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Abstract—A new algorithm for constructing quadrature formulas with multiple Gaussian nodes
in the presence of certain fixed nodes is presented. It can be used in construction for measures with the
bounded and infinite supports. The algorithm includes a simple and fast method for finding elements
of the Jacobian matrix in an iterative process with quadratic convergence, which is based on using
the fundamental three-term recurrence relation for the corresponding orthogonal polynomials with
respect to a given measure. Numerical experiments with respect to several different measures are
also included. Finally, a simple method for calculating weight coefficients (Cotes numbers of higher
order) of Gaussian and prescribed nodes is presented. Numerical examples are included. (© 2004
Elsevier Ltd. All rights reserved.

KeyWOI‘dS-—Quadratures with multiple nodes, Gauss-Turdn-type quadratures, Orthogonal poly-
nomials, s- and o-orthogonal polynomials, Zero distribution, Nonnegative measure, Weights, Nodes,
Degree of precision, Moments.

1. INTRODUCTION AND PRELIMINARIES

Let dA(t) be a given nonnegative measure on the real line R, with compact or unbounded support,
for which all moments pu; = fR thdA\(t) k = 0,1,... exist and are finite, and wo > 0. With P,
we denote the set of all algebraic polynomials of degree at most k (€ Np).

Let 71,...,7m (11 < -+ < 7mm) be given fized (or prescribed) nodes, with multiplicities
M, ..., My, Tespectively, and 71,...,7, (11 < -+ < 7,) be free nodes, with given multiplici-
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ties ny,..., Ny, respectively. Quadrature formulae of the form

I(f) = / ) drE) = Q(f),

where o I
QU= > AnfOm)+ > > BinfY(m) (1.1)
v=1 i=0 v=1 i1=0

were investigated by Stancu [1-3].
Using fixed and free nodes, we introduce two polynomials

n

aut)y=[Jt-m)™ ad  Qutr=[JE-n)™, (1.2)
v=1

v=1

where M = 37" m, and N = }_"'_; n,. The quadrature formula (1.1) is called interpolatory
with an algebraic degree of exactness at least M + N — 1 if I(f) = Q(f) for all polynomials of
degree at most M + N — 1. Choosing the free nodes to increase the degree of exactness leads to
so-called Gaussian type of quadratures. If the free (or Gaussian) nodes 7y,...,7, are such that
I{f) = Q(f) for each f € PprynNin_1, the corresponding quadrature @) we call the Gauss-Stancu
formula. The following characterization is well known (see [4]).

THEOREM 1.1. Let the polynomials qps(t) and Qn(t) be given by (1.2). The nodes 1,...,7,
are the Gaussian nodes if and only if o

/R £ Qn (£)an (£) dA(E) = O, (1.3)

fork=0,1,...,n—1.

Under some restrictions of polynomials gps(t) and Qun(t) on the support interval of the mea-
sure dA(t) (the smallest interval containing supp (d))}, we can give sufficient conditions for the
existence of Gaussian nodes (cf. [4,5]).

THEOREM 1.2. If the multiplicities of the Gaussian nodes are odd, e.g., n, = 2s,+1,v=1,...,n,
and if the polynomial with fixed nodes qps(t) does not change its sign in the support interval of
the measure dA(t), then, in this interval, there exist real distinct nodes 1,, v=1,...,n.

The condition for the polynomial qar(t) in the last theorem means that the multiplicities of
the internal fixed nodes must be even. Defining a new (nonnegative) measure dA(t) by

A~

dA(t) = yam(t) dA(t), v =sen(gum(t)), (1.4)

the “orthogonality conditions” (1.3) can be expressed in the simpler form
/thN(t)d;\(t) =0, k=0,1,...,n—1.
R

This means that the general quadrature problem (1.1), under conditions of Theorem 1.2, can be
reduced to a problem with only Gaussian nodes, but with respect to another modified measure.
Computational methods for this purpose are based on Christoffel’s theorem and described in
detail in [6] (see also [5,7]).

Let mo(t):=[10_,(t— 7). Since Qn(¢)/mn(t) = [1}_,(t —7,)%** > 0 over the support interval,
we can make an additional reinterpretation of the “orthogonality conditions” (1.3) in the form

/tkwn(t)du(t)=0, k=0,1,...,n—1, (1.5)
R
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where

du(t) = (H(t —T,,)%v) dA(t).

v=1

This means that m,(t) is a polynomial orthogonal with respect to the new nonnegative measure
du(t), and therefore, all zeros 7q,...,7, are simple, real, and belong to the support interval.
As we see the measure dpu(t) involves the nodes 7,...,7,, i.e., the unknown polynomial m,(t),
which is implicitly defined (see [8, pp. 214-226]). This polynomial 7, (¢) belongs to the class of so-
called o-orthogonal polynomials {m, »(t)},en,, which correspond to the sequence o = (s1, s,...)
connected with multiplicities of Gaussian nodes (see Theorem 1.2). Namely, m,(t) = m, ,(t). If
o = (s,s,...), the above polynomials reduce to the s-orthogonal polynomials. (For details, see
for example, [9].)

For prescribed nodes 7y,...,nm,, we assumed that they are distinct. Under the conditions of
Theorem 1.2, the Gaussian nodes 7y, ..., 7, are also distinct, but some of them may coincide with
some of the prescribed nodes. In that case, the quadrature @ must be adjusted in the following
way (cf. [5]). If 7; = 7);, then 7, has to be removed from the list of fixed nodes and the multiplicity
of the Gaussian node 7; changed to n; +m; = 2(s; + r;) + 1. Note that such merging of nodes
does not change the value of M + N.

Also, we mention here that the conditions of Theorem 1.2 are not necessary for the existence
of Gauss-Stancu quadratures.' As an Interesting and important example, we mention the Gauss-
Kronrod quadratures with simple prescribed internal nodes or, in general, with prescribed nodes
of odd multiplicities.

Quadratures with only Gaussian nodes (m = 0),

n  2s,

[r0aw =3 S At R (1.6)

v=1 =0

which are exact for all algebraic polynomials of degree at most dmax = 2. s, + 2n — 1, are
known as Chakalov-Popoviciu quadrature formulas (see [10-12]). Deep theoretical progress in
this subject was made by Stancu (see [3,13-17]). In the special case of the Legendre measure on
(—1,1], when all multiplicities are mutually equal, these formulas reduce to the well-known Turdn
quadrature [18]. The case with a weight function dA(t) = w(t)dt on [a,b] has been investigated
by Italian mathematicians Ossicini, Ghizzetti, Guerra, and Rosati, and also by Chakalov, Stroud,
Stancu, Ionescu, Pavel, etc. (see [9] for references).

In this paper, we consider only cases described by Theorem 1.2. In the numerical construction
of such formulas, we deal with two tasks. The fist task is a nonlinear algebraic problem of
finding Gaussian nodes 71,...,7,, and the second one is a linear problem—the calculation of
the coefficients A;, and B;, in (1.1). The first problem is treated in Sections 2-4. Some
nunerical experiments with respect to several different measures are considered in Section 5. A
simple method for calculating weight coefficients (Cotes numbers of higher order) of Gaussian
and prescribed nodes is presented in Section 6, including some numerical results. Finally, some
concluding remarks are given in Section 7.

2. NUMERICAL PROCEDURE
FOR FINDING GAUSSIAN NODES

Under conditions of Theorem 1.2, the problem of the construction of Gaussian nodes in (1.1)
reduces to the corresponding problem for the Chakalov-Popoviciu quadrature formula (1.6) with
respect to the modified measure dA(t) given by (1.4). Therefore, without loss of generality, we
consider only the problem of finding nodes 71,...,7, in (1.4). In fact, we need the zeros of
o-orthogonal (or s-orthogonal) polynomials.
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An idea for finding s-orthogonal polynomials, i.e., their zeros 7, solving the system of nonlinear
equations (1.5) when s; = --- = s, = s, i.e,,

/tkwn,s(t)’é’sﬂdx(t) =0, k=0,1,...,n—1 (2.1)
R

in unknowns 71,...,7,, can be found in [8, pp. 214-226] (see also [19]).

Recently, this idea has been used in construction of an iterative method with quadratic conver-
gence for finding the corresponding s- and o-orthogonal polynomials (see [20]). This method was
made in two parts; the first part constructs the s-orthogonal polynomial with the maximal value
of si, i.e., for § = max{s, | v = 1,...,n}, and the second one constructs the desired o-orthogonal
polynomial through several steps by reducing only one s, to s, — 1 in each of the steps.

The first part of the method (construction of s-orthogonal polynomial with s = 5) starts
with zeros of the og-orthogonal polynomial for o = (0,0,...,0), i.e., with zeros 7y,...,7, of the
standard orthogonal polynomial. Then, applying one QR step with the shift 7, we determine
the starting vector in the nonlinear procedure for finding the zeros of g-orthogonal polynomial
for o = (1,0,...,0). Further, in each of the following steps, we raise only one s, to s,41 via the
following path:

(1,0,0,...,0,0),(1,1,0,...,0,0),...,(1,1,1,...,1,1),
(1,1,1,...,1,2),(1,1,1,...,2,2),...,(2,2,2,...,2,2),
(3,2,2,...,2,2),(3,3,2,...,2,2),...,(3,3,3,...,3,3), (22)
(3,3,3,...,3,4),...,

until we get the desired s-orthogonal polynomial with ¢ = 0, = (s,s,s,...,5,5). In each step,

except in the first one, the initial value for each of the zeros we determine by Lagrange extrap-
olating polynomial by using the values, obtained in the previous steps, for the corresponding
Zero.

This approach was mainly based on the behavior of the zeros of s-orthogonal polynomials for
the Legendre, Laguerre, and Hermite measure, recently presented in [9, Figures 1-3]. One can
see that behavior of the zeros, when the degree of the polynomial is fixed and s increases, is
almost linear. The method is very successful, in particular for measures on the bounded support
(e.g., for the Jacobi measure). In the case of measures on the unbounded support (e.g., for
the Laguerre and Hermite measures), sometimes the computation can break down, so that the
algorithm cannot be applied in such cases.

The main problem in the application of this method is a choice of the initial values of zeros,
as well as a lot of computation via the above mentioned path (2.2) with ns steps. Notice that,
in each step in this chain, we must solve a system of n nonlinear equations using an iterative
procedure.

In this section, we give a new algorithm with at least three important improvements.

o The algorithm can be used in constructions for measures with the bounded and unbounded
supports.

e Under certain initial values, the algorithm requires only n — 3 steps for constructing the
polynomial 7, s(t) instead of ns steps in the chain (2.2).

e There is a simple and fast method for finding elements of the Jacobian matrix in the
corresponding iterative process.

In the next sections, we describe only phases of the new algorithm which are different from
one proposed in {20]. The iterative procedure for finding zeros of T, (t) (or 7, s(t) in a special
case) with quadratic convergence, under suitable starting values, is presented in Section 3. An
important part of the new algorithm is a much simpler construction of the s-orthogonal polyno-
mial 7, s(t) in only n — 3 steps. It is considered in Section 4, including a selection of the starting
values in this process. Numerical experiments with several kinds of the classical and nonclassical
measures are considered in Section 5.
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3. ITERATIVE METHOD FOR ZEROS

In this section, we present a modification of the corresponding method from [20]. This iterative
method for finding zeros of o-polynomials can be applied for a wide class of the measures dA(t).
We also derive a simple way for quickly finding elements of the corresponding Jacobian matrix.

For a given sequence o = 0,, = (81, $2,....5,), we rewrite the orthogonality conditions (1.5)
as the following system of nonlinear equations:

Fit) = /R Pj-1(t) <H(f - TU)28”+1> dA(t) =0, j=1,....n, (3.1)

v=1

where t = (71,72, ...,7,) and {p;};en, is the sequence of orthonormal polynomials with respect
to the measure dA(t) on R. These polynomials satisfy the three-term recurrence relation

VB Py (t) + ap(8) + /By pia () = tps(t),  §=0,1,..., (3.2)

with p_y(t) = 0 and po(t) = 1/v/Bo, where 8o = po = [ dA(t).

Notice that in equation (5.1) in [20], in (3.1), we used the monomials {t/~'}"_, instead of
these orthonormal polynomials {p;_1}7_;. Also, in our software implementation, we used alter-
natively the (modified) fundamental Lagrange polynomials {£, 1(t),..., %, . (t)}, where £, ;(t) =
T (t)/t—7),7=1,...,n;and m, (1) = (t —71)-- - (t — 7).

In order to solve the system of nonlinear equations (3.1), we use the matrix notation

:
t=[r7o... Tn]T ;oM = [Tl(m>72(m> e T,,(Lm):| , m=0,1,...,

and
F(t) = [FL(t)Fay(t) ... F.(t)]".

If W = W(t) is the corresponding Jacobian of F(t), we can apply the Newton-Kantorovi¢
method

) — glm) _ -1 (t<'">> F (t<’”>) . m=0,1,2,.... (3.3)

for determining the zeros of the o-orthogonal polynomial 7, ,. If a sufficiently good approxima-
tion t(®) is chosen, the convergence of the method (3.3) is quadratic.
The elements of the Jacobian

7 OF;
W =W({t) = {wj,k]nxn = {—é;—i-] e

can be calculated by

Wik = g—f:‘ = — (251 + 1)/ R0 <ﬁ(t -~ TV>'23v+1> dA(t), (3.4)
R

t— Tk et

where j,k=1,...,n.
THEOREM 2.1. Let F} be defined by (3.1), wox = 0, and wyx, k = 1,...,n, be given by (3.4),
Le.,

n

Wk = —25\'}%1 /R(t — 7)o E(t —7)% | dA(). (3.5)

v#k
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Then

VBirtwisae = (Tk — a5)wyprk — /By wik — (2sk + 1) Fyp1, (3.6)
forj=0,1,...,n—2.
PRrROOF. Multiplying the three-term recurrence relation for orthonormal polynomials (3.2) by

—(2sk +1)(I[L_;(t = 7,)2**1)/(t — ), and then integrating over R with respect to the measure
dA(t) and using (3.4) and (3.1), we obtain

VBit1 witak + ogwisrk + /B wik = —(25k + 1) / 2210) <H(t - Tu)2s“+l> dA(t)

RE— Tk v=1
= —(2sk + 1) Fjt1 + Thwjt1k,

ie., (3.6). , ]

Thus, knowing only F; and wy; (j = 1,...,n), we calculate the elements of the Jacobian
matrix by the nonhomogeneous recurrence relation (3.6). All of the integrals in (3.1) and (3.5)
can be calculated exactly, except for rounding errors, by using a Gauss-Christoffel quadrature
formula with respect to the measure dA(t) (see [21}),

L
[ o0ax® = 3= 4P (+9) + Ru(o), (3.7
v=1

taking L = n+ Y .._, s, nodes. This formula is exact for all polynomials g of degree at most
2L-1=2n—-142%"_,s,.

4. CONSTRUCTION OF s-ORTHOGONAL POLYNOMIALS

Let 7, 5(t) be the s-orthogonal polynomial with respect to the measure dA(t), and let 75 ),
v =1,...,n, be its zeros. The behavior of the zeros 7‘,," *) for a fixed s and when the degree
of the polynomlal n increases can be used in the construction of s-orthogonal polynomials. In
Figure 1, we display the distribution of nonnegative zeros for Legendre and Hermite s-orthogonal
polynomials, taking s =% and n = 2, ..., 15. The solid lines connect the zeros 7, ( *) with the same
index v. For the same values of s and n, the zeros of the generalized Laguerre polynomials Ly ((t)
for « = 0 and a = 101/3 are presented in Figure 2. If s is bigger than one, the corresponding

graphics are quite similar to the previous one, especially for the generalized Laguerre measure.

1 .\: L4
\ 6 \
0.8 5
0.6 4
3
0.4
2
0.2 ’
1
5 10 15 5 10 15
(a) Legendre measure. (b) Hermite measure.

Figure 1. Nonnegative zeros of s-orthogonal polynomials for s = 1 and n = 2(1)15
for the Legendre measure (a) and the Hermite measure (b).
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51 \\‘\MH

5 10 15 5 10 15

(a) @ = 0. (b) o = 101/3.

Figure 2. Zeros of the generalized Laguerre s-orthogonal polynomials L7 (t) for
s=1,n—2(1)15, and o = 0 (a) and o = 101/3 (b).

As we can see, the behavier of zeros is almost linear for the Hermite and Legendre case, but it is
not true for the Laguerre case. This observation gives us an inspiration to construct an iterative
algorithm for calculating zeros of s-orthogonal polynomials over the path when the degree of a
polynomial increases, and s is a fixed number.

In this new approach, for a fixed s, we start from the zeros of s-orthogonal polynomials of
degree two and three, usually obtained by the algorithm proposed in [20], and then we calculate
the starting values for the method described in Section 3. Using this method, we determine the
zeros of the s-orthogonal polynomial 74 s(t) of degree four.

In general, using the zeros of my_2 s(t) and me—1 5(t), Le.,

(3

. . T
t, = {7’1(1’5)7’2(1’3) . T,»(l's):l . i=k—-2, k-1,
we must determine at first the starting vector
©) _ [atks)alks)  alko)] "
t, = [7’1 Ty c Ty } , . (4.1)

and then apply method (3.3) for solving the corresponding system of k nonlinear equations in
order to get the zeros of the polynomial m; ,(f). Repeating this procedure n — 3 times, for
k =4,...,n, we obtain the zeros of the polynomial 7, 4(t).

As we can see, such a method of construction requires much less numerical work than the
previous procedure proposed in [20]. For example, in the case n = s = 10, the previous algorithm
requires us to solve 100 systems of nonlinear equations with ten unknowns (see (2.2)). On the
other side, using the new algorithm, one has to solve only seven systems of equations with
four, five, six, seven, eight, nine, and ten unknowns, respectively. Of course, the last algorithm
requires additional work for constructing the zeros of the polynomials 73 4(t) and 73 ,(t). (They
are systems with two and three unknowns, respectively.)

Thus, the basic problem in the new algorithm is to find an appropriate formula for the starting
vector (4.1), with components

2 = 3, (th-1,te-2), v=1,...k (4.2)

According to numerical investigation of zero distribution, we use empirical extrapolation formulas
which include zeros as displayed in Figure 3.
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,’t \(Ik,s)
k O

k-1
k=2 -
(k-2,5) (k-2,5) (k-2,5)
TV"z TVr—l ’ Tv

Figure 3. Extrapolation of starting values.

Typical formulas for starting values for the Jacobi measure dA(t) = (1—¢)*(1+t)? dt on (—1,1)
(a, 8 > —1) and for the Hermite measure dA(t) = e~t" dt on {—00, +00) are

orfk=le) _ k=29 ve{l2},
1 s
f}sk's) - (k 1 S) + (k 1 S) _ 5 ( (k 2, ) + (k 2, s)> y Ve Ik:,
or (k ls) Tili;S) vel{k—1,k},

where I, = {3,...,k —2} (k > 5).

Because of the strong nonlinearity in zero distribution for the Jacobi measure (for small n),
this extrapolation can give a value outside the interval (—1,1). If the value obtained with the
above rule is bigger than 1 (less than —1), which can appear only for polynomials of degree four
or five, one should use 1 (—1) instead of the obtained values.

In the case of the generalized Laguerre measure dA(t) = t*e~*dt on (0, +o0) (a > —1), we

make the transformation 749 — \/ Tlsk’s), so that the above formulas become

2
(2\/75"‘1’3) - fé’“‘“’) , v e {1,2},
) (\/(k 1,5) \/(k 2s)+2\/ (k=1,s) _ £k22s)> Cvel,
k—1,s k--2,s
{ (2\/715—1 )—\/:E 2 )> , ve{k—1k}

Figure 1 shows a strong nonlinearity in the zeros behavior for the Legendre polynomials of
degrees two, three, and four. In our experiments, we encounter even stronger nonlinearity for
the Gegenbauer measure dA(t) = (1 —¢2)*d¢t on (—1, 1) with the parameter o smaller than zero,
but for « > 0, this nonlinearity is smaller than in the case of the Legendre measure. This means
that the Gegenbauer case with smaller parameter o needs more iterations for constructing the
polynomial of degree four with respect to one with bigger a. For example, for constructing the
Gegenbauer s-orthogonal polynomial with n = 4 and s = 20, we need 55 and 40 iterations if
a = —9/10 and « = 100, respectively. Because of that, in order to avoid this strong nonlinearity
for small «, it is much better to use the algorithm from {20] for n < 4 (and maybe even n < 5),
and then start with the new algorithm.

A nonlinearity is also encountered for the Laguerre and Hermite case, but it is much smaller
than nonlinearity presented above. There is stronger nonlinearity exhibited by the associated
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Legendre polynomials (cf. [22, pp. 201-203]), in which case the algorithm breaks down if we
begin the construction from polynomials of degree two and three.

The behavior of the algorithm for several classical and nonclassical measures will be considered
in the next section.

5. NUMERICAL EXPERIMENTS

The algorithm was implemented in the package MATHEMATICA. All calculations were per-
formed with 16 decimal digits mantissa (in our case, $MachinePrecision). The same results can be
obtained using FORTRAN in double precision arithmetic (with machine precision ~ 2.22x1071%).

5.1. Jacobi Measure

In this section, we consider the Jacobi measure on (—1,1) given by d\(t) = (1 —t)*(1 +¢)? dt,
where o, 3 > —1.
At first, we discuss the Gegenbauer measure (o = ). A distribution of zeros for o = § = —9/10

:

1 .\: 1[
N
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
i 5 - i 1

\\
5 10 15 5 o

Figure 4. Nonnegative zeros of the s-orthogonal Gegenbauer polynomials with pa-
rameter & = ~9/10 for s =1 (a) and s = 10 (b), when n = 2(1)15.

is presented in Figure 4 for two values of s (s =1 and s = 10).

15

(a) s =1. (b) s = 10.

In Table 1, we present the zeros T,E"‘s) of the s-orthogonal Gegenbauer polynomials for n = 12

and s = 10, taking o = 8 = —9/10, 3/2, and 100. The corresponding numbers of iterations 7;,
for finding these zeros are also given in the same table. The number of iterations i,,, n = 4(1)15,
for s =1 and s = 10 are given in Table 2.

We can see that i, becomes smaller as the parameter o (= 3) increases. This is explained
easily if we adopt that nonlinearity in zero distribution decreases when « increases. Notice also
that the number of iterations for getting polynomials with odd degree decreases slower than one
for even degree.

A distribution of zeros in the nonsymmetric Jacobi case with parameters o = —9/10 and
B =10 is displayed in Figure 5 for s = 1 and s = 10.

The numerical results in this case for some selected values of n and s are presented in Table 3,
including the necessary number of iterations 14 and i,,.
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Table 1. Zeros of the s-orthogonal Gegenbauer polynomials for n = 12 and s = 10
and the number of iterations i15.

a ) i12
+0.992587218229164, -+0.925814075750528

_I% +0.795538460358687, +0.610717369841159 11
+0.384024309720464, +0.131001991782728
+0.987558902610725, £0.916149943757799

—Z— +0.784210770279372, +£0.600411542500815 9

+0.376902939023624, +0.128466528934527

+0.813124164758066, +0.686762815789464
100 +0.549006446594587, +0.400464289428178 8
+0.243684696049418, +0.081802954927467

Table 2. The number of iterations i,, n = 4(1)15, in the Gegenbauer case for s = 1
(first row) and s = 10 (second row), and some selected values of a.

n 4 5 6 7 8 9 10 11 12 13 14 15
9 9 10 8 7 7 6 6 6 6 6 6 6
= 10 20 21 20 19 21 16 12 11 11 11 11 11
3 9 7 7 6 6 6 6 6 6 6 6 6
a= -

2 28 21 19 15 16 14 11 10 9 10 10 10

8 6 6 6 6. 6 6

a =100
24 15 12 11 10 10 8

ié \\\\\j 7 TR

0 0
-0.25
-0.25
-0.5
-0.5
-0.75
-0.75 .
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
(a) s=1. (b) s = 10.
Figure 5. Distribution of zeros for the Jacobi measure with « = —9/10, 8 = 10 for

s=1 (a) and s = 10 (b).

5.2. Generalized Gegenbauer Measure

We also investigate the case of the generalized Gegenbauer measure on (—1,1) given by
dA(t) = |t|'*28(1 — t2)%dt, a, 8 > —1. The standard orthogonal polynomials W{™? (t) with
‘this measure was first investigated by Lascenov [23] (see also [22, pp. 155-156]). The rela-
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Table 3. Zeros of s-orthogonal Jacobi polynomials with a« = —9/10, 8 = 10, and
some selected values of n and s.

—0.956958840560754,  —0.828446385297409
—0.625710131602863, —0.366897464420670

n=10 ia = 44
—0.075182888431344,  0.223312061944658 |

$=101 g so1sss06743238,  0.735513030716415 | 0
0.003350566478815,  0.990308863737170
—0.956789893504008,  —0.782967524872391

s=8 | —0.496609453140223,  —0.138703351806248 | iy = 62

n =20 0.239375730489567, 0.583342824047379 ig = 28
0.843806416238132, 0.983338395742211

tions between generalized monic Gegenbauer polynomials and the standard Jacobi polynomials
P,(La‘ﬂ)(t) are given by

n!

Vv(aﬁ) ) = P(a‘,@) 2t2 1 : 51

2n () (71+C¥+3+1)n n ( ) (d )
!

Wil () = EP(AHD) (262 1), (5.2)

n+a+8+2),

These polynomials satisfy the three-term recurrence relation (3.2), with «; = 0 and

Gy = J(j+a)

VT ra+ B2 tatB+1)
o G+B)(G+a+p)
M2j-1 —

2 +a+B8-1)02j+a+08)
for j=1,2,..., except for a + 3= —1 when 81 = (8+1)/(a+ 3+ 2).

The distributions of zeros of s-orthogonal generalized Gegenbuaer polynomials with o« = —1/2
and § = —1/4 (dA(t) = /|t|/(1 — t?)dt) and s = 1 and s = 10 are given in Figure 6.

\

T

0o 15

(a) s=1. (b) s = 10.
Figure 6. Nonnegative zeros of s-orthogonal generalized Gegenbauer polynomials

(a=-1/2, 8= —-1/4) for s =1 (a) and s = 10 (b), when n = 2(1)10.

The extrapolation rule for the generalized Gegenbauer measure is the same as in the case of
the Jacobi measure. The calculations can be performed when the ratio |3/ is not so large, for
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example, < 8. However, when this ratio becomes bigger, then we need another extrapolation rule
like one which will be considered in Section 5.5. However, in this case, we can use an alternative
way based on a connection between these s-orthogonal polynomials W,(f‘sﬁ ) (t) and the Jacobi
s-orthogonal polynomials considered before. Such formulas for s = 0 reduce to (5.1) and (5.2).

PROPOSITION 5.1. Let Py(ﬁs"s)(t) be the s-orthogonal polynomial with respect to the Jacobl mea-
sure do(t) = (1 — t)7(1 + t)°dt on (~1,1), where 7,6 > —1, and let its zeros be i S)( ,0),
vr=1,...,n

Then, the zero set of the s-orthogonal polynomial W,(nof’sﬁ )(t) with respect to the generalized
Gegenbauer measure on (—1,1), dA(t) = [¢*+?(1 — t2)*dt, @, B > —1, is

1 (n,s) _
{j:\/2<l+t (c ﬂ)),u—l,...,n},
{o,i,/ (1+t£"’s)<a,ﬁ+s+1)),u=1,-..,n},
ifm=2n+1.

PrOOF. At first, it is easy to conclude that

if m =2n, or

N =

WP (—t) = (1)Wb)
If m is odd, then W& (0) = 0.
According to the “orthogonality relation” (2.1), we have, for each £ =0,1,...,n—1,

2n,s 2n,s

/ WD ()2 dA(e / Wie® (Va) ™+ (1 — 2)* da =0,
-1

ie., f tsz(s (/A +0)/2)%+ do(t) = 0. It means that the following equality (up to a
multlphcatlve constant)

WD = P (8 1)

holds. In a similar way, we conclude also that
W(a B) - tp(a,ﬁ+s+1) (2t2 _ 1)
2n+1, s( ) - n,s -

These equalities give the assertion of the statement. ]

Thus, the construction of polynomials W,(nof;ﬁ )(t) reduces to the corresponding problem for the
Jacobi measure.

5.3. Generalized Laguerre Measure

Consider now the generalized Laguerre measure on (0, +00), defined by dA(t) = t*e™* dt, where
a>—1.

In Table 4, we give zeros of the s-orthogonal polynomials L, ;(¢) and L, 5(¢) for o = 0 and
o = 10. The numbers in parentheses indicate decimal exponents.

The number of iterations i, needed for constructing polynomials Lg ;(t), n = 4(1)12, for s = 1
and s = 5 are given in Table 5 for two values of the family parameter o (o =0 and a = 10).

In our numerical experiments with several different measures with the bounded and unbounded
supports, the best results are achieved with the generalized Laguerre measure. The reason for
this fact is mentioned before in Section 2. Namely, there is practically no nonlinearity at the
beginning of the construction. On the other side, the behavior of the algorithm from [20] for this
measure is quite the opposite and, in some cases, it cannot be applied.
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Table 4. Zeros of the s-orthogonal polynomial L$, ((t) with respect to the general'ized
Laguerre measure.
1.98459896485540(—1) 1.28527246416037
=0 3.36337825735860 6.48664600301537
1.07436075246883(1) 1.62743035554314(1)
o 2.33035216918815(1) 3.22160614407350(1)
4.37648986737655(1) 5.99201036691075(1)
4.49125141861381(—1) 3.50908561222774
00 9.57940678730558 1.88204476515665(1)
3.14997451789270(1) 4.80433097574563(1)
5= 6.91383474053974(1) 9.59673702137306(1)
1.30860865091953(2) 1.79994158722296(2)
2.80298131591448 5.74831335230936
o= 10 9.55062352348923 1.43049659752845(1)
so1 2.01246504335371(1) 2.71711961584816(1)
3.56922857375727(1) 4.61025567445254(1)
5.92049759623219(1) 7.70933664426522(1)
2.34465695813680 7.46976879233792
o= 10 1.54646389122249(1) 2.65172755498364(1)
a5 4.09209133509488(1) 5.91261187317375(1)
8.18464704498663(1) 1.10298218267156(2)
1.46867352690064(2) 1.97865999176739(2)
Table 5. The number of iterations i,, n = 4(1)12, in the generalized Laguerre case.
e E n =4 n =25 6<n<11 n =12
0 1 8 7 6 7
5 14 10 9 9
10 1 8 6 6 6
5 13 10 9 11
5.4. Generalized Hermite Measure
In this section, we consider the generalized Hermite measure defined by dA(t) = |t}2“'e"2 dt

on R, where p > —1/2 (cf. [22, pp. 156-158]). The corresponding orthogonal polynomials satisfy
the three-term recurrence relation (3.2), with o; =0 and 3y = 7, Boj41 = +p + 1/2.

In our procedure for constructing s-orthogonal polynomials, we use the same extrapolation
rule as in the case of the ordinary Hermite measure.

Table 6 displays zeros of the s-orthogonal polynomials Hi; | (t) and HYs 14(t) with respect to
this measure, when g =0 and p = 1.

The number of iterations i, needed for constructing polynomials H}f ((t), n = 4(1)15, for s = |
and s = 10 are given in Table 7 for the previous two values of the family parameter u.

As we can see, for smaller values of s, the convergence is faster than for larger values. The
number of iterations i, is usually less than ten for s = 1, except maybe at the beginning of the
procedure. However, when s increases, then the number of iterations becomes larger and, for
a sufficiently large s, the iterative process is not convergent. The reason for this fact can be

explained from the following statement.

PROPOSITION 5.2. Let T,En’s)(a), v =1,...,n, be zeros of the s-orthogonal polynomial Ly, ,(t)
with respect to the generalized Laguerre measure t®e~*dt on (0, +00), where a > —1.
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Table 6. Zeros of the s-orthogonal polynomial H{‘5ys(t) with respect to the generalized

Hermite measure.

+6.42529123114553" £5.23047277856464

p=0 +4.22528087653067 +3.31025792178217

s = £2.44735667049862 +1.61626345818557
+8.03798305791586(—1) 0
+1.51934017204560(1) +1.23478732101507(1)

p=20 +9.96744703814704 +7.80558209124374

s =10 | £5.76934255721114 +3.80952472827816
+1.89438018486605 0
+6.55601548945092 +5.36821262206449

pu=1 +4.36947846252626 +3.46067926704917

s=1 +2.60360645068994 +1.77696133674854
+9.62679528877572(—1) 0
+1.52498166160723(1) +1.24074292858041(1)

p=1 +1.00298988644974(1) +7.87084167582895

s =10 [ +5.83725871657473 4:3.87950232294572
+1.96344150189706 0

Table 7. The number of iterations in, n = 4(1)15, in the generalized Hermite case.

Values of n
# ° 4 5 6 7 8 9 10 11 12 13 14 15
1 6 6 6 6 6 6 6 6 6 6 6
0 10 21 12 11 11 11 11 11 11 11 11 11 11
1 7 8 7 7 7 7 7 7 7 7 7 7
! 10 20 16 10 17 10 17 10 18 11 20 11

Then, the set of zeros of the s-orthogonal polynomial H}Y, ,(t) with respect to the generalized

Hermite measure dA(t) = |t|(2“e‘t2 dt on R, u > —1/2, is given by

if m =2n, or

ifm=2n+1.

n,s 1
+ T,S’)<u——2—),u

The proof of this result is similar to the proof of Proposition 5.1, showing that

H#

b)) < LA V2(¢%)  and  Hb, o (t) < ELETTYZ (12 (5.3)

Notice from (5.3) that zeros of even and odd s-orthogonal polynomials with respect to the
generalized Hermite measure belong to different families of s-orthogonal generalized Laguerre
polynomials. For polynomials of odd degree, the family parameter is bigger for s + 1 than in the
case of even degree. An influence of the family parameter can be seen from Figure 2. Namely,
the larger values of the parameter o give larger values of zeros. This means that the starting
values (4.2) for the iterative process are not good enough. In such cases, it is much better to use
a construction with the generalized Laguerre measure, according to Proposition 5.2. Then, we

separately construct polynomials of odd and even degree.
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REMARK 5.1. In order to improve the convergence for the generalized Hermite measure, we
performed numerous experiments with various extrapolating rules. We found that one of the
best extrapolating rules is the following:

grik=le) _ o (k=2a) v e {1,2},
L (k.s) 2/ (k—1,5) | _(k—ls) 1/ (k=2.8) (k—2s) | _(k-2.5)
T = §<TV YT, >”§<TV Ty T )’ vely,
arfhe _ glisze) oo fhoth)
where again [, = {3,...,k — 2} (k > 5). As we can see, this extrapolation rule differs from the

. . e k-2, o )
previous one only in one additional term 7'5_1 ) used to extrapolate zeros with indexes in Ij.

In Table 8, we give the number of iterations for cases already presented in Table 7.

Table 8. The number of iterations i, n = 4(1)15, in the generalized Hermite case,
with a modified extrapolation rule.

] Values of n
a ) 4 5 6 7 8 9 10 11 12 13 14 15
0 1 8 6 6 6 6 6 6 6 6 6 6
10 21 12 10 8 8 8 9 9 9 10 10 10
. 1 7 3 5 7 5 7 5 7 6 7 6 8
10 20 16 7 10 7 11 7 11 8 12 9 13

As we can see, this modified extrapolation rule, in this case, gives smaller values for the number
of iterations than the previous one, but it is not true in a general case. For example, if we take

=10 and s = 1, the number of iterations increases considerably for odd n. On the other hand,
with the old extrapolation rule for a small s (here s = 1), the convergence is not disturbed.

Another effect which can harm calculations is related to an inaccurate construction of the
Gaussian quadrature rule (3.7), which should be used for calculations in the method described in
Section 3. Namely, the standard Golub-Welsch procedure for constructing Gauss-type quadra-
tures, based on QR-algorithm [21], which is implemented in almost all numerical software (e.g.,
ORTHPOL [24]), can give some inaccurate weights if the family parameter p is sufficiently large.
In order to illustrate this inaccuracy, we take the simple example with n = 4, s = 10, p = 15.
The obtained zeros 7,54‘20), v = 1,2,3,4, using the standard method for constructing weights in
the quadrature rule (3.7) are presented in Table 9.

These values are not even symmetric. However, if we use the following representation for the
weights A in (3.7),

1
(L) _
AP = — v=1,...L (5.4)

S (e ()"

where {px(t)} is a system of orthonormal polynomials with respect to the measure dA(t) on R,
we can calculate the accurate zeros of H;%,(t), which are presented in the last column of the
same table. Thus, we use here complete eigenvectors, but not only their first components. Notice
that, in this modification, the nodes TLEL), v = 1,...,L, are calculated in a usual way using
@R-algorithm. An analysis of this modification can be found in [25]. The last formula (5.4) was
found by Shohat {26]. It was also used in calculation of weight coefficients in the period before

an application of QR-procedure (cf. [27]).

Finally, we mention here that a similar kind of inaccuracy can appear with other measures
for sufficiently large family parameters (generalized Laguerre measure, generalized Gegenbauer
measure).



340 G. V. MiLovaNovIC et al.

Table 9. Zeros 754’10), v o=
modified method.

1,2,3,4, of H‘}Ysm(t) obtained by the standard and

v | Standard Method Modified Method

1 —7.28962206 ... —7.289621792645020
2 —3.66640712. .. —3.666407011304882
3 —3.66640695 . . . —3.666407011304883
4 —7.28962175. .. —~7.289621792645021

Table 10. Recursion coefficients in the three-term recurrence relation (3.2) for some
measures on R.

Measure dA(t) ok B
Abel’s Measure ———t—— dt 0 M

e-rrt — e—1rt 4

o 1 k2

Lindel6f’s Measure —dt 0 —

2 cosh(nt) 4

et k2
Logistic Measure —_dt 0

€ (1tet)2 " 42 -1

5.5. Abel, Lindel6f, and Logistic Measures

We also perform experiments with respect to some other measures, supported on R. For three
kinds of such measures (Abel, Lindelof, and logistic), in Table 10, we give the coefficients c
and S in the three-term recurrence relation for the corresponding orthogonal polynomials.

For these measures, we use the following extrapolation rule:

~ ~(k,s - —~2.g k-1
VTN L=}
and
A(k,s) _ alks) (k—1,s) (k—2,s) .
Tere = ~Tiear = 2V Thjomt — VTkjas (k is even),
~ (k,s) . .
Tkr1y2 =0 (k is odd).

Zero distributions of s-orthogonal polynomials (s = 1) with respect to the Abel’s, Lindeldf’s,
and logistic measure are presented in Figures 7 and 8. As we can see, these distributions are very
similar. The same situation is also for s >> 1. As an example, we give numerical results obtained
for the Abel’s measure, when s = 10 and n = 2(1)6 and n = 10 (see Table 11).

Table 11. Zeros of s-orthogonal polynomials with respect to the Abel’s measure for
s = 10.

TlSn,IO)

2 +5.34981302878875

3 0 +1.28798951031962(1)

4 +4.32924349049201 +2.08850396601357(1)

5 0

+1.03361961308960(1)

+2.95870116229020(1)

6 +3.88320551057493

+1.69259140377544(1)

43.84702162279135(1)

+3.43514608627397
+4.79585235400877(1)

10

+1.38517514830389(1)
+7.61209334780026(1)

+2.83611830753627(1)
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20
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. - . . . . . —o
5 10 15 0 5 10 15
(a) Abel’s measure. (b) Lindelsf’s measure.
Figure 7. Nonnegative zeros of s-orthogonal polynomials for the Abel’s measure (a)
and for the Lindeldf’s (b), when s = 1 and n = 2(1)15.
.
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Figure 8. Nonnegative zeros of the logistic s-orthogonal polynomials (a) and zeros of
s-orthogonal polynomials with respect to the Charlier measure (b), when s = 1 and
n = 2(1)15.

5.6. Charlier Measure

We also investigate a discrete measure known as the Charlier measure (cf. [22, pp. 170-172]),
with jumps
t,—a

a €
¢

att=20,1,2,...,

where a > 0. The Charlier polynomials are orthogonal with respect to the inner product defined
by

(f.9) = Y F(k)g (k). (5.5)

They satisfy the three-term recurrence relation with following coefficients oy = a + &, B = ak.
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The extrapolation rule in this case is given by the following empirical formulas:

2
(2\/7'(1(:—175) _ \/T(k——Q’s)) , = {112}3

fe) = <\/(’° Ls) \/(k 2s)> b ! 52 el
PG ’

27511_11,3) lfk o2 ) ve{k—-1,k},

where Iy = {3,...,k =2} (k> 5).
In Figure 8b, a distribution of zeros for Charlier s-orthogonal polynomials is displayed for
a=10and s =1.

6. CALCULATION OF THE WEIGHT COEFFICIENTS

We return now to the linear task of determination of the weight coefficients A;, and B;,
in Gauss-Stancu quadrature formula (1.1), assuming that we previously calculated Gaussian
nodes 7,...,7, (zeros of a certain s- or o-orthogonal polynomial). For this purpose, we can
adopt a method described in [28] and [29] for Gauss-Turdn and Chakalov-Popoviciu quadratures,
respectively (see also [30]). Thus, let the sets of fixed and Gaussian nodes

Fon={n, -.,7m} and Gn={m1,---,7n}

be known and let F,,, N G,, = . Otherwise, we should make an adjustment as we mentioned in
Section 1.
Putting

sz{glv"‘vgp}:=FmUGn (p:m+n)

and denoting the corresponding multiplicity of the node &, by r, (v = 1,...,p), our task is to
determine the coefficients C; ,, (i.e., A;, and B; ) in an mterpolatory quadrature formula of the

form
r,—1

Lroie =3 3 Cur®e) + R (6.1

v=1 i=0

Notice that the multiplicity of a Gaussian node must be an odd number.
As in [29], we define

Qu(t):H(t~§i)r17 V:1»~"ap7
iF#U
and use the polynomials

Frw(t) = (t = £)FQ, (1) = (¢ — &,)F T (¢ - €)™,

ity
where 0 < k <r, —1,1 < v < p, in order to decompose the problem to p mutually independent
triangular systems of linear equations with r, (v =1,...,p) unknown coefficients, i.e.,
ry—1 C v v
foul@) fou(&) - @) | b
v—1 1,v 1,v
&) o HPE) S B R
'ru_l)
7‘,,—1 V(&I) Cr,,—l,u Hr,—1v
where

/J'k,u=/]Rflc,V(t)d)‘(t) /t—su kH t—

i#v
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Now, we put ak g4, = é‘j_*llj”(g,/), so that the matrix of the system has elements ap;,1 <

gvj S Ty, V\]ith a’£‘~j = 0 fOI‘ ‘] < é

Introducing the normalization

Qk,j

Y lgkv 'er/w
(]—-1)!(1;1 J '

k. =

putting by = (k= 1)1 Ap_1,, 1 <k <r,.

. N R TR t—& \"
N (AL /;@ &)1 (&/— i) dA(t),

s 37

and following (29], we get the following.

THEOREM 6.1. For fixed v, 1 < v < p, the coefficients C; , in the quadrature formula (6.1) are
given by

bT‘u - (7'1/ - 1)' Cr,,~1,u - [Lru—l,u:

T
b = (k - 1)! Ch—1w = fik—10 — Z CA’lk‘jbj; k=7r,—-1,...,1,
j=k+1
where
1 7
arr =1, Ak k4 = —= Zuz&e,j,
J £=1

and

we=Y e —&)  t=1lo..r L
i#y

Thus, for fixed v, the coefficients bk, 1 < k < 7, i.e., the weight coefficients C, , in (6.1), are
obtained from the corresponding upper triangular system of equations Ab = ¢, where

A= {CALU], g: [b1b7 1T 7

~ ~ T
s c= [UO,VH-UTU—I,U] .

v

The normalized moments f , can be computed exactly, except for rounding errors, hy using the
Gauss-Christoffel formula (3.7), taking L =p+Y_>_, 7, knots.

EXAMPLE 6.1. Now we want to construct a Lobatto type quadrature rule of the form

1 n  2s
[ 108t Qa5 = X 3 At V) + Buaf 0) + Buaf (0) + Boaf-1) + Boa S1)
-1 v=1 i=0
with Gaussian nodes 71, ..., Th.
Thus, in this case, we introduce three fixed nodes: 7y = =1, 72 =0, 73 = 1, with multiplicities

1, 2, 1, respectively, so that M = 4, qu(t) = (t2 — 1)t? (see (1.2)), and according to (1.4),
dA(t) = t2(1 — t2) dt is the generalized Gegenbauer measure on (—-1,1), witha =1, §= 1/2 (see
Section 5.2).

If the maximum degree of exactness is dyax = 2(s+1)n+3,-free nodes in Qp s(f) must be zeros

of the s-orthogonal polynomial W,S}s’l/ 2 (t) with respect to the generalized Gegenbauer measure
dA(t).
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Table 12. Parameters of Q2,s(f) for s =1, 2.

s=1 s=2
71 [—0.667724357906923 —0.675112000977284
i Aip Ain

0 | 0.668946557387391 0.728669656880520

1 | 0.200757109134606(—1) | 0.495168812842977(—1)
2 | 0.827917955975223(~2) | 0.140806820439479(—1)
3 0.516533600625606(—3)
4 0.422667424219621(—4)
B | 0.573503803772122(—1) | 0.399205534871742(—1)
Bo | 0.547406124470793 0.462819579264612

Table 13. Parameters of Q3 s(f) for s =1,2.

s=1 s=2
71 {—0.782465625283903 —0.801032639658859
i Ai : A

0 | 0.466114900228077 0.482247415802680

1 | 0.170146372659433(—1) | 0.263895403842581(—1)
2 | 0.263525214201978(—2) | 0.401261800734473(—2)
3. 0.108127113066279(—3)
4 .| 0.451390243547896(~5)
B | 0.361899495634558(—1) | 0.235365436186576(—1)
Ao | 0.995390300416934 0.988432081157324

A; | 0.331196251997634(—1) | 0.346136792399800(—1)
Az | 0.194062137754975(—3) | 0.270188045759357(—3)
As 0.566748161962253(—6)

Notice that, by symmetry,

Ty = —Tn4i-v, ‘ Ai,u = (—1)iAi,n+1—u7 BO,l = BO,3 = B,
as well as that for odd n, one of free nodes must be zero (7(,,4+1y/2 = 0). In that case, we remove
the fixed node 773 = 0 and increase the multiplicity of the Gaussian node 7(541y/2 = 0 from 2s+1
to 2s + 3. Therefore, we have

[n/2] 2s
Qns(£) = D> Aiw [f(i)(n) + (—1)if(i)(—7-l,)] +B[f(~1) + )] + Ln,s(f),
v=1 i=0
where
Bo2f(0) + B12f'(0) (n is even),
Ln,s(f) =

2s5+2 )
> Ainr)/2fB(0)  (nis odd).
i=0

Furthermore, it is easy to prove that By s = 0 and Aj;1,(n41)/2 = 0, so that (with a simpler
index notation)
By f(0) (n is even),

Lns(f) =4 A;f@D(0) (n s odd).
j=0

The parameters of Q,, ;(f) are presented only for n = 2(1)5 and s = 1,2 (see Tables 12-15).
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Table 14. Parameters of Q4,s(f) for s = 1,2.

71 | —0.864343260009839 T2 —0.441646700727031
1 Al 1 Ai g
se 1 0 0.291988548489762 0 0.514638063715358
1 0.677444243326017(—2) 1 0.498531656314293(—2)
2 0.648273517991189(-3) 2 0.359603976374291(—2)
B 0.224364945126899(—1) Bo 0.341873786564380
1 —0.879394021458197 kp) —(.428674810876148
1 Al i Ai2
0 0.295178181352631 ) 0 0.552804147355119
o 1 0.101143495853744(~—1) 1 0.680687022397463(—2)
2 0.922248277774315(-3) 2 0.555113515690070(—2)
3 0.154530837011859(—4) 3 0.3838306859303889(—4)
4 0.383168236065884(—6) 4 0.926773668549215(—5)
B 0.141557058476428(—1) Bo 0.275723930889215
Table 15. Parameters of Qs s(f) for s =1,2.
a! —0.900169737733269 Ty —0.574018204835000
i Ain ; Ao
0 0.217690600610764 0 0.421359837858011
s=1 1 0.389164846928562(‘2) 1 0.551679530132521(—2)
2 0.265641103999405(—3) 2 0.191245109502987(—2)
B 0.163654269057924(—1) Ao 0.689168269250866 ‘
Ay 0.107188288005793(—1) Ag 0.280948737674689(—4)
T —0.914006400993315 To —0.576411308297384
i Ain i Aio
0 0.213409270452064 0 0.443741913748343
1 0.544240785455850( —2) 1 0.796047097661861(—2)
s—o 2 0.348080210407537(—3) 2 0.282629281215632(—2)
3 0.427800489449208(—5) 3 0.267694393447469(—4)
4 0.736267007987303(—7) 4 0.284224160106976(—5)
B 0.100121930330481(~1) Ao 0.665673245533001
A 0.103811992392277(—1) Ag 0.350419067557081(—4)
Az 0.306279814773751(—7)

345

In order to test the quadrature formula Q, ;(f), we take the function f(t) = t/sint (see [31,

Example 2.2]) such that

I(f) =2.119525586696611661037623273595157 . . ..

All calculations we perform now in quadruple precision (with 34 decimal digits mantissa).

An elementary computation yields that
fO@t)sint = tP(cott) + Q,_; (cott),
where the polynomials P;(z) and Q,(z) satisfy

Pii1(z) = —aP(z) — (1 + 2?) P/(),
Qi(z) = —2Q1(x) — (1 +2?) Qi_(x) + Pi(x),
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Table 16. Relative errors in quadrature sums Qn,s(f).

n=2 n=3 n=4 n=>5 n=26 n="7T
2.39(-9) 3.09(—12) 1.38(—15) 1.44(—18) 7.39(—22) 6.99(~—-25)
3.99(-12) 1.67(—16) 1.90(—21) 5.84(—26) 7.75(—31) m.p.

with Py(z) = 1, Q_1(z) = 0. The limiting values of derivatives f®(¢), i = 1(1)7, at t = 0 are 0,
1/3,0, 7/15, 0, 31/21, 0, respectively.

Table 16 shows the relative errors |(Qn,s(f) — I(f))/I(f)| for n =2(1)7 and s =1 and s = 2
(m.p. stands for machine precision). '

7. CONCLUDING REMARKS

The presented algorithm for construction of s-orthogonal polynomials with quadratic conver-
gence has a few nice properties. We emphasize the following.

e The number of nonlinear equations to be solved is small. Ideally, if the starting values are
known, our algorithm needs only n — 3 nonlinear equations with 4,5,...,n variables.

¢ The construction of the Jacobian matrix for the system of nonlinear equations is simplified,
and requests only evaluations of 2n integrals for a system of n variables.

e The algorithm can be applied for both bounded and unbounded supports.

As we mentioned before, the Gauss-Christoffel quadrature rule is used for calculation of in-
tegrals. The construction of these quadrature rules is not needed for every value of n. In our
implementation, we construct a new quadrature rule after n is increased for 8, i.e., we always
construct Gaussian rules for n = 8,16,24,....

Finally, for finding all weights, our method uses an upper triangular system of linear equations
for the weights associated with each (Gaussian or prescribed) node.
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