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An Extremal Problem for Polynomials
with Nonnegative Coefficients IV

A. Guessab*, G. V. Milovanovi¢™™*

Presented by V. Popov

Let 2 be the set of all algebraic polynomials of exact degree n, whose coefficients are all nonnegative.
For the norm in L”[0, co) with generalized Laguerre weight function w(x)=x"e™*(a> —1), the
extremal problem Cw(a)= sup (I1Q"1I,/11Q 1, is solved when p=3.

Qe?’,

1. Introduction

In this work we give the complete solution of an analogous problem which
has been investigated recently by A. K. Varma [5] and G. V. Milovanovic[1]

Let 2 be the set of all algebraic polynomials of exact degree n, all
coefficients of which are nonnegative, i.e.,

P = X)= a x", a2 =0, 1,...,n—1),a,>0;-
F=40,10,(x)= £ a,x* 0 (k=0, 1 1),a,>0
k=0

We denote by 29 the subset of 2,7 for which a,=0; we note that Q(0)=0 for
each Q in 2?.
. Let w(x)=x%¢ *(a> —1) be ai/weight function on [0, ). For Q,e?, , we
+ o 14

define || Q, |l p=[ j' w(x)QF(x)dx , p=1, and consider the following extremal

0
problem : :
Determine the best constant in the inequality
(1.1) I Qnll=Cop(@) 1 Qs I3, QuEPn

i.e.,
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1 Quls
1.2 Cpp(@)= :
2 L TN

In the case p=2. G. V. Milovanovic¢ [1] proved the following result:
Theorem A. The best constant C, ,(x) defined in (1.1) is

1

o . -

2+o) (1 +a) if —l<asa,
Cn,Z(a)= n2

i <

n+a)n+a—1) if a,Sa<+o0,

1
where a"=m((17"2+2"+1)”2-—3n+1),

An extremal problem for higher derivatives of nonnegative polynomials with
respect to the same weight was investigated in [4]. A similar problem for Freud’s
weight function has been done by G. V. Milovanovi¢ and R. Z. Dordevit
[3]. A survey about extremal problems of Markov’s type for algebraic polynomials
is given in [2].

In this work we consider the extremal problem (1.1) for p=3.

Firstly, we note that the supremum in our extremal problem (1.2) is attained
for some Qe#?, i.e.,

1oz o uz) (n ol 5)
e _ _ .
o () ;‘L‘i(uan) Zl’.fg(llcuz AN

a 20
0

2. Some Auxiliary Results

1 1
Lemma 1. Let peN* and q such that ;+(—I= 1. If Q, e, then for every x=0
the inequality ’
p
(2.1 (xQn(x)P=Q,(x)~ " T spx' QP (x)
i=1
holds, where s\’ are the Stirling’s numbers of the second kind.
Proof. Let Q,e?;,i.e, Q,(x)= £ a,x* with ¢, 20 (k=0, 1,...,n). Using
0

k=
the Cauchy-Schwarz inequality

n 1/q n 1/p
él:z lxqu] I:): |yk|p] s
k=0 k=0

for x, =(a, x*)"/" and y,=k(a,x")"'?, we obtain

Z X, i
k=0



144 A. Guessab, G. V. Milovanovic

n n 1/q n 1/p
(2.2) T ka, x* é[ ) 2 x“:I [ T kPa, x"] .
k=0 k=0 k=0

On the other hand, using the Stirling’s numbers of the second kind, s | defined by

M=% s D=t (t—1)(t—2)...(t—i+1),

i=0

we find that
n n p
T kPax*=X I sVk@Pq x*

V] k=0 i=0 i

n
sWxi T kDa,x*,
0 k=0

l| M-u

k

n p
T kPa,x*= T s©x'Qf(x),
i=1

k=0 i=
because s\’ (p=1). So, from (2.2) we obtain

P o ) 1/p
3 s xioP <x>) ,

i=0

XQ;(X)éQ..(X)"”"(

which is equivalent to (2.1). O
Remark 1. The inequality (2.1), for p=2, is proved in [1]. For p=3 it

reduces to the inequality

(2.3) (xQ4 (x))* £ @, (x)* (xQ (%) +3x2Q; (x) + X Q3" (x)).

Remark 2. The Stirling numbers satisfy the recurrence relation
sW, =isW 458~ m=i=1, where s’=0, si)=s{"=1, m=1.

By a simple application of integration by parts we can prove:

Lemma 2. If Q,eZ??, then for the integrals

+ o

Ja(@)= | x*e *(Qn(x)’dx,

0
In,i(a)=+j® x*e *Q,(x)* Q¥ (x)dx, i=0, 1, 2, 3,
0

+ oo

K@= | x*e*Q,(x)2,(x) @Y (x)dx, i=0, 1, 2,

0
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the following recurrence relations hold:
24) I,@=Ii—y@—ali—i(@—1)=2K,;—, (@), i=1,2, 3,
(2.5 2K, 2 (0)=Kp1 () — oK, (x—1)=J, (),
Ko@) =1, ().

Using the inequality (2.3) and Lemma 2 we obtain
Lemma 3. If Q,e?) then for a>—1,

2.6) J, (a)g%[l,,'o (@+3(1—a)],0(x— D+Ba?—=9a+7)1,0(x—2)

+(—a’+6a>—12a+8) 1, 0(x—3)]
Proof. Firstly, using Lemma 1, for p=2 and p=3, we conclude that
2.7) Ja(@=K, (a—1)+ K, ()
and
(2.8) J,@)=I, (@—2)+31,,(@a—1)+1, 3 ().
Because of (2.4), we have
I s(@)=1,: (@) =2al,  (x—1)+a(@—1) 1, (6 —2)—2K, (1) —2K,,; (@)
420K, (@—1)
and
Ie—1)=I, (@a—1)—(a—1)I,;(x—2)—2K, ; (x—1).
Then (2.8) becomes
(2.9) Ja@=U, (@) +V, (@),
where
(2.10) U,(@)=1I, (@)+@B—=2a)1, (@—1)+@—4da+a?)1,,(x—2)

and
V,(@)=QRa—6)K, 1 (a—1)—2K, () —2K,  (2).

Using (2.5), the last equality reduces to
(2.11) V,(@)=—6(K,(@—1)+K,;(@)—2J,().
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Combining (2.7), (2.9) and (2.11) we obtain
(2.12) 9J,(@=U,(a).

1
Since I,,'l(a)=§(l,,_o(a)—al,,'o (x—1)), from (2.10) and (2.12) there immediately
follows (2.6). [J

3. Main result

Theorem. The best constant C,;(x) defined in (1.1) is
1

(a+1)(@+2)(@+3)’
3

—l<a=za,,

3.1 Cuz(@)=
n

Bn+a)3n+a—1)(Bn+a—2)’
where a, is the unique positive root of the equation

a,<o< + 00,

(32) (M*+n+1)a®>+32n2+2n—1)a?+(11n* —16n+2)a—3n(7n—2)=0.

Proof Let Q,e#?, i.e, Q,(x)= £ a,x* where a,20. Then
k=1

3n

0,(x)*=Z b xt, (520),
k=3

and

3n
1Q,l13=TIno(@= Z b, T(k+a+l),

k=3

where T is the gamma function. Using Lemma 3 we obtain

(3.3) J,,(a)§L g bk[F(k+a+l)+3(1—a)F(k+a)
27 y=3

+@a2=9a+NT(k+a—1)+(—o>+60>—12a+8) I (k+a—2)],

i.e.,

3n
J,(@< X H,(k)b, T (k+a+1),
where k=3

k3

Ho K= vk ra—)(k+a—2)
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From (3.3) it follows that

IQnlI3=(max H,(k)IQ,I3

3<k=3n

and so we have

C,(x)< max H,(k),

3<k=<3n
where
H_ (3 if — <
max Ha(k)={ «) Tf I<asa,
3<k<3n H,(3n) if a=a,,

and «, is the unique positive root of the equation (3.2).
In order to prove that C,(«) defined in (3.1) is the best possible, i.e. that C, ()
= max H,(k), we consider é,, (x)=x"+Ax(1=0) and set ®,(A)=| Jx13/1 0, I3

3<k<3n
Since ®,(0)=H,(3n) and lim ®,(4)=H,(3), we see that J,(x)=x"is an extremal
A=

polynomial for «=a,. When —1<a=a,, there exists a sequence of polynomials,
for example, g i (x)=X"+kx, k=1, 2,..., for which lim | g3/l gnxlI3=C, (). O
k=

Remark 3. The statement of Theorem holds if 2, is the set of all algebraic
polynomials Q(#0) of degree at most n(not only of exact degree n), with
nonnegative coefficients. In this case, for —1<a=<a, we can see that
O (x)=Ax(A>0) is an extremal polynomial.

Some numerical values for «, are presented in the Table.

S

a,

2 1.163603698095
3 1.146295022775
4 1.137564507240
5 1.132301569521
6 1.128782608488
7 1.126263976447
8 1.124372209100
9 1.122899174368
10 1.121719698285
11 1.120753978015
12 1.119948732995
13 1.119267031884
14 1.118682468355
15 1.118175661061
16 1.117732063211
17 1.117340543614
18 1.116992439776
19 1.116680909466

20 1.116400476454
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In the limit case n— oo, the equation (3.2) reduces to
o3 +602+11a—21=0,

wherefrom we find

18 18

n— o

A 243 +(59037)V/2\"3 (243 —(59037)/2\'/?
am=llm a,=\——g | _2’

ie, a,~1.111062.
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