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Abstract
Some Zygmund-type integral inequalities for the polar derivatives of complex
polynomials, inspired by the classical Bernstein-type inequalities that relate the
uniform norms of polynomials and their derivatives on the unit circle, are
investigated. The obtained results sharpen as well as generalize some already known
Lδ-estimates between polynomials and their polar derivatives.

MSC: 30A10; 30C10; 30D15

Keywords: Polar derivative; Zygmund-type inequality; Integral norm

1 Introduction and preliminaries
Let P(z) :=

∑n
ν=0 aνzν be a complex polynomial of degree n and P′(z) be its derivative.

There is a well-known classical Bernstein result for two polynomials P(z) and Q(z) with
degree of P(z) not exceeding that of Q(z) and Q(z) �= 0 for |z| > 1. Namely, the inequality
|P(z)| ≤ |Q(z)| on the unit circle |z| = 1 implies the inequality of their derivatives |P′(z)| ≤
|Q′(z)| on |z| = 1. In particular, this result allows one to establish the famous Bernstein
inequality [3] in the uniform norm on the unit circle, i.e., if P(z) is a polynomial of degree
n, it is true that

max
|z|=1

∣
∣P′(z)

∣
∣ ≤ n max

|z|=1

∣
∣P(z)

∣
∣. (1.1)

This inequality (1.1) was proved by Bernstein in 1912, and is best possible with equality
holding for monomials P(z) = czn, where c is an arbitrary complex number. If we restrict
ourselves to the class of polynomials having no zeros in |z| < 1, then inequality (1.1) can
be sharpened. In fact, Erdős conjectured and later Lax [8] proved that, if P(z) �= 0 in |z| < 1,
then

max
|z|=1

∣
∣P′(z)

∣
∣ ≤ n

2
max
|z|=1

∣
∣P(z)

∣
∣. (1.2)
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In 1969 Malik [9] proved an extension of (1.2) under the condition that P(z) �= 0 in |z| < k,
where k ≥ 1, i.e.,

max
|z|=1

∣
∣P′(z)

∣
∣ ≤ n

1 + k
max
|z|=1

∣
∣P(z)

∣
∣. (1.3)

This inequality was generalized in different directions. Chan and Malik [4] proved that,
if P(z) = a0 +

∑n
j=μ ajzj, μ ≥ 1, is a lacunary polynomial of degree n and P(z) �= 0 in |z| < k,

k ≥ 1, then

max
|z|=1

∣
∣P′(z)

∣
∣ ≤ n

1 + kμ
max
|z|=1

∣
∣P(z)

∣
∣. (1.4)

Inequality (1.4) was independently proved by Qazi (see [17], Lemma 1), who also under
the same conditions proved that

max
|z|=1

∣
∣P′(z)

∣
∣ ≤ n

1 + S0(μ)
max
|z|=1

∣
∣P(z)

∣
∣, (1.5)

where

S0(μ) = kμ+1
( ( μ

n )| aμ

a0
|kμ–1 + 1

( μ

n )| aμ

a0
|kμ+1 + 1

)

≥ kμ. (1.6)

For a polynomial P(z) of degree n, now we define the so-called the polar derivative of
P(z) with respect to the point α as

DαP(z) := nP(z) + (α – z)P′(z).

This polynomial DαP(z) is of degree at most n–1 and it generalizes the ordinary derivative
P′(z) in the following sense:

lim
α→∞

{
DαP(z)

α

}

= P′(z),

uniformly with respect to z for |z| ≤ R and R > 0.
Aziz [1] was among the first who expanded some of the above inequalities by replacing

the ordinary derivative with polar polynomial derivatives. In fact, In 1988, Aziz proved
that, if P(z) is a polynomial of degree n and P(z) �= 0 in |z| < k, with k ≥ 1, then for each
complex number α such that |α| ≥ 1,

max
|z|=1

∣
∣DαP(z)

∣
∣ ≤ n

( |α| + k
1 + k

)

max
|z|=1

∣
∣P(z)

∣
∣. (1.7)

Dividing both sides of inequality (1.7) by |α| and letting |α| → ∞, we obtain (1.3).
Over the last four decades many different authors produced a large number of results

pertaining to the polar derivative of polynomials. More information on this topic can be
found in the books of Milovanović et al. [11], Rahman and Schmeisser [18], and Marden
[10]. One can also see in the literature (for example, refer [6, 7, 12, 13, 15, 16, 19]) the latest
research and development in this direction. Recently, Mir [12] extended (1.7) to the class
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of lacunary type polynomials P(z) = a0 +
∑n

ν=μ aνzν , μ ≥ 1, not vanishing in |z| < k, k ≥ 1,
by first proving an Lδ-norm estimate of the polar derivative DαP(z) with |α| ≥ 1 and then
from the result so obtained produced the desired generalization of (1.7). More precisely,
Mir proved the following result.

Theorem 1.1 (cf. [12]) If P(z) = a0 +
∑n

ν=μ aνzν , 1 ≤ μ ≤ n, is a lacunary polynomial of
degree n having no zero in |z| < k, where k ≥ 1, then for every δ > 0 and for every complex
number α such that |α| ≥ 1,

{∫ 2π

0

∣
∣DαP

(
eiθ )∣∣δ dθ

} 1
δ ≤ n

(|α| + kμ
)
Cδ

(
kμ

)
{∫ 2π

0

∣
∣P

(
eiθ )∣∣δ dθ

} 1
δ

, (1.8)

where

Cδ

(
kμ

)
=

{
1

2π

∫ 2π

0

∣
∣kμ + eiβ ∣

∣δ dβ

}– 1
δ

. (1.9)

If we let δ → ∞ in (1.8), noting that Cδ(kμ) → 1/(1 + kμ), we get

max
|z|=1

∣
∣DαP(z)

∣
∣ ≤ n

( |α| + kμ

1 + kμ

)

max
|z|=1

∣
∣P(z)

∣
∣, (1.10)

which clearly represents a generalization of (1.7). In the same paper, Mir [12] further gen-
eralized inequalities (1.8) and (1.10) by proving the following result.

Theorem 1.2 (cf. [12]) If P(z) = zs(a0 +
∑n–s

j=μ ajzj), 1 ≤ μ ≤ n – s, 0 ≤ s ≤ n – 1, is a poly-
nomial of degree n having s-fold zeros at the origin and the remaining n – s zeros in |z| ≥ k,
k ≥ 1, then for every complex number α such that |α| ≥ 1,

{∫ 2π

0

∣
∣DαP

(
eiθ )∣∣δ dθ

} 1
δ ≤ {

(n – s)
(|α|+ kμ

)
Cδ

(
kμ

)
+ s|α|}

{∫ 2π

0

∣
∣P

(
eiθ )∣∣δ dθ

} 1
δ

, (1.11)

where Cδ(kμ) is as defined in (1.9).

Making δ → ∞ in (1.11), we get

max
|z|=1

∣
∣DαP(z)

∣
∣ ≤

(
n(|α| + kμ) + s(|α| – 1)kμ

1 + kμ

)

max
|z|=1

∣
∣P(z)

∣
∣, (1.12)

which clearly is a generalization of (1.10).
The main aim of this paper is to further generalize and strengthen all the previous men-

tioned inequalities by establishing some general Zygmund-type integral inequalities for
polynomials involving the polar derivative. The obtained results represent polar deriva-
tive analogues of some classical Bernstein-type inequalities in the uniform norm on the
unit circle and include also several interesting generalizations and refinements of some
Lδ-norm inequalities for polynomials.
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2 Main results
Here, we first prove the following more general inequality which includes not only (1.8) as
a special case, but also derived polar derivative analogues of some classical Bernstein-type
inequalities that relate the uniform norm of a polynomial to that of its derivative on the
unit disk.

Theorem 2.1 If P(z) = a0 +
∑n

j=μ ajzj, 1 ≤ μ ≤ n, is a lacunary polynomial of degree n such
that P(z) �= 0 in |z| < k, where k ≥ 1, then for all complex numbers α and β , with |α| ≥ 1
and δ ≥ 1,

{∫ 2π

0

∣
∣
∣
∣e

iθ DαP
(
eiθ ) + nβ

( |α| – 1
1 + S0(μ)

)

P
(
eiθ)

∣
∣
∣
∣

δ

dθ

} 1
δ

≤ n
[(|α| + S0(μ)

)
+ |β|(|α| – 1

)]
Cδ

(
S0(μ)

)
{∫ 2π

0

∣
∣P

(
eiθ )∣∣δ dθ

} 1
δ

, (2.1)

where

Cδ

(
S0(μ)

)
=

{
1

2π

∫ 2π

0

∣
∣S0(μ) + eit∣∣δ dt

}– 1
δ

(2.2)

and S0(μ) is defined by formula (1.6).

In the limiting case, when δ → ∞, the result is best possible for β = 0 and equality in
(2.1) holds for P(z) = (zμ + kμ)n/μ, where n is a multiple of μ and α ≥ 1. Setting μ = 1 in
Theorem 2.1, we obtain the following result.

Corollary 2.2 If P(z) =
∑n

j=0 ajzj is a lacunary polynomial of degree n such that P(z) �= 0 in
|z| < k, where k ≥ 1, then for all complex numbers α and β , with |α| ≥ 1 and δ ≥ 1,

{∫ 2π

0

∣
∣
∣
∣e

iθ DαP
(
eiθ ) + nβ

( |α| – 1
1 + S1

)

P
(
eiθ )

∣
∣
∣
∣

δ

dθ

} 1
δ

≤ n
[(|α| + S1

)
+ |β|(|α| – 1

)]
Bδ

{∫ 2π

0

∣
∣P

(
eiθ)∣∣δ dθ

} 1
δ

, (2.3)

where

S1 = k2
( | a1

na0
| + 1

| a1
na0

|k2 + 1

)

and

Bδ =
{

1
2π

∫ 2π

0

∣
∣S1 + eit∣∣δ dt

}– 1
δ

.

Remark 2.3 For k = 1, we have S1 = 1 and Corollary 2.2 reduces to a result of Mir and
Wani [16] for δ ≥ 1. Dividing the two sides of (2.3) by |α| and letting |α| → ∞, we get the
following result.
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Corollary 2.4 If P(z) =
∑n

j=0 ajzj is a lacunary polynomial of degree n such that P(z) �= 0 in
|z| < k, where k ≥ 1, then for each complex number β and δ ≥ 1,

{∫ 2π

0

∣
∣
∣
∣e

iθ P′(eiθ ) +
nβ

1 + S1
P
(
eiθ)

∣
∣
∣
∣

δ

dθ

} 1
δ ≤ n

(|β| + 1
)
Bδ

{∫ 2π

0

∣
∣P

(
eiθ )∣∣δ dθ

} 1
δ

, (2.4)

where S1 and Bδ are as defined in Corollary 2.2.

Taking β = 0 in Theorem 2.1, we obtain the following result.

Corollary 2.5 If P(z) = a0 +
∑n

j=μ ajzj, 1 ≤ μ ≤ n, is a lacunary polynomial of degree n
having no zeros in |z| < k, k ≥ 1, then for each complex number α such that |α| ≥ 1 and
δ ≥ 1, we have

{∫ 2π

0

∣
∣DαP

(
eiθ )∣∣δ dθ

} 1
δ ≤ n

(|α| + S0(μ)
)
Cδ

(
S0(μ)

)
{∫ 2π

0

∣
∣P

(
eiθ )∣∣δ dθ

} 1
δ

, (2.5)

where S0(μ) is defined by formula (1.6) and Cδ(S0(μ)) is as defined by (2.2).

In the limiting case, when δ → ∞, the result is best possible and equality in (2.5) holds
for P(z) = (zμ + kμ)n/μ, where n is a multiple of μ and α ≥ 1.

Remark 2.6 If P(z) = a0 +
∑n

j=μ ajzj �= 0 in |z| < k, k ≥ 1, then by Lemma 3.5 for s = 0, we
have ψ0(μ) = S0(μ) ≥ kμ. Taking a = |α| ≥ 1, b = S0(μ), c = kμ in Lemma 3.3, we obtain the
following inequality:

|α| + S0(μ)
{∫ 2π

0 |S0(μ) + eiβ |δ dβ}1/δ
≤ |α| + kμ

{∫ 2π

0 |eiβ + kμ|δ dβ}1/δ
,

which holds for each δ ≥ 1. This shows that Corollary 2.5 sharpens the bound in (1.8).

Remark 2.7 Inequality (2.5) has also been recently established by Kumar [7].

Dividing both the sides of (2.5) by |α| and letting |α| → ∞, we get Theorem 2.1 of Gard-
ner and Weems [5] (see also Mir, Dewan, and Singh [14]).

It is important to mention that inequalities involving polynomials in the uniform norm
on the unit circle in the complex plane are special cases of the polynomial inequalities
involving the integral norm. For example, if we let δ → ∞ in (2.5), noting that Cδ(S0(μ)) →
1/(1 + S0(μ)), we get the following refinement of (1.10).

Corollary 2.8 If P(z) = a0 +
∑n

j=μ ajzj, 1 ≤ μ ≤ n, is a lacunary polynomial of degree n
having no zeros in |z| < k, k ≥ 1, then for each complex number α such that |α| ≥ 1, we
have

max
|z|=1

∣
∣DαP(z)

∣
∣ ≤ n

( |α| + S0(μ)
1 + S0(μ)

)

max
|z|=1

∣
∣P(z)

∣
∣, (2.6)

where S0(μ) is as defined in formula (1.6).
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As an application of Corollary 2.5, we shall also prove the following result which provides
a generalization of (1.11) and many other related results.

Theorem 2.9 If P(z) = zs(a0 +
∑n–s

j=μ ajzj), with 0 ≤ s ≤ n–1 and 1 ≤ μ ≤ n–s, is a lacunary
polynomial of degree n having s-fold zeros at the origin and the remaining n – s zeros in
|z| ≥ k, where k ≥ 1, then for every complex number α such that |α| ≥ 1 and δ ≥ 1, the
following inequality

{∫ 2π

0

∣
∣DαP

(
eiθ )∣∣δ dθ

} 1
δ

≤ [
(n – s)

(|α| + ψs(μ)
)
Cδ

(
ψs(μ)

)
+ s|α|]

{∫ 2π

0

∣
∣P

(
eiθ )∣∣δ dθ

} 1
δ

(2.7)

holds, where

ψs(μ) = kμ+1
{ ( μ

n–s )| aμ

a0
|kμ–1 + 1

( μ

n–s )| aμ

a0
|kμ+1 + 1

}

and

Cδ

(
ψs(μ)

)
=

{
1

2π

∫ 2π

0

∣
∣ψs(μ) + eiβ ∣

∣δ dβ

}– 1
δ

.

In the limiting case, when δ → ∞, the result is best possible for s = 0 and equality in (2.7)
holds for P(z) = (zμ + kμ)n/μ, where n is a multiple of μ and α ≥ 1.

Remark 2.10 For s = 0, Theorem 2.9 reduces to Corollary 2.5.

Remark 2.11 By Lemma 3.5, we have ψs(μ) ≥ kμ. Taking a = |α| ≥ 1, b = ψs(μ), c = kμ in
Lemma 3.3, we get, for each δ ≥ 1,

|α| + ψs(μ)
{∫ 2π

0 |ψs(μ) + eiβ |δ dβ}1/δ
≤ |α| + kμ

{∫ 2π

0 |kμ + eiβ |δ dβ}1/δ
.

This shows that Theorem 2.9 sharpens the bound in (1.11).

Remark 2.12 Making δ → ∞ in (2.7), we get

max
|z|=1

∣
∣DαP(z)

∣
∣ ≤

(
n(|α| + ψs(μ)) + s(|α| – 1)ψs(μ)

1 + ψs(μ)

)

max
|z|=1

∣
∣P(z)

∣
∣, (2.8)

where ψs(μ) is as defined in Theorem 2.9. It is easy to verify that, for every complex num-
ber α with |α| ≥ 1 and k ≥ 1, the function

x �→ n(|α| + x) + s(|α| – 1)x
1 + x

, x ≥ 0,

is a nonincreasing function in x. If we combine this fact with Lemma 3.5, according to
which ψs(μ) ≥ kμ for μ ≥ 1, we find that the right-hand side of (2.8) does not exceed the
right-hand side of (1.12). Thus (2.8) represents a refinement of (1.12).
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3 Auxiliary results
In order to prove our main results (Theorems 2.1 and 2.9), we need the following lemmas.

Lemma 3.1 Let P(z) = a0 +
∑n

ν=μ aνzν , μ ≥ 1, be a lacunary polynomial of degree n without
zeros in the disc |z| < k, where k ≥ 1. Then on |z| = 1,

S0(μ)
∣
∣P′(z)

∣
∣ ≤ ∣

∣Q′(z)
∣
∣ (3.1)

and

μ

n

∣
∣
∣
∣
aμ

a0

∣
∣
∣
∣k

μ ≤ 1, (3.2)

where Q(z) = znP(1/z̄) and S0(μ) is as defined by (1.6).

The above lemma is implicit in Qazi [17].
The next two lemmas have been recently proved by Govil and Kumar [6].

Lemma 3.2 If p and q are arbitrary positive real numbers such that q ≥ px, where x ≥ 1,
and if β is any real number such that 0 ≤ β < 2π , then

q + py
x + y

≤
∣
∣
∣
∣
q + peiβ

x + eiβ

∣
∣
∣
∣

for each y ≥ 1.

Lemma 3.3 For real numbers a ≥ 1, b ≥ c ≥ 1, and δ > 0, we have the following inequality:

a + b
{∫ 2π

0 |eiθ + b|δ dθ}1/δ
≤ a + c

{∫ 2π

0 |eiθ + c|δ dθ}1/δ
.

We need also the following lemma proved by Aziz and Shah [2].

Lemma 3.4 Let P(z) be a polynomial of degree n and Q(z) be defined by Q(z) = znP(1/z̄).
Then, for every δ > 0, the following inequality

∫ 2π

0

∫ 2π

0

∣
∣Q′(eiθ ) + eiϕP′(eiθ )∣∣δ dϕ dθ ≤ 2πnδ

∫ 2π

0

∣
∣P

(
eiθ )∣∣δ dθ

holds.

Lemma 3.5 Let P(z) be a lacunary polynomial of degree n having s-fold zeros at the origin
and the remaining n – s zeros in |z| ≥ k, where k ≥ 1, i.e.,

P(z) = zs

(

a0 +
n–s∑

j=μ

ajzj

)

, 0 ≤ s ≤ n – 1, 1 ≤ μ ≤ n – s.

Then

ψs(μ) = kμ+1
{ ( μ

n–s )| aμ

a0
|kμ–1 + 1

( μ

n–s )| aμ

a0
|kμ+1 + 1

}

≥ kμ.
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Proof We put P(z) = zsφ(z), with

φ(z) = a0 +
n–s∑

ν=μ

aνzν ,

and suppose that φ(z) �= 0 in the disc |z| < k, where k ≥ 1.
Then on applying inequality (3.2) of Lemma 3.1 to the polynomial φ(z) of degree n – s,

we get

(
μ

n – s

)∣
∣
∣
∣
aμ

a0

∣
∣
∣
∣k

μ ≤ 1,

which is equivalent to

(
μ

n – s

)∣
∣
∣
∣
aμ

a0

∣
∣
∣
∣k

μ(k – 1) ≤ k – 1,

which implies

(
μ

n – s

)∣
∣
∣
∣
aμ

a0

∣
∣
∣
∣k

μ+1 + 1 ≤
(

μ

n – s

)∣
∣
∣
∣
aμ

a0

∣
∣
∣
∣k

μ + k,

from which Lemma 3.5 follows. �

4 Proofs of main results
Proof of Theorem 2.1 By hypothesis we have P(z) = a0 +

∑n
j=μ ajzj �= 0 in |z| < k, where

k ≥ 1. Supposing Q(z) = znP(1/z̄), we conclude that P(z) = znQ(1/z̄) and it can be easily
checked that, for each θ (0 ≤ θ < 2π ),

nP
(
eiθ) – eiθ P′(eiθ) = ei(n–1)θ Q′(eiθ

)
,

as well as for polar derivative

DαP
(
eiθ ) = nP

(
eiθ ) +

(
α – eiθ )P′(eiθ ),

where α ∈ C. Using these equalities, we obtain

∣
∣DαP

(
eiθ )∣∣ ≤ ∣

∣nP
(
eiθ) – eiθ P′(eiθ )∣∣ + |α|∣∣P′(eiθ)∣∣

=
∣
∣Q′(eiθ)∣∣ + |α|∣∣P′(eiθ)∣∣. (4.1)

Now, for δ ≥ 1, using Minkowski’s inequality, we get

{∫ 2π

0

∣
∣S0(μ) + eit∣∣δ dt

∫ 2π

0

∣
∣
∣
∣e

iθ DαP
(
eiθ) + nβ

( |α| – 1
1 + S0(μ)

)

P
(
eiθ )

∣
∣
∣
∣

δ

dθ

} 1
δ

=
{∫ 2π

0

∫ 2π

0

∣
∣S0(μ) + eit∣∣δ

×
∣
∣
∣
∣e

iθ DαP
(
eiθ ) + nβ

( |α| – 1
1 + S0(μ)

)

P
(
eiθ)

∣
∣
∣
∣

δ

dθ dt
} 1

δ
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≤
{∫ 2π

0

∫ 2π

0

∣
∣S0(μ) + eit∣∣δ

∣
∣DαP

(
eiθ)∣∣δ dθ dt

} 1
δ

+ n|β|(|α| – 1
)
{∫ 2π

0

∫ 2π

0

∣
∣
∣
∣
S0(μ) + eit

1 + S0(μ)

∣
∣
∣
∣

δ∣
∣P

(
eiθ )∣∣δ dθ dt

} 1
δ

≤
{∫ 2π

0

∫ 2π

0

∣
∣S0(μ) + eit∣∣δ

∣
∣DαP

(
eiθ)∣∣δ dθ dt

} 1
δ

+ n|β|(|α| – 1
)
(2π )1/δ

{∫ 2π

0

∣
∣P

(
eiθ )∣∣δ dθ

} 1
δ

. (4.2)

Recall that P(z) �= 0 in |z| < k, where k ≥ 1, we have by inequality (3.1) of Lemma 3.1 for
0 ≤ θ < 2π ,

S0(μ)
∣
∣P′(eiθ)∣∣ ≤ ∣

∣Q′(eiθ )∣∣.

This gives, by taking p = |P′(eiθ )|, q = |Q′(eiθ )|, and x = S0(μ) in Lemma 3.2, for each com-
plex number α with y = |α| ≥ 1,

(∣
∣Q′(eiθ )∣∣ + |α|∣∣P′(eiθ)∣∣

)∣
∣S0(μ) + eit∣∣

≤ (
S0(μ) + |α|)∣∣∣∣Q′(eiθ )∣∣ + eit∣∣P′(eiθ )∣∣

∣
∣. (4.3)

On applying (4.1) and (4.3), we get, for each δ ≥ 1,

∫ 2π

0

∣
∣S0(μ) + eit∣∣δ dt

∫ 2π

0

∣
∣DαP

(
eiθ )∣∣δ dθ

=
∫ 2π

0

∫ 2π

0

∣
∣S0(μ) + eit∣∣δ

∣
∣DαP

(
eiθ )∣∣δ dt dθ

≤
∫ 2π

0

∫ 2π

0

∣
∣S0(μ) + eit∣∣δ

[∣
∣Q′(eiθ )∣∣ + |α|∣∣P′(eiθ )∣∣

]δ dt dθ

≤ (
S0(μ) + |α|)δ

∫ 2π

0

∫ 2π

0

∣
∣
∣
∣Q′(eiθ)∣∣ + eit∣∣P′(eiθ)∣∣

∣
∣δ dt dθ . (4.4)

Since for each δ ≥ 1 and arbitrary a, b ∈C the equality

∫ 2π

0

∣
∣a + eitb

∣
∣δ dt =

∫ 2π

0

∣
∣|a| + eit|b|∣∣δ dt

holds, using Lemma 3.4 for each δ ≥ 1 and |α| ≥ 1, we obtain

∫ 2π

0

∣
∣S0(μ) + eit∣∣δ dt

∫ 2π

0

∣
∣DαP

(
eiθ )∣∣δ dθ

≤ (
S0(μ) + |α|)δ

∫ 2π

0

∫ 2π

0

∣
∣Q′(eiθ ) + eitP′(eiθ)∣∣δ dt dθ

≤ (
S0(μ) + |α|)δ2πnδ

∫ 2π

0

∣
∣P

(
eiθ )∣∣δ dθ ,
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which on raising the power 1/δ on both sides and then using in (4.2) gives (2.1), and this
completes the proof of Theorem 2.1. �

Proof of Theorem 2.9 As in Lemma 3.5, we put P(z) = zsφ(z), where

φ(z) = a0 +
n–s∑

j=μ

ajzj, 1 ≤ μ ≤ n – s,

is a polynomial of degree n – s having no zeros in |z| < k, where k ≥ 1. Applying Corol-
lary 2.5 to the polynomial φ(z) of degree n – s, we obtain, for |α| ≥ 1 and δ ≥ 1,

{∫ 2π

0

∣
∣Dαφ

(
eiθ )∣∣δ dθ

} 1
δ ≤ (n – s)(|α| + ψs(μ))

{ 1
2π

∫ 2π

0 |ψs(μ) + eiβ |δ dβ} 1
δ

{∫ 2π

0

∣
∣φ

(
eiθ)∣∣δ dθ

} 1
δ

. (4.5)

Now

DαP(z) = nP(z) + (α – z)P′(z)

= nzsφ(z) + (α – z)
(
szs–1φ(z) + zsφ′(z)

)

= zs((n – s)φ(z) + (α – z)φ′(z)
)

+ αszs–1φ(z)

= zsDαφ(z) + sαzs–1φ(z),

which implies

zDαP(z) = zs+1Dαφ(z) + sαP(z). (4.6)

Hence, for 0 ≤ θ < 2π , then from (4.6) we get

∣
∣DαP

(
eiθ )∣∣ =

∣
∣ei(s+1)θ Dαφ

(
eiθ ) + sαP

(
eiθ )∣∣,

which gives, by using Minkowski’s inequality for δ ≥ 1,

{∫ 2π

0

∣
∣DαP

(
eiθ )∣∣δ dθ

} 1
δ

=
{∫ 2π

0

∣
∣ei(s+1)θ Dαφ

(
eiθ ) + sαP

(
eiθ )∣∣δ dθ

} 1
δ

≤
{∫ 2π

0

∣
∣Dαφ

(
eiθ )∣∣δ dθ

} 1
δ

+ s|α|
{∫ 2π

0

∣
∣P

(
eiθ )∣∣δ dθ

} 1
δ

. (4.7)

Using (4.5) in (4.7) and noting that

∣
∣φ

(
eiθ )∣∣ =

∣
∣eisθφ

(
eiθ )∣∣ =

∣
∣P

(
eiθ )∣∣,
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it follows that, for every |α| ≥ 1 and δ ≥ 1,

{∫ 2π

0

∣
∣DαP

(
eiθ )∣∣δ dθ

} 1
δ

≤
(

(n – s)(|α| + ψs(μ))
{ 1

2π

∫ 2π

0 |ψs(μ) + eiβ |δ dβ}1/δ
+ s|α|

){∫ 2π

0

∣
∣P

(
eiθ )∣∣δ dθ

} 1
δ

,

which is inequality (2.7), and this completes the proof of Theorem 2.9. �

5 Conclusion
We establish some Zygmund-type integral inequalities for the polar derivative of polyno-
mials that are inspired by the classical Bernstein-type inequalities that relate the sup-norm
of a polynomial to that of its derivative on the unit circle. The obtained results sharpen
and generalize some already known estimates that relate the Lδ-norms of polynomials and
their polar derivatives.
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