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Abstract

In this paper we consider polynomials orthogonal with respect to an oscillatory weight functionw(x)= xeim�x

on [−1,1], wherem is an integer. The existence of such polynomials as well as several of their properties (three-
term recurrence relation, differential equation, etc.) are proved. We also consider related quadrature rules and give
applications of such quadrature rules to some classes of integrals involving highly oscillatory integrands.
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1. Introduction

Polynomials orthogonal on the semicircle�={z ∈ C | z=ei�, 0����}have been introduced and inves-
tigated by Gautschi and Milovanovi´c [7]. The inner product was given by(f, g)= ∫� f (z)g(z)(iz)−1 dz,
i.e., (f, g) = ∫ �

0 f (ei�)g(ei�)d�. This inner product is not Hermitian, but the corresponding (monic)
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orthogonal polynomials{�k} exist uniquely and, because of the property(zf , g) = (f, zg), they satisfy
the fundamental three-term recurrence relation. The general case of complex polynomials orthogonal
with respect to acomplex weight functionwas considered in[6]. A generalization of such polynomials
on a circular arc was given by de Bruin[4], and further investigations were done by Milovanovi´c and
Rajković [19].

In this paper we use a complex oscillatory weight functionw(x) defined on[−1,1] byw(x)= xeim�x ,
wherem is an integer different from zero. Introducing the measure

d�m(x) := d�(x)= xeim�x�([−1,1]; x)dx, m ∈ Z\{0},
where�(A; ·) is the characteristic function of the setA, we consider polynomials orthogonal with respect
to the moment functional

L(f )=
∫ 1

−1
f (x)w(x)dx =

∫
f (x)d�, (1.1)

i.e., with respect to the following non-Hermitian inner product

(f, g)=
∫

f (x)g(x)d�. (1.2)

Since this weight functionw(x) alternates in sign in the interval of orthogonality[−1,1], the existence
of orthogonal polynomials is not assured. A proof of the existence is given in Section 2. The three-
term recurrence relation for orthogonal polynomials is considered in Section 3. Numerical values of
the recursion coefficients for some values ofm are given and two conjectures are stated. A differential
equation and related problems are studied in Section 4. Finally, the numerical construction of Gaussian
quadrature rules related to orthogonal polynomials with respect to the previous moment functional as well
as applications of such quadratures to some classes of integrals involving highly oscillatory integrands
are discussed in Section 5.

2. Existence of orthogonal polynomials

Let a linear functionalL be given on the linear space of all algebraic polynomials. The values of
the linear functionalL at the set of monomials are called moments and they are denoted by�k. Thus,
L(xk)= �k, k ∈ N0. In [2, p. 7], the following definition can be found.

Definition 2.1. A sequence of polynomials{Pn(x)}∞n=0 is called an orthogonal polynomial sequence with
respect to a moment functionalL provided for all nonnegative integersm andn,

• Pn(x) is a polynomial of degreen,
• L(Pn(x)Pm(x))= 0 for m �= n,
• L(P 2

n (x)) �= 0.
If a sequence of orthogonal polynomial exists for a given linear functionalL, thenL is called a quasi-

definite linear functional. Under the conditionL(P 2
n (x))>0, the functionalL is called positive definite

(see[2]).

Using only linear algebraic tools, the following theorem can be stated (see[2, p. 11]).
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Theorem 2.2. The necessary and sufficient conditions for the existence of a sequence of orthogonal
polynomials with respect to the linear functional L are that for eachn ∈ N the Hankel determinants

�n =

∣∣∣∣∣∣∣∣∣∣

�0 �1 �2 . . . �n−1
�1 �2 �3 . . . �n
�2 �3 �4 . . . �n+1
...

...
...

...

�n−1 �n �n+1 . . . �2n−2

∣∣∣∣∣∣∣∣∣∣
�= 0. (2.1)

To prove the existence of orthogonal polynomials with respect to the linear functionalL given by (1.1),
the corresponding moments are needed. Because of shortness, we setm�=�, wherem(�= 0) is an integer.
Using an integration by parts we can get the following recurrence relation for the moments

�k+1=
∫ 1

−1
xk+2ei�xdx = 1

i�
xk+2ei�x

∣∣∣∣1−1
− k + 2

i�

∫ 1

−1
xk+1ei�x dx

= 1

i�
(ei� − e−i�(−1)k+2)− k + 2

i�
�k, (2.2)

with the initial condition

�0 =
∫ 1

−1
xei�x dx = 1

i�
(ei� + e−i�)− 1

(i�)2
(ei� − e−i�). (2.3)

Since ei� = (−1)m, the equalities (2.2) and (2.3) become

�k+1=
(−1)m

i�
(1− (−1)k+2)− k + 2

i�
�k, �0 = 2

(−1)m

i�
. (2.4)

The moments can be expressed in the following form

�k =
(−1)m+k(k + 1)!

(i�)k+1

k∑
�=0

(1+ (−1)�)(−i�)�

(�+ 1)! . (2.5)

Conjugating (2.5) an important equality for these moments can be given

�k =
(−1)m+k(k + 1)!

(−i�)k+1

k∑
�=0

(1+ (−1)�)(i�)�

(�+ 1)! = (−1)k+1�k, (2.6)

since in the sum representing moments only terms with even� are not zero.

Theorem 2.3. For every integerm(�= 0), the sequence of orthogonal polynomials with respect to the
weight functionw(x)= xeim�x , supported on the interval[−1,1], exists uniquely.
Proof. According to Theorem 2.2, to prove this result we need only to prove that Hankel determinants
for the sequence of moments (2.5) are not equal to zero, for any given nonzero integerm.
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It can be observed that the moments are rational functions in� = m�, with simple powers in the

denominator. If we take from theith row of the Hankel determinant�n the factor(−1)m

i�

(−1
i�

)i−1
, and

from the�th column the factor
(−1

i�

)�−1
, our determinant becomes the Hankel determinant�̃n for the

following sequence of moments

�̃k = (k + 1)!
k∑

�=0

(1+ (−1)�)(−i�)�

(�+ 1)! .

Notice that̃�k = �̃k(−i�) is a polynomial (with rational coefficients) in i� of degreek. A relation between
the determinants�n and�̃n is the following

�n = (−1)n(n+m−1)

(i�)n
2 �̃n.

It means that�n �= 0 if and only if the determinant̃�n is not equal to zero. The value of̃�n is a
polynomial in i� (=im�) with rational coefficients. Sincem is an integer, then im� cannot be a zero of
such a polynomial, since im� is not an algebraic number. The number im� can be a zero of a polynomial
with rational coefficients if and only if that polynomial is identically zero. It is just left to prove that the
determinant̃�n is not a polynomial which vanishes identically.

To prove this fact it is enough to note that the free factor of the polynomial�̃n (≡ �̃n(i�)) in i�, i.e.,
�̃n(0), is different from zero. If we take only free coefficients in the polynomials�̃k, k = 0,1, . . . (i.e.,
�̃k(0), k = 0,1, . . .) and make the corresponding Hankel determinant�∗n, its value will be the value of
the free factor in the polynomial represented by the determinant�̃n. The Hankel determinant�∗n is made
with the sequence of moments�∗k = �̃k(0)= 2(k + 1)!. But, this is exactly the sequence of moments for
the generalized Laguerre polynomials with	= 1, multiplied by factor 2, and it cannot be equal to zero,
because the sequence of the generalized Laguerre polynomials exists.�

We also need the values of the determinants�∗n, which can easily be evaluated since they are connected
with the generalized Laguerre polynomials with	= 1. It is not so difficult to obtain

�∗n = 2n
n−1∏
k=1

k!(k + 1)! (2.7)

We are also interested in a modified Hankel determinant, which can be expressed in terms of the moments
�̃k. Namely,

�′n =

∣∣∣∣∣∣∣∣∣∣

�0 �1 . . . �n−2 �n
�1 �2 . . . �n−1 �n+1
�2 �3 . . . �n �n+2
...

...
...

...

�n−1 �n . . . �2n−3 �2n−1

∣∣∣∣∣∣∣∣∣∣
= (−1)n(n+m−1)+1

(i�)n
2+1

�̃
′
n,

where�̃
′
n is the corresponding modified Hankel determinant for the moments�̃k. As before, the deter-

minant�̃
′
n (≡ �̃

′
n(i�)) is an algebraic polynomial in i� with rational coefficients. Its free term can easily
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be calculated using the corresponding determinant for the generalized Laguerre polynomials with the
parameter	= 1, i.e.,

�̃
′
n(0)= n(n+ 1)�∗n = 2nn(n+ 1)

n−1∏
k=1

k!(k + 1)! (2.8)

In the sequel we will consider only the case whenm>0, since form<0 we have�k(m) = ∫ xkd�m =∫
xkd�−m = �k(−m). This means that all results generated form>0 can be applied to the casem<0

by a simple conjugation. Hence, we assumem ∈ N.
In general, for an arbitrary real� = m� (m /∈Z), when the moments are given by (2.2) and (2.3), the

existence of orthogonal polynomials is not assured. For example, equation�3 = 0 has as the smallest
positive solution� ≈ 7.13414399636896061399. . . .

3. Recurrence relation

Since the sequence of orthogonal polynomials with respect to the weight functionw(x) = xeim�x on
[−1,1] exists, these (monic) polynomials satisfy the three-term recurrence relation

pn+1(x)= (x − i	n)pn(x)− 
npn−1(x), n= 0,1, . . . , (3.1)

with p0(x)=1 andp−1(x)=0. This kind of relation is provided by the property(xf , g)= (f, xg) of the
inner product (1.2). The recursion coefficients	n and
n can be expressed in terms of Hankel determinants
as (cf.[7])

i	n =
�′n+1

�n+1
− �′n

�n

(n ∈ N0) and 
n =
�n+1�n−1

�2
n

(n ∈ N). (3.2)

In this case, however, the values of Hankel determinants cannot be found easily, but, it is clear that the
recursion coefficients are rational functions in�=m�. Using our software package[3] we can generate
coefficients even in symbolic form for some reasonable values ofn (e.g.,n�20) and state the following
conjecture:

Conjecture 3.1. Letan(z) andcn(z) be algebraic polynomials with integer coefficients of degreern and
sn, respectively, i.e., an(z)= Anz

rn + · · · andcn(z)= zsn + · · ·. If �=m� andn�2, then

	n = an(�
2)

� cn−1(�
2)cn(�

2)
, 
n = Bn

cn−2(�
2)cn(�

2)

�2 cn−1(�
2)2

,

where

An =


−n2 − 1

4
(n odd),

n2 + 10n+ 8

4
(n even),

Bn =
{

1 (n odd),
−n2 (n even),
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Table 1
Recursion coefficients	n and
n in (3.1) forn�3

n 	n 
n

0 2
�

2(−1)m
i�

1 −8
�(−2+�2)

−2+�2

�2

2 2(−36+60�2−45�4+4�6)

�(−2+�2)(6−13�2+�4)
−4(6−13�2+�4)

�2(−2+�2)2

3 −2(−5184+32832�2−69552�4+15648�6−1259�8+26�10+�12)

�(6−13�2+�4)(216−1224�2+165�4−14�6+�8)

(−2+�2)(216−1224�2+165�4−14�6+�8)

�2(6−13�2+�4)2

and

rn = n(n+ 1)

2
, sn =


(n+ 1)2

4
(n odd),

n(n+ 2)

4
(n even).

In Table 1, the first four recursion coefficients are given, where�=m�. So, we havec1(z)=−2+ z,
c2(z)=6−13z+z2, c3(z)=216−1224z+165z2−14z3+z4. Increasingn, the complexity of expressions
for three-term recurrence coefficients dramatically increases. For example, forn= 4 we have

a4(z)= 2(10497600− 160963200z+ 731274480z2 − 231822000z3+ 46761705z4

− 6692544z5+ 689193z6− 86568z7+ 9764z8− 518z9+ 8z10)

and

c4(z)= 9720− 113400z+ 17361z2 − 4932z3+ 1101z4− 77z5+ z6.

so that, the corresponding three-term recurrence coefficients become quite complicated.
According toTable 1we can conjecture that coefficients	n and
n are real. Furthermore, we can prove

a more general result:

Lemma 3.2. If a sequence of moments{�k}k∈N0
satisfies the condition�k = (−1)k+1�k (k ∈ N0) and

the sequence of(monic) orthogonal polynomials{pn}n∈N0
exists, then

(−1)npn(−z)= pn(z) (3.3)

and the coefficients in the three-term recurrence relation(3.1)are real, i.e., they satisfyi	n=−i	n (k�0)
and
k = 
k (k�1).
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Proof. Following [2, p. 17]we have the following representation for the monic orthogonal polynomial
pn(z) of degreen

pn(z)= 1

�n

∣∣∣∣∣∣∣∣∣∣

�0 �1 �2 . . . �n
�1 �2 �3 . . . �n+1
...

...
...

. . .
...

�n−1 �n �n+1 . . . �2n−1
1 z z2 . . . zn

∣∣∣∣∣∣∣∣∣∣
,

where�n is the Hankel determinant defined in (2.1). Putting−z instead ofz, conjugating this equality
and using�k = (−1)k+1�k (k ∈ N0), we get

�npn(−z)=

∣∣∣∣∣∣∣∣∣∣

−�0 �1 −�2 . . . (−1)n+1�n
�1 −�2 �3 . . . (−1)n+2�n+1
...

...
...

. . .
...

(−1)n�n−1 (−1)n+1�n (−1)n+2�n+1 . . . (−1)2n�2n−1
1 −z z2 . . . (−1)nzn

∣∣∣∣∣∣∣∣∣∣
.

Notice that the moments for our weight function satisfy (2.6). If we take−1 from every row (except the
last one) with odd index in the previous determinant and then take−1 from every even column, we obtain

�npn(−z)= (−1)�(n+1)/2�(−1)�n/2�

∣∣∣∣∣∣∣∣∣∣

�0 �1 �2 . . . �n
�1 �2 �3 . . . �n+1
...

...
...

. . .
...

�n−1 �n �n+1 . . . �2n−1
1 z z2 . . . zn

∣∣∣∣∣∣∣∣∣∣
= (−1)n�npn(z).

Applying the same argument to the Hankel determinant, we conclude that�n = �n. Since�n �= 0, we
get property (3.3).

Now, putting−z instead ofz in (3.1) and conjugating it, we get

pn+1(−z)= (−z− i	n)pn(−z)− 
n pn−1(−z),

i.e.,pn+1(z)= (z+ i	n)pn(z)− 
npn−1(z), where we used (3.3). Comparing this recurrence with (3.1)
and using the uniqueness ofpn(z) we obtain the desired statement.�

In a section on differential equations (Section 4), the following statement is proved about a Laguerre-
Freud type of nonlinear recurrence relations satisfied by the three-term recurrence coefficients (see[11]).
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Theorem 3.3. For n�4, the three-term recurrence coefficients satisfy the following nonlinear recurrence
equations:


n+1=
1

�
n

{
	n−2 + 	3

n−2 + 	n−1+ 	3
n−1− 
n−2(5	n−3+ 8	n−2 + 2	n−1)

− 3
n−1(	n−2 + 	n−1)+ 
n(2	n−2 − 2	n−1− 3	n)

+ 2n[(	n−3− 	n−1)
n−2 + (	n−2 − 	n)
n]
+ �[
n−2(	n−1− 	n−3)(	n−1+ 	n−2 + 	n−3)+ (
n−2 − 
n)

2

+ 
n(	n − 	n−2)(	n + 	n−1+ 	n−2)+ 
n−3
n−2]
+ 
n − 
n−2

	n−1− 	n−2
[1+ 3	2

n−2 − 2
n−2 − 
n−1− 
n − n(
n − 
n−2)

+ �(	n−3
n−2 + 2	n−2(
n−2 − 
n)− 	n
n)]
}
,

	n+1= 2

�
n+1
{−1+ (	n−1− 	n)(	n−2 − 	n)+ 
n−1+ 
n + 2
n+1

+ n[(	n − 	n−1)(	n−3+ 	n−2 − 	n−1− 	n)− 
n−1+ 
n+1]}
+ 1


n+1
{2	n(
n−1− 
n+1)+ 2	n−2
n−1+ (	n − 	n−1)

× (	2
n−3+ 	n−3	n−2 + 	2

n−2 − 	2
n−1− 	n−1	n − 	2

n − 
n−2 + 
n)}
+ 	n − 	n−1

	n−2 − 	n−3

{
[1+ 3	2

n−3− 
n−3− 
n−2 − n(
n−3− 
n−1)]

− 1


n
[	n−4
n−3+ 2	n−3(
n−3− 
n−1)− 
n−1	n−1]

}
,

with initial conditions given in Table1.

Complexity in three-term recurrence coefficients should not prevent numerical calculation. Using the
recurrence relation for the moments (2.2),�k can be calculated and then, using the Chebyshev algorithm,
the recursion coefficients can be constructed. Since the Chebyshev algorithm is ill-conditioned (see[5]), an
arithmetic with higher precision is needed.Another way to calculate the three-term recurrence coefficients
is the Stieltjes–Gautschi procedure (see[5,14]). Using this procedure the recursion coefficients can be
constructed for larger values ofm.

First, we discuss the stability in the computation of the moments using (2.4). Numerical examples show
that ifm is small, e.g., 1,2,3 and so, then (2.4) is not numerically stable for calculation of the moments.
For example, form= 1 with 16 decimal digits mantissa (double precision or D-arithmetic), the relative
error in the moment�50 is 1017. If we increasem enough, for examplem=7, the relation (2.4) has better
stability and the relative error in�50, in double precision arithmetics is about 10−10. If we increasem
further, (2.4) becomes quite stable.

It should be emphasized that in the cases wherem = 1,2,3, (2.5) can be used for calculations of the
moments. With increasingm, (2.5) becomes unstable for calculation since it represents an ill-conditioned
numerical series.

Using relations (2.5) and (2.4), the moments can be calculated numerically stable. However, a con-
struction of three-term recurrence coefficients is more complicated. There is one algorithm connecting
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Fig. 1. The contour of integration.

moments and recursive coefficients known as the Chebyshev algorithm. It is also known that this algorithm
is ill-conditioned (see[5,14]).

We have conducted some numerical experiments and get the following results. In the casem is small
1,2,3, . . . , the Chebyshev algorithm is quite stable if the Q-arithmetic (with 34 decimal digits mantissa)
is used. The relative errors in coefficients	30, 
30 are 10−27 and 10−8 in Q-arithmetic and D-arithmetic,
respectively. Increasingm, for examplem=50, the relative errors in coefficients increase and they become
1 and 10−6 in D-arithmetic and Q-arithmetic, respectively. Form=103, the corresponding relative errors
in 	30, 
30 are about 1 even in Q-arithmetic. Thus, this means that the Chebyshev algorithm cannot be
used in constructions (even in Q-arithmetic), whenm is sufficiently large, e.g.,m>20.

Another more stable way for constructing the recursion coefficients is the Stieltjes–Gautschi procedure.
In order to apply this procedure we need the following auxiliary result:

Lemma 3.4. For each algebraic polynomial g of degree at most2N the formula∫ 1

−1
g(x)eim�x dx = i(−1)m

m�

N∑
k=1

�Lk

[
g

(
−1+ i

�Lk
m�

)
− g

(
1+ i

�Lk
m�

)]
(3.4)

holds, where�Lk and�Lk are the parameters of the N-point Gauss–Laguerre quadrature rule.

Proof. Applying a complex integration method[15] to
∫
�


g(z)eim�z dz over the rectangular contour�


(seeFig. 1), letting
 →+∞ and using theN -point Gauss–Laguerre quadrature rule, we get (3.4).�

The integrals which appear in Darboux formulas for the recursion coefficients,

i	k = (xpk, pk)

(pk, pk)
=
∫ 1
−1p

2
k(x)x

2eim�x dx∫ 1
−1p

2
k(x)xeim�x dx

(k�0), 
0 = �0 =
2(−1)m

im�
,


k =
(pk, pk)

(pk−1, pk−1)
=

∫ 1
−1p

2
k(x)xeim�x dx∫ 1

−1p
2
k−1(x)xeim�x dx

(k�1),
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can be computed exactly, except for rounding errors, takingN sufficiently large in the previous lemma.
In order to obtain the firstn coefficients	k, 
k (k = 0,1, . . . , n− 1), we needN�n.

In our numerical experiments, the Stieltjes–Gautschi procedure proves itself worthy. For small values
of m, for example smaller than 25, it is ill-conditioned. For example, the relative errors in three-term
recurrence coefficients	50 and
50 are 10−7 for m=20 in D-arithmetic. Increasingm, the corresponding
relative errors become of the machine precision magnitude for all three-term recurrence coefficients,
except the coefficient	1. But it is not a problem, because for this coefficient we have an explicit expression
(seeTable 1).

Using MATHEMATICA we calculate the first 30 recursion coefficients form = 1,102,104,106,109.
All computations are done using a combination of the Chebyshev method and the Stieltjes–Gautschi
procedure. It should be noted that only form = 1 the Chebyshev algorithm is used in Q-arithmetic. All
other coefficients are calculated using the Stieltjes–Gautschi procedure. The first 30 recursion coefficients
for m= 1 and 100 are presented inTable 2. Numbers in parentheses indicate decimal exponents.

Accordingtoaveryextensivenumericalcalculations, usingapackage of routines written in MATHEMATICA

(see[3]), we can state the following conjecture: (It cannot be seen from a small number of coefficients
as inTable 2.)

Conjecture 3.5. For the recursion coefficients, the following asymptotic relations are true

	k → 0, 
k →
1

4
, as k →+∞. (3.5)

Note that Magnus’ theorem (see[10]) cannot be applied to prove this conjecture, since the weight
function has zero value inside the interval[−1,1]. Our weight function does not fit to the classes of
Nuttal and Whery (see[20]), either.

Finally, the nonlinear recurrence relations for the three-term recurrence coefficients, given in Theo-
rem 3.3, are numerically unstable. However, they can be used for a symbolic construction, since they
have smaller complexity than the Chebyshev algorithm. However, if we are able to do computations in
some higher arithmetics, these relations can be used also for numerical construction, again with a lower
complexity than the Chebyshev algorithm.

4. Differential equation and related problems

First we prove a result for the first derivative of our orthogonal polynomials.

Theorem4.1. For (monic) polynomialspn orthogonal with respect to theweight functionw(x)=xeim�x

(m ∈ N) on [−1,1], the following equation
−x�p′n = pn

2pn + qn2pn−1, n ∈ N, (4.1)

holds, wherepn
2 andq

n
2 are polynomials of second degree and�= 1− x2.

Proof. Let w(x)= xei�x , where�=m�. Then we have the following differential equation

(x�w)′ + �w = 0, �=−[(2+ i�x)�+ x�′].
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Table 2
The recursion coefficients	k, 
k , k = 0,1, . . . ,29, with respect to the weightw(x) = xeim�x on [−1,1], for m = 1 (left) and
m= 100 (right)

k 	k 
k 	k 
k

0 0.6366197723675813 i0.6366197723675813 0.636619772367581343(−2) −i0.636619772367581343(−2)
1 −0.3235841294789642 0.7973576327153245−0.258017503993376924(−6) 0.999979735763271532
2 −0.5954161768781585(−1) 0.1629220776952933 0.254657585433565251(−1) −0.405247775618572461(−4)
3 0.7910334466320025(−1) 0.3051351241301063−0.636961626800292598(−2) 1.000101349111133839
4 −0.8764276869073403(−1) 0.2128993040344742 0.509431340532140238(−1) −0.162012052723457109(−3)
5 0.8473746274827025(−1) 0.2987622570884405−0.191210397675282768(−1) 1.000872216947472743
6 −0.8688561816172646(−1) 0.2117636703524410 0.828351751096263442(−1) −0.363939709018379531(−3)
7 0.8570745958769821(−1) 0.2980998244194351−0.382936614600099358(−1) 1.003027613759062012
8 −0.8666844850324216(−1) 0.2111804398870007 0.121228565536061484 −0.644714605572716494(−3)
9 0.8608925862853529(−1) 0.2977791164282434−0.639763468973776280(−1) 1.007564442098398045

10 −0.8659857109140611(−1) 0.2108828566593321 0.166292349800760667 −0.100075337165944050(−2)
11 0.8627247767865183(−1) 0.2976026890742332−0.963400995285357488(−1) 1.015772811174387681
12 −0.8657405623922258(−1) 0.2107122791921952 0.218321255798082199 −0.142531313953930180(−2)
13 0.8637268365256313(−1) 0.2974961702027002−0.135681191786866237 1.029298977634625351
14 −0.8656574858964479(−1) 0.2106058739335615 0.277793639272715674 −0.190714016219807481(−2)
15 0.8643279816867875(−1) 0.2974271916096470−0.182478840649006230 −1.050259840871622525
16 −0.8656375162024725(−1) 0.2105351818496800 0.345451197686132546 −0.242906045156949549(−2)
17 0.8647142245760357(−1) 0.2973800585167439−0.237474578129759936 1.081441619533492662
18 −0.8656429264180822(−1) 0.2104858842700285 0.422413386788202912 −0.296671384695609290(−2)
19 0.8649758482146797(−1) 0.2973464643640837−0.301786269554184218 1.126639104687113826
20 −0.8656581806481852(−1) 0.2104501631104796 0.510349931697269430 −0.348772831212214243(−2)
21 0.8651606334559308(−1) 0.2973216937975279−0.377080215465214900 1.191239358421633902
22 −0.8656765827803345(−1) 0.2104234637586969 0.611754722209078155 −0.395173484446661438(−2)
23 0.8652956531748510(−1) 0.2973029138909545−0.465844702939731706 1.283252896277182427
24 −0.8656952073777001(−1) 0.2104029899018435 0.730404564816816487 −0.431171525927172178(−2)
25 0.8653971170304653(−1) 0.2972883414189559−0.571848592026866151 1.415214321987903186
26 −0.8657128152632596(−1) 0.2103869488493026 0.872173116479886438 −0.451722285521488598(−2)
27 0.8654751824392116(−1) 0.2972768093450591−0.700955412047560028 1.607892405307178560
28 −0.8657289425490870(−1) 0.2103741489011420 1.046573605525170660 −0.451997413886477718(−2)
29 0.8655364621426911(−1) 0.2972675283097719−0.862666748047142974 1.898085932425570343

Using this equation we can, also, derive the following differential equation

(x�pnw)′ − (x�p′n − pn�)w = 0.

If we multiply the previous equation withxk, k ∈ N0, and integrate over(−1,1), we get∫ 1

−1
xk(x�pnw)′dx =

∫
xk(x�p′n − pn�)d�= xk+1�pnw

∣∣∣∣1−1
− k

∫
xk�pn d�,

where the right-hand side in the last equality was obtained using integration by parts. Its first term is equal
to zero, as well as the second one providedk+ 2<n, sincepn is an orthogonal polynomial with respect
to d�= w(x)dx. Thus, fork + 2<n, we have

∫
xk(x�p′n − pn�)d�= 0. Using this fact, we can write
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the following expansion

−x�p′n + pn�=
n+3∑

k=n−2

�knpk, (4.2)

where�kn are some constants. This can be reduced, by using three-term recurrence relation (3.1), to

−x�p′n + pn�= pn
3pn + qn2pn−1, (4.3)

where we can express explicitly the polynomialspn
3 andqn2 in the forms

pn
3 = �n+3

n x3+ [�n+2
n − i�n+3

n (	n + 	n+1+ 	n+2)]x2

+ [�n+1
n − i�n+2

n (	n + 	n+1)− �n+3
n [
n+1+ 
n+2 + 	n(	n+1+ 	n+2)+ 	n+1	n+2]]x

+ �nn − i	n�
n+1
n − (	n	n+1+ 
n+1)�

n+2
n

+ i[	n(
n+2 + 	n+1	n+2)+ 	n+2
n+1]�n+3
n − �n−2

n


n−1
,

qn2 = − 
n�
n+3
n x2 +

[
�n−2
n


n−1
− 
n�

n+2
n + i
n�

n+3
n (	n+1+ 	n+2)

]
x

+ �n−1
n − 
n�

n+1
n + i	n+1
n�

n+2
n + 
n(	n+1	n+2 + 
n+2)�

n+3
n − i	n−1

�n−2
n


n−1
.

When we subtract the term withpn on the left-hand side of (4.3), we get (4.1), where it is adopted
pn

2 = pn
3 − �. It is obvious from (4.1) thatpn

2 has to be of second degree, since the polynomial on the
left-hand of the mentioned equation is of degreen+ 2. �

Actually, a little more can be stated. Using the previous theorem for our polynomials, we have

�n+3
n = i�, �n+2

n = n+ 4− �(	n+2 + 	n+1+ 	n). (4.4)

In the sequel we also need to define

Kn(x, y)=
n∑

k=0

pk(x)pk(y)

‖pk‖2 and kn(x)=Kn(x, x).

Lemma 4.2.We have the following equations

�kn‖pk‖2 + �nk‖pn‖2 =
∫

�pnpk d�, 
n+1�
n+1
n − �nn+1=

∫
x�knd�,

i.e.,

2
n+1�
n+1
n = 1

‖pn‖2

∫
�pn+1pn d�+

∫
x�kn d�,

2�nn+1=
1

‖pn‖2

∫
�pn+1pn d�−

∫
x�kn d�, 2�nn =

1

‖pn‖2

∫
�p2

n d�.
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Proof. According to (4.2) we have

�kn‖pk‖2 =
∫ 1

−1
(−x�p′n + pn�)wpk dx =−

∫ 1

−1
(x�pnw)′pk dx

= −x�pnwpk

∣∣1−1+
∫ 1

−1
x�pnwp

′
kdx =−�nk‖pn‖2 +

∫
�pnpkd�, (4.5)

which is the first equality. The second one can be proved using the Christoffel–Darboux identity (cf.[14]).
Thus, we have


n+1�
n+1
n − �nn+1=

1

‖pn‖2

∫
x�(pnp

′
n+1− pn+1p

′
n)d�=

∫
x�kn d�.

Last two equalities can be obtained by substitutingk = n + 1 in the first equality and performing some
calculations. �

In the sequel, we adopt the following short notation

�n =
1


n+1

∫
x�kn d�. (4.6)

Lemma 4.3. Let �=m�. The following equations

1

‖pn+1‖2

∫
�pn+1pn d�= 4i(	n+1+ 	n)+ i�(
n+2 + 
n+1+ 
n)

− i�[	n+1(	n+1+ 	n)+ 	2
n + 1],

1

‖pn‖2

∫
�p2

n d�= − 2+ 4(
n+1− 	2
n + 
n)

− �(	n+1
n+1+ 2	n
n+1− 	n − 	3
n + 2	n
n + 	n−1
n),

hold, with conventions
−n = 0 (n�0) and	−n = 0 (n�1).

Proof. In order to prove these equalities we need to calculate integrals of the forms
∫
x�pn+1pn d� and∫

x�p2
n d� (�= 0,1,2,3). We evaluate these integrals using the three-term recurrence relation, since we

have

xpk = pk+1+ i	kpk + 
kpk−1, x2pk = x(xpk)= (xpk+1)+ i	k(xpk)+ 
k(xpk−1),

x3pk = x(x2pk)= (x2pk+1)+ i	k(x
2pk)+ 
k(x

2pk−1).

According to these formulas, we evaluate integrals substitutingk := n + 1 andk := n in the previous
equalities and taking scalar products withpn. �

Theorem 4.4. Let �=m�. The polynomialspn
2 andq

n
2 , which appear in(4.1),have the forms

pn
2 = nx2 − iunx + vn and qn2 =−
n[i�x2 + (2n+ 2− �	n)x − i
n],
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where

un = (n+ 2)(	n + 	n+1)− �

2
[1+ 	2

n+1+ 	n(	n + 	n+1)+ 
n − 
n+1− 
n+2] +
i�n
2
,

vn = 1+ n
n − (n+ 2)(	n	n+1+ 
n+1)−
i	n�n

2

+ �

2
[(	n+1+ 	n)(	n	n+1+ 
n+1)− 	n
n+2 − (	n + 	n−1)
n],


n = (n+ 2)	n+1+ n	n−1+ i
�n + �n−1

2

+ �

2
[
n−1+ 
n+2 − 	n+1(	n+1+ 	n)− 	n−1(	n + 	n−1)],

with conventions
−n = 0 (n�0) and	−n = 0 (n�1).

Proof. Taking k = n − 2 in (4.5) and recalling thatx3p′n−2 is a polynomial of degreen with leading
coefficientn− 2, we have

�n−2
n ‖pn−2‖2 =

∫
x�p′n−2pn d�

=
∫

xp′n−2pn d�−
∫

x3p′n−2pn d�=−(n− 2)‖pn‖2, (4.7)

where the orthogonality of polynomials is used. Using (4.4), we get


n

[
�n−2
n


n−1
n
− �n+2

n + i�n+3
n (	n+1+ 	n+2)

]
= 
n(−2n− 2+ �	n).

According to Lemmas 4.2 and 4.3, the free term inqn2 can be expressed as it is given. Similarly, using
(4.7), (4.4) and Lemma 4.2, an expression forpn

2 can be derived. �

Theorem 4.5. The polynomialspn
2 andq

n
2 satisfy the following recurrence relations

pn+1
2 = − qn2

x − i	n

n

+ pn−1
2 + qn−1

2
x − i	n−1


n−1
,

qn+1
2 = − x�+ (x − i	n)p

n
2 + qn−1

2

n


n−1

+ (x − i	n)

[
qn2

x − i	n

n

− pn−1
2 − qn−1

2
x − i	n−1


n−1

]
.

Proof. Starting from two equations

−x�p′n = pn
2pn + qn2pn−1, −x�p′n−1= pn−1

2 pn−1+ qn−1
2 pn−2, (4.8)
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multiplying the first equation with(x − i	n) and the second one with
n and then subtracting, we obtain

− x�[(x − i	n)p
′
n − 
np

′
n−1+ pn] + x�pn =−x�[(x − i	n)pn − 
npn−1]′ + x�pn

= −x�p′n+1+ x�pn = (x − i	n)p
n
2pn + [qn2(x − i	n)− 
np

n−1
2 ]pn−1− 
nq

n−1
2 pn−2

=
{
(x − i	n)p

n
2 + qn−1

2

n


n−1

}
pn

+
{
qn2(x − i	n)− 
np

n−1
2 − qn−1

2 (x − i	n−1)

n


n−1

}
pn−1

= −
{
qn2

x − i	n

n

− pn−1
2 − qn−1

2
x − i	n−1


n−1

}
pn+1

+
{
(x − i	n)p

n
2 + qn−1

2

n


n−1
+ (x − i	n)

×
[
qn2

x − i	n

n

− pn−1
2 − qn−1

2
x − i	n−1


n−1

]}
pn.

Now, we can just read terms withpn+1 andpn on the right-hand side and recognize them aspn+1
2

andqn+1
2 . �

Theorem 4.6.We have

pn+1
2 + pn

2 + qn2
x − i	n


n
= (1+ im�x)�, n ∈ N. (4.9)

Proof. Using the first equation from Theorem 4.5 we find

pn+1
2 + x − i	n


n
qn2 = pn−1

2 + x − i	n−1


n−1
qn−1

2 .

If we add to both sidespn
2, we conclude that the expression stated in the theorem is independent ofn, i.e.,

pn+1
2 + pn

2 +
x − i	n


n
qn2 = pn

2 + pn−1
2 + x − i	n−1


n−1
qn−1

2 .

The proof can be completed by a direct calculation ofp2
2, p1

2 andq1
2. UsingTable 1, the following values

can be calculated

p1
2 = 1+ i�x + x2, q1

2 =
i

�
[2+ 4i�x + (2− �2)x2],

p2
2 =

2

(2− �2)2
[8+ (18− �2)i�x + (2− �2)2x2].

A direct calculation finishes the proof.�
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Besidep1
2, p2

2 andq1
2 (given before), we need also as a starting value

q2
2 = 4

2i(−12− 4�2 + �4)+ 2�(36− 2�4)x + i(−12+ 32�2 − 15�4+ �6)x2

�(2− �2)2

in order to use the recurrence relations from Theorem 4.5.

Lemma 4.7. Let �=m�. Then

i
	n+1�n+1− 	n�n−1

2
= 1− 
n+1+ ncn − (n+ 3)cn+2

− �

2
[ancn − an+2cn+2 + 	n+1
n+3− 	n
n−1], (4.10)


n+2�n+1− 
n�n−1= − i[(	n+2 + 2	n+1)
n+2 + (2	n + 	n−1)
n
+ an+1(
n+1+ 2cn+1− An+1− 1)], (4.11)

−i
�n+1− �n−1

2
= (n+ 3)an+2 − nan − �

2
[An+2 − An + bn − bn+3], (4.12)

wherean = 	n + 	n−1, bn = 
n + 
n−1, cn = 	n	n−1+ 
n andAn = 	2
n + 	2

n−1+ 	n	n−1.

Proof. In order to obtain the first Eq. (4.10) we use (4.9) atx=0, i.e.,pn+1
2 (0)+pn

2(0)−i(	n/
n)q
n
2(0)=1,

and for (4.11) we use the definition of�n, given by (4.6), from which we conclude that


n+2�n+1=
∫

x�

(
p2
n+1

‖pn+1‖2 +
p2
n

‖pn‖2

)
d�+ 
n�n−1.

These integrals can be calculated in the same fashion as is it presented in the proof of Lemma 4.3. For
the second integral, we have∫

x�
p2
n

‖pn‖2 d�=−i
[
(	n+1+ 2	n)
n+1+ (2	n + 	n−1)
n − 	n(1+ 	2

n)
]
.

Finally, to prove (4.12) we consider terms withx in both sides in (4.9)

d

dx

(
pn+1

2 + pn
2 +

x − i	n

n

qn2

)∣∣∣∣
x=0

= im�.

In terms of Theorem 4.5, we have−un+1−un+
n+	n(2n+1−�	n)=m�. A direct calculation finishes
the proof. �

Now we are ready to prove Theorem 3.3 from Section 3.

Proof of Theorem 3.3. In order to be able to solve the system of linear equations given in Lemma 4.7
we first need to prove that this system has a solution. We can examine two pairs of linear equations, the
first pair of equations (4.10) and (4.12), and second pair (4.11) and (4.12).
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A sufficient condition that the first system of equations has a solution is that	n+1 �= 	n for every
n ∈ N0. Using the expressions given in (3.2) for	-coefficients, we find

i(	n+1− 	n)=
�′n+2�n+1�n − 2�′n+1�n+2�n + �′n�n+2�n+1

�n+2�n+1�n

.

In order to have	n+1 �= 	n, it is enough to prove that the free term in the numerator on the right side in
the previous expression is not equal to zero. According to (2.7) and (2.8), this free term can be expressed
as follows:

23(n+1)
n+1∏
j=0

j !(j + 1)!
n∏

j=0

j !(j + 1)!
n−1∏
j=0

j !(j + 1)!

× [(n+ 2)(n+ 3)− 2(n+ 1)(n+ 2)+ n(n+ 1)]

= 23n+4
n+1∏
j=0

j !(j + 1)!
n∏

j=0

j !(j + 1)!
n−1∏
j=0

j !(j + 1)! �= 0.

To be able to solve the second pair of equations we need
n+2 �= 
n, n ∈ N. Using (2.7) we can also
evaluate the free term in the numerator of the difference
n+2−
n=�n+1(�n+3�2

n−�2
n+2�n−1)/(�2

n�
2
n+2)

in the form

2n+3
n+2∏
i=0

i!(i + 1)!22n
n−1∏
i=0

i!2(i + 1)!2 − 22n+4
n+1∏
i=0

i!2(i + 1)!22n−1
n−2∏
i=0

i!(i + 1)!

= 23(n+1)(n+ 1)!2(n+ 2)!2
n∏

i=0

i!(i + 1)!
n−1∏
i=0

i!2(i + 1)!2(4n+ 6) �= 0.

Since polynomials in� (=m�) in the numerators for the differences	n+1 − 	n and
n+2 − 
n are not
identically zero, they cannot be equal to zero for any nonzero integerm, since againm�, m ∈ Z\{0}, is
a transcendental number. This means that the systems of equations (4.10)–(4.12) and (4.11)–(4.12) have
unique solutions for any givenn.

The following solutions for�-coefficients can be obtained by solving systems

−i�n =
−2

	n − 	n−1

{
1+ (n+ 2)(an+1	n−1− cn+1)+ (n− 1)(
n−1− 	2

n−1)− 
n
}

+ �

{
an	n−1− an+1	n+1+ 
n+2 +

(an−1+ 	n−1)
n−1− (an + 	n+1)
n+1

	n − 	n−1

}
,

−i�n =
−2

	n+2 − 	n+1
{1+ (n+ 1)(cn+1− an+1	n+2)− (n+ 4)(
n+3− 	2

n+2)− 
n+2}

+ �

{
an+2	n+2 − an+1	n + 
n −

(an+3+ 	n+2)
n+3+ (an+1+ 	n+2)
n+1

	n+2 − 	n+1

}
,
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−i�n =
−1


n+1− 
n−1

{
(	n+1+ 2	n)
n+1+ (2	n−1+ 	n−2)
n−1+ an(
n + 2cn − An − 1)

}
− 
n−1


n+1− 
n−1
{2[(n+ 2)an+1− (n− 2)an−1] + �[An−1− An+1− bn−1+ bn+2]} ,

−i�n =
−1


n+3− 
n+1
{(	n+3+ 2	n+2)
n+3+ (2	n+1+ 	n)
n+1

+ an+2(
n+2 + 2cn+2 − An+2 − 1)}
− 
n+3


n+3− 
n+1
{2[(n+ 5)an+3− (n+ 1)an+1] + �[An+1− An+3− bn+1+ bn+4]},

wherean, bn, cn andAn are as in Lemma 4.7.
Using these equations we can get nonlinear recurrence relations for the three-term recurrence coeffi-

cients. The two equations presented in this theorem are just two out of five possible. It is important to
note that the nonlinear recurrence relations, which can be obtained by equating the first and third and the
second and fourth solutions for�n, are the same. �

The previous consideration leads to the conclusion that the coefficients�n are purely imaginary numbers.
This simple fact has a great impact on the monic polynomialQn

2 (=iqn2/(�
n)). Namely,

Qn
2 = x2 + i

[
	n − 2

n+ 1

�

]
x − 1

�

[
(n+ 2)	n+1+ n	n−1+ i

�n + �n−1

2

]
− 1

2

[

n−1+ 
n+2 − 	n+1(	n+1+ 	n)− 	n−1(	n + 	n−1)

]
.

It can be seen that the roots ofqn2 have to be of the form iy1 and iy2 or±x1 + iy1, since their sum is a
purely imaginary number and their product is real. All numerical experiments have shown that roots ofqn2
are purely imaginary numbers. It was seen also that with increasingn, one zero tends to infinity over the
positive part of the imaginary axis and that the second one tends to zero again over the positive imaginary
axis. An idea of such behavior of the zeros is also supported in the expression forQn

2. As we can see, the
sum of the zeros increases withn. The location of the zeros of the polynomialqn2 is connected with the
zeros of the orthogonal polynomialpn.

Theorem 4.8. If the polynomialqn2 does not have common zeros withpn, then the zeros ofpn are simple.
If � is a multiple zero ofpn with multiplicity k, then it is also a zero ofqn2 with multiplicity k − 1. The
polynomialpn can have a zero with multiplicity at most three.

Proof. It is easy to check thatpn andpn−1 do not have zeros in common. Namely, if they do have some
common zerox = �, then using the three-term recurrence relation, we can conclude that� is a zero of all
other polynomialspk, k = n− 2, . . . ,1. Then, since� is a zero ofp1, its value is i	0. It is easy to check
thatp2 does not have i	0 as its zero.
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Now suppose thatqn2 andpn do not have zeros in common andpn has a multiple zero�. Then, using
(4.1), we see that

0=−��(�)p′n(�)= pn
2(�)pn(�)+ qn2(�)pn−1(�)= qn2(�)pn−1(�) �= 0,

which is a contradiction. Thus, all zeros ofpn are simple.
To conclude the rest, it is enough to see that−x�p′n − pn

2pn has the factor(x − �)k−1. Hence,qn2
has a zero� of multiplicity k − 1. If the zero ofqn2 is double, thenpn may have a zero with multiplicity
three. �

Theorem 4.9. The orthogonal polynomialpn with respect to the weightw(x)= x exp(im�x) on [−1,1]
is a solution of the following differential equation

x�qn2p
′′
n − [�qn2 + x�(qn2)

′]p′n +
[
(pn

2)
′qn2 − pn

2(q
n
2)
′ + qn2(p̂

n
2q

n
2 − pn

2q̂
n
2)

x�

]
pn = 0,

wherep̂n
2 =−qn−1

2 /
n−1 andq̂
n
2 =pn−1

2 + (x − i	n−1)q
n−1
2 /
n−1. The termqn2(p̂

n
2q

n
2 −pn

2q̂
n
2) has also

the factorx�.

Proof. Starting from two equations (4.8) and using the three-term recurrence relation, we can calculate

−x�p′n−1=−
qn−1

2


n−1
pn +

(
pn−1

2 + qn−1
2

x − i	n−1


n−1

)
pn−1= p̂n

2pn + q̂n2pn−1.

Substituting in this equation the value forpn−1, calculated from the first equation and using Theorem
4.6, the proof of the statement is completed.

Since all terms, exceptqn2(p̂
n
2q

n
2 − pn

2q̂
n
2), are divisible byx�, the mentioned term must be divisible

by x� as well. �

The following theorem can easily be proved. It can be used efficiently in the cases when zeros of the
polynomialpn of very high degree are calculated.

Theorem 4.10.Under the assumption that the polynomialsqn2 andpn do not have zeros in common,we
have the following system of equations

p′′n(xn� )
p′n(xn� )

+ 2

xn�
+ 1

xn� − 1
+ 1

xn� + 1
+ im�− (qn2)

′(xn� )
qn2(x

n
� )

= 0, (4.13)

wherexn� , �= 1, . . . , n, are distinct zeros of the polynomialpn.

It is well-known that theQR-algorithm for finding zerosxn� can be ill-conditioned, when the Jacobi
matrix is not positive definite (see[13,21]). Using the previous theorem, under mild assumption and with
appropriate starting values for the zerosxn� , a numerical construction can be performed using a similar
algorithm as given in[21].
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5. Gaussian quadrature rule

In all numerical examples we have run, we were unable to find even one example of orthogonal
polynomials with multiple zeros. This means that Theorem 4.8 is not sharp enough. It also seems that
the zeros of the orthogonal polynomials are uniformly bounded, which is connected with the already
mentioned conjecture about an asymptotic behavior given in (3.5). It is known that, if the three-term
recurrence coefficients are uniformly bounded, the corresponding Jacobi matrix can be understood as a
linear operatorJ acting on the Hilbert space'2 of all complex square-summable sequences. Furthermore,
the uniform boundedness of the recursion coefficients implies the boundedness of this linear operatorJ

(see[1]). It is also known that the zeros of all orthogonal polynomials are bounded by the norm ofJ .
Since we cannot claim that the zeros of orthogonal polynomials are simple, in applications we should

be ready to apply Gaussian quadrature rules which deal with multiplicities. In the case of multiple zeros
of orthogonal polynomials, the Gaussian quadrature rule has the following form (see[9,17])

Gn(f )=
n∑

�=1

m�−1∑
k=0

wn
�,kf

(k)(xn� ). (5.1)

According to considerations in the previous section, at most two nodes in (5.1) may have multiplicities.
However, as we mentioned before, in all our examples we have encountered simple nodes and we have
used the standard Gaussian quadrature rule

Gn(f )=
n∑

�=1

wn
� f (x

n
� ). (5.2)

Distributions of the zeros of the orthogonal polynomials form= 2 and 22 are presented inFig. 2. Only
the zeros of polynomials with degreesn = 5(5)35 are displayed. The corresponding distribution of the
zeros form= 1000 is given inFig. 3 (left). For better visibility in the same figure (right) only the main
group of zeros is presented.

We can see that the distribution of the zeros is such that all zeros are with positive imaginary part,
except for one zero of polynomials of odd degree for which its real part is zero. From the figures we can
also conclude that all zeros are in the half-strip{z ∈ C : |Rez|<1∧ Im(z)>0}, except maybe one zero
for polynomials of odd degree with real part equal to zero. Also, it is obvious that ifm is increasing,
then the zeros of the polynomials are grouped around the points±1. This is the reason why theQR-
algorithm in D-arithmetic cannot be used for a construction of zeros with a largem (e.g.,m = 109).
Zeros of polynomials for very largem are very close to each other, so that they cannot be distinguished
in D-arithmetic.

Also, it can be seen that for a fixedm, if we increase degree of a polynomial, then the zeros tend to cover
the interval(−1,1). This is, however, less obvious for largerm, because of the mentioned behavior of their
grouping near the points±1. This behavior is also in good agreement with the conjectured asymptotic
for the three-term recurrence coefficients (see[9,10,12]).

Since the zeros of the orthogonal polynomials are not contained in the supporting set of the measure�,
we cannot expect the quadrature rule (5.1) to converge, except for functions which are analytic in a certain
complex domainD ⊃ [−1,1]. Spurious zeros (see[22]) for our sequence of orthogonal polynomials
were not detected.



G.V. Milovanović, A.S. Cvetkovi´c / Journal of Computational and Applied Mathematics 179 (2005) 263–287283

 −1  −0.5 0.5 1

0.1

0.2

0.3

0.4

 −1 −0.5 0.5 1

 −0.5

0.5

1

1.5

Fig. 2. Distribution of zeros form= 2 (left) andm= 22 (right).

 -1 -0.5 0.5 1

0.02

0.04

0.06

0.08

0.1

0.12

 -1 -0.5 0.5 1

0.005

0.01

0.015

0.02

Fig. 3. Distribution of zeros form= 1000: all zeros (left) and selected zeros (right).

If we adopt the conjectures that the zeros are bounded and that there are no spurious zeros it can be
claimed that the Gaussian quadrature rules are convergent (for analytic integrands) (see[18]).

For a construction of the Gaussian quadrature rule theQR-algorithm is used (see[5,8]), but in a
modified form (see[16]). For example, in D-arithmetic form = 103, the maximal relative error in the
constructed Gaussian weights withn= 40 nodes is of magnitude 6× 10−2 and 10−10 using the original
and the modified version of theQR algorithm, respectively. Note also that the maximal relative error
in the constructed nodes, inD-arithmetic using theQR-algorithm, is of magnitude 10−13 for the same
values ofm andn. In our experiments theQR-algorithm exhibits stability. For values of extremely large
m (e.g.,m=109), theQR-algorithm executed inD-arithmetic exhibits poor behavior. However, this is not
due to ill-conditioning, but rather to the fact that in D-arithmetic the zeros of the orthogonal polynomials
for m = 109 cannot be distinguished forn sufficiently small (e.g.,n of smaller order than 103). The
phenomenon of bifurcation, encountered for generalized Bessel polynomials (see[21]), also appears
for our orthogonal polynomials. In this case, a construction of the zeros of the orthogonal polynomials
(the nodes in the Gaussian quadrature rules) should be performed using (4.13). Starting values for the
zeros of the orthogonal polynomials in the Newton–Kantoroviˇc method can be the zeros obtained by the
QR-algorithm or some other approximation of the zeros based on the presented figures.

In Table 3we give the nodes and the weights of the Gaussian formulas (5.2) (to 14 decimals only, to
save space) forn= 10 and 20 points, when the weight function isw(x)= x exp(i10�x) (m= 10).

A possible application of these quadratures is in numerical calculation of integrals involving highly
oscillatory integrands. We consider here the calculation of Fourier coefficients:

Fm(f )= Cm(f )+ iSm(f )=
∫ 1

−1
f (x)eim�x dx.
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Table 3
Nodesxn� and weightswn

� for n= 10 andn= 20, whenm= 10

xn� wn
�

±0.99833323072985+ i8.0272939519631(−3) ±2.6219203933839(−3)− i1.6185441353473(−2)
±0.99100855292260+ i4.3127353860182(−2) ∓4.2536667302542(−4)− i1.3094541072322(−2)
±0.97687553159991+ i1.1013718224261(−1) ∓1.0621304335557(−3)− i2.4769593783534(−3)
±0.95373342919595+ i2.1833923751031(−1) ∓1.2031273072243(−4)− i7.4485602824591(−5)
±0.91584375790176+ i3.9367290146258(−1) ∓8.9861059280033(−7)+ i4.3878859382919(−7)

±0.99846411789590+ i3.8408078263538(−3) ±3.1046382565034(−3)− i8.8805764375599(−3)
±0.99183153354877+ i2.0347206579223(−2) ±1.9244416480364(−3)− i1.2968640292577(−2)
±0.97957734645900+ i5.0510187350466(−2) ∓1.6177820964010(−3)− i7.9111318842472(−3)
±0.96109698530124+ i9.5210986930994(−2) ∓1.8324015346507(−3)− i2.0568347704191(−3)
±0.93538991039429+ i1.5590937196538(−1) ∓5.3091855800340(−4)− i5.9554706994496(−5)
±0.90085641267460+ i2.3495811423141(−1) ∓3.6520885773394(−5)+ i4.3342540474941(−5)
±0.85489295111768+ i3.3624578190485(−1) ±1.7102442502967(−6)+ i2.4540197057364(−6)
±0.79298840127057+ i4.6668799320411(−1) ±4.5156899615527(−8)− i4.7151995083521(−8)
±0.70627510516459+ i6.4046420228669(−1) ∓3.9409685347890(−10)+ i6.5422096655704(−11)
±0.57200700024404+ i8.9689758832390(−1) ±1.3302611178019(−13)− i1.8953246644963(−13)

Since
∫ 1
−1 exp(im�x)dx = 0, we have

Fm(f )=
∫ 1

−1

f (x)− f (0)

x
xeim�x dx =

∫
g(x)d�(x),

so that we can compute it using the Gaussian quadrature rules (5.2) of the functiong defined by

g(x)= f (x)− f (0)

x
, g(0)= f ′(0).

Under the assumption thatf is analytic in some domainD ⊃ [−1,1], the numerical integration can be
safely applied, sinceg is also analytic inD.

In general, for some analytic functionf , the approximation of the integral with respect to the measure
exp(im�x)dx, can be given as

Fm(f )=
∫ 1

−1
f (x)eim�x dx ≈

n∑
�=1

wn
�

xn�
(f (xn� )− f (0)). (5.3)

Example 5.1.We can get an interesting result if we apply our quadrature rule form= 10 to the function

f (x)= x

x2 + 1/4
. According to (5.3), we consider

S10(f )=
∫ 1

−1

x

x2 + 1/4
sin(10�x)dx ≈ Gn(f )= Im

{
n∑

�=1

wn
�

(xn� )
2 + 1/4

}
.
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Table 4
Gaussian approximationsGn(f ) andG̃n(f ) for S10(f ) andf (x)= x/(x2 + 1/4)

n Gn(f ) G̃n(f )

10 −0.0509124802888631 −0.0509120068454231
20 −0.0509124798498521 −0.0509120064064121
30 −0.0509124699339274 −0.0509119964904873
40 −0.0509120078597894
50 −0.0509120064014030
60 −0.0509120064013063
70 −0.0509120064013063

Fig. 4. Distribution of zeros for polynomials orthogonal with respect to the weight functionw(x)= x exp(i10�x) on [−1,1].

The Gaussian approximations forn = 10(10)70 are given inTable 4. The functionf has simple poles
at z = ±i/2. Finding the residuum at the point� = i/2, we obtainR = Im{2�i Resz=i/2[f (z)ei10�z]} =
4.734434401198· 10−7.

If we simply add this value toGn(f ), we can significantly improve the results forn<40, as can be
checked inTable 4(the columnG̃n(f ) = Gn(f ) + R). The reason for such behavior of the quadrature
rules we can find in the zero distribution for polynomials orthogonal with respect to the weightw(x)=
x exp(i10�x) on [−1,1] (seeFig. 4). As we can see, while the convex hull of the zeros includes the point
�= i/2 (cases forn�30), this singularity has an influence on the Gaussian approximationsGn(f ). But,
when zeros drop below� (for n�40), this influence ceases.

If we increasem, for example takingm= 30,100,106, the convergence is rather faster.Table 5shows
Gn(f ) for m= 30 and 100. Form= 106, the relative error inG10(f ) is smaller than 10−60.

This faster convergence can be understood easily, since values of the residuum atz= i/2 are decreasing
exponentially withm, so it cannot harm the convergence.

Example 5.2. In this example, we present poor convergence results for an entire function. Consider
f (x)= cos(105x3+ x), i.e., the integral

Im(f )=
∫ 1

−1
cos(105x3+ x)xeim�x dx.
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Table 5
Gaussian approximationsGn(f ) for S30(f ) andS100(f )

m n Gn(f )

30 10 −0.0169759131766787207976
20 −0.0169759131766780460809
30 −0.0169759131766780460809

100 10 −0.00050929580138121841037438653708
20 −0.00050929580138121841037438653707

Table 6
Gaussian approximationGn(f ) for the integralIm(f ), m= 103

n 10 20 30 40 . . . 200

Gn(f ) 1.2(516)i −7.1(1224)i −7.9(1967)i 5.2(2725)i … −2.2(15192)i

Table 7
Gaussian approximationGn(f ) and corresponding relative errorrn for the integralIm(f ), m= 106

n −iGn(f ) rn

6 3.662375550592334(−7) 4.0(−8)
8 3.662375697084937(−7) 1.1(−10)

10 3.662375697480965(−7) 2.9(−13)
12 3.662375697482014(−7) m.p.

Takingm=103 and applying the Gaussian quadrature rule (5.2), we get the results given inTable 6. These
results are not obtained in the standardD-arithmetic, but by using an extended exponent arithmetic (in
MATHEMATICA package). Since the absolute value ofIm(f ) has to be smaller than 1, it can be seen that
we do not have convergence forn�200.

The reason for such poor behavior of the quadrature rules is easy to understand. The quadrature sum
has the form

Gn(f )=
n∑

�=1

wn
� cos(105(xn� )

3+ xn� ),

as it can be seen fromFig. 3, zeros of orthogonal polynomials form= 103 have imaginary values about
0.02, while real parts are close to 1 forn�35, so that values of the cos-function are to be evaluated in
points with imaginary parts≈ 6× 103, i.e.,

cos(105(xn� )
3+ xn� ) ≈ cos(105(1+ 0.02i)3+ 1+ 0.02i) ≈ cos(105+ 6× 103i),

and these values are huge. It takes much more thann = 200 for the zeros of orthogonal polynomials to
come over the interval[−1,1]. The same behavior occurs when an integration of any such function is
considered, for example cos(105x).

However, ifm is increased to 106, the convergence is evident (seeTable 7).An application of quadrature
rules to the functionf (x)=cos(105x3+x)gives results to machine precision with only twelve points in the
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quadrature sum.Table 7shows the results−iGn(f ) and the corresponding relative errorsrn=|(Gn(f )−
Im(f ))/Im(f )| (m.p. stands for machine precision in double precision arithmetic(≈ 2.22·10−16)). Here
it is important to note that the imaginary part of the zeros is of magnitude 10−6 while real parts are still
close to 1 forn= 12, so that the demonstrated effect form= 103 cannot appear.
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