −1.5513(−16)
0.2 −2.0050(−22) −2.5647(−22) −2.3987(−16) −3.0683(−16)
0.3 −2.9175(−22) −3.7319(−22) −3.4904(−16) −4.4648(−16)
0.4 −3.6622(−22) −4.6845(−22) −4.3814(−16) −5.6045(−16)
0.5 −4.1291(−22) −5.2817(−22) −4.9400(−16) −6.3189(−16)
0.6 −4.2068(−22) −5.3811(−22) −5.0329(−16) −6.4378(−16)
0.7 −3.8110(−22) −4.8748(−22) −4.5594(−16) −5.8321(−16)
0.8 −2.9171(−22) −3.7314(−22) −3.4900(−16) −4.4642(−16)
0.9 −1.5899(−22) −2.0338(−22) −1.9022(−16) −2.4332(−16)

Consequently, ‖x∗(t)− x̃∗(t)‖∞ = 0.06781805245 . . .. As a matter of fact, without

knowing the fixed point of the operator T̃ , that is, the exact solution of BVP (4.8)–

(4.9) and without computing it, we can find the following upper bound for the error

in approximating x̃∗(t) by x∗ (t) by using the result of Theorem 6:

‖x∗(t)− x̃∗(t)‖∞ ≤
(
1 + 2δ

1− δ

)
ε =

(
1 + 1

2
√
3

1− 1
4
√
3

)
0.066 = 0.0993997. (4.13)

The following estimate has been obtained in [18, Theorem 4.7]:

‖x∗(t)− x̃∗(t)‖∞ ≤ 7ε

(1− δ)2
. (4.14)

Now, using the above arguments, inequality (4.14) leads to

‖x∗(t)− x̃∗(t)‖∞ ≤ 7× 0.066
(
1− 1

4
√
3

)2 = 0.631011. (4.15)

Thus, from (4.13) and (4.15), we conclude that the estimate given by Theorem 6

is better than the estimate (4.14).

Kumam et al. [1] obtained the following data dependence result:

Theorem 7 ([1]). Let T : C → C be as in Theorem 2 with a unique fixed point

p and T̃ : C → C an approximate mapping of T . Let {xn}∞n=0 be the S-iterative
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Figure 8. The graphics of
∣∣Tu (t)− T̃ u (t)

∣∣ and |x∗ (t)− x̃∗ (t)|.

scheme (1.3) with (1− c− d)/(2− a− 3c− 4d− e) ≤ αnβn for all n ∈ N and define

an iterative sequence {x̃n}∞n=0 generated by






x̃0 ∈ C,

x̃n+1 = (1− αn) T̃ x̃n + αnT̃ ỹn,

ỹn = (1− βn) x̃n + βnT̃ x̃n,

(4.16)

for all n ∈ N.

If {x̃n}∞n=0 converges to p̃ = T̃ p̃, then

‖p− p̃‖ ≤ 2 (1− c− d) ε

1− (a+ 2c+ 3d+ e)
.

In the following, we have obtained that the data dependence result which is inde-

pendent of any choice of sequences {αn}∞n=0 and {βn}∞n=0 in (0, 1) for discontinuous

operator by using S-iterative algorithm (1.3):

Theorem 8. Let K and C be as in Theorem 2, T : C → C be a mapping satisfying

(1.2) with 0 ≤ a, b, c, d, e ≤ 1, a+2b+2c+3d+3e < 1 and T̃ : C → C an approximate

mapping of T , with maximum admissible error ε. Let {xn}∞n=0 and {x̃n}∞n=0 be two

iterative sequences defined by S-iterative algorithm (1.3) and the iterative algorithm

(4.16) with real sequences {αn} , {βn} in (0, 1), respectively. If Tp = p and T̃ p̃ = p̃,
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such that limn→∞ x̃n = p̃, then

‖p− p̃‖ ≤
(
1 + θ

1− θ

)
ε,

where θ = (a+ c+ 2d+ e)/(1− c− d).

Proof. Theorem 2.4 from [1] guarantees existence of a unique fixed point p = Tp.

Using (1.2), (1.3), (4.16) and following the same lines as those in the proof from [1,

Theorem 4.1], we get

‖xn+1 − x̃n+1‖ ≤ (1− αn)
∥∥Txn − T̃ x̃n

∥∥+ αn

∥∥Tyn − T̃ ỹn
∥∥

≤ (1− αn) (a+ d+ e) ‖xn − x̃n‖+ (1− αn) (b+ e) ‖xn − Txn‖

+ (1− αn) (c+ d) ‖x̃n − T x̃n‖+ (1− αn) ε

+ αn (a + d+ e) ‖yn − ỹn‖+ αn (b+ e) ‖yn − Tyn‖

+ αn (c+ d) ‖ỹn − T ỹn‖+ αnε

≤ θ [1− αnβn (1− θ)] ‖xn − x̃n‖+ Γn ‖xn − p‖+ (1 + αnβnθ) ε,

(4.17)

for all n ∈ N, where

θ =
a + c+ 2d+ e

1− c− d
, λ =

a+ b+ d+ 2e

1− b− e
,

Γn =
{
1− αn (1− βnθ) + αn [1− βn (1− λ)]

}
τ

for all n ∈ N, and

τ = (1 + a+ d+ e)

(
b+ e

1− b− e
+

c+ d

1− c− d

)
.

Since a+ 2b+ 2c+ 3d+ 3e < 1 and αn, βn ∈ (0, 1) for all n ∈ N,

θ < 1, λ < 1, τ < 4 (4.18)

and

1− αnβn (1− θ) < 1, 1− αn (1− βnθ) < 1, αn [1− βn (1− λ)] < 1 (4.19)

for all n ∈ N.
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Obviously, inequalities in (4.18) and (4.19) imply that Γn is a bounded sequence

of positive numbers. Since αn, βn ∈ [0, 1] and 1 − αnβn (1− θ) < 1 for all n ∈ N,

then inequality in (4.17) becomes

‖xn+1 − x̃n+1‖ ≤ θ ‖xn − x̃n‖+ Γn ‖xn − p‖+ (1 + θ) ε (4.20)

for all n ∈ N.

By Theorem 2 and Remark 2, we have limn→∞ xn+1 = limn→∞ xn = p. By passing

to the limit in (4.7) and then using the facts that limn→∞ xn+1 = limn→∞ xn = p and

the continuity of the norm, as well as the assumption limn→∞ x̃n+1 = limn→∞ x̃n = p̃,

we get that

lim
n→∞

‖xn+1 − x̃n+1‖ ≤ θ lim
n→∞

‖xn − x̃n‖+ lim
n→∞

Γn ‖xn − p‖+ (1 + θ) ε,

which gives

‖p− p̃‖ ≤
(
1 + θ

1− θ

)
ε.

�

Remark 7. (i) The technique of the proof of Theorem 8 is slightly different than

that of Theorem 7.

(ii) The proof of Theorem 8 shows that the condition

1− c− d

2− a− 3c− 4d− e
≤ αnβn

for all n ∈ N on the real sequences {αn} , {βn} ⊂ (0, 1) in Theorem 7 is redundant.

(iii) From the assumption a+ 2b+ 2c+ 3d+ 3e < 1 in Theorem 8, we have

0 < 1− (a+ 2c+ 3d+ e) , (4.21)

and

a+ 2c+ 3d+ e < 1

⇒ 1 + a + 2c+ 3d+ e < 2

⇒ 1 + a + d+ e < 2 (1− c− d) . (4.22)

By (4.21) and (4.22), we get that

1 + a+ d+ e

1− (a+ 2c+ 3d+ e)
<

2 (1− c− d)

1− (a + 2c+ 3d+ e)
,
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which leads to (
1 + θ

1− θ

)
ε <

2 (1− c− d) ε

1− (a + 2c+ 3d+ e)
,

where θ = (a + c+ 2d+ e)/(1− c− d). Hence, the estimate

‖p− p̃‖ ≤
(
1 + θ

1− θ

)
ε

obtained in Theorem 6 is sharper than the estimate

‖p− p̃‖ ≤ 2 (1− c− d) ε

1− (a+ 2c+ 3d+ e)

in Theorem 7.

(iv) By imposing an additional condition limn→∞ αn = 0 on the real sequence

{αn} ⊂ (0, 1) in Theorem 8, a much better estimate for upper bound for the error

in approximating p̃ by p can be obtained as follows:

‖p− p̃‖ ≤ ε

1− θ
,

where θ = (a + c+ 2d+ e)/(1− c− d).

Example 5. Let X be the Banach space (C [0, 1] , ‖ · ‖∞), where ‖ · ‖∞ is the supre-

mum norm on C [0, 1] defined by ‖x‖∞ = {sup |x (t)| : t ∈ [0, 1]}. Define two opera-

tors T, T̃ : C [0, 1] → C [0, 1] by

T (x(t)) =






1

20
x(t) +

∫ t

0

e−2(t−s)x (s) ds, 0 ≤ x(t) ≤ 1,

1

25
x(t) +

∫ t

0

e−2(t−s)x (s) ds, 1 < x(t),

(4.23)

and

T̃ (x(t)) =





1

20

(
x(t) +

t

100

)
+

∫ t

0

e−2(t−s)x (s) ds, 0 ≤ x(t) ≤ 1,

1

25

(
x(t) +

t

100

)
+

∫ t

0

e−2(t−s)x (s) ds, 1 < x(t),

(4.24)

respectively. By Example 2, if we let γ = 1/20, ρ = 1/25, α = 2, β = 1, then

T ∈ D
(
3/5, 0, 0.05, 0.05, 0

)
and the fixed point of T is x∗(t) = 0. Now, we have

the following estimates:
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(i) If 0 ≤ x(t) ≤ 1, then

∥∥T (x(t))− T̃ (x(t))
∥∥
∞ =

∥∥∥∥
t

2000

∥∥∥∥
∞

= 0.0005;

(ii) If 1 < x(t), then

∥∥T (x(t))− T̃ (x(t))
∥∥
∞ =

∥∥∥∥
t

2500

∥∥∥∥
∞

= 0.0004.

This leads to

∥∥T (x(t))− T̃ (x(t))
∥∥
∞ ≤ ε for all t ∈ [0, 1] ,

where ε = 0.0005. Thus, we consider the operator T̃ as an approximate operator

of T in the sense of Definition 2. Let x̃∗(t) be a fixed point of T̃ . Consider the

following cases for the real sequences {αn} , {βn} ⊂ (0, 1):

Case 1. Let αn = 1/(n+ 2) and βn = 1/(n+ 1) for all n ∈ N, so that

∞∑

n=0

αn = ∞,
∞∑

n=0

βn = ∞,
∞∑

n=0

αnβn < ∞.

Case 2. Let αn = (n+ 1)/(n+ 2) and βn = 1/(n+ 1) for all n ∈ N, so that

∞∑

n=0

αn = ∞,

∞∑

n=0

βn = ∞,

∞∑

n=0

αnβn = ∞.

For Cases 1–2, the iterative algorithm (1.3) associated to the operator T in (4.23)

and the iterative algorithm (4.16) of the operator T̃ in (4.24) with initial functions

x0(t) = x̃0(t) = t, converges to x∗(t) and x̃∗(t), respectively, as shown in Table 3

and Figure 9.

Consequently, ‖x∗(t)− x̃∗(t)‖∞ = 0.0009658.... As a matter of fact, without

knowing the fixed point of the operator T̃ and without computing it, we can find

the following upper bound for the error in approximating x̃∗(t) by x∗(t) by using

the conclusion of Theorem 6:

‖x∗(t)− x̃∗(t)‖∞ ≤
(
1 + θ

1− θ

)
ε = 0.00386, (4.25)

where θ = (a + c+ 2d+ e)/(1− c− d) = 0.8125.

The following estimate has been obtained in [1, Theorem 4.1]:

‖x∗(t)− x̃∗(t)‖∞ ≤ 2 (1− c− d) ε

1− (a + 2c+ 3d+ e)
. (4.26)
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Table 3. The differences of x10 − x∗, and x̃10 − x̃∗ where x10 and

x̃10 are 10th step of sequences generated by iteration algorithm (1.3)

of T and the iterative algorithm (4.16) of T̃ with initial functions

x0 = x̃0 = x, respectively.

Case 1 Case 2

t x10 − x∗ x̃10 − x̃∗ x10 − x∗ x̃10 − x̃∗
0.1 −4.6948(−11) −3.5771(−12) −6.0915(−11) −5.3429(−12)
0.2 −6.9916(−9) −1.2118(−9) −7.4315(−9) −1.3883(−9)
0.3 −1.5082(−7) −3.7502(−8) −1.4571(−7) −3.7969(−8)
0.4 −1.2442(−6) −3.7776(−7) −1.1425(−6) −3.5809(−7)
0.5 −5.7968(−6) −1.9941(−6) −5.1737(−6) −1.8203(−6)
0.6 −1.8583(−5) −6.9523(−6) −1.6314(−5) −6.2050(−6)
0.7 −4.5929(−5) −1.8234(−5) −3.9934(−5) −1.6049(−5)
0.8 −9.4018(−5) −3.8981(−5) −8.1278(−5) −3.4012(−5)
0.9 −1.6719(−4) −7.1612(−5) −1.4405(−4) −6.2134(−5)
1.0 −2.6702(−4) −1.1725(−4) −2.2962(−4) −1.0136(−4)
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Figure 9. Case 1 (left) and Case 2 (right)

Now, using the above arguments, inequality (4.26) leads to

‖x∗(t)− x̃∗(t)‖∞ ≤ 0.00426. (4.27)

Thus, from (4.25) and (4.27), we conclude that the estimate given by Theorem 6 is

better than the estimate (4.26).
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Figure 10. The graphs of
∣∣Tu (t)− T̃ u (t)

∣∣ and |x∗ (t)− x̃∗ (t)|

5. Applications

5.1. Application to Two-Point Second Order BVP. In this section, we pro-

pose a new method based on the iterative algorithm (1.4) to solve two-point second

order boundary value problem (in short TPSO–BVP). We present some test exam-

ples to demonstrate the superiority of our method in terms of convergence, accuracy,

and computational time against another method introduced by Bello et al. [19].

Bello et al. [19] considered the following TPSO–BVP:

x′′ = f(t, x, x′), a ≤ t ≤ b, (5.1)
{

λ0x(a) + β0x
′(a) = γ0,

λ1x(b) + β1x
′(b) = γ1,

(5.2)

where λi, βi, γi ∈ R, with λ2
i + β2

i > 0 for i = 0, 1. It has been observed in [19] that

x(t) is a solution of TPSO–BV (5.1)–(5.2) if and only if x(t) is a solution of the
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equivalent integral equation

x(t) =

∫ b

a

G (t, s) f (s, x (s) , x′ (s)) ds+ w(t)

on [a, b], where

G (t, s) =






(t− a) (s− b)

b− a
, a ≤ t ≤ s,

(t− b) (s− a)

b− a
, s ≤ t ≤ b,

(5.3)

is the Green function associated to the TPSO–BVP

x′′ = 0, a ≤ t ≤ b, (5.4)
{

λ0x(a) + β0x
′(a) = γ0,

λ1x(b) + β1x
′(b) = γ1,

(5.5)

and w(t) is the solution of TPSO-BVP (5.4)–(5.5).

Bello et al. [19] proposed the following method based on the Mann iterative algo-

rithm [3] to solve TPSO–BVP (5.1)–(5.2):




x′′
n+1 = (1− αn)x

′′
n + αnf (t, xn, x

′
n)

λ0xn+1 (a) + β0x
′
n+1 (a) = γ0

λ1xn+1 (b) + β1x
′
n+1 (b) = γ1

(5.6)

where {αn} is a real sequence in [0, 1] satisfying
∑∞

n=0 αn = ∞, λi, βi, γi ∈ R with

λ2
i + β2

i > 0 for i = 0, 1, and x0 (t) is an initial function satisfying the boundary

conditions in (5.2). More precisely they proved the following theorem:

Theorem 9. Let {αn} be a sequence of real numbers that satisfies the following

conditions

(i) 0 ≤ αn ≤ 1, (ii)
∞∑

n=0

αn = ∞ (5.7)

and let T be the Lipschitzian operator with Lipschitz constant L ∈ (0, 1) defined by

T [x(t)] =

∫ b

a

G(t, s)f(s, x(s), x′(s))ds+ w (t) . (5.8)

Let {xn} be an iterative sequence in C1 [a, b], generated by the Mann iterative algo-

rithm of T in (5.8),

xn+1 = (1− αn)xn + αnT (xn) ,
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and an affine function x0 in C1 [a, b] that satisfies x′′ = 0 as well as the boundary

condition (5.2). Then, {xn} converges to a unique solution x∗ in C1 [a, b] of TPSO–

BVP (5.1)− (5.2).

We propose a new method based on the iterative algorithm (1.4) to solve TPSO–

BVP (5.1)–(5.2) as under:




x′′
n+1 = (1− αn) f(t, xn, x

′
n) + αnf(t, yn, y

′
n),

λ0xn+1 (a) + β0x
′
n+1(a) = γ0, λ1xn+1(b) + β1x

′
n+1(b) = γ1;

y′′n = (1− ηn) z
′′
n + ηnf(t, zn, z

′
n),

λ0yn(a) + β0y
′
n(a) = γ0, λ1yn(b) + β1y

′
n(b) = γ1;

z′′n = (1− δn)x
′′
n + δnf(t, xn, x

′
n),

λ0zn(a) + β0z
′
n(a) = γ0, λ1zn(b) + β1z

′
n(b) = γ1,

(5.9)

where {αn}, {ηn}, {δn} are real sequences in [0, 1], λi, βi, γi ∈ R with λ2
i +β2

i > 0 for

i = 0, 1, and x0 (t) is a initial function satisfying the boundary conditions in (5.2).

Theorem 10. Let f (t, x(t), x′ (t)) be a function whose derivative is bounded w.r.t. x

and {xn} be an iterative sequence in C1 [a, b] generated by the method in (5.9) with

real sequences {αn} , {ηn} , {δn} ⊆ [0, 1] and any initial function x0(t) in C1 [a, b]

that satisfies x′′ = 0, as well as the boundary condition (5.2). Assume that

µ =
3

8
|a− b|2 λC < 1, λC = max

[a,b]×R2

∣∣∣∣
∂f

∂x

∣∣∣∣ .

Then, TPSO–BVP (5.1) − (5.2) has a unique exact solution x∗(t) in C1 [a, b] and

the iterative sequence {xn} converges uniformly to x∗(t).

Proof. As it is mentioned above, the existence of the exact solution of TPSO–BVP

(5.1)–(5.2), where λi, βi, γi ∈ R with λ2
i +β2

i > 0 for i = 0, 1 is equivalent to finding a

continuous solution of the integral equation (5.8), where G (t, s) is Green’s function

in (5.3) associated to the TPSO–BVP (5.4)–(??) and w(t) is the solution of TPSO–

BVP (5.4)–(5.5). We prove now that the hypotheses of this theorem guarantee

that T [x(t)] in (5.8) is a contraction mapping which is a sufficient condition for the

convergence, according to the Banach contraction principle.

For all x(t) 6= y(t) ∈ C1 [a, b], we consider

|T [x(t)]− T [y(t)]| =
∣∣∣∣
∫ b

a

G (t, s) f (s, x (s) , x′ (s)) ds+ w(t)
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−
∫ b

a

G (t, s) f (s, y (s) , y′ (s)) ds− w(t)

∣∣∣∣

=

∣∣∣∣
∫ b

a

G (t, s) [f (s, x (s) , x′ (s))− f (s, y (s) , y′ (s))] ds

∣∣∣∣

≤
∫ b

a

|G (t, s)| |f (s, x (s) , x′ (s))− f (s, y (s) , y′ (s))| ds.

Using the definition of G (t, s) in (5.3) and making some simple calculations, we get
∫ b

a

G (t, s) ds =

(
t− a

b− a

)(
t2

2
− tb− a2

2
+ ab

)
+

(
t− b

b− a

)(
b2

2
− ba− t2

2
+ ta

)
.

By some routine calculations, we obtain the absolute maximum value of the func-

tion
∫ b

a
G (t, s) ds at the point t = (a+ b)/2 ∈ [a, b] as

∣∣∣∣
∫ b

a

G (t, s) ds

∣∣∣∣ ≤
3

8
|a− b|2 .

Hence,

∣∣T [x(t)]− T [y(t)]
∣∣ ≤ 3

8
|a− b|2

∫ b

a

|f (s, x (s) , x′ (s))− f (s, y (s) , y′ (s))| ds.

Applying the mean value theorem for f , we obtain

|T [x(t)]− T [y(t)]| ≤ 3

8
|a− b|2 max

s∈[a,b]
|f (s, x (s) , x′ (s))− f (s, y (s) , y′ (s))|

≤ µ ‖x− y‖ ,

where

‖x− y‖ = max
s∈[a,b]

|x (s)− y (s)| , µ =
3

8
|a− b|2 λC , λC = max

[a,b]×R2

∣∣∣∣
∂f

∂x

∣∣∣∣ .

It follows from the assumption µ = 3
8
|a− b|2 λC < 1 that T [x(t)] is a contraction

mapping and hence, by the Banach contraction principle, it has a unique fixed point

x∗(t) in C1 [a, b]. Therefore, by Theorem 1 and Remark 1, the iterative sequence

{xn} converges uniformly to x∗(t). �

Remark 8. In Theorem 9, Bello et al. [19] imposed condition
∑∞

n=0 αn = ∞ on real

sequence {αn} ⊆ [0, 1] to guarantee the convergence of iterative algorithm in (5.6).

But, we do not use such a condition for the iterative algorithm (5.6) employed in

Theorem 10.
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We now present some test examples to illustrate the performance and efficiency

of the method given in (5.9). The numerical results verify the fast convergence and

high accuracy of this method.

Example 6. Let C1[a, b] = C1[0, 1] and consider the following TPSO–BVP (see [19,

Example 5.1]):

x′′(t) + x′(t) = 1, x (0) = 1, x (1) = 0. (5.10)

If we take f (t, x, x′) = 1− x′, then we have

λC = max
[0,1]×R2

∣∣∣∣
∂f

∂x

∣∣∣∣ = 0,

which implies that the derivative of f (t, x, x′) w.r.t. x is bounded and

µ = 0 =
3

8
|0− 1|2 λC < 1.

Moreover, if we choose x0(t) = 1 − t as a initial function, then we have x′′
0(t) = 0

and the boundary conditions x0(0) = 1 and x0(1) = 0.

Now, all the requirements in Theorem 10 are satisfied and so by its conclusion,

TPSO–BVP (5.10) has a unique exact solution

x∗(t) = − 2e−t

e−1 − 1
+ t +

1 + e−1

e−1 − 1
∈ C1 [0, 1]

and the iterative sequence {xn} generated by (5.9), with αn = ηn = δn = 2−n for all

n ∈ N converges uniformly to x∗(t). Table 4 and Figure 11 show that the method in

(5.9) converges to the unique exact solution x∗(t) of the problem (5.10) faster than

the method in (5.6). Approximative solutions obtained by the methods (5.6) and

(5.9) are denoted by x(5.6)(t) and x(5.9)(t), respectively. The corresponding absolute

errors are

Err(5.6)(t) =
∣∣x(5.6)(t)− x∗(t)

∣∣ and Err(5.9)(t) =
∣∣x(5.9)(t)− x∗(t)

∣∣ .

Example 7. Let C1[a, b] = C1[0, 1] and consider the following TPSO–BVP (see [19,

Example 5.2]): 



x′′(t) + tx(t) = t3 + 2,

x′ (0)− x (0) = 0,

x′ (1) + x (1) = 3.

(5.11)
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Table 4. Comparison of results obtained by the methods (5.9) and

(5.6) in Example 6 after 10 iterations

Exact solution Method in (5.9) Method in (5.6)

t x∗(t) x(5.9)(t) Err(5.9)(t) x(5.6)(t) Err(5.6)(t)
0.1 0.798910024 0.798910024 6.8399(−25) 0.798910022 1.78679(−9)
0.2 0.626472547 0.626472547 4.0724(−25) 0.626472546 1.03854(−9)
0.3 0.479960925 0.479960925 2.8569(−24) 0.479960927 1.96251(−9)
0.4 0.356907984 0.356907984 5.7292(−24) 0.356907990 6.05669(−9)
0.5 0.255081338 0.255081338 7.9272(−24) 0.255081347 9.67019(−9)
0.6 0.172461036 0.172461036 8.6112(−24) 0.172461047 1.14288(−8)
0.7 0.107219353 0.107219353 7.5199(−24) 0.107219364 1.06736(−8)
0.8 0.057702496 0.057702496 5.0703(−24) 0.057702504 7.69644(−9)
0.9 0.022414049 0.022414049 2.1979(−24) 0.022414053 3.62379(−9)
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Figure 11. Comparison among the exact solution and the approxi-

mate solutions by the iteration algorithms (5.6) and (5.9) in Example

6 after 10 iterations

If we take f (t, x, x′) = t3 + 2− tx′, then we have

λC = max
[0,1]×R2

∣∣∣∣
∂f

∂x

∣∣∣∣ = 1,
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which implies that the derivative of f (t, x, x′) w.r.t. x is bounded and

µ =
3

8
|0− 1|2 λC < 1.

Moreover, if we choose x0(t) = 1 + t as an initial function, then we have x′′
0(t) = 0

and x0(0)− x′
0(0) = 0, x0(1) + x′

0(1) = 3,

since x′
0(t) = 1.

Now, all the requirements in Theorem 10 are satisfied and so by its conclusion,

TPSO–BVP (5.11) has a unique exact solution x∗(t) = t2 in C1 [0, 1] and the iterative

sequence {xn} generated by (5.9) with αn = ηn = δn = n/(n + 1) for all n ∈ N

converges uniformly to x∗(t). Table 5 and Figure 12 show that the method in (5.9)

converges to the unique exact solution x∗(t) of the problem (5.11) faster than the

method in (5.6).

Table 5. Comparison of results obtained by the methods (5.9) and

(5.6) in Example 7 after 10 iterations

Method in (5.9) Method in (5.6)

t x∗(t) x(5.9)(t) Err(5.9)(t) x(5.6)(t) Err(5.6)(t)
0.0 0. 0.000000078 7.833(−8) 0.000220378 2.20378(−4)
0.1 0.01 0.010000086 8.612(−8) 0.010242289 2.42289(−4)
0.2 0.04 0.040000094 9.363(−8) 0.040263393 2.63393(−4)
0.3 0.09 0.090000101 1.005(−7) 0.090282757 2.82757(−4)
0.4 0.16 0.160000106 1.064(−7) 0.160299328 2.99328(−4)
0.5 0.25 0.250000111 1.109(−7) 0.250311966 3.11966(−4)
0.6 0.36 0.360000114 1.136(−7) 0.360319486 3.19486(−4)
0.7 0.49 0.490000114 1.140(−7) 0.490320723 3.20723(−4)
0.8 0.64 0.640000112 1.118(−7) 0.640314609 3.14609(−4)
0.9 0.81 0.810000107 1.067(−7) 0.810300261 3.00261(−4)
1.0 1. 1.000000098 9.850(−8) 1.000277079 2.77079(−4)

Example 8. Let C1[a, b] = C1[0, 1] and consider the following TPSO–BVP (see [19,

Example 5.4]): {
x′′(t)− x(t) = −2t2, 0 ≤ t ≤ 1,

x(0) = 1, x(1) = 6.
(5.12)

If we take f (t, x, x′) = x− 2t2, then we have λC = max
[0,1]×R2

∣∣∂f
∂x

∣∣ = 1, which implies

that the derivative of f(t, x, x′) w.r.t. x is bounded and µ = 3
8
|0− 1|2 λC < 1.
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Figure 12. Comparison among the exact solution and the approxi-

mate solutions by the iteration algorithms (5.6) and (5.9) for Example

7 after 10 iterations

Moreover, if we choose x0(t) = 6t as a initial function, then we have x′′
0(t) = 0 and

x0(0) = 1, x0(1) = 6.

Now, all the requirements in Theorem 10 are satisfied and so by its conclusion,

TPSO–BVP (5.12) has a unique exact solution

x∗(t) =
2(t2e2 − t2 + 2et − 2e2−t + 2e2 − 2)

e2 − 1
∈ C1 [0, 1]

and the iterative sequence {xn} generated by (5.9) with αn = ηn = δn = n/(n + 1)

for all n ∈ N converges uniformly to x∗(t). Table 6 and Figure 13 show that the

method in (5.9) converges to the unique exact solution x∗(t) of the problem (5.12)

faster than the method in (5.6).

Example 9. Let C1[a, b] = C1[0, π/4] and consider the following TPSO–BVP:
{

x′′(t)− 2x′(t) + 2x(t) = 0, 0 ≤ t ≤ π/4,

x(0) = 0, x(π/4) = 1.
(5.13)

If we take f(t, x, x′) = 2x′ − 2x, then we have λC = max
[0,1]×R2

∣∣∂f
∂x

∣∣ = 2 which implies

that the derivative of f(t, x, x′) w.r.t. x is bounded and µ = 3
8

∣∣0− π
4

∣∣2 λC < 1.
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Table 6. Comparison of results obtained by the methods (5.9) and

(5.6) in Example 8 after 5 iterations

Method in (5.9) Method in (5.6)

t x∗(t) x(5.9)(t) Err(5.9)(t) x(5.6)(t) Err(5.6)(t)
0.1 0.5260732366 0.5260732366 1.10268(−19) 0.5260733308 9.41942(−8)
0.2 1.0571780798 1.0571780798 2.09742(−19) 1.0571782590 1.79169(−7)
0.3 1.5980295053 1.5980295053 2.88686(−19) 1.5980297519 2.46609(−7)
0.4 2.1530397022 2.1530397022 3.39370(−19) 2.1530399921 2.89910(−7)
0.5 2.7263622321 2.7263622321 3.56835(−19) 2.7263625369 3.04835(−7)
0.6 3.3219335990 3.3219335990 3.39370(−19) 3.3219338890 2.89920(−7)
0.7 3.9435126476 3.9435126476 2.88686(−19) 3.9435128942 2.46624(−7)
0.8 4.5947181823 4.5947181823 2.09742(−19) 4.5947183615 1.79185(−7)
0.9 5.2790651862 5.2790651862 1.10268(−19) 5.2790652804 9.42040(−8)
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Figure 13. Comparison among the exact solution and the approxi-

mate solutions by iteration algorithms (5.6) and (5.9) for Example 8

after 5 iterations

Moreover, if we choose x0(t) = 4t/π as a initial function, then we have x′′
0(t) = 0

and x0(0) = 0, x0(π/4) = 1.

Now, all the requirements in Theorem 10 are satisfied and so by its conclusion,

TPSO-BVP (5.13) has a unique exact solution x∗(t) =
√
2 et−π/4 sin t in C1 [0, 1] and
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Table 7. Comparison of results obtained by the methods (5.9) and

(5.6) in Example 9 after 10 iterations

Method in (5.9) Method in (5.6)

t x∗(t) x(5.9)(t) Err(5.9)(t) x(5.6)(t) Err(5.6)(t)
π/40 0.054723469 0.054723469 1.19935(−10) 0.053851680 8.71788(−4)
π/20 0.118024500 0.118024500 1.88098(−10) 0.116659647 1.36485(−3)
3π/40 0.190517287 0.190517288 1.66975(−10) 0.189082843 1.43445(−3)
π/10 0.272797828 0.272797828 4.90440(−11) 0.271705074 1.09275(−3)
π/8 0.365432875 0.365432874 1.35047(−10) 0.365015826 4.17049(−4)
3π/20 0.468947395 0.468947394 3.22481(−10) 0.469390917 4.43522(−4)
7π/40 0.583810462 0.583810461 4.38374(−10) 0.585073191 1.26273(−3)
π/5 0.710419486 0.710419486 4.24209(−10) 0.712153454 1.73397(−3)
9π/40 0.849082725 0.849082725 2.64415(−10) 0.850551867 1.46914(−3)
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Figure 14. Comparison among the exact solution and the approx-

imate solutions obtained by iteration algorithms (5.6) and (5.9) in

Example 9 after 10 iterations

the iterative sequence {xn} generated by (5.9) with αn = ηn = δn = n/(n + 1) for

all n ∈ N converges uniformly to x∗(t).

Table 7 and Figure 14 show that the method in (5.9) converges to the unique

exact solution x∗(t) of the problem (5.13) faster than the method in (5.6). In this
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example we take a set of equidistant points νπ/40, ν = 0, 1, . . . , 10. i.e.,

{
0,

π

40
,
π

20
,
3π

40
,
π

10
,
π

8
,
3π

20
,
7π

40
,
π

5
,
9π

40
,
π

4

}
.

5.2. Application to Supervised Learning. A wide range of real-world problems

arising in different branches of medicine, economics, engineering, social sciences, and

science in general can be handled within the supervised learning analysis framework.

The main idea behind the supervised learning is to find the minimum of the sum of

two convex functions. In this section, our aim is to tackle this problem under the

LASSO framework which concerns in minimization of the squared loss function and

the non-smooth l1 norm as a regularizer, and to apply algorithms (1.3) and (1.4)

to solve it. We present the detailed comparative analysis for three algorithms of

gradient projection type on six real-world benchmark datasets. Our experimental

results reveal that one of the algorithms (algorithm (5.17)) employed in this sec-

tion outperforms overall among others (algorithms (5.15) and (5.16)) in terms of

convergence, accuracy and computational time.

Let us consider the dataset with m samples and d attributes denoted as X ∈ R
m×d

and the set of outcomes (labels) Y ∈ R
m. We concern the following minimization

problem

minF (x) = min
w∈Rd

1

2
‖Xw − Y ‖22 + δ ‖w‖1 . (5.14)

In [29], this problem was solved via the following proximal gradient algorithm

wn+1 = T (wn) = proxδηn‖·‖1

(
wn − δηnX

t (Xwn − Y )
)
, (5.15)

where

proxδηn‖·‖1 (w) =
(∣∣wi

∣∣− δηn
)
+
sgn

(
wi
)

and sgn (·) is signum function.

To solve the problem (5.14) more effectively, we propose the following gradient

projection type algorithms

{
wn+1 = (1− αn) Twn + αnTvn,

vn = (1− βn)wn + βnTwn

(5.16)
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and 




wn+1 = (1− αn) Twn + αnTvn,

vn = (1− βn) un + βnTun,

un = (1− γn)wn + γnTwn,

(5.17)

where n ∈ N and Tw = proxδηn‖·‖1 (w) and {αn} , {βn} , {γn} are real sequences in

(0, 1) for all n ∈ N.

The datasets we tested in numerical experiments are listed as follows:

+: Adults: The data set that classifies people with some attributes whether

they have an annual income over 50K or less in a year.1

+: Parkinson’s Disease Classification: The data were gathered from 188 pa-

tients with PD (107 men and 81 women) at the Department of Neurology

in Cerrahpasa Faculty of Medicine, Istanbul University. The control group

consists of 64 healthy individuals (23 men and 41 women). The data set

includes 756 instances with 754 attributes.1

+: Heart Disease (Cleveland): The Cleveland database is the only one that

has been used by ML researchers to this date. The “goal” field refers to the

presence of heart disease in the patient. The Data set includes 303 instances

with 14 attributes.1

+: Iris: The database contains 3 classes of 50 instances where each class refers

to a type of iris plant. The data set includes 150 instances with 4 attributes.1

+: German Credit Data: The dataset classifies people by a set of attributes

as good or bad credit risks. The data set includes 1000 instances with 20

attributes.1

+: Wine Quality (Red): The dataset related classifies red wine quality. The

data set includes 4898 instances with 12 attributes.1

Preparation of the datasets and presentation of the experimental results are im-

plemented in MATLAB environment. The optimal value of η (ηn) is calculated by

a backtracking algorithm.
All data sets divide into %60−%40 training and testing samples. The difference between

two successive function values (tolerance) set up to 10−4, and the maximum number of

iteration set up to 104 as stopping criteria. We measure the performance of algorithms on

1 https://archive.ics.uci.edu/ml/index.php
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Table 8. Comparison of the efficiency of the algorithms (5.15),

(5.16), and (5.17)

PG Algor. (5.15) Algor. (5.16) Algor. (5.17)

Numb. of Iter. 10000 10000 8667
The Last Func. Val. 1747.470178 1739.949373 1739.08412

Adult The Last rMse (Training) 0.325599113 0.323673233 0.323094999
rMse (Test) 0.267824272 0.266190023 0.265690208
Time (s) 21.0541076 25.4807814 22.1767781

Numb. of Iter. 737 405 286
Parkinson The Last Func. Val. 38.71598921 38.71156302 38.71000522
Disease The Last rMse (Training) 0.320002153 0.319983785 0.319977315

rMse (Test) 0.296428766 0.296611822 0.296692434
Time (s) 4.2732993 2.566806 1.9718091

Numb. of Iter. 3269 1914 1368
Heart The Last Func. Val. 143.2151919 143.1783967 143.1676167
Disease The Last rMse (Training) 0.963363224 0.963118954 0.96302718
(Cleveland) rMse (Test) 0.73677197 0.737153149 0.737268504

Time (s) 0.7345463 0.7667583 0.6476523

Numb. of Iter. 1289 809 640
The Last Func. Val. 3.8460299 3.823829721 3.812053187

Iris The Last rMse (Training) 0.198753687 0.198230529 0.198091975
rMse (Test) 0.177315634 0.176153779 0.175363814
Time (s) 0.233264 0.3036546 0.3300645

Numb. of Iter. 239 131 93
German The Last Func. Val. 51.10493668 51.1039319 51.10355766
Bank The Last rMse (Training) 0.451903587 0.451898937 0.451897192
Credit rMse (Test) 0.464758101 0.46479238 0.464807651

Time (s) 0.0640537 0.0678401 0.0585505

Numb. of Iter. 2008 1011 678
Wine The Last Func. Val. 306.9647375 306.964705 306.9646811
Quality The Last rMse (Training) 0.619388582 0.619388548 0.619388523
(Red) rMse (Test) 0.519335719 0.51933475 0.51933406

Time (s) 0.5841445 0.5415088 0.4283849

each dataset in terms of F (wn) and ‖F (wn) − F (w∗)‖, the calculation times, the predic-

tion accuracy (rMSE) for training samples, as well as the prediction accuracy (rMSE) for

testing samples. All graphics presented herein are in log scale. The function values F (wn)

of the algorithms and their performances in terms of ‖F (wn) − F (w∗)‖ are presented in

Figures 15 and 16, respectively. Finally, in Figure 17, we show performances of algorithms

based on the prediction accuracy (rMSE-training).
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Figure 15. Comparison of the efficiency of algorithms (5.15), (5.16),

and (5.17) based on reduction in function values F (wn) in each step
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Figure 16. Comparison of the efficiency of algorithms (5.15), (5.16),

and (5.17) based on ‖F (wn)− F (w∗)‖ in each step
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Figure 17. Comparison of the efficiency of algorithms (5.15), (5.16),

and (5.17) based on rMSE in each step
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[12] W. R. Derrick, L. Nova, Fixed point theorems for discontinuous operators, Glasnik Mat.

24(1989) 339-348.

[13] I. Beg, A. Latif, T. Y. Minhas, Some fixed point theorems in topological vector spaces, Demon-

str. Math., 29(1996) 549–555.

[14] V. Karakaya, Y. Atalan, K. Dogan, N. E. H. Bouzara, Some fixed point results for a new three

steps iteration process in Banach spaces, Fixed Point Theory, 18 (2017) 625–640.

[15] R. P. Agarwal, D. O Regan, D. R. Sahu, Iterative construction of fixed points of nearly

asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8(2007) 61–79.

[16] D. Thakur, B. S. Thakur, M. Postolache, New iteration scheme for numerical reck-

oning fixed points of nonexpansive mappings, J. Inequal. Appl. 2014 (2014) 328.

https://doi.org/10.1186/1029-242X-2014-328.

[17] V. Berinde, Picard iteration converges faster than Mann iteration for a class of quasicontractive

operators, Fixed Point Theory Appl., 2(2204) 97–105.

[18] G. Maniu, On a three-step iteration process for Suzuki mappings with qualitative study,

Numer. Funct. Anal. Optim., 41 (2020) 929–949.

[19] N. Bello, A. J. Alkali, A. Roko, A fixed point iterative method for the solution of two-point

boundary value problems for a second order differential equations, Alexandria Engineering

Journal, 57 (2018) 2515–2520.

[20] L. Nova, Fixed point theorems for some discontinuous operators, Pacific J. Math., 123 (1986)

189–196.

[21] J. Lopez-Gomez, A fixed point theorems for discontinuous operators, Glas. Mat., 23(1988)

15–118.

[22] R. E. Castillo, J. C. Ramos-Fernández, E. M. Rojas, Volterra integral equations on variable

exponent Lebesgue spaces, J. Integral Equations Appl., 28(2016) 1–29.
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