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Abstract
Motivated by certain problems connected with the stochastic analysis of the recur-
sively defined time series, in this paper, we define and study some polynomial 
sequences. Beside computation of these polynomials and their connection to the 
Euler–Apostol numbers, we provesome basic properties and give an interesting con-
nection of these polynomials with the well-known Bernoulli numbers, as well as 
some new summation formulas for Bernoulli’s numbers. Finally, we prove that zeros 
of these polynomials are simple, real and symmetrically distributed in [0,1].

Keywords  Generating function · Algebraic polynomial · Real zeros · Recurrence 
relation · Bernoulli numbers

Mathematics Subject Classication  11B68 · 11B83 · 26C05 · 26C10

1 � Introduction and motivation

Our main goal in this paper is to consider a class of polynomials with all real 
zeros, which appears in certain problems connected with stochastic analysis of 
recursively defined time series. In order to explain this connection let us suppose, 
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for instance, that {Δt}t∈ℤ be, so-called the autoregressive (AR) time series, i.e., 
the sequence of the random variables (RVs), which satisfies the recurrence rela-
tion Δt = aΔt−1 + �t . Here, 0 < |a| < 1 and, for a given probability p ∈ (0, 1) , RVs 
�t have a distribution which is p-mixture of the Gaussian distribution  (0, �2) 
and the discrete-type distribution, concentrated at zero. Therefore, the sequence 
{�t}t∈ℤ has a singular-type distribution, usually called the Contaminated Gauss-
ian Distribution (CGD), which generates a non-Gaussian sequence {Δt} . In [10, 
15] it was proved that the characteristic function of the RVs Δt is

Moreover, the function �Δ(u) satisfies the following recurrence

where Ak = �
(2k)

Δ
(0) , and

Here Pk(x) , k = 0, 1,… , are algebraic polynomials of degree k,

etc. In the following, let ℝ , ℤ , and ℕ be the sets of real numbers, integers, and posi-
tive integers, respectively, and let ℕ0 ∶= ℕ ∪ {0}.

On the other hand, let us consider time series {Xt}t∈ℤ defined as follows 
Xt = �t −

∑m

j=1
�j �t−j , t ∈ ℤ , where �t ∶  (0, �2) and �1,… , �m ∈ ℝ . Then, the 

sequence {Xt} is usually called the Moving Average (MA) time series, with the 
“permanent” noise {�t} , and the “optional” CGD–noise (�t) , defined as above. In 
[14], it is provided that RVs Xt have the characteristic function

�Δ(u) =

∞∏
j=0

[
1 − p

(
e−

1

2
a2ju2�2 − 1

)]
.

Ak =

k∑
j=1

(
2k − 1

2j − 1

)
Ak−j Zj, k = 1, 2,… ,

Zk =

⎧⎪⎨⎪⎩

−
�2mc

1 − a2
, k = 1,

−
(2k − 1)!!�2kp(p − 1)

1 − a2k
Pk−2(p), k = 2, 3,….

P0(x) = 1,

P1(x) = 2x − 1,

P2(x) = 6x2 − 6x + 1,

P3(x) = 24x3 − 36x2 + 14x − 1,

P4(x) = 120x4 − 240x3 + 150x2 − 30x + 1,

P5(x) = 720x5 − 1800x4 + 1560x3 − 540x2 + 62x − 1,

P6(x) = 5040x6 − 15120x5 + 16800x4 − 8400x3 + 1806x2 − 126x + 1,
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which satisfies the relation

Here, Uk = �
(2k)

X
(0) , Vk = (2k − 1)!! �2k Wk(p) , and, by using the induction method, 

it can be proved that

where {Lk(x} are algebraic polynomials, which can be expressed as

This enables us to obtain the moments E(Δn
t
) = i−n�

(n)

Δ
(0) and E(Xn

t
) = i−n�

(n)

X
(0) , as 

well as several others stochastic properties of the series {Δt} and {Xt}.
In the sequel, we introduce two sequences of polynomials {Mk(x)}

∞
k=0

 and 
{Lk(x)}

∞
k=1

 . Some collections of special classes of polynomials can be found in [9] 
and [3].

Definition 1.1  The sequences of algebraic polynomials {Mk(x)}
∞
k=0

 and {Lk(x)}∞k=1 
are defined by the generating functions

respectively, i.e.,

A first few of Mk(x) are

�X(u) = e−�
2u2∕2

m∏
j=1

[
1 + p

(
e
−�2

j
�2u2∕2

− 1
)]

,

Uk +

k∑
j=1

(
2k − 1

2j − 1

)
Uk−jVj = 0, k = 1, 2,… .

Wk(bc) =

⎧
⎪⎪⎨⎪⎪⎩

1 + p

m�
j=1

�2
j
, k = 1,

Lk(p)

p�
j=1

�2k
j
, k = 2, 3,… ,

(1.1)Lk+2(x) = x(x − 1)Pk(x), k ≥ 0.

(1.2)G(x, t) =
1

(1 − x)et + x
and F(x, t) = logG(x, t),

(1.3)G(x, t) =

∞∑
k=0

Mk(x)
tk

k!
and F(x, t) =

∞∑
k=1

Lk(x)
tk

k!
.
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In this paper we study these sequences of polynomials, as well as the polynomials 
Pk(x) given by (1.1). The paper is organized as follows. Computation of polynomials 
Mk(x) and their connection to the Euler–Apostol numbers are given in Sect. 2. Basic 
properties of polynomials Mk(x) (and Lk(x) ) are presented in Sect. 3. An interesting 
connection of these polynomials with the well-known Bernoulli numbers, as well as 
some new summation formulas for Bernoulli’s numbers, are also given in Sect. 4. 
Finally, some properties of the polynomials Pk(x) and especially a distribution of 
their zeros are given in Sect. 5.

2 � Recurrence relation and computation of the polynomials M
k
(x)

Using the Apostol–Euler numbers Ek(�) defined by the following generating func-
tion (cf. [2, 5, 11–13])

we can compute the polynomials Mk(x) . From (2.1) it is easy to see that

Also, the following well-known result

holds.
Comparing the function G(x, t) from (1.2) and (1.3) with the generating function 

of the Apostol–Euler numbers (2.1), we find

M0(x) = 1,

M1(x) = x − 1,

M2(x) = 2x2 − 3x + 1,

M3(x) = 6x3 − 12x2 + 7x − 1,

M4(x) = 24x4 − 60x3 + 50x2 − 15x + 1,

M5(x) = 120x5 − 360x4 + 390x3 − 180x2 + 31x − 1,

M6(x) = 720x6 − 2520x5 + 3360x4 − 2100x3 + 602x2 − 63x + 1.

(2.1)
2

�et + 1
=

∞∑
k=0

Ek(�)
tk

k!
,

E0(�) =
2

1 + �
.

(2.2)Ek(�) + �

k∑
j=0

(
k

j

)
Ej(�) = 0,
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Also, using (2.2) we obtain the recurrence relation for the polynomials Mk(x)

Or, equivalently,

where

The recurrence relation (2.3) enables us to generate the sequence of polynomials 
{Mk(x)}

∞
k=0

.

3 � Properties of polynomials M
k
(x) and L

k
(x)

Let the polynomials Mk(x) and Lk(x) be defined by (1.2) and (1.3).

Lemma 3.1  The polynomials Lk(x) , k ≥ 2, are symmetric with respect to x = 1∕2 , 
i.e.,

In particular, Lk(0) = Lk(1) = 0 for each k ≥ 2, and L1(x) = x − 1.

Proof  Putting x = 1 in (1.2) and (1.3), we obtain

i.e., Lk(1) = 0 for each k ≥ 1 . On the other hand, for x = 0 , we get

Mk(x) =
1

2x
Ek

(
1 − x

x

)
.

xMk(x) + (1 − x)

k∑
j=0

(
k

j

)
Mj(x) = 0.

(2.3)Mk(x) = (x − 1)

k−1∑
j=0

(
k

j

)
Mj(x), k = 1, 2,… ,

M0(x) =
1

2x
E0

(
1 − x

x

)
=

1

2x

2

1 +
1−x

x

= 1.

(3.1)Lk(x) = (−1)kLk(1 − x).

∞∑
k=1

Lk(1)
tk

k!
= F(1, t) = logG(1, t) = 0,

∞∑
k=1

Lk(0)
tk

k!
= F(0, t) = log

1

et
= −t,
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i.e.,

Thus, these polynomials for each k ≥ 2 have zeros at ±1 . Using these values at x = 0 
and x = 1 , for k = 1 we can see that L1(x) = x − 1.

In order to prove the first part of this lemma, we put (1 − x,−t) instead of (x, t) in 
(1.2) and (1.3). Since

we get

i.e.,

Since L1(x) = x − 1 , the first part in the previous formula is satisfied and proof is 
finished. 	�  □

In a similar way, we can prove the following result.

Lemma 3.2  For polynomials Mk(x) , k ≥ 0, we have

Some connections between the polynomials Lk(x) and Mk(x) can be established.

Theorem 3.1  The polynomials Lk(x) and Mk(x) satisfy the following difference-dif-
ferential relations

Proof  Using partial derivatives of the generating function F(x, t),

L1(0) = −1, Lk(0) = 0, k ≥ 2.

F(1 − x,−t) = log
et

x + (1 − x)et
= t + F(x, t),

∞∑
k=1

Lk(1 − x)(−1)k
tk

k!
≡ t +

∞∑
k=1

Lk(x)
tk

k!
,

−L1(1 − x) = 1 + L1(x) and (−1)kLk(1 − x) = Lk(x), k ≥ 2.

Mk(0) = (−1)k (k ≥ 0), M0(1) = 1, Mk(1) = 0 (k ≥ 1).

(3.2)
Lk+1(x)

x − 1
− L�

k
(x) = Mk(x), k ≥ 1,

(3.3)Lk+1(x) = x(x − 1)L�
k
(x), k ≥ 1,

(3.4)Lk+1(x) = xMk(x), k ≥ 1.

�F

�x
=

et − 1

(1 − x)et + x
,

�F

�t
=

(x − 1)et

(1 − x)et + x
,
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we obtain

where G(x, t) is given by (1.2).
On the other hand,

Putting these expressions into (3.5) we get

from which we directly obtain (3.2), as well as L1(x)∕(x − 1) = M0(x) = 1.
In order to prove (3.3), we start with

Then

i.e.,

from which we conclude that (3.3) holds.
Finally, combining (3.2) and (3.3), we obtain (3.4). 	�  □

(3.5)
1

x − 1

�F

�t
−

�F

�x
= G(x, t),

�F

�x
=

∞∑
k=1

L�
k
(x)

tk

k!
and

�F

�t
=

∞∑
k=1

Lk(x)
tk−1

(k − 1)!
=

∞∑
k=0

Lk+1(x)
tk

k!
.

1

x − 1

∞∑
k=0

Lk+1(x)
tk

k!
−

∞∑
k=1

L�
k
(x)

tk

k!
=

∞∑
k=0

Mk(x)
tk

k!
,

�F

�t
= L1(x) +

∞∑
k=1

Lk+1(x)
tk

k!
.

∞∑
k=1

Lk+1(x)
tk

k!
=

(x − 1)et

(1 − x)et + x
− (x − 1)

=
x(x − 1)(et − 1)

(1 − x)et + x

= x(x − 1)(et − 1)G(x, t)

= x(x − 1)
�F

�t
,

∞∑
k=1

Lk+1(x)
tk

k!
= x(x − 1)

∞∑
k=1

L�
k
(x)

tk

k!
,
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The following theorem gives a connection of polynomials Mk and Lk , with the 
well known Bernoulli numbers Bk defined by (cf. [1])

For example, B0 = 1 , B1 = −1∕2 , B2 = 1∕6 , B3 = 0 , B4 = −1∕30 , B5 = 0 , 
B6 = 1∕42 , etc. The function �(t) and the corresponding quadrature formulas on 
(0,+∞) with respect to this (weight) function [4] are widely used in solid state phys-
ics, e.g., the total energy of thermal vibration of a crystal lattice can be expressed in 
the form ∫ ∞

0
f (t)�(t) dt , where f(t) is related to the phonon density of states. Also, 

integrals of the previous type can be used for summation of slowly convergent series 
(see [4, 6–8]).

4 � Connections with Bernoulli numbers

Theorem  4.1  Let polynomials {Lk}∞k=1 and {Mk}
∞
k=0

 be given in (1.2) and (1.3), 
respectively. Then

and

where Bk are Bernoulli’s numbers.

Proof  Integrating the first equality in (1.3) with respect to x over [0,1], we obtain

i.e.,

Comparing this with (3.6) we conclude that (3.6) holds for each k = 0, 1,….
Similarly, by an integration of the second equality in (1.3) we get

(3.6)�(t) =
t

et − 1
=

∞∑
k=0

Bk

tk

k!
.

(4.1)∫
1

0

Mk(x) dx = Bk, k = 0, 1, 2,… ,

(4.2)∫
1

0

L1(x) dx = −(1 + B1), ∫
1

0

Lk(x) dx = −Bk, k = 2, 3,… ,

∫
1

0

G(x, t) dx = ∫
1

0

dx

(1 − x)et + x
=

∞∑
k=0

(
∫

1

0

Mk(x) dx

)
tk

k!
,

�(t) =
t

et − 1
=

∞∑
k=0

(
∫

1

0

Mk(x) dx

)
tk

k!
.
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and then using (4.2), we obtain (4.2). 	�  □

In the sequel we consider more general integrals (moments)

Theorem 4.2  For each n ∈ ℕ for the moments (4.3) the following relations

hold.

Proof  As in the proof of Theorem 4.1 we start now from the weighted integral (with 
respect to the power function x ↦ xn)

where �(n)

k
 are given by (4.3). Since

i.e.,

we conclude that

∫
1

0

F(x, t) dx = ∫
1

0

log
1

(1 − x)et + x
dx = 1 − t − �(t),

(4.3)�
(n)

k
= ∫

1

0

xnMk(x)dx (n ∈ ℕ0; k = 0, 1, 2,…).

(4.4)�
(n)

0
= −

1

n

(
1 − �

(n−1)

0
− �

(n−1)

1

)
,

(4.5)�
(n)

k
= −

1

n

k+1∑
j=0

(
k + 1

j

)
�
(n−1)

j
(k = 1, 2,…)

(4.6)n = n(t) = �
1

0

xnG(x, t) dx = �
1

0

xn

(1 − x)et + x
dx =

∞∑
k=0

�
(n)

k

tk

k!
,

d

dt
n(t) = −�

1

0

xn(1 − x)et

[(1 − x)et + x]2
dx =

∞∑
k=1

�
(n)

k

tk−1

(k − 1)!
,

−∫
1

0

xn

(1 − x)et + x
dx + ∫

1

0

xn+1

[(1 − x)et + x]2
dx =

∞∑
k=0

�
(n)

k+1

tk

k!
,

∫
1

0

xn+1

[(1 − x)et + x]2
dx =

∞∑
k=0

(
�
(n)

k+1
+ �

(n)

k

)
tk

k!
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On the other hand, by an integration by parts we reduce the integral n+1 to the 
integral on the left side in the previous equality. Namely, we have

so that

Comparing the coefficients of tk∕k! on the left and right side in the previous 
equality and putting n − 1 instead of n, we obtain n�(n)

0
= 1 − �

(n−1)

1
− �

(n−1)

0
 , i.e., 

(4.4), and

which can be written in the form

i.e., (4.5). 	�  □

The result of Theorem 4.2 can be expressed in terms of Bernoulli numbers. In 
addition, some new summation formulas for Bernoulli numbers can be derived.

n+1 = �
1

0

xn+1

(1 − x)et + x
dx =

1

n + 1
−

et

n + 1 �
1

0

xn+1

[(1 − x)et + x]2
dx,

(n + 1)

∞∑
k=0

�
(n+1)

k

tk

k!
= 1 − et

∞∑
k=0

(
�
(n)

k+1
+ �

(n)

k

)
tk

k!

= 1 −

(
∞∑
i=0

ti

i!

)(
∞∑
j=0

(
�
(n)

j+1
+ �

(n)

j

)
tj

j!

)

= 1 −

∞∑
k=0

{
k∑

j=0

(
k

j

)(
�
(n)

j+1
+ �

(n)

j

)}
tk

k!
.

n�
(n)

k
= −

k∑
j=0

(
k

j

)(
�
(n−1)

j+1
+ �

(n−1)

j

)
, k ∈ ℕ,

n�
(n)

k
= −

k+1∑
j=1

(
k

j − 1

)
�
(n−1)

j
−

k∑
j=0

(
k

j

)
�
(n−1)

j

= −

{(
k

0

)
�
(n−1)

0
+

k∑
j=1

[(
k

j − 1

)
+

(
k

j

)]
�
(n−1)

j
+

(
k

k

)
�
(n−1)

k+1

}

= −

k+1∑
j=0

(
k + 1

j

)
�
(n−1)

j
,
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Define a sequence of algebraic polynomials {ℚn}n∈ℕ0
 by

Thus, ℚn(r) = r(r − 1)⋯ (r − n + 1) has real zeros at the points 0, 1,… , n − 1 . Also, 
we use here the standard linear difference operators � (the forward-difference opera-
tor), � (the shifting operator), and � (the identity operator), defined by

respectively. For example,

i.e.,

Theorem 4.3  For Bernoulli’s numbers Bk defined by (3.6), and for each n ∈ ℕ0, the 
following identities

hold, where ℚn are polynomials defined by (4.7).

Proof  We prove this result by induction on n.
For n = 0 the identity (4.8) is true, because it reduces to the following well known 

identity (cf. [1], p. 241)

Suppose now that (4.8) hold for some n = m ∈ ℕ , i.e., let

Then, for k ≥ 1 , we have

(4.7)ℚ0(r) = 1, ℚn+1(r) = ℚn(r)(r − n), n ∈ ℕ0.

�ak = ak+1 − ak, �ak = ak+1, and �ak = ak,

ℚ4(�) = �(� − �)(� − 2�)(� − 3�) = �
4 − 6�3 + 11�2 − 6�,

ℚ4(�)ak = ak+4 − 6ak+3 + 11ak+2 − 6ak+1.

(4.8)
k+1∑
j=0

(
k + 1

j

)
ℚn(�)Bj =

{
(� + �)ℚn(�)B0, k = 0,

ℚn+1(�)Bk, k = 1, 2,… ,

(4.9)
k+1∑
j=0

(
k + 1

j

)
Bj =

{
1

2
, k = 0,

Bk+1, k = 1, 2,… .

(4.10)
k+2∑
j=0

(
k + 2

j

)
ℚm(�)Bj = ℚm+1(�)Bk+1, k = 0, 1,… .
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i.e.,

By multiplying the induction hypothesis (4.10) (written k for k − 1 ) by m + 1 and its 
substructing from the previous equality, we get

i.e.,

due to (4.7).
This shows that the identities (4.8) are true for n = m + 1 and k ≥ 1 . The proof for 

k = 0 is trivial. 	�  □

Now we return to the moments (4.3).

Theorem 4.4  For each n ∈ ℕ and k ≥ 1 the moments (4.3) can be expressed in the 
following form

k+2∑
j=0

(
k + 2

j

)
ℚm(�)Bj = ℚm(�)B0 +ℚm(�)Bk+2

+

k+1∑
j=1

[(
k + 1

j

)
+

(
k + 1

j − 1

)]
ℚm(�)Bj

=

k+1∑
j=0

(
k + 1

j

)
ℚm(�)Bj +

k+1∑
j=0

(
k + 1

j

)
ℚm(�)Bj+1

=

k+1∑
j=0

(
k + 1

j

)
ℚm(�)(� + �)Bj,

k+1∑
j=0

(
k + 1

j

)
ℚm(�)(� + �)Bj = ℚm+1(�)Bk+1.

k+1∑
j=0

(
k + 1

j

)
ℚm(�)[� + � − (m + 1)�]Bj = ℚm+1(�)Bk+1 − (m + 1)ℚm+1(�)Bk,

k+1∑
j=0

(
k + 1

j

)
ℚm+1(�)Bj = ℚm+1(�)[� − (m + 1)�]Bk

= ℚm+2(�)Bk,

(4.11)�
(n)

k
=

(−1)n

n!
ℚn(�)Bk,
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where ℚn are polynomials defined by (4.7).

According to (4.11), the moments (4.3) for n ≤ 6 are:

Remark 4.1  Using the forward-difference operator � (= � − �) , the equality (4.11) 
can be expressed in an alternative form,

For example,

Starting from the generating function of the Bernoulli numbers (3.6), we see

where � is the differentiation operator. This relation can be expressed in the form

Also, in view of linearity, we have for each n ∈ ℕ0,

�
(0)

k
= Bk,

�
(1)

k
= −Bk+1,

�
(2)

k
=

1

2

(
Bk+2 − Bk+1

)
,

�
(3)

k
= −

1

6

(
Bk+3 − 3Bk+2 + 2Bk+1

)
,

�
(4)

k
=

1

24

(
Bk+4 − 6Bk+3 + 11Bk+2 − 6Bk+1

)
,

�
(5)

k
= −

1

120

(
Bk+5 − 10Bk+4 + 35Bk+3 − 50Bk+2 + 24Bk+1

)
,

�
(6)

k
=

1

720

(
Bk+6 − 15Bk+5 + 85Bk+4 − 225Bk+3 + 274Bk+2 − 120Bk+1

)
.

�
(n)

k
=

(−1)n

n!
ℚn−1(�)Bk+1.

�
(4)

k
=

1

24

(
�
3 − 3�2 + 2�

)
Bk+1 =

1

24

(
�
3Bk+1 − 3�2Bk+1 + 2�Bk+1

)
.

�
��(t) =

d�

dt�

{
t

et − 1

}
=

∞∑
k=0

Bk+�

tk

k!
(� ∈ ℕ0),

�
��(t) =

∞∑
k=0

{
�
�Bk

}
tk

k!
(� ∈ ℕ0).

(4.12)ℚn(�)�(t) =

∞∑
k=0

{
ℚn(�)Bk

}
tk

k!
.
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According to (4.6) we conclude that t ↦ n(t) is a generating function for numbers 
(moments) {�(n)

k
}∞
k=0

 . It can be expressed in terms of the hypergeometric function 2F1 
in the form

In particular,

Using Theorem 4.4, as well as the relation (4.12), for the representation (4.13) of 
n(t) we obtain the following result.

Theorem 4.5  For each n ∈ ℕ we have

For example, for n ≤ 6 we have

(4.13)n(t) = �
1

0

xnG(x, t) dx =
e−t

n + 1 2F1

(
1, n + 1;n + 2;1 − e−t

)
.

1(t) =
(t − 1)et + 1

(et − 1)2
, 2(t) =

1

2

(2t − 3)e2t + 4et − 1

(et − 1)3
,

3(t) =
1

6

(6t − 11)e3t + 18e2t − 9et + 2

(et − 1)4
,

4(t) =
1

12

(12t − 25)e4t + 48e3t − 36e2t + 16et − 3

(et − 1)5
,

5(t) =
1

60

(60t − 137)e5t + 300e4t − 300e3t + 200e2t − 75et + 12

(et − 1)6
, etc.

n(t) =
e−t

n + 1 2F1

(
1, n + 1;n + 2;1 − e−t

)
=

(−1)n

n!
ℚn(�)�(t).

0(t) = �(t),

1(t) = −��(t),

2(t) =
1

2

(
���(t) − ��(t)

)
,

3(t) = −
1

6

(
����(t) − 3���(t) + 2��(t)

)
,

4(t) =
1

24

(
�iv(t) − 6����(t) + 11���(t) − 6��(t)

)
,

5(t) = −
1

120

(
�v(t) − 10�iv(t) + 35����(t) − 50���(t) + 24��(t)

)
,

6(t) =
1

720

(
�vi(t) − 15�v(t) + 85�iv(t) − 225����(t) + 274���(t) − 120��(t)

)
.
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At the end of this section we give a simple summation formula for Bernoulli’s 
numbers:

Theorem 4.6  For each n ∈ ℕ0 we have

Proof  For n = 0 the equality (4.14) reduces to the well known identity (4.9) (cf. 
[1], p. 241). In fact, it is a special case of Theorem 4.3 for n = 0 . Also, for n = 1 
(4.8) becomes

which is equivalent to (4.14) for n = 1 . Thus, we should prove (4.14) for n ≥ 2 . 
The case k = 0 is trivial. Therefore, we suppose k ≥ 1 , and as in the proof of Theo-
rem 4.3, we apply induction on n.

Suppose that (4.14) is true for some n ∈ ℕ , i.e.,

Then, from this equality (written for k + 2 and k + 1 ) we get

i.e.,

This complete the proof. 	�  □

(4.14)
k+1∑
j=0

(
k + 1

j

)
Bj+n =

{
Bn + Bn+1, k = 0,

�
nBk+1, k ≥ 1.

k+1∑
j=0

(
k + 1

j

)
�Bj =

{
(� + �

2)B0 = B1 + B2, k = 0,

(�2 − �)Bk = Bk+2 − Bk+1, k = 1, 2,… ,

k+1∑
j=0

(
k + 1

j

)
Bj+n = �

nBk+1, k ≥ 1.

k+2∑
j=0

(
k + 2

j

)
Bj+n −

k+1∑
j=0

(
k + 1

j

)
Bj+n = �

nBk+2 − �
nBk+1,

k+1∑
j=1

(
k + 1

j − 1

)
Bj+n + Bk+2+n =

k+1∑
j=0

(
k + 1

j

)
Bj+n+1 = �

n+1Bk+1, k ≥ 1.
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5 � Properties of polynomials P
k
(x) and their zero distribution

In this section we investigate the polynomials Pk(x) defined by (1.1), i.e.,

which graphics for 0 ≤ k ≤ 5 are presented in Fig. 1. These polynomials are sym-
metric with respect to x = 1∕2 , i.e., Pk(1 − x) = (−1)kPk(x) . Another interesting 
property of polynomials Pk(x) , k ≥ 1 , is that all their zeros are real, simple and con-
tained in (0, 1).

Theorem 5.1  Polynomals Lk(x) (k ∈ ℕ) have k simple real zeros symmetrically dis-
tributed in [0,1]. For k ≥ 2 the endpoints 0 and 1 are zeros of Lk(x).

Proof  We prove this statement by induction.
For k = 2 , the zeros of L2(x) = x2 − x are the endpoints 0 and 1. According to 

(3.3), these points are also zeros of Lk(x) for each k ≥ 3.
Suposse now that k ≥ 3 and that the polynomial Lk(x) has k simple zeros �k in 

[0,1], such that 0 = 𝜉1 < 𝜉1 ⋯ < 𝜉k−1 < 𝜉k = 1 , i.e.,

According to Rolle’s theorem, in each of intervals (��−1, ��) , � = 2,… , k , there is 
at least one zero �� ∈ (��−1, ��) of L�

k
(x) . Since the number of these intervals is k − 1 

(5.1)Pk(x) =
Mk+1(x)

x − 1
=

Lk+2(x)

x(x − 1)
, k ≥ 0,

Lk(x) = ak(x − �1)(x − �2)⋯ (x − �k−1)(x − �k), ak ≠ 0.

k 0

k 1

k 2

k 3

k 4

k 5

0.2 0.4 0.6 0.8 1.0

1.5

1.0

0.5

0.5

1.0

1.5

Fig. 1   Graphics of the polynomials P
k
(x) , 0 ≤ k ≤ 5 , on (0, 1)
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(= deg L�
k
) , we conclude that these zeros are simple and the derivative L�

k
(x) can be 

expressed as

Now, using (3.3) and (5.2), we conclude that

Thus, Lk+1(x) has k + 1 simple zeros, such that 0 = 𝜂1 < 𝜂2 < ⋯ < 𝜂k < 𝜂k+1 = 1.
Due to Lemma 3.1, this zero distribution is symmetric with respect to the point 

x = 1∕2 . 	�  □

Corollary 5.1  Polynomials Pk(x) (k ∈ ℕ) , defined by (5.1), have k simple real zeros 
symmetrically distributed in (0, 1).
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