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Abstract-A new algorithm for constructing quadrature formulas with multiple Gaussian nodes 
in the presence of certain fixed nodes is presented. It can be used in construction for measures with the 
bounded and infinite supports. The algorithm includes a simple and fast method for finding elements 
of the Jacobian matrix in an iterative process with quadratic convergence, which is based on using 
the fundamental three-term recurrence relation for the corresponding orthogonal polynomials with 
respect to a given measure. Numerical experiments with respect to several different measures are 
also included. Finally, a simple method for calculating weight coefficients (Cotes numbers of higher 
order) of Gaussian and prescribed nodes is presented. Numerical examples are included. @ 2004 
Elsevier Ltd. All rights reserved. 
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1. INTRODUCTION AND PRELIMINARIES 

Let dX(t) b e a g iven nonnegative measure on the real line IR, with compact or unbounded support, 
for which all moments pk = &t” d(t) k = O> 1, exist and are finite, and 1-10 > 0. With P,, 
we denote the set of all algebraic polynomials of degree at most k (E Pijo). 

Let VI,... ,nm (71 < .. < vm) be given fifirced (or prescribed) nodes, with multiplicities 
ml,. , m,, respectively, and ~1,. , T,~ (71 < < TV) be free nodes, with given multiplici- 
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tiesni,...,n,, respectively. Quadrature formulae of the form 

where 
n n,-1 m m,-1 

Q(f): = c c -4,vf(i+v) + c c &,v.f%v) 
v=l i=o v=l i=o 

were investigated by Stancu [l-3]. 
Using fixed and free nodes, we introduce two polynomials 

m n 

(1.1) 

and QN(~): = n(t - T,)~,, (14 
v=l v=l 

where M = CT=“=, m, and N = Cz=, n,. The quadrature formula (1.1) is called interpolatory 
with an algebraic degree of exactness at least M + N - 1 if 1(f) = Q(f) for all polynomials of 
degree at most M + N - 1. Choosing the free nodes to increase the degree of exactness leads to 
so-called Gaussian type of quadratures. If the free (or Gaussian) nodes 71, . . , T, are such that 

I(f) = Q(f) for each f E PM+N++I, the corresponding quadrature Q we call the Gauss-Stancu 
formula. The following characterization is well known (see [4]). 

THEOREM 1.1. Let the polynomials qM(t) and QN(t) be given by (1.2). The nodes ~1,. . . ,T, c 
are the Gaussian nodes if and only if 

I tkQd+m@) Nt) = 0, (1.3) 
JR 

fork=O,l,..., n-l. 

Under some restrictions of polynomials qM (t) and QN(~) on the support interval of the mea- 
sure dX(t) (the smallest interval containing supp (dX)), we can give sufficient conditions for the 
existence of Gaussian nodes (cf. [4,5]). 

THEOREM 1.2. If the multiplicities of the Gaussian nodes are odd, e.g., n, = 2s,+l, v = 1, . . . , n, 
and if the polynomial with fixed nodes qM(t) does not change its sign in the support interval of 
the measure dX(t), then, in this interval, there exist real distinct nodes rv, v = 1,. . . , n. 

The condition for the polynomial qM(t) in the last theorem means that the multiplicities of 
the internal fixed nodes must be even. Defining a new (nonnegative) measure di(t) by 

di(t) = ?qM(t) Nt), Y = %n(qM(t))7 (14 

the “orthogonality conditions” (1.3) can be expressed in the simpler form 

.I 
tkQN(t) di(t) = 0, k=O,l,..., n-l. 

w 

This means that the general quadrature problem (l.l), under conditions of Theorem 1.2, can be 
reduced to a problem with only Gaussian nodes, but with respect to another modified measure. 
Computational methods for this purpose are based on Christoffel’s theorem and described in 
detail in [6] (see also [5,7]). 

Let 7r,(t): = flz=,(t -7,). S’ mce QN(t)/rn(t) = na,(t --T,)~‘~ > 0 over the support interval, 
we can make an additional reinterpretation of the LLorthogonality conditions” (1.3) in the form 

1 &n(t) dp(t) = 0, Ic=O,l,..., n-l, (1.5) 
w 
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where 

&L(t) = (f&t - q,)2su) di(t). 

This means that ~,~(t) is a polynomial orthogonal with respect to the new nonnegative measure 
&(t), and therefore, all zeros rl: . , r,, are simple, real, and belong to the support interval. 
As we see the measure &L(t) involves the nodes 71:. . , rnr i.e., the unknown polynomial am, 
which is implicitly defined (see [8, pp. 214-2261). This polynomial 7rn(t) belongs to the class of so- 
called a-orthogonal polynomials {7r,,,,(t)},,e~“, which correspond to the sequence 0 = (si, ~2,. ) 
comrected with multiplicities of Gaussian nodes (see Theorem 1.2). Namely, 7rn(t) = ~~,~(t). If 
g = (s. s, ), the above polynomials reduce to the s-orthogonal polynomials. (For details, see 
for example, [9] .) 

For prescribed nodes vi!. . . , rln,, we assumed that they are distinct. Under the conditions of 
Theorem 1.2, the Gaussian nodes 71, . ,7, are also distinct, but some of them may coincide with 
some of the prescribed nodes. In that case, the quadrature Q must be adjusted in the following 
way (cf. [5]). If 7, = r/31 then 721 has to be removed from the list of fixed nodes and the multiplicity 
of the Gaussian node r, changed to n, + 771.~ = 2(s, + r,) + 1. lYote that such merging of nodes 
does not change the value of M + N. 

Also, we mention here that the,conditions of Theorem 1.2 are not necessary for the existence 
of Gauss-Stancu quadratures. As an interesting and important example, we mention the Gauss- 
Kronrod quadratures with simple prescribed internal nodes or, in general, with prescribed nodes 
of odd multiplicities. 

Quadratures with only Gaussian nodes (m = 0), 

.i w 
f(t) $X(t) = 2 2 Ai.yf(‘)(~) + R(f), 

u=l z=o 

(1.6) 

which are exact for all algebraic polynomials of degree at most d,,,, = 2 Cc=, s, + 2n - 1, are 
known as Chakalov-Popoviciu quadrature formulas (see [lo-121). Deep theoretical progress in 
this subject was made by Stancu (see [3,13-171). In the special case of the Legendre measure on 
[ - 1, 11, when all multiplicities are mutually equal, these formulas reduce to the well-known Tura’n 
quadrature [18]. The case with a weight function dX(t) = w(t) dt on [a, b] has been investigated 
by Italian mathematicians Ossicini, Ghizzetti, Guerra, and Rosati, and also by Chakalov, Stroud, 
Stancu, Ionescu, Pavel, etc. (see [9] for references). 

In this paper, we consider only cases described by Theorem 1.2. In the numerical construction 
of such formulas, we deal with two tasks. The fist task is a nonlinear algebraic problem of 
finding Gaussian nodes 71, . , r,,, and the second one is a linear problem-the calculation of 
the coefficients Ai,,, and Bi,, in (1.1). The first problem is treated in Sections 2-4. Some 
numerical experiments with respect to several different measures are considered in Section 5. A 
simple method for calculatin g weight coefficients (Cotes numbers of higher order) of Gaussian 
and prescribed nodes is presented in Section 6, including some numerical results. Finally, some 
concluding remarks are given in Section 7. 

2. NUMERICAL PROCEDURE 
FOR FINDING GAUSSIAN NODES 

Under conditions of Theorem 1.2, the problem of the construction of Gaussian nodes in (1.1) 
reduces to the corresponding problem for the Chakalov-Popoviciu quadrature formula (1.6) with 
respect to the modified measure di(t) given by (1.4). Th erefore, without loss of generality, we 
consider only the problem of finding nodes 71,. . ,7, in (1.4). In fact, we need the zeros of 
a-orthogonal (or s-orthogonal) polynomials. 



328 G. V. MILOVANOVI~ et al. 

An idea for finding s-orthogonal polynomials, i.e., their zeros rV, solving the system of nonlinear 
equations (1.5) when sr = ... = s, = s, i.e., 

(2.1) 

in unknowns rr, . ..,Tn, can be found in [8, pp. 214-2261 (see also [19]). 
Recently, this idea has been used in construction of an iterative method with quadratic conver- 

gence for finding the corresponding s- and a-orthogonal polynomials (see [20]). This method was 
made in two parts; the first part constructs the s-orthogonal polynomial with the maximal value 
ofs~,i.e.,fors=max{s, ] v=l,... , n}, and the second one constructs the desired a-orthogonal 
polynomial through several steps by reducing only one s, to s, - 1 in each of the steps. 

The first part of the method (construction of s-orthogonal polynomial with s = S) starts 
with zeros of the a-orthogonal polynomial for 0 = (O,O, . . ,O), i.e., with zeros ~1,. . . ,r, of the 
standard orthogonal polynomial. Then, applying one QR step with the shift 71, we determine 
the starting vector in the nonlinear procedure for finding the zeros of u-orthogonal polynomial 
fora=(l,O,... , 0). Further, in each of the following steps, we raise only one s, to s,+r via the 
following path: 

(l,O,O,... ,0,0),(l,l,0,...,0,0),...,(1,1,1,...,1,1~, 

(1, Ll,. . . > 1, a), (1, 111,. . .7 2721,. . . , (2,2,2,. . . ,2,2), 

(3,2,2,. . ,2,2), (3,3,2,. . . ,2,2), . . , (3,3,3,. . . ,3,3), (2.2) 

(3,3,3,. . ) 3,4), . . . , 

until we get the desired s-orthogonal polynomial with g = on = (s, s, s, . . . , s, s). In each step, 
except in the first one, the initiarvalue for each of the zeros we determine by Lagrange extrap- 
olating polynomial by using the values, obtained in the previous steps, for the corresponding 
zero. 

This approach was mainly based on the behavior of the zeros of s-orthogonal polynomials for 
the Legendre, Laguerre, and Hermite measure, recently presented in [9, Figures l-31. One can 
see that behavior of the zeros, when the degree of the polynomial is fixed and s increases, is 
almost linear. The method is very successful, in particular for measures on the bounded support 
(e.g., for the Jacobi measure). In the case of measures on the unbounded support (e.g., for 
the Laguerre and Hermite measures), sometimes the computation can break down, so that the 
algorithm cannot be applied in such cases. 

The main problem in the application of this method is a choice of the initial values of zeros, 
as well as a lot of computation via the above mentioned path (2.2) with ns steps. Notice that, 
in each step in this chain, we must solve a system of n nonlinear equations using an iterative 
procedure. 

In this section, we give a new algorithm with at least three important improvements. 

l The algorithm can be used in constructions for measures with the bounded and unbounded 
supports. 

l Under certain initial values, the algorithm requires only n - 3 steps. for constructing the 
polynomial m,+(t) instead of ns steps in the chain (2.2). 

l There is a simple and fast method for finding elements of the Jacobian matrix in the 
corresponding iterative process. 

In the next sections, we describe only phases of the new algorithm which are different from 
one proposed in [20]. The iterative procedure for finding zeros of ~~,~(t) (or am+ in a special 
case) with quadratic convergence, under suitable starting values, is presented in Section 3. An 
important part of the new algorithm is a much simpler construction of the s-orthogonal polyno- 
mial 7rn,, (t) in only n - 3 steps. It is considered in Section 4, including a selection of the starting 
values in this process. Numerical experiments with several kinds of the classical and nonclassical 
measures are considered in Section 5. 
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3. ITERATIVE METHOD FOR ZEROS 

In this section, we present a modification of the corresponding method from [20]. This iterative 
method for finding zeros of a-polynomials can be applied for a wide class of the measures dX(t). 
We also derive a simple way for quickly finding elements of the corresponding Jacobian matrix. 

For a given sequence 0 = 01X = (si , ~2, . . ( s,,)) we rewrite the orthogonality conditions (1.5) 
as the following system of nonlinear equations: 

F,(t) E ra p3-l(t) fi(t - Tu)2su+l 
1 ( ! 

CIA(t) = 0, 3 = 1. . ‘rl 1 (3.1) 
v=l 

where t = (71, rz: . , Tag) and {pi}JE~o is the sequence of orthonormal polynomials with respect 
to the measure dX(t) on R. These polynomials satisfy the three-term recurreuce relation 

a-z+dt) + w+(t) + J&--1(t) = Q,(t)> j = 0,l;. , (3.2) 

with p-r(t) = 0 and pe(t) = l/a, where /?e = ~0 = JR dX(t). 

Notice that in equation (5.1) in [20], in (3.1), we used the monomials {t’- ‘}y=r instead of 
these orthonormal polynomials {pj-r};L=r. Also, in our software implementatiou, we used alter- 
natively the (modified) f un amental Lagrange polynomials {kn,r(t), , e,,,,(t)}, where t,,,,(t) = d 
7rn(t)/(t - Tj), j = 1,. ( n: and I, = (t - 71). (t - TV). 

In order to solve the system of nonlinear equations (3.1), we use the matrix notation 

t= [qQ...TTJTi d”‘) = T1(m%p...T~Lrn) 
[ 1 

T 
, ‘In =O,l;..., 

and 

F(t) = [Fl(t)F2(t) ‘. &(t)]r 

If W = W(t) is th e corresponding Jacobian of F(t), we can apply the Newton-Kantorovic 
method 

t(““+‘) = t(“‘) _ W-1 (t(m)) F (t(m)) , 112 = O,l, 2>. . (3.3) 

for determining the zeros of the a-orthogonal polynomial T,,,~. If a sufficiently good approxima- 
tion t(O) is chosen, the convergence of the method (3.3) is quadratic. 

The elements of the Jacobian 

can be calculated by 

wU,k = 2 = - (hk + 1) 
k 

(3.4) 

where j, k = 1,. . , n. 

THEOREM 2.1. Let F3 be defined by (3.1), u’a,k = 0, and wr,k, k = 1,. . : n, be given b,y (3.4): 
I.e., 

(3.5) 
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Then 
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V%hi+2,k = (Tk - ‘yj)wj+l,k - fiwj,k - @Sk + l)Fj+l, 

forj=O,l,..., n-2. 

(3.6) 

PROOF. Multiplying the three-term recurrence relation for orthonormal polynomials (3.2) by 
-(2sk -I- l)(nz=,(t -~~)~“~+~)/(t--rk), and th en integrating over R with respect to the measure 
dX(t) and using (3.4) and (3.1), we obtain 

&wj+2,k + Qjwj+l,k + &w&k = -@Sk + 1) s, E (fi (t - +i’) ccl(t) 

u=l 

= -&k + l)Fj+l + Tkwj+l,k, 

i.e., (3.6). I 
Thus, knowing only Fi and w~,~ (j = 1, . . . , n), we calculate the elements of the Jacobian 

matrix by the nonhomogeneous recurrence relation (3.6). All of the integrals in (3.1) and (3.5) 
can be calculated exactly, except for rounding errors, by using a Gauss-Christoffel quadrature 
formula with respect to the measure dX(t) (see [21]), 

(3.7) 

taking L = n + Cr=, s, nodes. This formula is exact for all polynomials g of degree at most 
2L-1=2n-1+2C;=,sV. 

4. CONSTRUCTION OF s-ORTHOGONAL POLYNOMIALS 

Let ~~,~(t) be the s-orthogonal polynomial with respect to the measure dX(t), and let r?‘“‘, 
v = l,..., n, be its zeros. The behavior of the zeros rV (v) for a fixed s and when the degree 
of the polynomial n increases can be used in the construction of s-orthogonal polynomials. In 
Figure 1, we display the distribution of nonnegative zeros for Legendre and Hermite s-orthogonal 
polynomials, taking s =4 and n = 2,. . . , 15. The solid lines connect the zeros r?‘S) with the same 
index V. For the same values of s and n, the zeros of the generalized Laguerre polynomials L&(t) 
for a = 0 and a = 101/3 are presented in Figure 2. If s is bigger than one, the corresponding 
graphics are quite similar to the previous one, especially for the generalized Laguerre measure. 
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(b) Hermite measure. 

Figure 1. Nonnegative zeros of s-orthogonal polynomials for s = 1 and TZ = 2(1)15 
for the Legendre measure (a) and the Hermite measure (b). 
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(a) a = 0. (b) cy = 101/3. 

Figure 2. Zeros of the generalized Laguerre s-orthogonal polynomials L&(t) for 
s = 1; R - 2(1)15, and a = 0 (a) and cy = 101/3 (b). 

15 

As we can see, the behavior of zeros is almost linear for the Hermite and Legendre case, but it is 
not true for the Laguerre case. This observation gives us an inspiration to construct an iterative 
algorithm for calculating zeros of s-orthogonal polynomials over the path when the degree of a 
polynomial increases, and s is a fixed number. 

In this new approach, for a fixed s, we start from the zeros of s-orthogonal polynomials of 
degree two and three, usually obtained by the algorithm proposed in [20], and then we calculate 
the starting values for the method described in Section 3. Using this method, we determine the 
zeros of the s-orthogonal polynomial 7r~(t) of degree four. 

In general, using the zeros of ~-z,~(t) and ?~k-.r,~(t), i.e., 

i=k-2, k- 1: 

we must determine at first the starting vector 

p = p’“)p) ,(k,s) ’ 
1. 1 . rk T 1 (4.1) 

and then apply method (3.3) for solving the corresponding system of k nonlinear equations in 
order to get the zeros of the polynomial ?rk,s(t). Repeating this procedure n - 3 times, for 
k = 4, , n, we obtain the zeros of the polynomial 7rn,+(t). 

As we can see, such a method of construction requires much less numerical work than the 
previous procedure proposed in [20]. F or example, in the case n = s = 10, the previous algorithm 
requires us to solve 100 systems of nonlinear equations with ten unknowns (see (2.2)). On the 
other side, using the new algorithm, one has to solve only seven systems of equations with 
four, five, six, seven, eight, nine, and ten unknowns, respectively. Of course, the last algorithm 
requires additional work for constructing the zeros of the polynomials XQ(~) and ra+(t). (They 
are systems with two and three unknowns, respectively.) 

Thus, the basic problem in the new algorithm is to find an appropriate formula for the starting 
vector (4.1)) with components 

+(“‘) = s, (t&l, tk-2) , ” v= l,...,k. (4.2) 

According to numerical investigation of zero distribution, we use empirical extrapolation formulas 
which include zeros as displayed in Figure 3. 
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T (k-&s) 
V-l 

v 
z (k-U) 

V 

Figure 3. Extrapolation of starting values. 

Typical formulas for starting values for the Jacobi measure dX(t) = (1 - t)” (1 +t)fl dt on (-1,l) 
(q p > -1) and for the Hermite measure dX(t) = eetz dt on (--00, +oo) are 

2p-1,s) _ p-w ” ” > u E {W, 

+(ks) = ,&Ls) + p,4 1 -- ” ” 1 2 Ty,4 + 4~-2,4 ” 2 ), vEIk> 

2T(k--l,s) _ T(k--2,s) 
LX-1 v-2 1 u E {k - 1, k}, 

where 4 = (3,. . , k - 2) (k 2 5). 
Because of the strong nonlinearity in zero distribution for the Jacobi measure (for small n), 

this extrapolation can give a value outside the interval (-1,l). If the value obtained with the 
above rule is bigger than 1 (less than -l), which can appear only for polynomials of degree four 
or five, one should use 1 (-1) instead of the obtained values. 

In the case of the generalized Laguerre measure dX(t) = t”ectdt on (O,+oo) ((I > -l), we 

make the transformation 7Lkls) -+ J- 7LklS) , so that the above formulas become 

Figure 1 shows a strong nonlinearity in the zeros behavior for the Legendre polynomials of 
degrees two, three, and four. In our experiments, we encounter even stronger nonlinearity for 
the Gegenbauer measure dX(t) = (1 - t2)a dt on (-1,l) with the parameter Q smaller than zero, 
but for a: > 0, this nonlinearity is smaller than in the case of the Legendre measure. This means 
that the Gegenbauer case with smaller parameter cy needs more iterations for constructing the 
polynomial of degree four with respect to one with bigger cy. For example, for constructing the 
Gegenbauer s-orthogonal polynomial with n = 4 and s = 20, we need 55 and 40 iterations if 
Q = -9/10 and cr = 100, respectively. Because of that, in order to avoid this strong nonlinearity 
for small QI, it is much better to use the algorithm from [20] for n 5 4 (and maybe even n < 5), 
and then start with the new algorithm. 

A nonlinearity is also encountered for the Laguerre and Hermite case, but it is much smaller 
than nonlinearity presented above. There is stronger nonlinearity exhibited by the associated 
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Legendre polynomials (cf. [22, pp. 201-203]), in which case the algorithm breaks down if Tve 
begin the construction from polynomials of degree two and three. 

The behavior of the algorithm for several classical and nonclassical measures will be considered 
in the next section. 

5. NUMERICAL EXPERIMENTS 

The algorithm was implemented in the package MATHEMATICA. All calculations were per- 
formed with 16 decimal digits mantissa (in our case, $MachinePrecision). The same results can be 
obtained using FORTRAN in double precision arithmetic (with machine precision z 2.22x 10-i”). 

5.1. Jacobi Measure 

In this section, we consider the Jacobi measure on (-1: 1) given by dX(t) = (1 - t)“(l + t)fi dt, 
where a,P > -1. 

At first, we discuss the Gegenbauer measure (Q = p), A distribution of zeros for N = p = -9/10 
is presented in Figure 4 for two values of s (s : 1 and s = 10). 

1 

0.8 

0.6 

0.4 

0.2 

- 
I c 

1 

0.8 

0.6 

0.4 

0.2 

c 
5 10 15 

(a) s = 1. 

Figure 4. Nonnegative zeros of the s-orthogonal Gegenbauer polynomials wit]) pa. 
rameter a = -g/10 for s = 1 (a) and s = 10 (b), when 1~ = 2(1)15. 

In Table 1, we present the zeros T:‘~“) of the s-orthogonal Gegenbauer polynomials for 12 = 12 
and s = 10, taking o = p = -9110, 312, and 100. The corresponding numbers of iterations ii2 
for finding these zeros are also given in the same table. The number of iterations i,,, II = 3(1)15, 
for s = 1 and s = 10 are given in Table 2. 

We can see that i,, becomes smaller as the parameter CY (= p) increases. This is explained 
easily if we adopt that nonlinearity in zero distribution decreases when 0 increases. Notice also 
that the number of iterations for getting polynomials with odd degree decreases slower than one 
for even degree. 

A distribution of zeros in the nonsymmetric Jacobi case with parameters Q = -9/10 and 
0 = 10 is displayed in Figure 5 for s = 1 and s = 10. 

The numerical results in this case for some selected values of rl and s are presented in Table 3, 
including the necessary number of iterations i4 and i,. 
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1 

0.75 

0.5 

0.25 

0 

- 0.25 

- 0.5 

- 0.75 

Table 1. Zeros of the s-orthogonal Gegenbauer polynomials for n = 12 and s = 10 
and the number of iterations ir2 

f0.813124164758066, f0.686762815789464 

100 f0.549006446594587, f0.400464289428178 

f0.243684696049418, f0.081802954927467 

I 11 9 8 

Table 2. The number of iterations i,, n = 4(1)15, in the Gegenbauer case for s = 1 
(first row) and s = 10 (second row), and some selected values of Q. 

2 
a ii2 

f0.992587218229164, f0.925814075750528 
9 

-iii 
f0.795538460358687, f0.610717369841159 

f0.384024309720464, f0.131001991’782728 

f0.987558902610725, f0.916149943757799 
3 

2 I f0.784210770279372, f0.600411542500815 

f0.376902939023624, f0.128466528934527 
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n 4 5 6 7 8 9 10 11 12 13 14 15 

9 9 10 8 7 7 6 6 6 6 6 6 6 
a=-- 

10 29 21 20 19 21 16 12 11 11 11 11 11 

3 9 7 7 6 6 6 6 6 6 6 6 6 
(y=- 

2 28 21 19 15 16 14 11 10 9 10 10 10 

8 6 6 6 6. 6 6 6 6 6 6 6 
a= 100 

24 15 12 11. 10 10 9 9 8 8 7 7 

1 

0.75 

0.5 

0.25 

0 

- 0.25 

- 0.5 

- 0.75 

L I  

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 

(a) s = 1. (b) s = 10. 

Figure 5. Distribution of zeros for the Jacobi measure with Q = -g/10, /3 = 10 for 
s = 1 (a) and s = 10 (b). 

5.2. Generalized Gegenbauer Measure 

We also investigate the case of the generalized Gegenbauer measure on (-1,1) given by 
dX(t) = Jtl 1+2P(1 - t2)0 dt, Q, /? > -1. The standard orthogonal polynomials W?“‘(t) with 
this measure was first investigated by Lascenov [23] ( see also [22, pp. 155-1561). The rela- 
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Table 3. Zeros of s-orthogonal Jacobi polynomials with 01 = -g/10, p = 10, and 
some selected values of n and s. 

335 

-0.956958840560754, -0.828446385297409 

-0.625710131602863, -0.366897464420670 
n = 10 

-0.075182888431344, 0.223312061944658 
i4 = 44 

s = 10 
0.501858406743238. 0.735513030716415 

il0 = 17 

0.903350566478815, 0.9903088637371iO 

-0.956789893504908, -0.78296752487239 1 

s=8 -0.496609453149223, -0.138703351806248 iq = 62 

II = 20 0.239375730489567, 0.583342824047379 iti = 28 

0.843806416238132, 0.983338395742211 

tions between generalized manic Gegenbauer polynomials and the standard Jacobi polynomials 
PP.8) (t) are given by 

wp (t) = 71! 

(11 + cy + B + l)?Z 
P,p (2? - 1) ( 

w;:::‘,‘(t) = 
IL! 

(n + Q + P + a), 
tPpJ+l) (2t2 - 1) 

(5.1) 

(5.2) 

These polynomials satisfy the three-term recurrence relation (3.2), with cy3 = 0 and 

j(j + 0) 
p2J = (2j + Q + 4)(2j + ck + B + 1) ’ 

(j + PIG + Q + 4 
,823-l = (2j+a+/S1)(2j+cr+/3)’ 

for j = 1,2!. . i except for Q + /? = -1 when ,& = (0 + l)/(o + p + 2). 
The distributions of zeros of s-orthogonal generalized Gegenbuaer polynomials with Q = -l/2 

and p = -l/4 (dX(t) = dmdt) and s = 1 and s = 10 are given in Figure 6. 

1 

0.8 

0.6 

0.4 

0.2 

Y ‘\: z l ~ * 
I - -10~ - i5 

0.8 1 

0.6 : 

(a) s = 1. (b) s = 10. 

Figure 6. Nonnegative zeros of s-orthogonal generalized Gegenbauer polynomials 
(a = -l/2, ,D = -l/4) for s = 1 (a) and s = 10 (b), when R = 2(1)10. 

The extrapolation rule for the generalized Gegenbauer measure is the same as in the case of 
the Jacobi measure. The calculations can be performed when the ratio I@/cyI is not so large, for 
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example, < 8. However, when this ratio becomes bigger, then we need another extrapolation rule 
like one which will be considered in Section 5.5. However, in this case, we can use an alternative 
way based on a connection between these s-orthogonal polynomials W$‘“‘(t) and the Jacobi 
s-orthogonal polynomials considered before. Such formulas for s = 0 reduce to (5.1) and (5.2). 

PROPOSITION 5.1. Let I’&“) (t) be the s-orthogonal polynomial with respect to the Jacobi mea- 

sure do(t) = (1 - t)?(l + t)6dt on (-l,l), where y,6 > -1, and let its zeros be 7” (n+) (77 4, 
v = 1,. . , n. 

Then, the zero set of the s-orthogonal polynomial Wan” (t) with respect to the generalized 
Gegenbauer measure on (-l,l),’ d(t) = Itllf2fl(1 - t2), dt, cx,p > -1, is 

ifm=2n,or 

1 J 
o,i ;(l+tP”‘(a,P+s+l)), v=l,..., n ) 

I 

ifm=2n+l. 

PROOF. At first, it is easy to conclude that 

WJ$(-t) = (-l)“wg;P)(t). 

If m is odd, then We;“(O) = 0. 
According to the “orthogonality relation” (2.1), we have, for each I; = 0, 1, . . , , n - 1, 

s 1 Pw~~~~)(t)2s+l &i(t) = 
/ 

2s+1 xk+.o(l - x)a dx = 0, 
-1 0 

i.e., J?l t’W.$‘( dm) 2s+1 da(t) = 0. It means that the following equality (up to a 
multiplicative constant) 

wgf’ (t) x P$y’ ( 2t2 - 1) 

holds. In a similar way, we conclude also that 

wg!J,,(t) =: tP$y+s+l) (29 - 1) . 

These equalities give the assertion of the statement. I 

Thus, the construction of polynomials W$$ (t) reduces to the corresponding problem for the 
Jacobi measure. 

5.3. Generalized Laguerre Measure 

Consider now the generalized Laguerre measure on (0, +oo), defined by dX(t) = Fe-’ dt, where 
a > -1. 

In Table 4, we give zeros of the s-orthogonal polynomials LTo,,(t) and L&+(t) for Q = 0 and 
GE = 10. The numbers in parentheses indicate decimal exponents. 

The number of iterations i, needed for constructing polynomials L:,,(t), n = 4(1)12, for s = 1 
and s = 5 are given in Table 5 for two values of the family parameter a! (o = 0 and cx = 10). 

In our numerical experiments with several different measures with the bounded and unbounded 
supports, the best results are achieved with the generalized Laguerre measure. The reason for 
this fact is mentioned before in Section 2. Namely, there is practically no nonlinearity at the 
beginning of the construction. On the other side, the behavior of the algorithm from [20] for this 
measure is quite the opposite and, in some cases, it cannot be applied. 
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Table 4. Zeros of the s-orthogonal polynomial Ly,,, (t) with respect to the generalized 
Laguerre measure 

1.98459896485540(-l) 1.28527246416037 

3.36337825735860 6.48664600301537 
cd=0 

.5=1 

1.07436075246883(l) 1.62743035554314( 1) 

2.33035216918815(l) 3.22160614407350( 1) 

4,37648986737655(l) 5.99201036691075(1) 

4.49125141861381(-l) 3.50908561222774 

9.57940678730558 
a=0 

1.88204476515665( 1) 

s=5 
3.14997451789270(l) 4.804330975743X3( 1) 

6.91383474053974(l) 9.59673702137306(l) 

1.30860865091953(2) 1.79994158722296(2) 

2.80298131591448 5.74831335230936 

9.55062352348923 
cy = 10 

1,43049659752845(l) 

2,01246504335371(l) 2.71711961~584816(1) 
s=l 

3,56922857375727(l) 4,61025567445254(l) 

5.92049759623219( 1) 7.70933664426s522( 1) 

2.34465695813680 7.46976879233792 

Q = 10 
1.54646389122249(l) 2.65172753498364( 1) 

s = 5 
4.09209133509488(1) 5.91261187317375(l) 

8.18464704498663(l) 1.10298218267156(2) 

1.46867352690064(2) 1.97865999176739(2) 

Table 5. The number of iterations i,, R = 4(1)12, in the generalized Laguerre case 

Q s n = .I n=5 6< II < 11 n = 12 

1 8 7 G 7 
0 

5 14 10 9 9 

1 8 6 6 6 
10 

5 13 10 9 11 

5.4. Generalized Hermite Measure 

In this section, we consider the generalized Hermite measure defined by dX(t) = lt/2”ePr’ 4lt 

on IR, where ,U > -l/2 (cf. [22, pp. 156-1581). Th e corresponding orthogonal polynomials satisfy 
the three-term recurrence relation (3.2). with CY, = 0 and Pzj = j. /!?zj.+l = 3 + p, + l/2. 

In our procedure for constructin g s-orthogonal polynomials. we use the same extrapolntiou 
rule as in the case of the ordinary Hermite measure. 

Table 6 displays zeros of the s-orthogonal polynomials HrS,l(t) and H&,,(t) with respect to 
this measure, when p = 0 and p = 1. 

The number of iterations i, needed for constructing polynomials H&(t), ‘n = 3(1)15: for s = 1 
and s = 10 are given in Table 7 for the previous two values of the family parameter I-L. 

As we can see, for smaller values of s, the convergence is faster than for larger values. The 
number of iterations i, is usually less than ten for s = 1, except maybe at the beginning of the 
procedure. However, when s increases, then the number of iterations becomes larger and, for 
a sufficiently large s, the iterative process is not convergent. The reason for this fact can be 
explained from the following statement. 

PROPOSITION 5.2. Let 7?,S)(cy), v = 1, , n, be zeros of the s-orthogonal polynomial L:,,(t) 
with respect to the generalized Laguerre measure t”ept dt on (0, +co): where Q > -1. 



338 G. V. MILOVANOVI~ et al. 

Table 6. Zeros of the s-orthogonal polynomial Hf5,s (t) with respect to the generalized 
Hermite measure. 

f6.42529123114553. f5.23047277856464 

p=o f4.22528087653067 13.31025792178217 

s=l 12.44735667049862 f1.61626345818557 

~8.03798305791586(-1) 0 

&1.51934017204560(1) f1.23478732101507(1) 

p=o f9.96744703814704 f7.80558209124374 

s = 10 f5.76934255721114 f3.80952472827816 

f1.89438018486605 0 

f6.55601548945092 f5.36821262206449 

p=l f4.36947846252626 f3.46067926704917 

s=l f2.60360645068994 f1.77696133674854 

&9.62679528877572(-1) 0 

f1.52498166160723(1) +1.24074292858041(l) 

p=l f1.00298988644974( 1) f7.87084167582895 

s = 10 *5.83725871657473 f3.87950232294572 

1k1.96344150189706 0 

-Table 7. The number of iterations i,, n = 4( 1)15, in the generalized Hermite case. 

Values of n 
P s 

4 5 6 7 8 9 10 11 12 13 14 15 

18 6 6 6 6 6 6 6 6 6 6 6 
0 

10 21 12 11 11 11 11 11 11 11 11 11 11 

17 8 7 7 7 7 7 7 7 7 7 7 
1 

10 20 16 9 10 17 10 17 10 18 11 20 11 

Then, the set of zeros of the s-orthogonal polynomial Hz,,(t) with respect to the generalized 

Hermite measure dX(t) = ItI ‘2pe-tz dt on IR, p > -l/2, is given by 

{~~~,v=l )..., n}, 
ifm=2n, or 

ifm=2n+l. 

The proof of this result is similar to the proof of Proposition 5.1, showing that 

H;“,,,(t) x L&‘/2 (t2) and H;m+,,,(t) =: tL;Tt,S+1’2 (t2) . (5.3) 

Notice from (5.3) that zeros of even and odd s-orthogonal polynomials with respect to the 
generalized Hermite measure belong to different families of s-orthogonal generalized Laguerre 
polynomials. For polynomials of odd degree, the family parameter is bigger for s + 1 than in the 
case of even degree. An influence of the family parameter can be seen from Figure 2. Namely, 
the larger values of the parameter CL give larger values ,of zeros. This means that the starting 
values (4.2) for the iterative process are not good enough. In such cases, it is much better to use 
a construction with the generalized Laguerre measure, according to Proposition 5.2. Then, we 
separately construct polynomials of odd and even degree. 
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REMARK 5.1. In order to improve the convergence for the generalized Hermite measure, we 
performed numerous experiments with various extrapolating rules. We found that one of the 
best extrapolating rules is the following: 

I 2T("-1's) _ 4b2,s) 
I,- 1 v-2 > u E {k - 1. Ic}, 

where again I, = (3, . Ic - 2} (k 2 5). As we can see, this extrapolation rule differs from the 

previous one only- in one additional term rL”_;2’“’ used to extrapolate zeros with indexes in IA:. 
In Table 8, we give the number of iterations for cases already presented in Table 7. 

Table 8. The number of iterations i,,, n = 4(1)15, in the generalized Herrnite case, 
with a modified extrapolation rule. 

Values of n 

4 5 6 7 8 9 10 11 12 13 14 15 

1 8 6 6 G 6 6 6 6 6 6 G 6 
0 

10 21 12 10 8 8 8 9 9 9 10 10 10 I 1 I 10 1 1 20 7 16 8 5 7 10 7 5 7 11 7 5 7 11 7 6 8 12 7 6 9 13 8 

As we can see, this modified extrapolation rule, in this case, gives smaller values for the number 

of iterations than the previous one, but it is not true in a general case. For example, if we take 
p = 10 and s = 1, the number of iterations increases considerably for odd n. On the other hand? 
with the old extrapolation rule for a small s (here s = l), the convergence is not disturbed. 

Another effect which can harm calculations is related to an inaccurate construction of the 
Gaussian quadrature rule (3.7), which should be used for calculations in the method described in 
Section 3. Namely, the standard Golub-Welsch procedure for constructing Gauss-type quadra- 
tures. based on Q&algorithm [21], which is implemented in almost all numerical software (e.g., 
ORTHPOL [24]), can give some inaccurate weights if the family parameter p is sufficiently large. 
In order to illustrate this inaccuracy, we take the simple example with n = 4, s = 10, p = 15. 
The obtained zeros rL4’20), v = 1,2,3,4, using the standard method for constructing weights in 
the quadrature rule (3.7) are presented in Table 9. 

These values are not even symmetric. However, if we use the following representation for the 
weights AL’) in (3.7), * 

A(L) = 
” u= l,...,L; (5.4) 

where {pk(t)} is a system of orthonormal polynomials with respect to the measure dX(t) on Iw. 
we can calculate the accurate zeros of H:,5i,(t), which are presented in the last column of the 
same table. Thus, we use here complete eigenvectors, but not only their first components. Notice 
that, in this modification, the nodes ry (L), u = l,... , L, are calculated in a usual way using 

QR-algorithm. An analysis of this modification can be found in [25]. The last formula (5.4) was 
found by Shohat [26]. It was also used in calculation of weight coefficients in the period before 
an application of QR-procedure (cf. [27]). 

Finally, we mention here that a similar kind of inaccuracy can appear with other measures 
for sufficiently large family parameters (generalized Laguerre measure, generalized Gegenbauer 
measure). 
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Table 9. Zeros ~i~,~‘), v = 1,2,3,4, of HiFIo(t) obtained by the standard and 
modified method. 

Y Standard Method Modified Method 

1 -7.28962206.. -7.289621792645020 

2 -3.66640712.. -3.666407011304882 

3 -3.66640695.. -3.666407011304883 

4 -7.28962175.. -7.289621792645021 

Table 10. Recursion coefficients in the three-term recurrence relation (3.2) for soke 
measures on I.k 

Measure 

Abel’s Measure 

d%t) =fk Pk 

t k(k + 1) 
pt _ e-“t dt 0 ~ 

4 

LindelGf’s Measure 
1 

dt 0 
k2 

2 cosh(nt) -7 

Logistic Measure 
emt 

(1 + e-t)2 dt. 

k4.rr2 
0 - 

41E2 - 1 

5.5. Abel, LindelGf, and Logistic Measures 

We also perform experiments with,respect to some other measures, supported on R. For three 
kinds of such measures (Abel, Lindeltif, and logistic), in Table 10, we give the coefficients cq 
and ,& in the three-term recurrence relation fbr the corresponding orthogonal polynomials. 

For these measures, we use the following extrapolation rule: 

7” -(k+) = +;‘, = 2Ty-1,s) _ 7;k-2,s), 
k-1 

v=l,..., - [ 1 2 

and 

(k is even), 

(k is odd). 

Zero distributions of s-orthogonal polynomials (s = 1) with respect to the Abel’s, Lindelgf’s, 
and logistic measure are presented in Figures 7 and 8. As we can see, these distributions are very 
similar. The same situation is also for s > 1. As an example, we give numerical results obtained 
for the Abel’s measure, when s = 10 and n = 2(1)6 and n = 10 (see Table 11). 

Table 11. Zeros of s-orthogonal polynomials with respect to the Abel’s measure for 
s = 10. 
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(a) Abel’s measure. (b) Lindeliif’s measure 

Figure 7. Nonnegative zeros of s-orthogonal polynomials for the Abel’s measure (a) 
and for the Lindelaf’s (b), when s = 1 and n = 2(1)15. 
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(b) 

Figure 8. Nonnegative zeros of the logistic s-orthogonal polynomials (a) and zeros of 
s-orthogonal polynomials with respect to the Charlier measure (b), when s = 1 and 
7L = 2(1)15. 

5.6. Charlier Measure 

We also investigate a discrete measure known as the Charlier measure (cf. [22, pp. 170-172]), 
with jumps 

ate-” 

t! ’ 
at t =0,1,2:..., 

where a > 0. The Charlier polynomials are orthogonal with respect to the imler product defined 

by 

(5.5) 

They satisfy the three-term recurrence relation with following coefficients cYk = a + k, pk = ak,. 
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The extrapolation rule in this case is given by the following empirical formulas: 

where Ik = (3,. . . ,k - 2) (k > 5). 
In Figure 8b, a distribution of zeros for Charlier s-orthogonal polynomials is displayed for 

a = 10 and s = 1. 

6. CALCULATION OF THE WEIGHT COEFFICIENTS 

We return now to the linear task of determination of the weight coefficients Ai,” and Bi,v 
in Gauss-Stancu quadrature formula (l.l), assuming that we previously calculated Gaussian 
nodes 71,. . . , 7, (zeros of a certain s- or a-orthogonal polynomial). For this purpose, we can 
adopt a method described in [28] and [29] for Gauss-Turbn and Chakalov-Popoviciu quadratures, 
respectively (see also [30]). Th us, let the sets of fixed and Gaussian nodes 

be known and let F, n G, = 8. Otherwise, we should make an adjustment as we mentioned in 
Section 1. 

Putting 

&I = {Cl,... &}:=&uG (p=m+n) 

and ‘denoting the corresponding multiplicity of the node 5” by r,, (V = 1,. . . ,p), our task is to 
determine the coefficients Ci,” (i.e., Ai,v and Bi,,) in an interpolatory quadrature formula of the 
form 

J’ w 
.f@) dX(t) = f: ‘2’ Ci,vfci’(L) + Rp(f). 

v=l i=O 

Notice that the multiplicity of a Gaussian node must be an odd number. 
As in [29], we define 

G/(t) = r-(t - EJi, v=l,...,p, 
i#v 

and use the polynomials 

fk,&) = (t - ~v,“%~~) = (t - <I/)~ n(t - ($I, 
i#v 

where 0 5 k 5 r, - 1, 1 5 v 5 p, in order to decompose the problem to p mutually independent 
triangular systems of linear equations with r, (Y = 1,. . . ,p) unknown coefficients, i.e., 

where pk ,” = s fk,v(t) dA(t) = 
w s w 

(t - 6~)~ n(t - &)T” dA(t). 
i#v 
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i%\v, we put, (Lk,k+] = f!‘;-l+“‘(&,), so that th 
I, l,v 

e matrix of the system has elements ae,3, 1 5 

e, j < I’,, with at,] = 0 for j < !. 

Introducing the normalization 

and following [29], we get the following. 

THEOREM 6.1. For fixed v: 1 5 v 2 p. the coefficients C,,, in the quadrature formula (6.1) are 

given by 

h-,, = (1.u - I)! CT,,--1,v = fir,-l,v. 
T” 

bk = (k - l)!Ck-I.,, = Ijl;-I,,, - 1 iil;,Jb,, k = I., - 1.. ! 1. 
j=k+l 

where 

6k.k = 1. 

Thus, for fixed V, the coefficients bk! 1 < k 5 rv, i.e., the weight coefficients C,., in (6.1), are ^.-a 
obtained from the correspondin, CJ upper triangular system of equations Ab = Z> where 

a = [&,], g= (6,. bTf,lT, c’= [fio.u ‘. iL-LLJT. 

The normalized moments jlk,” can be computed exactly, except for rounding errors, hy using the 

Gauss-Christoffel formula (3.7), taking L = y + ~~=, 7’” knots. 

EXAMPLE 6.1. Now we want to construct a Lobatto type quadrature rule of the form 

.i 

1 

f(t) dt ” QTL,S(f) = 2 5 Ai,yf(‘)(~) + Bo,zf(O) + &,2.?(O) + Bo.lf(-1) + 43 f(l)7 

-1 l/=1 i=o 

with Gaussian nodes rr, . , r,,. 

Thus? in this case, we introduce three fixed nodes: 71 = -1, r/2 = 0, ~3 = 1, with multiplicities 
1, 2, 1, respectively, so that M = 4, qb(t) = (t2 - l)t2 (see (1.2)), and according to (1.3), 
di(t) = ty(l - t2) dt is the generalized Gegenbauer measure on (-1, l), with o = 1, p = l/2 (see 
Section 5.2). 

If the maximum degree of exactness is d,,,, = 2(s + 1)n + 3,-free nodes in QTL+ (f) must be zeros 

of the s-orthogonal polynomial W$ri2) (t) with respect to the generalized Gegenbauer measure 

dii(t). 
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Table 12. Parameters of &~,~(f) for s = 1,2. 

344 

s=l 

-0.667724357906923 

0.668946557387391 

0.290757109134606(-1) 

0.827917955975223(-2) 

0,573503803772122(-l) 

0.547406124470793 

s=2 

-0.675112000977284 

Ai,l 

0.728669656880520 

0.495168812842977(-1) 

0.140806820439479( - 1) 

0.516533600625606(-3) 

0.422667424219621(-4) 

0.399205534871742(-l) 

0.462819579264612 

Table 13. Parameters of Q3,s(f) for s = 1,2. 

s=l s=2 

‘1 -0.782465625283903 -0.8@1032639658859 

i A hl Ai,l 

0 0.466114900228077 0.4822474158Op680 

1 0.170146372659433( - 1) 0.263895403842581(-l) 

2 0.263525214201978(-2) 0.401261800734473(-2) 

3 0.108127113066279(-3) 

4 0.451390243547896(-5) 

B 0.361899495Q4558(-1) 0.235365436186576( - 1) 

Ao 0.995390300416934 0.9884‘32081157324 

Al 0.331196251997634(-l) 0.346136792399800(-l) 

A2 O.l94OS2137754975(-3) 0.270188945759357(-3) 

A3 0.566748161962253(-6) 

Notice that, by symmetry, 

TV = -Tn+l--yr Ai,v = (-l)iAi,,+I-,, BO,I = B0,3 = B, 

as well as that for odd n, one of free nodes must be zero (~(~+i),z = 0). In that case, we remove 
the fixed node 772 = 0 and increase the multiplicity of the Gaussian node 7(,+1)/z = 0 from 2s + 1 
to 2s + 3. Therefore, we have 

In/21 2s &v(f) = .x. x4,, [f"'(d + (- 
VT1 i=o L 

l)if'i'(-~v)] + B[f ‘( 

where 
( B0,2f(o) + &,2f’(O) (n is even), 

-1) + ml + L,s(fh 

‘n”(f) = ~~02Ai,~~+~~/2f(i)(0) (n is odd). 
I 

Furthermore, it is easy to prove that B1,2 = 0 and Azj+l,(n+l),z = 0, so that (with a simpler 
index notation) 

1 

Bof (0) (72 is even), 

‘n”(f) = l$Ajf(2”(0) (n is odd). 

The parameters of Q,,,(f) are presented only for R = 2(1)5 and s = 1,2 (see Tables 12-15). 
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Table 14. Parameters of Q4,s(f) for s = 1.2. 

s=l 

s=2 

s=l 

s=2 

71 -0.864343260009839 

i A L,l 
0 0.291988548489762 

1 0.677444243326017(-Z) 

2 0.648273517991189(-3) 

B 0,224364945126899(-l) 

71 -0.879394021458197 

i A.1 

0 0.295178181352631 

1 0.101143495853744(-l) 

2 0.922248277774315(-3) 

3 0.154530837011859(-4) 

4 0.383168236065884(-S) 

B 0,141557058476428(-l) 

B 

A1 

B 

A1 

A3 

72 

i 

Bn 

-0.441646700727031 

A z.2 
0.514638063715358 

0.498531656314293(-2) 

0.359603976374291(-2) 

0.341873786564380 

-0.428674810876148 

A 1,2 
0.55280414735.5119 

0.680687022397463(-2) 

0.555113.515690070(-2) 

0.388306859303889(-4) 

0.926773668549215( -5) 

0.275723930889215 

Table 15. Parameters of &~,~(f) for s = 1,2 

-0.900169737733269 

A 1.1 

0.217690600610764 

0.3891$4846928562(-2) 

0.265641103999405(-3) 

0.163654269057924(- 1) 

0.107188288005793( -1) 

-0.914006400993315 

A 231 
0.213409270452064 

0.544240785455850( -2) 

0.348080210407537(-3) 

0.427800489449208(-5) 

0.736267007987303(-7) 

0.100121930330481(-1) 

0.103811992392277(-l) 

0.306279814773751(-7) 

T2 

Ao 
‘42 

T2 

i 
0 

1 

2 

3 

4 

A3 
‘42 

-0.574018204835000 

4.2 

0.421359837858011 

0.551679530132521(-2) 

0.191245109502987(-2) 

0.689168269250866 

0.280948737674689(-4) 

-0.576411308297384 

.4 r.2 

0.443741913748343 

0.796047097661861(-2) 

0.282629281215632(-2) 

0.267694393447469(-4) 

0.284224160106976(-5) 

0.665673245533091 

0.350419067557081(-4) 

In order to test the quadrature formula Qn,,(f), we take the functionf(t) = t/sint (see [31, 
Example 2.21) such that 

I(f) = 2.119525586696611661037623273595157.. 

All calculations we perform now in quadruple precision (with 34 decimal digits mantissa). 
An elementary computation yields that 

f (2) (t)sint =tP,(cott) +Q+l(cott), 

where the polynomials Pz(z) and Q%(z) satisfy 

C+,(z) = -xpz(z) - (1 +~z) Pz/(“), 

&i(x) = -Q-I(X) - (1 +x2) Q:-l(rc) + E(z). 
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Table 16. Relative errors in quadrature sums Qn,s(f). 

s n=2 n=3 n=4 n=5 n=6 TL=7 

1 2.39(-Q) 3.09(-12) 1.38(-15) 1.44(-l@ 7.39(-22) 6.99(-25) 

2 3.99(-12) 1.67(-16) l.QO(-21) 5.84(-26) 7.75(-31) m.p. 

with PO(X) = 1, Q-~(X) = 0. The limiting values of derivatives fci)(t), i = 1(1)7, at t = 0 are 0, 
l/3, 0, 7/15, 0, 31/21, 0, respectively. 

Table 16 shows the relative errors I(Qn,+(f) - I(f))/l(f)l for n = 2(1)7 and s = 1 and s = 2 
(m.p. stands for machine precision). 

7. CONCLUDING REMARKS 

The presented algorithm for construction of s-orthogonal polynomials with quadratic conver- 
gence has a few nice properties. We emphasize the following. 

l The number of nonlinear equations to be solved is small. Ideally, if the starting values are 
known, our algorithm needs only n - 3 nonlinear equations with 4,5,. . , n variables. 

l The construction of the Jacobian matrix for the system of nonlinear equations is simplified, 
and requests only evaluations of 2n integrals for a system of n variables. 

l The algorithm can be applied for both bounded and unbounded supports. 

As we mentioned before, the Gauss-Christoffel quadrature rule is used for calculation of in- 
tegrals. The construction of these quadrature rules is not needed for every value of n. In our 
implementation, we construct a new quadrature rule after n is increased for 8, i.e., we always 
construct Gaussian rules for n = 8,16,24,. . . . 

Finally, for finding all weights, our method uses an upper triangular system of linear equations 
for the weights associated with each (Gaussian or prescribed) node. 
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