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1. Introduction and preliminaries

In 1971 Kurepa (see [10, 11]) defined so-called the left factorial !n by:

!0 = 0, !n =
n−1X
k=0

k! (n ∈ N)

and extended it to the complex half-plane Re z > 0 as

K(z) =!z =

Z +∞

0

tz − 1
t− 1 e−t dt.

Such function can be also extended analytically to the whole complex plane by
K(z) = K(z + 1)− Γ(z + 1), where Γ(z) is the gamma function defined by

Γ(z) =

Z +∞

0
tz−1e−t dt (Re z > 0) and zΓ(z) = Γ(z + 1).

1This work was supported in part by the Serbian Ministry of Science, Technology and
Development under Grant # 2002: Applied Orthogonal Systems, Constructive Approximation
and Numerical Methods
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Kurepa [11] proved that K(z) is a meromorphic function with simple
poles at the points zk = −k (k ∈ N \ {2}). Slavić [23] found the representation

K(z) = −π
e
cotπz +

1

e

µ+∞X
n=1

1

n!n
+ γ

¶
+
+∞X
n=0

Γ(z − n),

where γ is Euler’s constant. These formulas were mentioned also in the book
[14].

A number of problems and hypotheses, especially in number theory, were
posed by Kurepa and then considered by several mathematicians. For example,
Kurepa [10] asked if

gcd(!n, n!) = 2 (n = 2, 3, . . .),

where gcd(a, b) denotes the greatest common divisor of integers a and b. This
conjecture, known as the left factorial hypothesis (KH), is still an open problem
in number theory. There are several statements equivalent to KH. An equivalent
formulation of KH appears in the book [8, Problem B44],

!n 6≡ 0 (mod n) for all n > 2.

Kurepa [12] also showed that KH can be reduced to primes so that KH is
equivalent to the following assertion

!p 6≡ 0 (mod p), for all primes p > 2.

For details see [18, 19, 20], as well as a recent survey written by Ivić and Mija-
jlović, [9].

Recently, Milovanović [16] defined and studied a sequence of the factorial
functions {Mm(z)}+∞m=−1, where M−1(z) = Γ(z) and M0(z) = K(z). Namely,

Mm(z) =

Z +∞

0

tz+m −Qm(t, z)

(t− 1)m+1 e−t dt (Re z > −(m+ 1)),(1.1)

where the polynomials Qm(t; z), m = −1, 0, 1, 2, . . ., are given by

Q−1(t, z) = 0, Qm(t, z) =
mX
k=0

µ
m+ z

k

¶
(t− 1)k.(1.2)

Since

Mm(z) =Mm(z + 1)−Mm−1(z + 1) (m ∈ N0),(1.3)
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similar to the gamma function, the functions z 7→ Mm(z), for each m ∈ N0,
can be extended analytically to the hole complex plane, starting from the cor-
responding analytic extension of the gamma function.

Suppose that we have analytic extensions for all functions z 7→ Mν(z),
ν < m. Let the function z 7→Mm(z) be defined by (1.1) for z in the half-plane
Re z > −(m+1). Using successively (1.3), we define at first Mm(z) for z in the
strip −(m + 2) < Re z < −(m + 1), then for z such that −(m + 3) < Re z <
−(m+ 2), etc. In this way, we obtain the function Mm(z) in the hole complex
plane.

In the same paper [16] the numbers Mm(n) were introduced. For non-
negative integers n,m ∈ N0 we have

Mm(0) = 0, Mm(n) =
n−1X
i=0

(−1)i
i!

n−1X
k=i

k!

µ
m+ n

k +m+ 1

¶
.(1.4)

The numbersMm(n) can be expressed in terms of the derangement num-
bers (cf. [22, p. 65], [5, p. 182], [16])

Sk = k!
kX

ν=0

(−1)ν
ν!

(k ≥ 0)(1.5)

in the form

Mm(n) =
n−1X
k=0

µ
m+ n

k +m+ 1

¶
Sk.(1.6)

The numbers (1.5) satisfy the recurrence relation Sk = kSk−1 + (−1)k with
S0 = 1. Also, it is easy to prove that

Sk+2 = (k + 1)(Sk+1 + Sk) (k ≥ 0).

Notice that S0 = 1, S1 = 0, S2 = 1, S3 = 2, S4 = 9, S5 = 44, . . . and
0 ≤ Sk < Sk+1 for k ∈ N. Their generating function is given by (see [24, p. 147]
and [17, Example 3])

+∞X
k=0

Sk
xk

k!
=

e−x

1− x
.

In this paper we consider the factorial functions and numbers Mm(n),
some classes of polynomials associated with them, as well as some other related
problems.

The paper is organized as follows. In Section 2 we investigate the numbers
Mm(n). Generating functions for such numbers are given in Section 3. Factorial
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polynomials are defined and investigated in Section 4. Finally, some integral
representations of factorial functions Mm(z) are derived in Section 5.

2. The numbers Mm(n)

For a fixed m ∈ N, using (1.6) we obtain ([16])

Mm(1) = 1, Mm(2) = m+ 2, Mm(3) =
1

2
(m2 + 5m+ 8),

Mm(4) =
1

6
(m3 + 9m2 + 32m+ 60), etc.

In general,

n!Mm(n+ 1) =
nX

ν=0

A(m,n)
ν mν (A(m,n)

n = 1).

Thus, for a fixed n, we have Mm(n+ 1) ∼ mn/n! as m→ +∞.
Some values of the numbers Mm(n) are given in Table 1. The first row

(m = −1) represents factorials M−1(n) = Γ(n) = (n− 1)!, and the second one
(m = 0) gives the Kurepa numbers (left facorials) M0(n) = K(n) =!n.

Taking (1.3), i.e.,

Mν(n+ 1)−Mν−1(n+ 1) =Mν(n)(2.1)

for ν = 0, 1, . . . ,m, we obtain

Mm(n+ 1)−M−1(n+ 1) =
mX
ν=0

Mν(n).

So, we get the following representation:

Lemma 2.1. For each n ∈ N,

Mm(n+ 1) = n! +
mX
ν=0

Mν(n).

Lemma 2.2. For each fixed ν ∈ N0 we have

lim
n→+∞

Mν(n)

Mν−1(n)
= 1.(2.2)
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m \ n 1 2 3 4 5 6 7 8

−1 1 1 2 6 24 120 720 5040
0 1 2 4 10 34 154 874 5914
1 1 3 7 17 51 205 1079 6993
2 1 4 11 28 79 284 1363 8356
3 1 5 16 44 123 407 1770 10126
4 1 6 22 66 189 596 2366 12492
5 1 7 29 95 284 880 3246 15738

Table 1: The numbers Mm(n) for m = −1, 0, 1, . . . , 5 and n = 1, 2, . . . , 8

P r o o f. First, we note that all sequences {Mm(n)}+∞n=1 (m ≥ −1) are
increasing, as well as

lim
n→+∞

M0(n)

M−1(n)
= lim

n→+∞
K(n)

Γ(n)
= lim

n→+∞
K(n)−K(n− 1)
Γ(n)− Γ(n− 1)

= lim
n→+∞

Γ(n)

Γ(n)− Γ(n− 1) = 1.

Using Stolz’ theorem and relation (2.1) we get

lim
n→+∞

Mν(n)

Mν−1(n)
= lim

n→+∞
Mν(n)−Mν(n− 1)

Mν−1(n)−Mν−1(n− 1)

= lim
n→+∞

Mν−1(n)

Mν−2(n)
= · · · = lim

n→+∞
M0(n)

M−1(n)
= 1.

Since
Mm(n)

M−1(n)
=

M0(n)

M−1(n)
· M1(n)

M0(n)
· · · Mm(n)

Mm−1(n)
,

using (2.2) we get the following result:

Theorem 2.3. For each m ∈ N0 we have

lim
n→+∞

Mm(n)

(n− 1)! = 1 and lim
n→+∞

Mm(n)

n!
= 0.(2.3)

As we can see the asymptotic relation Mm(n+1) ∼ nMm(n) (n→ +∞)
holds. Furthermore, for a sufficiently large n, we can prove an inequality:
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Theorem 2.4. For each m ∈ N0 there exists an integer nm ∈ N such
that for every n ≥ nm the following inequality

Mm(n+ 1) ≤ nMm(n)(2.4)

holds.

Pr o o f. First, we note that for m = −1, the inequality (2.4) reduces to
the well-known functional equation for the gamma function, Γ(n+ 1) = nΓ(n),
n ≥ 1.

For m = 0, inequality (2.4) reduces to !(n+1) ≤ n(!n), which is not true
for n = 1. But, it can be proved for each n ≥ n0 = 2. Indeed, for n = 2, (2.4)
becomes an equality !3 = 2(!2), i.e., 0! + 1! + 2! = 2(0! + 1!) = 4. Suppose now
that (2.4) holds for some n = k ≥ 2, i.e.,

M0(k + 1) ≤ kM0(k).

Adding M−1(k + 2) = Γ(k + 2) = (k + 1)Γ(k + 1) to both sides in the previous
inequality, we get

M0(k + 1) +M−1(k + 2) ≤ kM0(k) + (k + 1)M−1(k + 1)

= (k + 1)(M0(k) +M−1(k + 1))−M0(k).

Using recurrence relation (2.1) for ν = 0 and a fact that M0(k) > 0, we
obtain

M0(k + 2) ≤ (k + 1)M0(k + 1).

Notice that Mm(4) ≤ 3Mm(3) for m = 1, 2, 3, 4 (see Table 1), so that
nm = 3 for such values of m.

For m ≥ 5 we can prove inequality (2.4) for n = m, i.e., Mm(m + 1) ≤
mMm(m). This means that we can take nm = m for m ≥ 5. According to (1.3)
and (1.6) this inequality can be represented in the following equivalent forms:

Mm−1(m+ 1) ≤ (m− 1)Mm(m)

and
mX
k=0

µ
2m

k +m

¶
Sk ≤ (m− 1)

m−1X
k=0

µ
2m

k +m+ 1

¶
Sk.

Because of Sk = kSk−1 + (−1)k, the last inequality reduces to
mX
k=0

µ
2m

k +m

¶
(−1)k ≤

mX
k=1

µ
2m

k +m

¶
(m− 1− k)Sk−1.
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Since the sum on the left-hand side of the previous inequality is equal to
¡
2m−1
m−1

¢
(cf. [21, p. 607]), we getµ

2m− 1
m

¶
≤

mX
k=1

µ
2m

k +m

¶
(m− 1− k)Sk−1,

i.e.,
m−3X
k=2

µ
2m

k +m

¶
(m− 1− k)Sk−1 +Am +Bm ≥ 0,(2.5)

where

Am = (m− 2)
µ
2m

m+ 1

¶
−
µ
2m− 1

m

¶
=
2m2 − 5m− 1

m+ 1

µ
2m− 1

m

¶
and

Bm =

µ
2m

2m− 2

¶
Sm−3 −

µ
2m

2m

¶
Sm−1 = Sm−3

∙
m(2m− 1)− Sm−1

Sm−3

¸
.

Since Sm−1/Sm−3 = (m− 2)(m− 1 + (−1)m/Sm−3) we have that

Bm = (m− 2)Sm−3
∙
m+ 4 +

6

m− 2 −
(−1)m
Sm−3

¸
> 0

for m ≥ 5. Notice also that Am > 0 for m ≥ 3.
Since the first term in (2.5) is equal to zero and others are positive, we

conclude that the inequality (2.5) is true for each m ≥ 5. Thus, this proves the
existence of the numbers nm for each m.

The proof of (2.4) for m ∈ N and n ≥ nm can be given by induction in
m. Namely, supposing that (2.4) holds for each ν < m ∈ N and n ≥ nν (n1 =
· · · = n4 = 3, nν = ν for ν > 4) we prove the inequality Mm(n+ 1) ≤ nMm(n)
for n ≥ nm = m. In order to do this we apply induction in n, in the same way
as for m = 0.

Since (2.4) holds for m = 0 and n ≥ n0 = 2, it means that (2.4) holds
for each m ∈ N0 and n ≥ nm.

R ema r k 2.5. Theorem 2.4 establishes only the existence of the num-
bers nm. The minimal values of mn can be expressed in the following way, if we
define

aν = ν2 + ν − 1, bν = ν2 + 3ν, Iν = {m ∈ Z : m ∈ [aν , bν ]},
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for each ν ∈ N0. Notice that aν+1 = bν+1, I0 = {−1, 0}, as well as I1∪I2∪ · · · =
N. Then for each ν ∈ N and m ∈ Iν we have nm = ν + 2.

For example, for ν = 1, i.e., m ∈ {1, 2, 3, 4}, we have nm = 3. It was
noted in the proof of the previous theorem. For m ∈ {5, 6, 7, 8, 9, 10} (ν = 2)
we have nm = 4, etc. Notice that nm < m.

3. Generating functions for the numbers Mm(n)

Definition 3.1. Let m ∈ N0. The exponential generating function of
the sequence {Mm(n)}+∞n=0 is given by

gm(x) =
+∞X
n=0

Mm(n)
xn

n!
.(3.1)

According to Theorem 2.3, the expansion (3.1) converges in the unit
circle |x| < 1. Notice also that gm(0) = 0.

R ema r k 3.2. Because of Mm(0) = 0 we have

gm(x) =
+∞X
n=1

Mm(n)
xn

n!
.(3.2)

This modification in previous definition enables us to define the exponential
generating function of the sequence {Γ(n)}+∞n=1, i.e., {(n − 1)!}+∞n=1. Thus, for
m = −1, (3.2) reduces to

g−1(x) =
+∞X
n=1

Γ(n)
xn

n!
=
+∞X
n=1

xn

n
= log

1

1− x
(|x| < 1).(3.3)

Theorem 3.3. The generating functions gm (m = 0, 1, . . .) satisfy the
following relation

gm+1(x) = gm(x) + ex
Z x

0
e−tgm(t) dt, m ≥ 0,(3.4)

where
g0(x) = ex−1(Ei (1)− Ei (1− x)),(3.5)

and Ei (x) is the exponential integral defined by

Ei (x) = v.p.

Z x

−∞

et

t
dt (x > 0).(3.6)
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P r o o f. Let |x| < 1 and gm be defined by (3.1). Then

g0m(x) =
+∞X
n=1

Mm(n)
xn−1

(n− 1)! =
+∞X
n=0

Mm(n+ 1)
xn

n!

and

g0m+1(x)− g0m(x) =
+∞X
n=0

(Mm+1(n+ 1)−Mm(n+ 1))
xn

n!
,

i.e.,

g0m+1(x)− g0m(x) =
+∞X
n=0

Mm+1(n)
xn

n!
= gm+1(x).

Integrating this differential equation, we obtain

gm+1(x) = ex
Z x

0
e−tg0m(t) dt.(3.7)

Finally, an integration by parts gives

gm+1(x) = gm(x) + ex
Z x

0
e−tgm(t) dt.

According to (3.7) and (3.3), for m = 0 we have

g0(x) = ex
Z x

0

e−t

1− t
dt = ex

Z 1

1−x

eu−1

u
du.

Using the exponential integral Ei (x) defined by (3.6) (see [1, p. 228]), the pre-
vious formula becomes

g0(x) = ex−1(Ei (1)− Ei (1− x)) (|x| < 1),

i.e., (3.5).

R ema r k 3.4. The generating function for left factorial in the form
(3.5) was obtained by -D. Cvijović.

In order to find an explicit expression for gm(x) we denote its Laplace
transform by Gm(s). Then, from (3.4) it follows

Gm+1(s) = Gm(s) +
1

s− 1 Gm(s) =

µ
1 +

1

s− 1

¶
Gm(s),
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i.e.,

Gm(s) =

µ
1 +

1

s− 1

¶m

G0(s) =
mX
k=0

µ
m

k

¶
1

(s− 1)k ·G0(s).

The inverse transform gives

gm(x) = g0(x) +
mX
k=1

µ
m

k

¶
1

(k − 1)!

Z x

0
ex−t(x− t)k−1g0(t) dt.(3.8)

Using integration by parts in the integral convolutions on the right hand side in
(3.8) yieldsZ x

0
ex−t(x− t)k−1g0(t) dt =

1

k

Z x

0
ex−t(x− t)k

dt

1− t

=
ex

k

kX
ν=0

µ
k

ν

¶
(x− 1)k−ν

Z x

0
e−t(1− t)ν−1 dt.

Since Z x

0
e−t(1− t)ν−1 dt =

(
e−xg0(x), if ν = 0,

Pν−1(0)− e−xPν−1(x), if ν ≥ 1,

where

Pν(x) = (−1)νν!
νX

j=0

(x− 1)j
j!

,(3.9)

we get

Z x

0
ex−t(x− t)k−1g0(t) dt =

(x− 1)k
k

g0(x) +
ex

k

kX
ν=1

µ
k

ν

¶
(x− 1)k−νPν−1(0)

−1
k

kX
ν=1

µ
k

ν

¶
(x− 1)k−νPν−1(x).

According to this equality, (3.8) and (3.9) we have the following result:

Theorem 3.5. For each m ∈ N0 the generating function x 7→ gm(x) is
given by

gm(x) =
1

m!
(Am(x)g0(x) +Bm(x)e

x − Cm(x)),(3.10)
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where Am(x), Bm(x), and Cm(x) are polynomials determined by

Am(x)

m!
=

mX
k=0

µ
m

k

¶
(x− 1)k

k!
,

Bm(x)

m!
=

m−1X
ν=0

⎛⎝m−νX
k=1

µ
m

k + ν

¶
(−1)k−1

k

k−1X
j=0

(−1)j
j!

⎞⎠ (x− 1)ν
ν!

,

Cm(x)

m!
=

m−1X
j=0

⎛⎝ jX
ν=0

(−1)ν
µ
j

ν

¶ mX
k=j+1

(−1)k−1
k − ν

µ
m

k

¶⎞⎠ (x− 1)j
j!

,

respectively.

The polynomials Am(x), Bm(x), and Cm(x) for 1 ≤ m ≤ 6 are presented
in Table 2.

m Am(x) Bm(x) Cm(x)

1 x 1 1
2 x2 + 2x− 1 2x+ 2 x+ 2
3 x3 + 6x2 + 3x− 4 3x2 + 12x+ 4 x2 + 6x+ 4
4 x4 + 12x3 + 30x2 − 4x− 15 4x3 + 36x2 + 64x+ 6 x3 + 12x2 + 31x+ 6
5 x5 + 20x4 + 110x3 + 140x2 5x4 + 80x3 + 340x2 x4 + 20x3 + 111x2

− 95x− 56 +350x− 16 +158x− 16
6 x6 + 30x5 + 285x4 + 940x3 6x5 + 150x4 + 1160x3 x5 + 30x4 + 286x3

+555x2 − 906x− 185 +3090x2 + 2004x− 310 +968x2 + 789x− 310

Table 2: The polynomials Am(x), Bm(x), and Cm(x) in (3.10) for m =
1, 2, 3, 4, 5, 6

R ema r k 3.6. Starting from A0(x) = 1, B0(x) = C0(x) = 0, the
polynomials Am(x), Bm(x), and Cm(x) can be calculated recursively by

Am+1(x) = (m+ 1)

µ
Am(x) +

Z x

1
Am(t) dt

¶
,

Bm+1(x) = (m+ 1)

µ
Bm(x) +

Z x

0
Bm(t) dt

¶
+ βm+1,

Cm+1(x) = ex
Z

e−xϕm(x) dx,
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where ϕm(x) is a polynomial of degree m defined by

ϕm(x) = (m+ 1)

µ
C 0m(x)−

1

x− 1

Z x

1
Am(t) dt

¶
,

and βm+1 = Cm+1(0)− (m+ 1)Cm(0).

R ema r k 3.7. It is clear that Am(x) > 0 for x ≥ 1 and Am(1) = m!.
Also, Bm(0) = Cm(0). It can be proved that polynomials Am(x) have only real
zeros distributed in (−∞, 1). Furthermore, the zeros of Am(x) and Am+1(x)
mutually separate each other.

4. The factorial polynomials

Definition 4.1. Let m ∈ N0. The factorial polynomials {K(m)
n (t)}n∈N

are defined by

Gm(t, x) = extgm(x) =
+∞X
n=1

K(m)
n (t)

xn

n!
,

where gm is defined by (3.1) and given by (3.10).

Using (3.1) and the numbers Mm(k) it is easy to prove the following
explicit representation of the factorial polynomials:

Theorem 4.2. For each m ∈ N0 and n ∈ N we have

K(m)
n (t) =

nX
k=1

µ
n

k

¶
Mm(k)t

n−k.

For example, for m = 0 and n ≤ 7 we have

K
(0)
1 (t) = 1,

K
(0)
2 (t) = 2t+ 2,

K
(0)
3 (t) = 3t2 + 6t+ 4,

K
(0)
4 (t) = 4t3 + 12t2 + 16t+ 10,

K
(0)
5 (t) = 5t4 + 20t3 + 40t2 + 50t+ 34,

K
(0)
6 (t) = 6t5 + 30t4 + 80t3 + 150t2 + 204t+ 154,

K
(0)
7 (t) = 7t6 + 42t5 + 140t4 + 350t3 + 714t2 + 1078t+ 874.
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Since

d

dt
K(m)
n (t) =

nX
k=1

µ
n

k

¶
(n− k)Mm(k)t

n−1−k

=
n−1X
k=1

µ
n− 1
k

¶
Mm(k)t

n−1−k,

we have the following differentiation formula

d

dt
K(m)

n (t) = nK
(m)
n−1(t).

Also, we have

dν

dtν
K(m)

n (t) = n(n− 1) · · · (n− ν + 1)K
(m)
n−ν(t) (0 < ν < n).

Expanding K
(m)
n (t + s) in Taylor series and using the previous formula

we obtain

K(m)
n (t+ s) =

+∞X
ν=0

1

ν!

dν

dtν
K(m)

n (t)sν =
n−1X
ν=0

µ
n

ν

¶
K
(m)
n−ν(t)s

n,

i.e.,

K(m)
n (t+ s) =

nX
ν=1

µ
n

ν

¶
K(m)
ν (t)sn−ν .

It is clear that

dν

dtν
K(m)
n (t) > 0 (0 ≤ ν < n)

for each t ≥ 0. Therefore, the polynomials K(m)
n (t) have no positive real zeros.

A simple representation of these polynomials in terms of zeros can be
done:

Theorem 4.3. Let τν (ν = 1, . . . , n) be zeros ofK
(m)
n+1(t), i.e., K

(m)
n+1(t) =

(n+ 1)
Qn

ν=1(t− τν). Then

K(m)
n (t) =

1

n+ 1

nX
k=1

K
(m)
n+1(t)

t− τk
=

nX
k=1

nY
ν=1
ν 6=k

(t− τν).
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5. The factorial functions Mm(z)

In this section we consider again the factorial functions Mm(z) defined
by (1.1) and (1.2). First, we put

Ym(t, z) =
tz+m −Qm(t, z)

(t− 1)m+1 (Re z > −(m+ 1)).

Using the binomial series

tz+m = (1 + t− 1)m+z =
+∞X
k=0

µ
m+ z

k

¶
(t− 1)k (|t− 1| < 1),

we see that, for 0 < t < 2,

Ym(t, z) =
+∞X
k=0

µ
m+ z

k +m+ 1

¶
(t− 1)k.

The function Ym(t, z) can be expressed in terms of the hypergeometric function

2F1, defined by

2F1(a, b, c;x) =
+∞X
k=0

(a)k(b)k
(c)k

· x
k

k!

for |x| < 1, and by continuation elsewhere. It is well-known that

2F1(a, b, c;x) =
Γ(c)

Γ(b)Γ(c− b)

Z 1

0
ξb−1(1− ξ)c−b−1(1− xξ)−a dξ

in the x plane cut along the real axis from 1 to ∞, if Re c > Re b > 0 (cf. [2,
p. 65]). Here it is understood that arg ξ = arg(1− ξ) = 0 and (1−xξ)−a has its
principal value.

According to (1.1) we note thatMm(z) can be interpreted as the Laplace
transform of the function t 7→ Ym(t, z) at the point s = 1. Therefore, we put

Fm(s, z) = L[Ym(t, z)] =
Z +∞

0
Gm(t, z)e

−st dt,(5.1)

where z is a complex parameter such that Re z > −(m + 1), and Mm(z) =
Fm(1, z).
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Theorem 5.1. For Re z > −(m+1), the factorial functions z 7→Mm(z)
have the integral representation

Mm(z) =
z(z + 1) · · · (z +m)

m!

Z 1

0
ξz−1(1− ξ)me(1−ξ)/ξΓ

³
z,
1− ξ

ξ

´
dξ,

where Γ(z, x) is the incomplete gamma function defined by

Γ(z, x) =

Z +∞

x
tz−1e−t dt.(5.2)

P r o o f. Since

(k +m+ 1)! = (m+ 1)!(m+ 2)k and (1− z)k =
(−1)kΓ(z)
Γ(z − k)

,

we haveµ
m+ z

k +m+ 1

¶
=

Γ(m+ z + 1)

Γ(z − k)(k +m+ 1)!
=
Γ(m+ z + 1)

Γ(z)(m+ 1)!
· (1− z)k(−1)k

(m+ 2)k
,

so that

Ym(t, z) =
Γ(m+ z + 1)

Γ(z)(m+ 1)!

+∞X
k=0

(1− z)k(1)k
(m+ 2)k

· (1− t)k

k!

=
Γ(m+ z + 1)

Γ(z)(m+ 1)!
2F1(1− z, 1,m+ 2; 1− t),

or, by continuation,

Ym(t, z) =
Γ(m+ z + 1)

Γ(z)m!

Z 1

0
(1− ξ)m(1− (1− t)ξ)z−1dξ.

According to (5.1) we have

Fm(s, z) =
z(z + 1) · · · (z +m)

m!

Z +∞

0
e−st

Z 1

0
(1− ξ)mξz−1(t+ α)z−1 dξ dt

=
z(z + 1) · · · (z +m)

m!

Z 1

0
ξz−1(1− ξ)m

Z +∞

0
e−st(t+ α)z−1 dt dξ

where α = (1− ξ)/ξ.
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Since

L[(t+ α)z−1] =
eαsΓ(z, αs)

sz
(Re s > 0),

where Γ(z, x) is the incomplete gamma function defined by (5.2), we get

Fm(s, z) =
z(z + 1) · · · (z +m)

m! sz

Z 1

0
ξz−1(1− ξ)meαsΓ(z, αs) dξ.

Finally, for s = 1 we obtain the result of the theorem.

Changing variables (1 − ξ)/ξ = x we get an alternative form of the
previous theorem:

Corollary 5.2. For Re z > −(m + 1), the factorial functions z 7→
Mm(z) have the integral representation

Mm(z) =
z(z + 1) · · · (z +m)

m!

Z +∞

0

xmexΓ(z, x)

(x+ 1)z+m+1
dx.

In a special case when m = 0, we get the integral representation of the
Kurepa’s function

K(z) = z

Z 1

0
ξz−1e(1−ξ)/ξΓ

³
z,
1− ξ

ξ

´
dξ = z

Z +∞

0

exΓ(z, x)

(x+ 1)z+1
dx,

which holds for Re z > −1. In 1995 one of us [15] derived the Chebyshev
expansion for K(1 + z) and 1/K(1 + z), as well as the power series expansion
of K(a + z), a ≥ 0, and determined numerical values of their coefficients bν(a)
for a = 0 and a = 1. Using an asymptotic behaviour of bν(a), when ν → ∞, a
transformation of series with much faster convergence was obtained. For similar
expansions of the gamma function see e.g. Davis [6], Luke [13], Fransén and
Wrigge [7], and Bohman and Fröberg [4].

R ema r k 5.3. The function x 7→ x−zexΓ(z, x) can be expanded in
continuous fractions (cf. [3, Chapter 9])

x−zexΓ(z, x) =
1

x+
1− z

1 +
1

x+
2− z

1 + · · ·

.

Rema r k 5.4. The function z 7→ Mm(z) has zeros at z = −n, n =
0, 1, . . . ,m.
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∗ University of Nǐs Received: 17.03.2002
Fac. of Electronic Engineering, Dept. of Mathematics
P.O. Box 73, 18000 Niš, YUGOSLAVIA
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