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Abstract

We give some remarks to results presented in Marinkovi´c et al. (J. Comput.Appl. Math. 163 (2004) 119). Namely,
these results are direct consequences from Milovanovi´c et al. (J. Comput. Appl. Math. 99 (1998) 299) and some of
them are equivalent up to bilinear mappings.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

LetM�,�
�,� : C → C(�, �, �, � ∈ R) be a nonsingular bilinear transformation

M
�,�
�,� (z)=

�z+ �

�z+ �
, � = �� − �� �= 0, z ∈ C.

It is known that a composition of bilinear transformations is also a bilinear transformation, as well as that
nonsingular bilinear transformations, with the composition of functions as an operation, form a group
which is isomorphic with the multiplicative group of nonsingular matrices of type 2× 2 (cf. [4, p. 135]).
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As in [3], for an arbitrary sequence of complex numbers{a�}�∈N0
, with the property|a�|<1, we

consider the sequence of rational functions (Malmquist–Takenaka basis)

wn(s)=
∏n−1

�=0(s − a�)∏n
�=0(s − 1/a�)

, n ∈ N0, (1.1)

which is orthogonal with respect to the inner product defined by

(u, v)= 1

2�i

∮
|s|=1

u(s)v(s)
ds

s
= 1

2�

∫ �

−�
u(ei�)v(ei�)d� (1.2)

(cf. [5, sections 9.1 and 10.7], [3], or the survey paper[2]). Note that on the circle|s|=1 we haves=1/s
as well as(wn,wm)= ‖wn‖2�n,m, where‖wn‖2 = |a0a1 · · · an|2/(1 − |an|2).

For different complex numbers��, � ∈ N0, such thatc���	 − a(�� + �	)− b>0, �, 	 ∈ N0, in [1] the
authors considered the system of rational functions

Wn(z)=
∏n−1

�=0(z− (a�� + b)/(c�� − a))∏n
�=0(z− ��)

=
∏n−1

�=0(z−Ma,bc,−a(��))∏n−1
�=0(z− ��)

(1.3)

and proved its orthogonality with respect to

(Wn,Wm)= 1

2�i

∮


Wmax{m,n}(z)Wmin{m,n}

(
az+ b
cz− a

)
dz

cz− a , (1.4)

where the contour
 is given byc|z|2 − a(z + z) − b = 0, a, b, c ∈ R, a2 + bc>0. This inner product
is defined only on the setW = {W�|� ∈ N0} and not on the linear span of that set. Note that it cannot be
extended to a linear span ofWoverC because that would require for example(�W0, 	W0)=�	(W0,W0)=
�	(W0,W0), which can only be true if�, 	 ∈ R.

Thus, inner product (1.4) can be extended on the linear span of the setW only if the linear span is
taken over the reals. Denote that span byL(W). In that case we can compute(p, q), p, q ∈ L(W),
only by knowing the expansions ofp = ∑

k pkWk andq = ∑
k qkWk, in which case we can compute

(p, q)=∑
n,mpnqm(Wn,Wm).

If we drop max and min in definition (1.4), the inner product becomes well defined and equivalent to
the inner product defined in (1.2) up to a bilinear transformation which is determined bya, b, c. Namely,
then for such an inner product

(U, V )= 1

2�i

∮


U(z)V (z)

dz

cz− a , (1.5)

where
 = {z ∈ C : czz − a(z + z) − b = 0, a, b, c ∈ R, a2 + bc>0}, its value remains the same on
L(W) as for (1.4), but it can be extended (uniquely) on the linear span ofW overC, without having the
unnatural property that expansions of elements should be known in order to compute inner product of
two elements from the span. Note thatz= (az+ b)/(cz− a) whenz ∈ 
.
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2. Orthogonality of rational functions (1.3)

Puttings =M�,�
�,� (z), where� and� are chosen such that�a� �= � and�/a� �= �, in (1.1), we get

Vn(z)= wn(M�,�
�,� (z))= An

�z+ �

z−M�,−�
−�,� (1/an)

n−1∏
�=0

z−M�,−�
−�,� (a�)

z−M�,−�
−�,� (1/a�)

, (2.1)

where

An = 1

� − �/an

n−1∏
�=0

�a� − �

�/a� − �
= 1

�
wn(�/�).

Taking�� =M�,−�
−�,� (1/a�), which givesa� =M�,�

�,�(��), the functionVn(z) can be rewritten in the following
form:

Vn(z)= An �z+ �

z− �n

n−1∏
�=0

z−M��−��,�2−�2

�2−�2,��−��
(��)

z− ��
= An(�z+ �)Wn(z), (2.2)

where we put

a = �� − ��, b = �2 − �2, c = �2 − �2, (2.3)

so thatWn(z) is given by (1.3). Note that by this bilinear transformations =M�,�
�,� (z), the unit circle is

mapped to the curve{z : (�2 − �2)zz+ (�� − ��)(z+ z)+ �2 − �2 = 0}, i.e.,
, according to (2.3).
Now, bys =M�,�

�,� (z) and starting from (1.1) and (1.2), we have

‖wn‖2�n,m= 1

2�i

∮
|s|=1

wn(s)wm(s)
ds

s

= 1

2�i

∮


Vn(z)Vm(z)

(�� − ��)dz

(az+ �)(�z+ �)

= AnAm(�� − ��)

2�i

∮


Wn(z)Wm(z)

�z+ z
�z+ �

dz,

where we used (2.1) and (2.2). Since(�z+ �)/(�z+ �)= �/(cz− a), whenz ∈ 
(� = �� − ��), we get

1

2�i

∮


Wn(z)Wm(z)

dz

cz− a = ‖wn‖2

|An|2�2 �n,m,

i.e., functions (1.3) are orthogonal with respect to the inner product (1.5).
Note that we choose only nonsingular bilinear transformations, hence� �= 0. Also,An �= 0 can be

assured since our bilinear transformation is chosen such that�a� �= �. Note that the condition|a�|<1 is
equivalent to the condition that points�� andMa,bc,−a(��) lie on different sides of
 and have the property
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c|��|2 − 2aRe(��)− b>0. Thus, it is clear that we do not requirec���� − a(�� + ��)− b>0, �, 	 ∈ N0
as in[1].1

For arbitrarya, b, c ∈ R, a2+bc>0, we can find nonsingular real bilinear transformationM�,�
�,� , which

coefficients satisfy (2.3). Forc �= 0 andb �= 0, the solution can be found in the following parameterized
form:

� = √
c cosh�, � = √

b sinh �, � = √
c sinh �, � = √

b cosh�,

a = √
bc sinh(� − �), provided b, c >0,

� = √−c sinh �, � = √
b sinh �, � = √−c cosh�, � = √

b cosh�,

a = √−cb cosh(� − �), provided c <0, b >0.

Similar solutions can be given also in the casesc >0, b <0 andc <0, b <0. Forc >0, b <0, the solutions
can be obtained from the casec <0, b >0, by simple change of the namescwith b, � with � and� with
�. Forc <0, b <0, in solution forc >0, b >0, simply changebwith −b, c with −c, � with � and� with
�. Note that conditions�a� �= � and�/a� �= � can be satisfied since one free parameter exists.

In the casec= 0, note thata cannot be zero, because of the conditiona2 + bc>0, and we can choose

� = � = t ∈ R\{0}, � = 1

2

(
bt

a
− a
t

)
, � = 1

2

(
bt

a
+ a
t

)
.

In this case�/� = 1 which means that our circle|s| = 1 is mapped by this transformation into the line
z= −b/a.

3. Orthogonality of Müntz polynomials

We take a sequence of complex numbers{��|� ∈ N0}, with the following properties Re(���	)>1, �,
	 ∈ N0, and |��|>1, � ∈ N0. As Müntz polynomials inX = {x�� : � ∈ N0}, we define the linear
span ofX overC and denote it byL(X). Also, we define the product� of two monomials fromX as
x�� � x�	 = x���	 . It can be extended naturally toL(X) assuming it is linear. Next, we define a bilinear
functional onL(X)2 in the following way:

[p, q] =
∫ 1

0
(p � q)(x) dx

x2 , p, q ∈ L(X). (3.1)

The linearity and symmetry[p, q] = [q, p] of this functional are evident. In[3] it was proved that it is
positive-definite, using a representation of it as a bilinear form over theCn. For any two polynomials
p =∑n

�=0p�x
�� andq =∑n

�=0 q�x
�� in L(X), we have

[p, q] =
n∑

�,	=0

p�q	

���	 − 1
. (3.2)

Note that conditions Re(���	)>1, �, 	 ∈ N0, are needed in order to have an integrability ofx���	−2 over
(0, 1). However, in proving positive definiteness of the bilinear form it is enough to prove that diagonal

1 There is a miss-print in this condition in[1, Eq. (2.2)].
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elements in the corresponding determinant are positive and that all main minors are positive. Thus, we
are concerned with the following determinants:

Dk = det

[
1

���	 − 1

]k
�,	=0

= Dk−1

|�k|2 − 1

k−1∏
�=0

|�k − ��|2
|���k − 1|2 , k = 1, . . . , n,

whereD0 = 1/(|�0|2 − 1)>0 (see[3]). According to conditions|��|>1, � ∈ N0, the diagonal elements
are positive, as well asDk >0 for all k.

There is also a beautiful connection between rational functions (1.1) and Müntz polynomialsPn, n ∈
N0, orthogonal with respect to[., .]. Namely, it was proved that

Pn(x)= 1

2�i

∮
G

wn(s)x
s ds, n ∈ N0,

where the single contourGsurrounds all the points�� =1/a�, �=0,1, . . . , n.Also,[Pn, Pm]=(wn,wm).
The condition Re(���	)>1, �, 	 ∈ N0, is required only for the inner product[., .] to have a represen-

tation over integral (3.1). We can go opposite, i.e., we can define the inner product using the bilinear form
(3.2). Then, in order to have a positive definiteness, as we mentioned, it is enough to have|��|>1, � ∈ N0.
This means that, in this way, we can extend the collection of underlying setsX. In the sequel, by[., .] we
assume an inner product defined by the bilinear form (3.2) with|��|>1, � ∈ N0, which reduces to (3.1),
provided Re[���	]>1, �, 	 ∈ N0. All the properties for[., .], defined by (3.1), are valid for[., .], defined
using (3.2), since in[3] they are proved using purely algebraic properties ofDn.

Introducing some complicated products of monomials onX� = {x�� : � ∈ N0}, for example as

x�� ∗ x�	 = xR1(��)R1(�	)−R2(��)R2(�	)+1,

whereR1 andR2 are any two polynomials and complex numbers��, � ∈ N0, are chosen such that

Re[R1(��)R1(�	)− R2(��)R2(�	)]>0 (3.3)

and thatR2(��) �= 0, � ∈ N0, we do not get anything new. An explanation of this fact follows.
Naturally, we can extend the domain of∗ to the linear span ofX� overC, denote it byL(X�), assuming

it is linear and define a bilinear functional onL(X�) as

〈p, q〉 =
∫ 1

0
(p ∗ q)(x)dx

x2 , p, q ∈ L(X�).

As before, for two polynomialsp =∑n
�=0p�x

�� andq =∑n
�=0 q�x

�� in L(X�), we have

〈p, q〉 =
n∑

�, 	=0

p�q	

R1(��)R1(�	)− R2(��)R2(�	)
.

To prove definiteness it is enough to prove that the following determinants

D�
k = det

[
1

R1(��)R1(�	)− R2(��)R2(�	)

]k
�,	=0

, k = 0,1, . . . , n
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have positive main minors. But, taking�� = R1(��)/R2(��), we have

D�
k =

k∏
�=0

1

|R2(��)|2 det

[
1

(R1(��)/R2(��))(R1(�	)/R2(�	))− 1

]k
�,	=0

=
k∏

�=0

1

|R2(��)|2 Dk.

Note that (3.3) implies|��|>1; however, it does not imply that for every� and	 we have Re(���	)>1.
But, there are sequences��, � ∈ N0, for which �� fulfills the requirement. The point is that we cannot
claim directly a connection between〈., .〉 and[., .] if we stick to definition (3.1) for any sequence�� ∈ N0.
But, if we use[., .], defined by (3.2), obviously there is a direct connection between〈., .〉 and[., .], i.e.,
�� = R1(��)/R2(��), � ∈ N0. Thus, according to a result from[2] about positive definiteness for[., .],
defined using (3.2), the positive definiteness of〈., .〉 follows directly.

It is clear from representations of the inner products[., .] and〈., .〉 over bilinear forms that ifPn(x)=∑n
k=0p

n
kx

�k is the orthogonal polynomial with respect to[., .], defined using (3.2), then the corresponding
orthogonal polynomialQn with respect to〈., .〉 is given by

Qn(x)=
n∑
k=0

pnkx
�k

R2(�k)
.

It can be proved easily, since we have

[p, q]=
n∑

�,	=0

p�q	

���	 − 1
=

n∑
�,	=0

p�/R2(��)q	/R2(��)

R1(��)R1(�	)− R2(��)R2(�	)

=
∫ 1

0

(
n∑

�=0

p�x
��

R2(��)

)
∗

 n∑

	=0

q�x
��

R2(��)


dx

x2 = 〈Ip,Iq〉,

where we define a linear bijective mappingI :L(X) → L(X�) by Ix�� = x��/R2(��), where
�� = R1(��)/R2(��), � ∈ N0. Using[Pn, Pm] = (wn,wm) (see[3]), we can also get〈Qn,Qm〉 = 〈IPn,
IPm〉 = [Pn, Pm] = (wn,wm), n,m ∈ N0.

Therefore, special results presented in[1] can be recovered simply by takingR1(z) = �z + � and
R2(z)= �z+ �, where�, �, � and� are determined according toa, b, c given by (2.3).
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