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1. Introduction

For numerical integration over a line segment in the complex plane, Birkhoff and Young [1] proposed a quadrature for-
mula of the form

zo+h

h . .
. f(2)dz ~ 1z {24f (z0) + 4lf (20 + h) + f(20 = h)] = [f(20 + i) + f (20 — ih)]},
z9—
where f(z) is a complex analytic function in 2 ={z : |z — zo| < r} and |h| < r. This five point quadrature formula is exact for all
algebraic polynomials of degree at most five, and for its error ng (f) can be proved the following estimate [10] (see also [2, p.
136])
R () < maxso o)
5 1890 zes ’
where S denotes the square with vertices z, + i*h, k=0,1,2,3.
Without loss of generality we can consider the integration over [—1,1] for analytic functions in a unit disk Q = {z : |z| < 1},
so that the previous Birkhoff-Young formula becomes

1
| f@idz = SF0)+ 5lF(1) +F-1)) 15 ) + £ (0] + Re(). (1
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This five point formula can also be used to integrate real harmonic functions (see [1]). We mention here that Lyness and
Delves [5] and Lyness and Moler [6], and later Lyness [4], developed formulae for numerical integration and numerical
differentiation of complex functions. In 1976 Lether [3] pointed out that the three point Gauss-Legendre quadrature which
is also exact for all polynomials of degree at most five is more precise than (1.1) and he recommended it for numerical inte-
gration. However, ToSi¢ [9] improved the quadrature (1.1) in the form

1
[ 5214z = AF©) + BIF(r) + ()] + Cir) +(~in)] + R Fi).
where

1 1 1 1 1
AZZ(‘I_W)’ B:W—‘FW’ C:—@‘i‘m (0<r<1).

and the error-term is given by the expresion
Tien (2 4,2\ 2 4 2\
R = (5o + 3OO+ (5o + )PV oo (12)

Evidently, for r = 1 this formula reduces to (1.1) and for r = \/3/5 to the Gauss-Legendre formula (then C = 0). Moreover, for
r = {/3/7 the first term on the right-hand side in (1.2) vanishes and the formula reduces to the modified Birkhoff-Young
quadrature of the maximum accuracy (named MF in [9]), with the coefficients

16 1(7 7 1/(7 7
A=1s: Bé(?’\@)’ CB(E_\@)

and with the error-term

1
MF T 4 8) (10)
RY(f) = R (f:/377) = 793800 O + 1122600/ O+

This formula was extended by Milovanovi¢ and Dordevic [8] to the following quadrature formula of interpolatory type:
1
/ f(2)dz = Af(0) + Cur[f(r1) + f(=r1)] + Cazlf (ir1) + f(=ir1)] + Car[f (r2) + f(=12)] + Co2[f (ir2) + f(~ir2)] + Ro(f; 11, 72),
-1
where 0 <y <1, < 1. They proved that for

_ 463 —4v114 and 1 7r*7463+4\/114
143 2T 143
this formula has the algebraic precision p = 13, with the error-term

£ * — 1
Rolfi71:72) = 58132661066500

In this paper we consider a generalized quadrature with respect to the Chebyshev weight.

fA9(0) +--- ~3.56-10"1f149(0).

2. Generalized Birkhoff-Young-Chebyshev quadrtaure formula

For analytic functions in the unit disk Q ={z : |z| < 1}, we consider numerical integration

1
1) ::/ \/J;(__)dzfQN(f + Ru(f), (2.1)

where Qy is the N-point quadrature formula of interpolatory type with nodes at the zeros of a monic polynomial of degree N,

on(2) =2'Py, (@) =2 [[(@* —1), O<ri<o <<, (2.2)
k=1

where n=[N/4] and v=N — 4[N/4],i.e, N=4n+v, ne N, v € {0,1,2,3}, and R\(f) is the corresponding remainder term.
According to (2.2) the quadrature formula in (2.1) has the form

v-1 n
Q) = S CFP(0) + > {Af (i) +F(—xi)] + Belf (i) + f(~ix)]}.
j=0 k=1

where x, = /T, k=1,...,n. For v=0, the first sum in Qn(f) is empty. Also, in order to have Qn(f) = I(f) = 0 for f(z) = z, it must
be C; =0, so that Qun+1(f) = Qan+2(f).
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Theorem 2.1. For any N € N there exists a unique interpolatory quadrature Qn(f) with a maximal degree of precision d = 6n + s,
where n=[N/4], v=N — 4[N/4] € {0,1,2,3}, and

v—1, v=0,2
_ ) )& 23
s { v, v=1,3. (2:3)
The nodes of such a quadrature are characterized by the following orthogonality relation:
! To(2)2 ' Py (2)
Toa 21 py(2 :/ BZ Pl®) s 0, k=0,1...,n-1, 24
( 2k pn.\( )) . m ) ( )

where Ty is the Chebyshev polynomials of the first kind of degree k.

Proof. Let P, denote the set of algebraic polynomials of degree at most d.
For a given N € N, suppose that f € P;, where d > N=4n+v (n=[N/4], v=N — 4[N/4]). Then, it can be expressed in the
form
f@) = u@)on(2) + v(2) = u(2)2'p,, (2} + v(2), UEPyn, VE PN,
from which, applying (2.1), we get
L u(2)z'p,., (2%
i) [ M)
1 V1-22
Note that I(v) = Qn(v) (interpolatory quadrature!) and #«(z) = f(z) at the zeros of wy, and therefore Qn( ) = Qn(f), so that for
each f € Py we have
Yu(z)2’p,,(z*
i) - [ HZP )
Ja V1-22
It is clear that the quadrature formula Qn(f) has a maximal degree of precision if and only if
/ ' u(2)2'p,, (2
1 V1 =272

for a maximal degree of the polynomial u € Py_y.
According to the values of v, the previous “orthogonality condition” can be considered as

/1 h@)2Pu(@) ) _ o and /1 h(2)2'pn, () o
1 V1-2Z a0 V1=
for v=0, 2 and v =1, 3, respectively, where h € P,_. It can be represented in a compact form
' h(z*)z " p,, (2%)
[

Thus, the maximal degree of the polynomial u € Py y is

dz +1(v).

dZ+QN(f)'

dz=0

dz=0, hePyi. (2.5)

2n—-1, v=0,2,

dmax_N:
{Zn, v=1,3,

i.e., dmax = 6n + s, where s is defined by (2.3). Notice that s + 1 € {0,2,4}.
The orthogonality conditions (2.5) can be expressed in terms of Chebyshev polynomials of the first kind, i.e., in the form
(2.4), where the inner product is defined in a usual way as (f,g) = ﬂ]f(z)g(z)(l -2z, O

According to (2.2), the polynomial z**'p,, ,(z*) can be expressed in the form

241, () = S (1) g, 2.6)
=0

j
where g; are the so-called elementary symmetric functions, defined by

Gi= Y Tl i=1,....n
(SO

and the summation is performed over all combinations (kj,...,k;) of the basic set {1,...,n}. Thus,
Oy =T +T+- 4Ty Oa=TNI2+ - +Tp1ln, ..., Op=TT2- Ty,

and for the convenience we put gg = 1.
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In the sequel we need the inner product (T, z?™), 0 < k < m. Using the formula (cf. [7, p. 105])

1 2 (k) Ty 2i(%)

- i) 1+

k-1
2 i=0

where Jy; is Kronecker’s delta, we get

T 2m
(Tzlnzzm) :Zﬁ (m B k), 0<k<gm.

Then, using (2.6), the orthogonality conditions (2.4) give the following system of linear equations:

n . .
Z(_l)J—l (T2k7z4(n7))+5+1)0j _ (T2k724n+s+1)7 k= 0,1,....n—1,
=1

ie,Ac=b, where A=[ayl}; ;, 6=[01 02 -~ 6,]",b=[bi by --- by]", and

4n—j)+s+1 ,
. ) l<7]:17“'7n7
2n—j)+(s+1)/2-k+1

n+s+1
by = , k=1,....n
2n+(s+1)/2—-k+1

3. Special cases

ay = (1)1124j<

In order to calculate parameters of quadrature formula (2.1), first we calculate values of gy, k = 1,...,n. Knowing values of
ow k=1,...,n, we calculate r, k=1,...,n. In Table 3.1 we give values of gy, k=1,...,n, forn=1,2,3,4.

The parameters of the quadrature formula (2.1) as well as the corresponding maximal degree of exactness d = 6n + s are
presented in Table 3.2 forn=1, v=0,1,2,3, and in Table 3.3 forn=2,v=0,1,2,3.

Table 3.1
The values of oy, k=1,...,n, forn=1,2,3,4.
n v o1 02 o3 04
1 0 3/8
1,2 5/8
3 35/48
2 0 7/8 7/128
1,2 21/20 21/128
3 33/28 33/128
3 0 297224 99/256 33/4096
1,2 143/96 143/256 143/2096
3 13/8 1287/1794 143/512
4 0 39/22 117/128 65/4096 39/32768
1,2 85/44 221/192 221/1024 221/32768
3 323/156 969/704 323/1024 1615/98304
Table 3.2
Parameters and the maximal degree of exactness of the generalized Birkhoff-Young-Chebyshev quadrature formula forn=1,v=0,1,2,3.
v X A By Co G d
° i i(k+ ) o) i
1.2 /3 2M0n 50 ¥ 7
3 4/35 3(21+2V/105) (21-2V105) iz 78 9

1.4/35
2V 3 490 490
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Table 3.3
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Parameters and the maximal degree of exactness of the generalized Birkhoff-Young-Chebyshev quadrature formula for n=2, v=0,1,2,3.

v 0 1,2 3
X1 V/7-v35 1 4/42-v71a 1 4/66-V1122
2 2V s 2 7
X2 "7+¢§ 1 4/424V714 1 4/66+ \/1122
2V s 2
Ay (35+\/_5+2 5(491V35))n (1309+2v7T4+/170(10626+53v714) ) = (77(2567+4v1122) + /2618(14659854+36115V1122) ) @
T m0 4280 2419032
By (35+v35-2,/5(49+/35) )1 (1309+2v774-/170(10626+53714) ) © (77(2567+4v/1122) - /2618(14659854+36115V1122) ) @
280 14280 2419032
Az (35-v35+2,/5(49-V35) ) n (1309-2v7T4+/170(10626-53V714) ) 1 (77(2567-4v1T22) + /2618(14659854-36115V1122) ) 1
—so 4280 2419032
B, (35-v35-2,/5(49-V35)) n (1309-2v7T4-/170(10626-53714) ) 1 (77(2567-4v1123) - | /2618(14659854-36115V1122) )
—230 14230 2419032
4an 801
G 15 231
G 5
d 11 13 15
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