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Abstract

In this paper we consider polynomials orthogonal with respect to an oscillatory weight fungtior= xe”™
on[—1, 1], wherem is an integer. The existence of such polynomials as well as several of their properties (three-
term recurrence relation, differential equation, etc.) are proved. We also consider related quadrature rules and give
applications of such quadrature rules to some classes of integrals involving highly oscillatory integrands.
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1. Introduction

Polynomials orthogonal on the semicirgle{z € C|z=€’, 0<0<x}havebeenintroduced andinves-
tigated by Gautschi and Milovan@j7]. The inner product was given y, g) = [ f(2)g()(iz) " dz,

i.e., (f,g) = f(f f(@%g(€% do. This inner product is not Hermitian, but the corresponding (monic)
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orthogonal polynomial$r;} exist uniquely and, because of the propéetty, g) = (f, zg), they satisfy
the fundamental three-term recurrence relation. The general case of complex polynomials orthogonal
with respect to a&omplex weight functiowas considered if6]. A generalization of such polynomials
on a circular arc was given by de Bruu], and further investigations were done by Milovarmaiid
Rajkovi¢ [19]. _

In this paper we use a complex oscillatory weight functigi) defined orf{—1, 1] by w(x) = x€™™,
wherem is an integer different from zero. Introducing the measure

du,, (x) == du(x) = xé"™ 3 ([—1, 1]; x)dx, m € Z\{0},

wherey(A; -) is the characteristic function of the s&twe consider polynomials orthogonal with respect
to the moment functional

1
L(f) = / F@uds = / Feodu 1.1

i.e., with respect to the following non-Hermitian inner product

(f.8) = f fx)g(x)dpu. (1.2)

Since this weight functiom (x) alternates in sign in the interval of orthogonaljtyl, 1], the existence

of orthogonal polynomials is not assured. A proof of the existence is given in Section 2. The three-
term recurrence relation for orthogonal polynomials is considered in Section 3. Numerical values of
the recursion coefficients for some valuesmofire given and two conjectures are stated. A differential
equation and related problems are studied in Section 4. Finally, the numerical construction of Gaussian
quadrature rules related to orthogonal polynomials with respect to the previous moment functional as well
as applications of such quadratures to some classes of integrals involving highly oscillatory integrands
are discussed in Section 5.

2. Existence of orthogonal polynomials

Let a linear functionalL be given on the linear space of all algebraic polynomials. The values of
the linear functionalL at the set of monomials are called moments and they are denoted Bius,
L(x*) = ., k € No. In[2, p. 7], the following definition can be found.

Definition 2.1. A sequence of polynomials®, (x)};2 , is called an orthogonal polynomial sequence with
respect to a moment functionalprovided for all nonnegative integersandn,

e P,(x) is a polynomial of degree,
o L(P,(x)P,(x))=0form # n,
o L(P%(x)) #0.
If a sequence of orthogonal polynomial exists for a given linear functibntienL is called a quasi-
definite linear functional. Under the conditialr(Pnz(x)) > 0, the functionalL is called positive definite
(see[2]).

Using only linear algebraic tools, the following theorem can be statedZseel1l).
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Theorem 2.2. The necessary and sufficient conditions for the existence of a sequence of orthogonal
polynomials with respect to the linear functional L are that for each N the Hankel determinants

Mo M1 M2 oo My
M1 H2 M3 e My
Ap=| M2 H3 M4 oo Mapyd | £0. (2.1)
Hp—1 Hp Hpy1 --- H2p-2

To prove the existence of orthogonal polynomials with respect to the linear funciignatn by (1.1),
the corresponding moments are needed. Because of shortnesspe-setvherem (#£ 0) is an integer.
Using an integration by parts we can get the following recurrence relation for the moments

1 1 1
g1 = f ©2dindy = = kg K2 [ kg,
-1 I -1 I -1
1 ; _ir k+2
== —e (D" - —=p, 2.2)
Il i
with the initial condition
/1 e d = (e 4 o) — o (d — el (2.3)
== X X = — - — — . .
o) iC (02

Since & = (—1)™, the equalities (2.2) and (2.3) become

(=" k+2 (="

— _(_1k+2y _ _
The moments can be expressed in the following form
D"k + D! o A+ (D) (i
= . 2.5
H (iC)k_H_ g (V + 1)' ( )
Conjugating (2.5) an important equality for these moments can be given
YR D s L+ (=DM k+1
i = > = (=D, (2.6)

(—ipk+t v+ 1!

V=

since in the sum representing moments only terms with ea not zero.

Theorem 2.3. For every integemn(# 0), the sequence of orthogonal polynomials with respect to the
weight functionw (x) = x€™™, supported on the intervql-1, 1], exists uniquely.

Proof. According to Theorem 2.2, to prove this result we need only to prove that Hankel determinants
for the sequence of moments (2.5) are not equal to zero, for any given nonzero imteger
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It can be observed that the moments are rational functioris=tw =, with simple powers in the

m i—-1
denominator. If we take from thi#h row of the Hankel determinant, the factor%(*i—gl) , and

v—1 ~
from thevth column the facton(]—(l) , our determinant becomes the Hankel determingnfor the

following sequence of moments

k

ﬁk=(k+1)!z

v=0

A+ EEDHEIYY
v+ 1! '

Notice thaiy, =7 (—i{) is a polynomial (with rational coefficients) it of degree. A relation between
the determinantd,, and4, is the following

_ n(n+m—l)~
Ay = (1)_—241 .
(i0"

It means that4, = O if and only if the determinanti, is not equal to zero. The value df, is a
polynomial in £ (=imm) with rational coefficients. Since is an integer, themin cannot be a zero of
such a polynomial, sincenir is not an algebraic number. The numberican be a zero of a polynomial
with rational coefficients if and only if that polynomial is identically zero. It is just left to prove that the
determinantd,, is not a polynomial which vanishes identically. ~ _

_ To prove this fact it is enough to note that the free factor of the polynomigk 4,(i)) ini, i.e.,
4,(0), is different from zero. If we take only free coefficients in the polynomialsk =0, 1, ... (i.e.,
4(0), k=0,1,...) and make the corresponding Hankel determingntits value will be the value of
the free factor in the polynomial represented by the determimanthe Hankel determinant is made
with the sequence of moments = 1, (0) = 2(k + 1)!. But, this is exactly the sequence of moments for
the generalized Laguerre polynomials witk= 1, multiplied by factor 2, and it cannot be equal to zero,
because the sequence of the generalized Laguerre polynomials exists.

We also need the values of the determinatjtsvhich can easily be evaluated since they are connected
with the generalized Laguerre polynomials witk= 1. It is not so difficult to obtain
n—1
A5 =2"T] Kk + D! (2.7)
k=1
We are also interested in a modified Hankel determinant, which can be expressed in terms of the moments
1. Namely,

Ho M1 ver Hp—2 Hp
Hq Moo v Hp—1 Hpy1 (_1)n(n+m—1)+1~/
A:’l = K2 Mz .. Hp Hpt2 | = - 1 n
. - (i
Mp—1 Hp oo H2p—3 Hou—1

whereZ; is the corresponding modified Hankel determinant for the monjgntas before, the deter-
minantA,/1 (= A;l(i()) is an algebraic polynomial irf iwith rational coefficients. Its free term can easily
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be calculated using the corresponding determinant for the generalized Laguerre polynomials with the
parameter. =1, i.e.,

n—1
4,0 =n(n+ D45 =2"n(n+1) [] kik + 1)! (2.8)
k=1

In the sequel we will consider only the case whes 0, since form < 0 we havew, (m) = [ x*du,, =
[ x*du_,, = w(—m). This means that all results generated:for 0 can be applied to the case< 0
by a simple conjugation. Hence, we assume N.

In general, for an arbitrary reél= m= (m ¢ 7Z), when the moments are given by (2.2) and (2.3), the
existence of orthogonal polynomials is not assured. For example, equitier0 has as the smallest
positive solution, ~ 7.13414399636896061399. .

3. Recurrence relation

Since the sequence of orthogonal polynomials with respect to the weight funation= x&”™ on
[—1, 1] exists, these (monic) polynomials satisfy the three-term recurrence relation

pn—l—l(x) - (x - io‘n)Pn(x) - ﬁnpﬂ—l(x)7 n= Ov 19 L) (31)

with po(x) =1 andp_1(x) =0. This kind of relation is provided by the propeftyf, ¢) = (f, xg) of the
inner product (1.2). The recursion coefficiestsandp, can be expressed in terms of Hankel determinants
as (cf.[7])

_ A A Aps1d,—

g, = "L "1 (e Ng) and f, =" e, (3.2)

An+1 An An

In this case, however, the values of Hankel determinants cannot be found easily, but, it is clear that the
recursion coefficients are rational functions'ig m=. Using our software packad@] we can generate
coefficients even in symbolic form for some reasonable valuegefy.,n <20) and state the following
conjecture:

Conjecture 3.1. Leta, (z) andc, (z) be algebraic polynomials with integer coefficients of degpeand
sn, respectivelyi.e., a,(z) = A,z + - - - andc,(z) =z + - - .. If { =mr andn > 2, then

(S 5 — p, =2
S Y (0 Vo (o B Cen1(®?

where

L3 (n odd), 1 (nodd),
"7 n2+1m+8 —n?  (n even,
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Table 1
Recursion coefficients, andp,, in (3.1) forn <3

n Un :B}’l
2 2(71))11
0 7 -
1 -8 —242
(—2+) ¢
) 2(-36+602-45:414:5) _A6-1324h
(—2+2)(6-132 4% 2(=2+:2)?
3 _ 2(—51841328322—69552%+15648°— 125984 26:104 /12 (=2+%)(216-12242+ 16514548
((6—132+0%)(216-12242+ 1653 —1455+5) 2(6—13:2+(%)2
and
2
n+1)
n(n+ 1) —y (nodd,
Ih=—Fs—, S =
n 2 n n(n + 2)
—a (n even.

In Table 1 the first four recursion coefficients are given, whegeemn. So, we have1(z) = -2 + z,
c2(z2)=6—13z 472, c3(z) =216— 1224 + 1652 — 1473+ z*. Increasing:, the complexity of expressions
for three-term recurrence coefficients dramatically increases. For exampte=férwe have

as(z) = 2(10497600- 160963200 + 7312744862 — 2318220060° + 46761705%
— 6692544° + 689193° — 865687 + 97648 — 51&° + 8719

and
ca(z) = 9720— 11340Q + 1736%2 — 49323 + 110L* — 772° + 5.

so that, the corresponding three-term recurrence coefficients become quite complicated.
According toTable 1we can conjecture that coefficienisandp, are real. Furthermore, we can prove
a more general result:

Lemma 3.2. If a sequence of momeng, },.y, satisfies the condition;, = (—=D)** 1y, (k € Nog) and
the sequence @frnonic) orthogonal polynomial$p,},cn, exists then

(_1)npn(_z) = pn(2) (3.3)

and the coefficients in the three-term recurrence relaf®a)are real i.e,, they satisfyo, = —ia, (k=0)
andp, = i (k=1).
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Proof. Following[2, p. 17]we have the following representation for the monic orthogonal polynomial
pn(z) of degreen

Mo M1 M2 .. My
1 My M2 M3 e Hpgd
z)=—/| : : - : ,
Pn(2) A, : : : . :
Hp—1  Hp :ungl cee Hop—1
1 Z Z oo "

where4,, is the Hankel determinant defined in (2.1). PuttiAag instead ofz, conjugating this equality
and usingy, = (-1, (k € Np), we get

—Ho G ) co (-D”;lﬂn
11 ) 13 c (CD"
Appn(—2) = : : :
D", D", D"y (=D,
1 —Z 22 (="

Notice that the moments for our weight function satisfy (2.6). If we talkefrom every row (except the
last one) with odd index in the previous determinant and then-tdkigom every even column, we obtain

o M1 M2 ...y
My o M2 M3 e Hpga
Appn(—2) = (=DLeFV2I 2y = (=) A, pa(2).
Hp—1 My :“n—20-1 e Hop_—1
1 Z z "

Applying the same argument to the Hankel determinant, we concludelthat4,,. Since4,, # 0, we
get property (3.3).
Now, putting—z instead of; in (3.1) and conjugating it, we get

Pui1(—=2) = (=2 — 1) pu(=2) — B, Pn—1(=2),

i.e., pna1(z) = (z + i) pu(z) — B, pu—1(2), Wwhere we used (3.3). Comparing this recurrence with (3.1)
and using the uniqueness pf(z) we obtain the desired statement]

In a section on differential equations (Section 4), the following statement is proved about a Laguerre-
Freud type of nonlinear recurrence relations satisfied by the three-term recurrence coeffici¢hij)see
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Theorem 3.3. For n >4, the three-term recurrence coefficients satisfy the following nonlinear recurrence
equations

1

(B

- 3,3”_1(06,1_2 + fxn—l) + '[fn (20(n_2 - 20‘n—1 - 39{)1)

+ 2n[(op—3 — Ofnfl)ﬁn—Z + (ap—2 — 9511)13;1]

+ C[ﬁn_z(an—l — 0p—3)(tp—1 + 2 + o, —3) + (ﬁn_z - ﬁn)z

+ ﬁn (fxn - ocn—Z)(ocn + o1+ ocn—Z) + ﬁn—3ﬂn—2]

b PP 0032 2 s By — (B — )
Op—1 — Up—2

+ C(fxn—Sﬁn—Z + zan—Z(ﬁn—Z - ﬁn) - “nﬁn)]} ,

,Bn+1 = {“an + 0‘2_2 + -1+ O‘S—l - ﬂ11—2(5‘9‘1173 + 8oy —2 + 20, -1)

2
Op4+1 = —— {1+ (-1 — o) (etp—2 — atp) + ﬁn—l + Bn + 2ﬂn+1
Prta

+ nl(oy — op—1) (-3 + tp—2 — 1 — o) — ﬁn—l + /))n-l—l]}

1
+ 7{29@1(:871—1 - ﬁn+1) + 20‘n—2ﬁn_1 + (o — 0tp—1)
:BrH—l
X (“5_3 + o302 + Ocyzl_z - 05;7;_1 — Op—10n — 9‘5 - ﬁn_z + ﬁn)}
Op — Up—1

+ — {[1 + 30‘573 - ﬁn—3 - ﬁn—Z - n(ﬁn—?: - ﬁn—l)]

Op—2 — Up—-3

1
- F[an—4ﬁ11—3 + 2“n—3(ﬁn—3 - ﬂn—l) - ﬂn—lan—l]} ’

n

with initial conditions given in Tablé4.

Complexity in three-term recurrence coefficients should not prevent numerical calculation. Using the
recurrence relation for the moments (2,2Z)can be calculated and then, using the Chebyshev algorithm,
the recursion coefficients can be constructed. Since the Chebyshev algorithm isill-conditiofel],(aee
arithmetic with higher precision is needed. Another way to calculate the three-term recurrence coefficients
is the Stieltjes—Gautschi procedure ($84.4]). Using this procedure the recursion coefficients can be
constructed for larger values af.

First, we discuss the stability in the computation of the moments using (2.4). Numerical examples show
that if m is small, e.g., 12, 3 and so, then (2.4) is not numerically stable for calculation of the moments.
For example, forn = 1 with 16 decimal digits mantissa (double precision or D-arithmetic), the relative
error in the momenisg is 10'. If we increasen enough, for example: = 7, the relation (2.4) has better
stability and the relative error ipsg, in double precision arithmetics is about £8. If we increasen
further, (2.4) becomes quite stable.

It should be emphasized that in the cases whete 1, 2, 3, (2.5) can be used for calculations of the
moments. With increasing, (2.5) becomes unstable for calculation since it represents an ill-conditioned
numerical series.

Using relations (2.5) and (2.4), the moments can be calculated numerically stable. However, a con-
struction of three-term recurrence coefficients is more complicated. There is one algorithm connecting
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Fig. 1. The contour of integration.

moments and recursive coefficients known as the Chebyshev algorithm. Itis also known that this algorithm
is ill-conditioned (se¢5,14]).

We have conducted some numerical experiments and get the following results. In theisasaall
1,2,3,..., the Chebyshev algorithm is quite stable if the Q-arithmetic (with 34 decimal digits mantissa)
is used. The relative errors in coefficients, 3o are 1027 and 10°8 in Q-arithmetic and D-arithmetic,
respectively. Increasing, for examplen =50, the relative errors in coefficients increase and they become
1 and 108 in D-arithmetic and Q-arithmetic, respectively. Foe= 10, the corresponding relative errors
in a30, f30 are about 1 even in Q-arithmetic. Thus, this means that the Chebyshev algorithm cannot be
used in constructions (even in Q-arithmetic), wivers sufficiently large, e.gm > 20.

Another more stable way for constructing the recursion coefficients is the Stieltjes—Gautschi procedure.
In order to apply this procedure we need the following auxiliary result:

Lemma 3.4. For each algebraic polynomial g of degree at m2at the formula

1 _ _1ym N L L
/ o) dy = D AL |:g (—1+ i T") _g <1+ i Tkﬂ (3.4)
1 mn mmn mn

k=1

holds Wherer,’; and A,f are the parameters of the N-point Gauss—Laguerre quadrature rule.

Proof. Applying a complex integration methq5] to fn; ¢(z2)€™™ dz over the rectangular contot
(seeFig. 1), lettings — 400 and using theV-point Gauss—Laguerre quadrature rule, we get (3.4).

The integrals which appear in Darboux formulas for the recursion coefficients,

1 2 24mnx
XPks ~, pp(0)x‘e dx 2(—1\y"
k=( Pk Pk):fll k2 - k>0).  fo= o= (. )
(Pk, Pk) f—l P (x)xelmnx dx ima
(Pk: pK) I, p2(x)x€m™ dx

Bk = = :
T (pre1 P fflpf_l(x)xe'm”xdx
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can be computed exactly, except for rounding errors, takirgpfficiently large in the previous lemma.
In order to obtain the firsi coefficientsxy, ; (k=0,1,...,n — 1), we needV >n.

In our numerical experiments, the Stieltjes—Gautschi procedure proves itself worthy. For small values
of m, for example smaller than 25, it is ill-conditioned. For example, the relative errors in three-term
recurrence coefficientgg andpsg are 107 for m = 20 in D-arithmetic. Increasing, the corresponding
relative errors become of the machine precision magnitude for all three-term recurrence coefficients,
exceptthe coefficient;. Butitis nota problem, because for this coefficient we have an explicit expression
(seeTable ).

Using MatHEmaTIcA we calculate the first 30 recursion coefficients for= 1, 10%, 10*, 10°, 10°.

All computations are done using a combination of the Chebyshev method and the Stielties—Gautschi
procedure. It should be noted that only fer= 1 the Chebyshev algorithm is used in Q-arithmetic. All
other coefficients are calculated using the Stielties—Gautschi procedure. The first 30 recursion coefficients
form = 1 and 100 are presentediable 2 Numbers in parentheses indicate decimal exponents.

Accordingtoavery extensive numerical calculations, usingapackage of routines writtenieMdrica
(se€[3]), we can state the following conjecture: (It cannot be seen from a small number of coefficients
as inTable 2)

Conjecture 3.5. For the recursion coefficientghe following asymptotic relations are true
1
o —> 0, pr— 7 as k — +oo. (3.5)

Note that Magnus’ theorem (s¢#0]) cannot be applied to prove this conjecture, since the weight
function has zero value inside the interyall, 1]. Our weight function does not fit to the classes of
Nuttal and Whery (seR0]), either.

Finally, the nonlinear recurrence relations for the three-term recurrence coefficients, given in Theo-
rem 3.3, are numerically unstable. However, they can be used for a symbolic construction, since they
have smaller complexity than the Chebyshev algorithm. However, if we are able to do computations in
some higher arithmetics, these relations can be used also for numerical construction, again with a lower
complexity than the Chebyshev algorithm.

4. Differential equation and related problems

First we prove a result for the first derivative of our orthogonal polynomials.

Theorem 4.1. For (monic) polynomialsp, orthogonal with respect to the weight functioiix ) = xe&”™
(m € N) on[—1, 1], the following equation

—X$py = PaPn +q3pPn-1, n €N, (4.1)
holds wherep’ andg; are polynomials of second degree afie= 1 — x2.
Proof. Letw(x) = x€%*, where! = mn. Then we have the following differential equation

(xow) +yw =0, Yy=—[2+ilx)p+x¢].
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Table 2
The recursion coefficients,, f;, k=0,1, ..., 29, with respect to the weighi(x) = x€m™ on[—1,1], form =1 (left) and
m = 100 (right)

ko oy Br oy Br

0 0.6366197723675813 i0.6366197723675813 0.636619772367581343(i0.636619772367581343¢)
1 —-0.3235841294789642 0.797357632715324%).2580175039933769246) 0.999979735763271532
2 _0.5954161768781585(1) 0.1629220776952933  0.254657585433565248)( —0.4052477756185724614)
3 0.7910334466320025() 0.3051351241301063-0.636961626800292598@) 1.000101349111133839
4 —0.8764276869073403(@) 0.2128993040344742 0.509431340532140238( —0.1620120527234571098)
5 0.8473746274827025() 0.2987622570884405-0.191210397675282768() 1.000872216947472743
6 —0.8688561816172646() 0.2117636703524410 0.828351751096263442( —0.3639397090183795318)
7 0.8570745958769821() 0.2980998244194351-0.382936614600099358() 1.003027613759062012
8 —0.8666844850324216(1) 0.2111804398870007 0.121228565536061484 —0.6447146055727164948)
9 0.8608925862853529(1) 0.2977791164282434—-0.639763468973776280() 1.007564442098398045

10 —0.8659857109140614(1) 0.2108828566593321  0.166292349800760667 —0.1000753371659440500)
11 0.8627247767865183() 0.2976026890742332—0.963400995285357488() 1.015772811174387681

12 —-0.8657405623922258(1) 0.2107122791921952  0.218321255798082199 —0.142531313953930180Q)
13 0.8637268365256313() 0.2974961702027002—0.135681191786866237 1.029298977634625351
14 —0.8656574858964479(1) 0.2106058739335615  0.277793639272715674 —0.190714016219807481Q)
15 0.8643279816867875() 0.2974271916096470-0.182478840649006230 —1.050259840871622525

16 —0.8656375162024725(1) 0.2105351818496800  0.345451197686132546 —0.242906045156949549¢)

17 0.864714224576035%#() 0.2973800585167439-0.237474578129759936 1.081441619533492662
18 —0.8656429264180822(1) 0.2104858842700285  0.422413386788202912 —0.296671384695609290Q)
19 0.8649758482146794() 0.2973464643640837—0.301786269554184218 1.126639104687113826
20 —0.8656581806481852(1) 0.2104501631104796  0.510349931697269430 —0.348772831212214243Q)
21 0.8651606334559308() 0.2973216937975279-0.377080215465214900 1.191239358421633902
22 —0.8656765827803345() 0.2104234637586969  0.611754722209078155 —0.395173484446661438Q)
23 0.8652956531748510(@) 0.2973029138909545-0.465844702939731706 1.283252896277182427
24 —0.8656952073777004(@1) 0.2104029899018435  0.730404564816816487 —0.431171525927172178Q)
25 0.8653971170304653() 0.2972883414189559-0.571848592026866151 1.415214321987903186
26 —0.8657128152632596(1) 0.2103869488493026  0.872173116479886438 —0.451722285521488598R)
27 0.8654751824392116() 0.2972768093450591-0.700955412047560028 1.607892405307178560
28 —0.86572894254908706() 0.2103741489011420  1.046573605525170660 —0.451997413886477718Q)
29 0.8655364621426911(@) 0.2972675283097719-0.862666748047142974 1.898085932425570343

Using this equation we can, also, derive the following differential equation

(X¢in)/ - (x¢p;/1 — pun)w =0.
If we multiply the previous equation witk®, k € No, and integrate ovef—1, 1), we get
1

1
/ (e pw) d = / K ropl — pdu = lgpaw|  —k f K pn it
— -1

1

where the right-hand side in the last equality was obtained using integration by parts. Its first term is equal
to zero, as well as the second one provided2 < n, sincep,, is an orthogonal polynomial with respect
to du = w(x)dx. Thus, fork + 2 <n, we have/ xk(x¢p;1 — pn¥)du = 0. Using this fact, we can write
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the following expansion

n+3

k=n—2

Whereeﬁ are some constants. This can be reduced, by using three-term recurrence relation (3.1), to
~XQPpy + Put = P3P + Gz Pu-1, (4.3)
where we can express explicitly the polynomiafsandg; in the forms
Pg = 92+3x3 + [92+2 - i92+3(°‘n + opt1 + “n+2)]x2

+ 1037 = 10,2 + o) = 0 Bua + Buz + o Onta + 2n42) + o121l
+ 92 - iOCnQZJrl — (a0t y1 + ﬁn+1)62+2

. 0)172
+ il (B2 + o1 r2) + 2B 110> — ﬁn_
n—1
0}1—2 5 .
ﬁn01’1+3 |:ﬁn — ﬁn62+ + Iﬁn92+3(an+l —+ an+2)i| X
n—1

n—2

_ . 0
+ 07— B0 o 1,002 4 B (o102 + By )00 — i1 5
n— 1

When we subtract the term with,, on the left-hand side of (4.3), we get (4.1), where it is adopted
p5 = p3 — Y. Itis obvious from (4.1) thap’ has to be of second degree, since the polynomial on the
left-hand of the mentioned equation is of degiee 2. [

Actually, a little more can be stated. Using the previous theorem for our polynomials, we have
9"+3 i, 9,’;+2 =n+4— (12 + tnr1+ o). (4.4)

In the sequel we also need to define

K,,(x,y):ZMpkz(y) and k,(x) = K, (x, x).
2 il

Lemma 4.2. We have the following equations

O 1l pilI? + O 1 pall —flﬁpnpk di,  Bugaly” —9n+1—/x¢kndﬂ,

l
2Bn+1 n+

/ W Pny1pn du + / x ¢k du,

| n||2

1
Wisa =gz [ Yoraman= [xotade 2= furton
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Proof. According to (4.2) we have

1 1
0 Il pell2 = / (x0p, + puiupy by = / (op) pr s

1

1 n
= —xppawpi|”, + / 1X¢pnwp§<dx =07l pall® + / ¥ prdu, (4.5)

which is the first equality. The second one can be proved using the Christoffel-Darboux identi#]jcf.
Thus, we have

1
BuyaOhtt— 00 = TAE / XG(PuPpy1 — Pnt1py) du= / x pky, du.
n

Last two equalities can be obtained by substitufing n + 1 in the first equality and performing some
calculations. O

In the sequel, we adopt the following short notation

1
yn / x o di. (4.6)

ﬂn—i—l

Lemma 4.3. Let{ = m=. The following equations

m / W Pniapn A= 4i(t 1+ an) +1(Brsn + Buit + Bo)
— iCloya(omr1 + o) + 02 + 1],
/ Yp2du= — 2+ 4(By 1 — o2 + B,
— Long1Ppr1 + 200 Pypq — 0 — O‘?z + 20, + on_1B,).

1
1pn 117

hold, with conventiong_, =0 (n>0) anda_, =0 (n>1).

Proof. In order to prove these equalities we need to calculate integrals of the joris,1p, du and
fx"pﬁ du (v=0,1, 2, 3). We evaluate these integrals using the three-term recurrence relation, since we
have

Xpr = Pkt1 +iopk + Bepr—1, X2pr = x(xpp) = (xpyr) + ik (xpr) + Br(xpr_1),
o =x(p) = (P prg1) + o (P pr) + Br(x2pr_1).

According to these formulas, we evaluate integrals substititing n» + 1 andk := n in the previous
equalities and taking scalar products with O

Theorem 4.4. Let{ = mn. The polynomialg?; andgs, which appear in(4.1),have the forms

ph = nx? —iupx + v, and g5 = —ﬂn[iCx2 + 2n+2— loay)x —id,],
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where

¢ 17,
u, = n+ 2)(0571 + O‘n—f—l) - E[l + 055_;,_1 + oty (o, + OCn—f—l) + Bn - ﬂn-i—l - ﬂn-i—Z] + /?v

10,7,
vy =1+np, — (n+2)(tponr1+ Pri1) — 062/
¢
+ é[(an—i-l + o) (0 01 + ﬁn+1) - O‘nﬁn—i-Z — (otp + -2 B, 1,
R
%:ﬂn+2wwi+n%4ﬂﬁﬁLé@J

¢
+ E[ﬁn—l + Bn+2 - O‘n—l—l(an—l—l + o) — O‘n—l(an + O‘n—l)]s

with conventiong_, =0 (rn>0) anda_, =0 (n>1).

Proof. Takingk =n — 2 in (4.5) and recalling thazt3p;l_2 is a polynomial of degree with leading
coefficientn — 2, we have

02| po_all? = / x¢p,_opn du
_ / xpl_ppn it — / 33! _opn Q= —(n — 2 pull?. @.7)

where the orthogonality of polynomials is used. Using (4.4), we get

02 :
ﬁn |:ﬁn—ﬁ — 62+2 + |Hﬁ+3(fln+1 + an+2)i| = ﬁn(_zn -2+ Cotn).
n—1Pn

According to Lemmas 4.2 and 4.3, the free terngjncan be expressed as it is given. Similarly, using
(4.7), (4.4) and Lemma 4.2, an expressiongrcan be derived. [

Theorem 4.5. The polynomialg?, andg; satisfy the following recurrence relations

n+l nx—locn

-1 _1X — ia -1
Py = —q5 +py gy ———,
ﬁn ﬁnfl
qg+1 = —x¢+ (x —ioy)py +q’5‘1 i
ﬁn—l
. x —ia _ Cax — o1
+(x—locn)[q'£ -t 1—"]
ﬁn Bn—l

Proof. Starting from two equations

-1 -1
—XPpy = Phpn + 45 Pn-1, —XPp,_1= D3 Pn-1+4q5 " Pn-2, (4.8)
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multiplying the first equation witlix — i«,) and the second one with, and then subtracting, we obtain

— xPl(x — i) ply — Pulh_1 + Pnl +xPpn = —xP[(x — i) py — By Pn—1] + xPpn
= X PPl +XPPn = (x — o) Py pu + (g5 (x — %) — Bpa F1Pu—1 — Bugh TPu—2

= {(x—iocn)pSJrqE’_l U }pn

ﬁn—l
. _ _ . B
+ {q5(xc — o) — Buph = g5 Hx — itu_1) = § paa
ﬁn—l
X—iOC _1 _1.x—iOC_1
=— 145 L ph Tt = —n}Pn+1
ﬁn ﬁn—l
+ (X - iOCn)Pg + qg—lﬂ_n + (X - io‘n)
ﬂn—l
x — o _ X — o1
X[qé’ - pyt—qs 1—"]}pn.
ﬁn ﬁn—l

Now, we can just read terms with,,1 and p,, on the right-hand side and recognize themp§§1
andgs™. O

Theorem 4.6. We have

x — oy,
B

Proof. Using the first equation from Theorem 4.5 we find

= A+ imnx)¢p, neN. (4.9)

1
Py s+ s

x —lo 1 x—loy_1
P =
ﬁn ﬁn—l

If we add to both sideg?, we conclude that the expression stated in the theorem is indepenagneqf

x —io _ x —loy—1
ettt —— g =ph oyt ———g5 !
ﬁn ﬁn—l

The proof can be completed by a direct calculatiomfn‘p% andqzl. UsingTable ] the following values
can be calculated

Y124 dicx + 2 - 2,

py=1+itx+x% q¢3 :

2 .
P2 = m[s + (18— B)itx + 2 — %2,

A direct calculation finishes the proof.d
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Besidep3, p2 andq2 (given before), we need also as a starting value

5 2(—12— 4% + (4 4 20(36 — 20hx +i(—12+ 3202 — 15:4 + (O)x?
=4 (2-

in order to use the recurrence relations from Theorem 4.5.

Lemma4.7. Let{ = mn. Then

i In4+1Vn+1 — % Vn—1

=1-f,1+nc, — (m+3)cpg2

2
- E[ancn — ap+2Cp4+2 + O‘n+1ﬁn+3 — tnfy-1l, (4-10)
ﬁn+27n+l - ﬁn'yn—l = - i[(“n+2 + 20‘n+1)ﬁn+2 + 2oy + O‘n—l)ﬁn
+ an—i—l(ﬁn—l—l + 2Cn+l - An+1 - 1)]» (411)
V41— Vn-1 C
—1 T =(n+ 3)an+2 —na, — E[An+2 — A, + b, — bn+3]a (412)

wherea, = o, + oy—1, by =, + By_1, n = opotn—1 + B, @and A, = ocs + oc,%_l + 0,0 —1-

Proof. Inordertoobtainthefirst Eq. (4.10) we use (4.9=a0, i.e.,p§+1(0)+pg (0)—i(on/By)g5(0)=1,
and for (4.11) we use the definition gf, given by (4.6), from which we conclude that

P2 1 P2
Brsay 1=/x¢> o Ph Ny
ey Ipntall2 I pall? i

These integrals can be calculated in the same fashion as is it presented in the proof of Lemma 4.3. For
the second integral, we have

2
/X¢ “5’1”2 CI,u = —i [(al’l—i-l + Zan)ﬁn+1 + (20(11 + an_l)ﬁn — O(n(l + OC%)] .

Finally, to prove (4.12) we consider terms withn both sides in (4.9)
d n+1 n, X oty n
G (a5

In terms of Theorem 4.5, we haver,, 1 —u, + 9, + o, (2n +1— (o, ) =mn. A direct calculation finishes
the proof. O

=imn.
x=0

Now we are ready to prove Theorem 3.3 from Section 3.

Proof of Theorem 3.3. In order to be able to solve the system of linear equations given in Lemma 4.7
we first need to prove that this system has a solution. We can examine two pairs of linear equations, the
first pair of equations (4.10) and (4.12), and second pair (4.11) and (4.12).
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A sufficient condition that the first system of equations has a solution isxthat # «, for every
n € Np. Using the expressions given in (3.2) tecoefficients, we find

A;lJrzAn—l-lAn - 2A;+1An+24‘n + A;ZArH-ZAn—&—l

i(o — o) =
( n+1 n) An+2An+1An

In order to havey, 1 # «,, it is enough to prove that the free term in the numerator on the right side in
the previous expression is not equal to zero. According to (2.7) and (2.8), this free term can be expressed
as follows:

n+1 n n-1
22040 TT j1G + 0! [T G+ TG + v
j=0 j=0 j=0
x[(n+2)(n+3) =2+ D(n+2) +nn+1)]
n+1 n n-1
_ o3n+4 l—[ G+ D! 1_[ 1+ 1! l_[ J1G+Dr#£0.

j=0 j=0 j=0

To be able to solve the second pair of equations we ipeed # $,, n € N. Using (2.7) we can also
evaluate the free termin the numerator of the differehige — 8, =4, +1(An 342 — A2, A1) /(4242 )
in the form

n+2 n—1 n+1 n—2
23 [Tita + 02 JTi%6 + 2 =22 [Ti%G + 2 [T iG + D
i=0 i=0 i=0 i=0
n n—1
=22+ P+ 2P [ it + D! [] %G + DP(4n +6) #0.
i=0 i=0

Since polynomials irf (=mm) in the numerators for the differences,1 — «, andp, ., — f, are not
identically zero, they cannot be equal to zero for any nonzero integsince agaimr, m € 7Z\{0}, is
a transcendental number. This means that the systems of equations (4.10)—(4.12) and (4.11)—(4.12) have
unique solutions for any givein

The following solutions for-coefficients can be obtained by solving systems

. -2
=y, = PR (14 (1 + 2)(ans10m-1 — cnt1) + (1 = D(B,_q — o2_1) — B}
(an—1+ an—l)ﬁn— — (ay + op l)ﬁn
+ ¢ {an“n—l — Qpi10p+1 + ﬂn+2 + ! hs +l} s
Op — Op—1
- _2 2
—lyy=————{14+ (n + D(cn+1 — ant10m42) — (0 + D (Byi3 — % 42) — Bui2}

OUp+2 — Ap+1

(an+3 + 0€n+2)ﬁn+3 + (Cln+1 + o‘n+2)ﬁn+1 }

+ {an+2an+2 — 10, + ﬁn -
On+2 — On+1
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. -1
=y, = {(O‘n—I—l + Zan)ﬂ;H-l + (20(,,_1 + O‘n—Z)ﬁn—l + an(ﬁn + ch — A, - 1)}
ﬁn—i—l - :Bn—l
- L {2[(1’! + 2)an—f—l - (” - 2)an—l] + C[An—l - An+l - bn—l + bn+2]} s
Bn—i—l - ﬁn—l
—i7y = ———————{ 43+ 20042 Brya + (2241 + o) Byin
ﬁn+3 - ﬁn—i—l
+ ant2(Bpi2 + 2cn12 — Apg2 — D)}
A{Z[(” +5)ay4+3— (n + Dapp1l + {Ans1 — Ans3 — b1 + buyal),
ﬁn+3 - ﬁn-i-l

wherea,, b,, ¢, andA,, are as in Lemma 4.7.

Using these equations we can get nonlinear recurrence relations for the three-term recurrence coeffi-
cients. The two equations presented in this theorem are just two out of five possible. It is important to
note that the nonlinear recurrence relations, which can be obtained by equating the first and third and the
second and fourth solutions fgy, are the same. O

The previous consideration leads to the conclusion that the coeffigjarespurely imaginary numbers.
This simple fact has a great impact on the monic polyno@iak=iq; /({f,)). Namely,

_ +1 1 S
05 =x°+i |:ocn o ; :|x ~7 [(n + 241 + noy—1 + I/—2Vli|
1
~5 [Bu1+ Btz — tns1(tng1 + ) — op—1(otn + 0n—1)] -

It can be seen that the roots gf have to be of the formyh and iy, or +x3 + iy1, since their sumis a

purely imaginary number and their product is real. All numerical experiments have shown that igpts of

are purely imaginary numbers. It was seen also that with increasioige zero tends to infinity over the
positive part of the imaginary axis and that the second one tends to zero again over the positive imaginary
axis. An idea of such behavior of the zeros is also supported in the expressiof. #as we can see, the

sum of the zeros increases withThe location of the zeros of the polynomigl is connected with the

zeros of the orthogonal polynomig),.

Theorem 4.8. If the polynomial;; does not have common zeros with then the zeros gf,, are simple.
If  is a multiple zero ofp,, with multiplicity k then it is also a zero of; with multiplicity x — 1. The
polynomialp,, can have a zero with multiplicity at most three.

Proof. Itis easy to check that, andp,_1 do not have zeros in common. Namely, if they do have some
common zeroa = t, then using the three-term recurrence relation, we can concludeithatzero of all
other polynomialgy, k =n — 2,..., 1. Then, since is a zero ofpy, its value is ig. It is easy to check
that po does not havexp as its zero.
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Now suppose that; and p, do not have zeros in common apg has a multiple zere. Then, using
(4.1), we see that

0= —1¢(1) p;, (1) = p5(D) pu () + ¢35 (1) pp—1(t) = g5 (1) pu—1(1) # 0,

which is a contradiction. Thus, all zeros gf are simple.

To conclude the rest, it is enough to see thaipp, — p3p, has the factolx — kL, Hence g5
has a zera of multiplicity k — 1. If the zero ofg; is double, therp, may have a zero with multiplicity
three. O

Theorem 4.9. The orthogonal polynomiah,, with respect to the weight (x) = x exp(imnx) on[—1, 1]

is a solution of the following differential equation

a3 (P393 — P393)
x¢

xoqs p, — Vg5 +xd(g3) 1p, + [(pZ)’qZ — p3(g5) + } pn =0,

whereps = —¢5~1/f,_1 andgs = ps 4+ (x —io—1)gs */B,_1. The termyl (phqh — piGh) has also

the factorx ¢.

Proof. Starting from two equations (4.8) and using the three-term recurrence relation, we can calculate

n—1 .
q -1 -1 X —loy—1 N R
—XPpp_1= —ﬂz P + (pﬁ + g5 5. z ) Pn—1=Papn + G5 pn-1.
n— n—

Substituting in this equation the value fpy,_1, calculated from the first equation and using Theorem
4.6, the proof of the statement is completed.

Since all terms, except; (p5q5 — p345), are divisible byx ¢, the mentioned term must be divisible
by x¢ as well. O

The following theorem can easily be proved. It can be used efficiently in the cases when zeros of the
polynomial p,, of very high degree are calculated.

Theorem 4.10. Under the assumption that the polynomigdsand p,, do not have zeros in commome
have the following system of equations

i n 2 1 1 . ny\/ l:l
pr(x) xp o xp =1 xp+1 q5(x}})
wherex!, v=1,...,n, are distinct zeros of the polynomig),.

It is well-known that theQ R-algorithm for finding zeros! can be ill-conditioned, when the Jacobi
matrix is not positive definite (s¢&3,21). Using the previous theorem, under mild assumption and with
appropriate starting values for the zend's a numerical construction can be performed using a similar
algorithm as given if21].
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5. Gaussian quadrature rule

In all numerical examples we have run, we were unable to find even one example of orthogonal
polynomials with multiple zeros. This means that Theorem 4.8 is not sharp enough. It also seems that
the zeros of the orthogonal polynomials are uniformly bounded, which is connected with the already
mentioned conjecture about an asymptotic behavior given in (3.5). It is known that, if the three-term
recurrence coefficients are uniformly bounded, the corresponding Jacobi matrix can be understood as a
linear operatov acting on the Hilbert spad of all complex square-summable sequences. Furthermore,
the uniform boundedness of the recursion coefficients implies the boundedness of this linear dperator
(see[1]). It is also known that the zeros of all orthogonal polynomials are bounded by the nafm of

Since we cannot claim that the zeros of orthogonal polynomials are simple, in applications we should
be ready to apply Gaussian quadrature rules which deal with multiplicities. In the case of multiple zeros
of orthogonal polynomials, the Gaussian quadrature rule has the following forri®($&@

n my—1
Gu(f)=Y_ > wi fPuh. (5.1)

v=1 k=0

According to considerations in the previous section, at most two nodes in (5.1) may have multiplicities.
However, as we mentioned before, in all our examples we have encountered simple nodes and we have
used the standard Gaussian quadrature rule

n

Gu(f) =) wif(x)). (5.2)

v=1

Distributions of the zeros of the orthogonal polynomialsdoe 2 and 22 are presentedig. 2 Only

the zeros of polynomials with degrees= 5(5)35 are displayed. The corresponding distribution of the
zeros form = 1000 is given inFig. 3 (left). For better visibility in the same figure (right) only the main
group of zeros is presented.

We can see that the distribution of the zeros is such that all zeros are with positive imaginary part,
except for one zero of polynomials of odd degree for which its real part is zero. From the figures we can
also conclude that all zeros are in the half-sftie C : |Rez| <1 A Im(z) > 0}, except maybe one zero
for polynomials of odd degree with real part equal to zero. Also, it is obvious thati#f increasing,
then the zeros of the polynomials are grouped around the p#ihtd his is the reason why th@ R-
algorithm in D-arithmetic cannot be used for a construction of zeros with a larfeg.,m = 10°).

Zeros of polynomials for very larga are very close to each other, so that they cannot be distinguished
in D-arithmetic.

Also, it can be seen that for a fixed if we increase degree of a polynomial, then the zeros tend to cover
theinterval—1, 1). Thisis, however, less obvious for largerbecause of the mentioned behavior of their
grouping near the point&1. This behavior is also in good agreement with the conjectured asymptotic
for the three-term recurrence coefficients (§:&0,12).

Since the zeros of the orthogonal polynomials are not contained in the supporting set of the measure
we cannot expect the quadrature rule (5.1) to converge, except for functions which are analytic in a certain
complex domairnz O [—1, 1]. Spurious zeros (sg@2]) for our sequence of orthogonal polynomials
were not detected.
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Fig. 2. Distribution of zeros fom = 2 (left) andm = 22 (right).
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Fig. 3. Distribution of zeros fom = 1000: all zeros (left) and selected zeros (right).

If we adopt the conjectures that the zeros are bounded and that there are no spurious zeros it can be
claimed that the Gaussian quadrature rules are convergent (for analytic integranfis3Jjsee

For a construction of the Gaussian quadrature rule@iRealgorithm is used (sefb,8]), but in a
modified form (sed16]). For example, in D-arithmetic fon = 10°, the maximal relative error in the
constructed Gaussian weights witk= 40 nodes is of magnitude6 102 and 10719 using the original
and the modified version of th@ R algorithm, respectively. Note also that the maximal relative error
in the constructed nodes, i-arithmetic using the) R-algorithm, is of magnitude 133 for the same
values ofn andn. In our experiments th@ R-algorithm exhibits stability. For values of extremely large
m (e.g.,n =10%), the Q R-algorithm executed if-arithmetic exhibits poor behavior. However, this is not
due to ill-conditioning, but rather to the fact that in D-arithmetic the zeros of the orthogonal polynomials
for m = 10° cannot be distinguished far sufficiently small (e.g.n of smaller order than £). The
phenomenon of bifurcation, encountered for generalized Bessel polynomialR{§gealso appears
for our orthogonal polynomials. In this case, a construction of the zeros of the orthogonal polynomials
(the nodes in the Gaussian quadrature rules) should be performed using (4.13). Starting values for the
zeros of the orthogonal polynomials in the Newton—Kantaron€thod can be the zeros obtained by the
Q R-algorithm or some other approximation of the zeros based on the presented figures.

In Table 3we give the nodes and the weights of the Gaussian formulas (5.2) (to 14 decimals only, to
save space) for = 10 and 20 points, when the weight functionuigx) = x exp(ilOnx) (m = 10).

A possible application of these quadratures is in numerical calculation of integrals involving highly
oscillatory integrands. We consider here the calculation of Fourier coefficients:

l .
Fm(f):Cm(f)+iSm(f):/lf(x)elmnx dx.
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Table 3

Nodesx!" and weightaw” for n = 10 andn = 20, whenm = 10

n
X,

n

w)

+0.99833323072985-i8.027293951963(-3)
+0.99100855292260- i4.3127353860182-2)
+0.97687553159994-i1.1013718224261-1)
+0.95373342919595-i2.1833923751031-1)
+0.91584375790176-i13.9367290146258-1)

+0.99846411789590- i3.8408078263538-3)
+0.9918315335487% i2.0347206579223-2)
+0.97957734645900- i5.0510187350466-2)
+0.96109698530124-19.5210986930994-2)
+0.93538991039429- i1.5590937196538-1)
+0.90085641267460-i2.349581142314(-1)
+0.85489295111768- i3.3624578190485-1)
+0.7929884012705% i4.6668799320411-1)

+2.6219203933830-3) — i1.6185441353473-2)
F4.253666730254@2-4) — i1.3094541072322-2)
F1.062130433555/F3) — i2.4769593783534-3)
F1.2031273072243-4) — i7.4485602824591-5)
F8.9861059280033-7) + i4.3878859382919-7)

+3.1046382565034-3) — i8.8805764375599-3)
+1.9244416480364-3) — i1.296864029257(F2)
F1.6177820964010-3) —i7.9111318842472-3)
F1.832401534650F3) — i2.0568347704191-3)
F5.3091855800340-4) — i5.9554706994496-5)
F3.6520885773394-5) + i4.334254047494(-5)
+1.710244250296(7-6) + i2.4540197057364-6)
+4.515689961552(7-8) — i4.715199508352(1-8)

+0.70627510516459- 16.4046420228669-1)
+0.57200700024404- i8.9689758832390-1)

F3.9409685347890-10) + i6.5422096655704-11)
+1.3302611178010-13) — i1.8953246644963-13)

Sincef_ll expimnx)dx = 0, we have

1 _ 0 )
F(f) = / 1 T T g gy = f ¢() du().

so that we can compute it using the Gaussian quadrature rules (5.2) of the fundgfined by

— (0
=TOZT0 co= 10

g(x)
Under the assumption thgtis analytic in some domaig O [—1, 1], the numerical integration can be
safely applied, since is also analytic inz.

In general, for some analytic functigfy the approximation of the integral with respect to the measure
exp(imnx)dx, can be given as

1 . n w'
Fah) = [ fwdmde~ 3 B (6 - £ (5.3)
- y=1 "V
Example 5.1. We can get an interesting result if we apply our quadrature rule ferl0 to the function
fx) = )ﬁ According to (5.3), we consider

1 x _ < wy
SlO(f):/_l msm(lOnx)dx ~ Gn(f)zlm [; m] .



G.V. Milovanow, A.S. Cvetkovi/ Journal of Computational and Applied Mathematics 179 (2005) 263—-28285

Table 4

Gaussian approximatior@, () andG, (f) for S1o(f) and £ (x) = x/(x2 + 1/4)

n

Gn(f)

Gn(f)

10
20
30
40
50
60
70

—0.0509124802888631
—0.0509124798498521
—0.0509124699339274
—0.0509120078597894
—0.0509120064014030
—0.0509120064013063
—0.0509120064013063

—0.0509120068454231
—0.0509120064064121
—0.0509119964904873

0.5 1

Fig. 4. Distribution of zeros for polynomials orthogonal with respect to the weight funeti@n = x exp(il0zx) on[—1, 1].

The Gaussian approximations for= 10(10)70 are given infable 4 The functionf has simple poles
atz = +i/2. Finding the residuum at the poiht=i/2, we obtainR = Im{2xi Resz=i/2[f(z)e'10”2]} =

4.73443440119810 7.

If we simply add this value t@,(f), we can significantly improve the results fox 40, as can be
checked inTable 4(the columnG,(f) = G,(f) + R). The reason for such behavior of the quadrature
rules we can find in the zero distribution for polynomials orthogonal with respect to the weight=

x exp(il0nx) on[—1, 1] (seeFig. 4). As we can see, while the convex hull of the zeros includes the point

A =1i/2 (cases fon <30), this singularity has an influence on the Gaussian approximafip6g). But,
when zeros drop below (for n >40), this influence ceases.
If we increasen, for example takingn = 30, 100, 106, the convergence is rather fasfeable 5shows
G (f) form = 30 and 100. Fom = 1P, the relative error irG1o( f) is smaller than 10°°.
This faster convergence can be understood easily, since values of the residutiiiZaare decreasing
exponentially withm, so it cannot harm the convergence.

Example 5.2. In this example, we present poor convergence results for an entire function. Consider

f(x) =cog10Px3 + x), i.e., the integral

1 )
Ln(f) = / cog10°x3 + x)x€™™ dy.
1
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Table 5
Gaussian approximatiors, (f) for S3o(f) andS100(f)

m n Gn(f)
30 10 —0.0169759131766787207976
20 —0.0169759131766780460809
30 —0.0169759131766780460809
100 10 —0.00050929580138121841037438653708
20 —0.00050929580138121841037438653707
Table 6

Gaussian approximatio,, ( f) for the integrall,, (f), m = 103

n 10 20 30 40 . 200
Gn(f) 1.2(516)i —7.1(1224)i —7.9(1967)i 52(2725i —2.2(15192)i
Table 7

Gaussian approximatio@, ( f) and corresponding relative errgr for the integrall,, (f), m = 106

n _iGn (f) In

6 3.662375550592334-7) 4.0(—-8)

8 3.6623756970849377) 1.1(-10
10 3662375697480965-7) 2.9(-13
12 3662375697482014-7) m.p.

Takingm = 10° and applying the Gaussian quadrature rule (5.2), we get the results gikalét These
results are not obtained in the stand@rearithmetic, but by using an extended exponent arithmetic (in
MATHEMATICA package). Since the absolute valuelgf f) has to be smaller than 1, it can be seen that
we do not have convergence fog 200.

The reason for such poor behavior of the quadrature rules is easy to understand. The quadrature surr
has the form

Gu(f) =) wlcog10(x)® +x]),

v=1

as it can be seen froffig. 3, zeros of orthogonal polynomials fer = 10° have imaginary values about
0.02, while real parts are close to 1 fex 35, so that values of the cos-function are to be evaluated in
points with imaginary parts: 6 x 103, i.e.,

cog10°(x")% + x") ~ cog10°(1 + 0.02i)3 + 1+ 0.02i) ~ cog10° + 6 x 10%),

and these values are huge. It takes much moresihar200 for the zeros of orthogonal polynomials to
come over the intervdl-1, 1]. The same behavior occurs when an integration of any such function is
considered, for example cd<Px).

However, ifm is increased to 10 the convergence is evident (Sesble 7. An application of quadrature
rules to the functioryf (x)=cog10°x3+x) gives results to machine precision with only twelve pointsinthe
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quadrature sunTable 7shows the resultsiG, (f) and the corresponding relative erreys= (G, (f) —
L,(f)/I.(f)| (m.p. stands for machine precision in double precision arithneetiz.22- 1016)). Here
it is important to note that the imaginary part of the zeros is of magnitudé Waile real parts are still
close to 1 fom = 12, so that the demonstrated effect #or= 10° cannot appear.
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