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EXTREMAL PROBLEMS FOR POLYNOMIALS
AND THEIR COEFFICIENTS*

G. V. Milovanovié, I. Z. Milovanovié and L. Z. Marinkovié

In this paper, we consider extremal problems of Markov's and Bernstein’s
type for certain classes of algebraic polynomials in the L™ metric, where r > 1.
Under some restrictions of the class of all polynomials of degree at most n,
the upper bounds for |P(¥) (0)], which include L? norin of P on the real line,
are investigated. In the last part of this paper, we consider scme extremal
problems for polynomials with prescribed zeros.

1. Extremal Problems of Markov’s and Bernstein’s Type

Let Pn be the class of algebraic polynomials P(¢) = Y 0_ a,t¥ of
degree at most n, defined on the set S in the complex plane, with a given
norm || - ||. We begin this section by considering the following extremal
problem:

Determine the best constant A, such that

1Pl < AIPIL (P Py, (1)
£, ) “—Pl
A= S0 A G2

*This work was supported in part by the Serbian Scientific Foundation.
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The first result in this area was the well-known classical inequality of
A. A. Markov [21), where S = [—1,1] and ||f]| = || fllec = max_i1<1<1 |[f(2)]-
Namely, Markov proved the following result:

Theorem 1.1. Let P € P, then
1P leo < n*||P|lco - (1.3)

The equality holds only at #1 and only when P(t) = ¢T,(t), where T}, is
the Chebyshev polynomial of the first kind of degree n and ¢ is an arbitrary
constant.

The best possible inequality for kth derivative was found by V. A.
Markov [22].

Theorem 1.2. For each k = 1,... ,n, the inequality
IPOlloo < TF|Plles (P €Pn) (1.4)

holds. The extremal polynomial is T},.
E. Hille, G. Szegd and J. D. Tamarkin [14] extended the previous result
of A. A. Markov to L™-norm (r > 1) on (-1, 1).

Theorem 1.3. Let » > 1 and P(t) be an arbitrary rational polynomial of
degree n. Then

(f_ll IP’(t)I’dt)lh £ An2(/_11 PO dt)llr , (1.5)

where A is a positive constant which depends only on r, but not on P or
n. )

This result was also obtained by N. Bari [4] using very different meth-
ods.

The factor n? in (1.5) cannot be replaced by any function tending to
infinity more slowly. Namely, for each n exist polynomials P(t) of degree n
such that the left side of (1.5) is < Bn?, where B is a constant of the same
nature as A. :
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Under only a little restriction on the zeros of P(z), M. A. Malik [20]
found the following improvements of Theorem 1.3.

Theorem 1.4. Let r > 1 and P(¢) be an arbitrary rational polynomial of
degree n. Let P(z) have no zeros in the two circular regions

rxa<l-a (0<a<),

1 1/r 1 1/r
(fIW%WﬂQ SBM“”(flwmrﬂ) ,

where B is a positive constant which depends only on r and a, but not on
Porn.

Another type of these inequalities goes back to S. N. Bernstein [5]. He
considered the following problem:

Let P(z) be a polynomial of degree n and |P(z)| < 1 in the unit disk
|z] < 1. Determine how large can be for |z| < 1.

In other words, if we define || f|| = max|;|<;1 | f(z)], this problem can be
reduced to Inequality (1.1).

then

Theorem 1.5. Let P € P,, then
1Pl < =nf|P]|,
with equality for P(z) = cz™, ¢ = const.

Since a polynomial P(z) is an analytic function, it attains its maximum
absolute value for |z| < 1 on the circumference |z| = 1, so we can put

f1l = mi}flf(z)! = —ﬂ%}é,r]f(em)[ -

Bernstein’s Theorem 1.5 can be stated in several different forms. One
of them is the following:

Theorem 1.6. Let P € P, and P(t) < 1(-1 <t < 1), then

|P(t)] € ——=

< =5 -l<t<l. (1.6)
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. The equality is attained at the points t = ¢, = cos Q’iz:n—ll’i, 1<v<nif
and only if P(t} = £T,(2).
In the L™ norm

it = ([ e da)”r (r>1),

it 1s well known that
IP'l- £ nl|P|l- (P €Pn). (1.7)

This inequality is due to A. Zygmund [45], who proved it for all trigono-
metric polynomials of degree n.
N. G. de Bruijn [7] proved the following result:

Theorem 1.7. Let P € P, and P(z) #01in |z|] < 1. Thenfor r > 1

I1Zll: < nCellPIr (1.8)

1 2w . -1fr
B = (_/ ]1+e"r|qu) . (1.9)
2r Jq

It is easily seen that the sign of equality holds if P(z) = a+ 82", |o| =
|3]. It can also be shown that the sign < holds otherwise.

The case r = 2 was obtained by P. D. Lax [18], whereas r — co leads
to the Erdés-Lax inequality:

where

n
Pl(z)| < = Pz} .
BE P s P

Recently, by using an interpolation formula, A. Aziz [2] gave a new
proof of Inequality (1.7) and the following generalization of Inequality (1.8).

Theorem 1.8. Let P € P, and min;| =y [P(2)] = m. If P(z) # 0 for
|z] < 1, then for every complex number 4, |8 < 1, and for r > 1,

(f—ﬂ' JP,(eiﬁ') e mnﬁei(n—l)sr dg)
0

1/r

1/r

2%
LA (f |P(e*) + mBe™?|r da) , (1.10)
0
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where C; is defined in (1.9). The result is best possible and equality in
(1.10) holds for P(z) = az" + bk™, |a| = |b], k > 1 and 8 = a/|al.

Choosing argument of §, with || = 1, suitably and making r tend to
infinity in (1.10), we obtain

n
max | P'(z <—(maxPz — min |P(z ) 5
max |P'(2)] < § ( max|P(2)] - min [P(:)
which is a refinement of Erdés-Lax theorem.

Some results on L™ inequalities for polynomials can be found in the
paper of Q. I. Rahman and G. Schmeisser [35].

If we put

= ( [ 11 =T ) 0 e s,

= sup |f(O)l(1-e*)*, r=+co,
-1<t<1

where ru > —1(420if r = +00), we can consider the following general
extremal problem (see S. V. Konjagin [15])

PO,
An,k(T’,Hi P V) = sup u_. .

1.11
2e2. Pl (11D)

So the best constant in (1.4) is An(+00,0; +00,0). We note that
Bernstein’s inequality (1.6) can be represented in the form

P lloo1/2 € nllPllcco (P EPS).

The case k = n is especially interesting. Namely, then we have the
following problem: Among all polynomials of degree n, with leading coeffi-
cient unity, find the polynomial which deviates least from zero in the norm

Il -
B. D. Bojanov [6] considered the case r = 400, p = v =0 and 1 <
p < +co. Namely, he proved the following result:

Theorem 1.9. Let P € P, and p € [1, o). Then

17llp.0 < IT2llz .01l Plloo,o -

Equality is attained only for P(t) = +T,(¢).
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A. Lupas [19] investigated the best constant in the following inequality

1P®leo < An(k, 0, B)IPll2 (P E€Pn),

where

1/2

1
1flleo = max [f()] and [|f]lz= (f_lw(f)lf(f)lzdf> )

-1<i<1

with Jacobi weight w(t) = (1 —t)*(14+¢)?, @, 8 > —1. So he proved the
following result:

Theorem 1.10. Let P € P,, and ¢ = max(«, ) > —1/2. Then

B S e (i+atB+k) (i+a)
An(k,a,ﬁ)Z(mZ;CiE ( k i—k ’

where

ol N2%i+a+B+UE+a+B+k+1) (i+q)
= T(i+a+)IG+8+1) i=kj "

Equality is attained for

P =@ o B,

i=k

where C is a constant and P,‘.(O"ﬁ)(t) is the Jacobi orthogonal polynomial of
degree 7.

Recently, S. V. Konjagin [16] considered the extremal problem (1.11)
forr=p=1and g =v = 0. He found an estimate for A,z = A(1,0; 1,0).

Theorem 1.11. There exist two constants ¢; and ¢z (0 < ¢; < 2 < +c0)

such that

nTEE(1)
Y+ Dn—k+1)

nTEE (1)

SAnk S T =k + 1)

foreachnéNandk=1,...,n

[y
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Especially important cases are r = p = 2 (cf. E. Schmidt [37], P. Turdn
[42], A. Durand [9], G. V. Milovanovié [24], G. V. Milovanovi¢, D. S. Mitri-
novié¢ and Th. M. Rassias [30], Q. I. Rahman and G. Schmeisser [34] and
Th. M. Rassias [36]).

At the end of this part, we consider a restricted polynomial set. Name-
ly, let W, be the set of all algebraic polynomials of exact degree n, all
coefficients of which are non-negative, i.e.

LVH:{PIP Zakt,ak>0 (k:O,l,...,n—l),an>0}.

‘We denote by I'V(m Y the subset of W,, for which ap = ... = ap_1 =0
e Pl0)= v = PP =00

Let w(t) = t®*e™!(a > —1) be a weight function on [0, +c0). For
P € W,, we define ||P||, = (J;~ w(t)P(t)" di)*/", » > 1, and consider the
following extremal problem:

Determine the best constant in the inequality

|IP™|r < CEIPN, P EWn, (1.12)
1P
P \"
C(”‘ @ sup ( r) ) 1.13
(o) = pew, \ |IPll- (113)

The case r = 2 and m = 1 has been recently investigated by A. K,
Varma [43, 44] and G. V. Milovanovié [23]. Milovanovié proved the following
result:

Theorem 1.12. The best constant C' (1) (o:) defined in (1.13) is

n,2

1
T T T TR (-l<a<gan),
)y < | TTAT S ‘
Lo n
(2n+a)(2n+a—1) (an < @ < +o0),
where ]
Gn = 5(n + 1) M1+ m+ DM = 3n 4 1)

An extremal problem for higher derivatives of non-negative polynomi-
als with respect to the same weight was investigated by G. V. Milovanovi¢
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-and 1. Z. Milovanovié¢ [29]. A similar problem for Freud’s weight function
has been dealt with G. V. Milovanovié and R. Z. Djordjevié¢ [25].

A general case for r € N was considered by A. Guessab, G. V. Milo-
vanovié¢ and O. Arino [13].

Theorem 1.13. The best constant C',{Jf;)(a) defined in (1.13) is

f nr
mr(m—«) [ A an.r,m) s

[T+ a)

i=1

CR@=9 ™=t
il;[o (n B 2)
r—1

(ctn,rm < @ < +00),

m_]:{g (rn+a—1)

\

where o, »m is the unique positive root of the equation

mr—1 mr m—1
(mh" H (rn+a—i)= H(z'-i—a) H(n—i)’ ;
i=0 i=1 i=0

The case r = 3 and m = 1 was considered by A. Guessab and G. V.
Milovanovié¢ [12]. In that case, we have

1

C,(:%(a) _ (3+a)(2—}-a)(1;|—a)

n

Bn+a)Bnt+a—1)Bn+a—2)

(-l1<a<an)

bl

(an <@ < +0o0),

where «,, is the unique positive root of the equation

(n*+n+1)a®+3(2n® + 2n— 1)e® 4+ (11n® = 16n 4+ 2)a —3n(Tn — 2) = 0 .

Remark. The statement of Theorem 1.13 holds if W, is the set of all
algebraic polynomials P(% 0) of degree at most n (not only of exact degree
n), with non-negative coefficients. In this case, for —1 < « < anrm, W
can see that P(t) = M™ (A > 0) is an extremal polynomial.
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The simplest case is r = 1 and m = 1. Then we have

-l<a<0),
CMy={ ot (Flees0)
n,l n
(e >0).
x+n

The case @« =1, » = 2 and m = 1 was considered by A. K. Varma [43).
Then

1y "
Co2l) = 571y

2. Estimations of the Coefficients of Polynomials

In this part, we will consider some extremal problems of the form
|P8(0)] < Col|Pl -
The first result on this subject was given by V. A. Markov [22]. Namely, if

IPlL=A1Flles = e |FE]

and Ty (t) = 3.0 _ o ¥n,vt” denotes the nth Chebyshev polynomial of the first
kind, Markov proved that

n : P o f —-ki )
lms{i“f &l 1Pl kil even 1)
=1kl - || Plles ifn—Fkisodd.
For k = n, (2.1) reduces to the well-known Chebyshev inequality
lan| < 2" 7| Pllos - (22)

Under the assumption that P(1) = 0 or P(—1) = 0, I. Schur [3§]
showed that (2.2) can be replaced by

2n
T
loy| &gt (cos 4_11) 1P|loo -

This result was extended by Q. I. Rahman and G. Schmeisser [33] for poly-
nomials with real coefficients, which have at most n — 1 distinct zeros in

(_111)'
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In L2 norm

1= et = ([ 1pora)

G. Labelle [17] proved that

.35 (2 —1 s
lax| < k!( )(k‘l'%)m ([( [](cr)l/f];;;/kgf 1/2) P12

for all P € P, and 0 < k < n, where the symbol [z] denotes as usual the
integral part of z. Equality in this case is attained only for the constant
multiplies of the polynomial

L k2] k+v—1/2
Z (=1)"(4v + 2k + 1) ( ” ) Peyau(t) ,

v=0

where P, (t) denotes the Legendre polynomial of degree m.
Under restriction P(1) =0, Q. M. Tariq [40] proved that

n (2n)! /2n+1 ME
onl < 2 2 (2E2) TPk

with equality case

n-—1
P(t) = Pa(t) — % (2v + 1)P,(2) .

v=0

Also, for k = n — 1, he obtained

lan-—ll S

n2 /2 - i 1/2
(n? +2) (2n —2)! (Qr 1) 1Pl | 2.3)

n+l 2 ((n—1)2\ 2

with equality case

L&)

2n+1 i &=
PO = gt = P+ s

(2v + 1)P,(t) .

Tn the absence of the hypothesis P(1) = 0, the factor (n?+2)%/2/(n+1)
appearing on the right-hand side of (2.3) is to be dropped.
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Here, we will consider more general problem including L*-norm of poly-
nomials with respect to a non-negative measure on the real line R and using
some restricted polynomial classes.

Let dA(f) be a given non-negative measure on the real line R, with
compact or infinite support, for which all moments px = fm z*F dA(t), k =
0,1,...,exist and are finite, and po > 0. In that case, there exists a unique
set of orthonormal polynomials 7(-) = m(-;dX), k=0,1,..., defined by

m(t) = bet® 4 cktk_l + lower degree terms, bz >0,
(TeyTm) = 6km , k,m 20, (2.4)

where
(f,9) = /m FOTD ) (frg € LA(R)) .

For P € Py, we define

1/2
||Pn=\/(P,P):( / lP(t)PdA(t)) . (25)

The polynomial P(t) = Y »_,a,t” € Pn can be represented in the
form

n
P(t) =) aml(t),
v=0
where
oy = (Bxp)y o5 Gl oo an,

We note that
Gn = @pby, an-1=oncn + n-1bn_1 .

Since
n 1/2
P = (S la?)  2lol
v=0
we have a simple estimate |a,| < b,||P]|. This inequality can be improved

for some restricted classes of polynomials. Because of that, we consider a
linear bounded functional L: P, — R, such that

M=) |Lm*>0, (2.6)

v=0
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.and a subset of P, defined by
Wo={Pe€eP,|LP=0,dgP=n}.

Using a method given by A. Giroux and Q. I. Rahman [11] (see also
Q. M. Tariq [40]), we can prove the following result:

Theorem 2.1. If P € W, and 7,71,... ,7n are non-negative numbers
such that y, >4, forv =0,1,... ,u—1,u+1,... ,n, then

dDovlel - lewl?, (2.7)
v=0 v=0

where ¥ is the unique root of the equation

n 2
3 B L. (2.8)
v=0 'Y',u W
in the interval (0,T), where

T'= Ug}}gn(w - ) .

v#Ep

Proof. Since

n n n
dowlel =1 laul = Y (1 = w)lew
v=0 v=0

vEu

n n
"7}-‘2'01/'2 Y=t =Nal =73 el

v=0 v=0

vEu vED

starting from 3. _, o, L7, = 0, we have

5 2
E a, L,
v=0
vEu

oy Loy {? =

< ( 2l Lm (= 70 = )Y r — 0 = 7)‘”2)

v=0
tf##

<Zlay| NP S .l

v=0 T — T
V?f# vEL
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Since 7 is the unique root of Equation (2.8), we find that

- 2 —|au*[L7,|? 5
= Z lew (v = ¥w —7) £ T—W“ = —7layl*
v
ukh v=0 T~ Tv — 7Y
vFE U

wherefrom

ZTU'QU <TFZ|O@‘ _7[(1’,!1' _7Ziavi2
V;é.u
ie. (2.7). a

Using this result, G. V. Milovanovi¢ and L. Z. Marinkovié [26] proved
the following theorem:

Theorem 2.2. If P € W, then

1
ol < bar /1= = |Lm, 2P|, .
an] < by 1= = |Lma 7] P (29)

where M is given by (2.3). Inequality (2.9) is sharp and becomes an equality
if and only if P(t) is a constant multiple of the polynomial

=)~ Fr e o

Also, they considered several special cases with respect to the measure
dA(t) and the functional L.

3. An Extremal Problem for Polynomials with Prescribed
Zeros on a Circle

There are various ways in which we can introduce norm || - || in the
linear space of all algebraic polynomials of degree at most n. Given 3, let
W# denote the subspace consisting of those polynomials which vanish at
B. J. D. Donaldson and Q. I. Rahman [8] stated the following question:
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‘How large can ||P(z)/(z — B)|| be if P belongs to W7 and ||P|| = 17 In the
mentioned paper, they solved this problem when

1/2

1 2r —
= = =iy 4 9
1Pl = max P()] and (1Pl = (5 [ 1PGP )

Thus, J. D. Donaldson and Q. I. Rahman [8] proved the following
inequality:
ek [P(2)f (e~ )2 (n 4102 5

if P € WF and lmi%}HP(zN <1l
In the case when § = 1, Q. I. Rahman and Q. G. Mohammad [32]

found that

max | P(:)/(z = ) < n/2.

Also, Donaldson and Rahman [8] proved the following inequality:
2
o

(3.)
for all polynomials of the form P(z) = (z — B)(z1 + Toz + -+ + Tp2z" 1),
8 > 0, where z1,29,...,2, are given real numbers.

The opposite inequality of (3.1), i.e.

1 27

2 Jo

P(e”’)
e? _ 3

TNE 2 (5 1o
> — T
|P(e)|" do > (1+,6’ 2ﬁcosn+l)2ﬂ_/0

1 2m i - 1 2 P(eie) 2
— P®)|"dd < [1+5°+2 —/ . df
= |P(e”)| _( + 8%+ ’8°°5n+1>2w | |moa
was proved by I. Z. Milovanovié [31].
A. Aziz [1] estimated
2 igy |2
) P 1" g
ar Jy |eff -8
in terms of the maximum of |P(z;)|, where 2z, k = 1,... ,n are the zeros

of z™ + 1. Namely, he proved the following results:

Theorem 3.1. If P € P, and P(3) = 0, where § is an arbitrary non-
negative real number then

1 fz" P(e'?)
2 Jo et =8

2
1 i B2 oo s gRIN=1)
v= 1+ ﬁ”)g gax [P, (32)
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where z1,...,%, are the zeros of ™ + 1. The result is best possible and
equality in (3.2) holds for P(z) = z" — .

If we take min instead of max on the right side in (3.2), then an opposite
inequality holds.

Let E‘Vf’m (1 <m <n, B> 0)be the set of all algebraic polynomials of
degree < n, with all real coefficients and m prescribed zeros in the points
v/Bexp(i2km/m), k=0,1,...,m—1.

In this section, we will determine

_ i LRI oy IPIE
Anm(B) = "BIE d Bawlf)= 1Pl (3.3)

when P € W/, where

, 1 2 s 5 1 2
IPIE = 5 [ |P()[ds end [IPIE = 5=
0 0

P(e* =
o Eﬁiﬁ’w'

Namely, we will prove the following result:

Theorem 3.2. The best constants An m(8) and B m(8) defined in (3.3)

are

™ w

Anm(B8) =1—2Bcos ot +8% and Bupm(B)=1+2Bcos — + 82,
where r = [n/m].

First, we will prove the following auxiliary result:
Lemma 3.3. For a given sequence of real numbers ry,23,..., 2y, where

N =mr—g, with r = [(N —1)/m]+1 and 0 < ¢ £ m — 1, the following
inequalities

N N-m N
~B, > 2} < > mziym < By ) 3 (3.4)
i=1 i=1 i=1
hold, where B, = cos ;17 is the best constant.
The equality in the right (left) inequality (3.4) exists if and only if

(k+ Dm
r+1

(a:ka,z- = (=1)*C;sin (—kjﬂ) ,  (8.5)

Tim ,-:Cisin
km+ +1
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where C1, ... ,Cn_, are arbitrary constants and Cry_gy1 = ... = Cpr = 0.
The index i takes the valuesi = 1,... ,m, when k = 0,1,... ,7 =2, and
i=1,...,m—qg,whenk=7r—1.

Proof. Let X be an N-dimensional Euclidean space with inner product
(x,5) = Ei1 z;yi, where x = [z1,...,zx])T and y = [v1,... ,yn]T. We
define a symmetric matrix of the order N, Hy = [hi;]n, where

h‘i)izli 1::1)"'1NJ

hg,;+m=hi+m’5=—l/2, i:l,...,N—m,

hi; =0, otherwise,

and consider the corresponding quadratic form

(Hyx,x) = E:r - sz,+m.

At first, we note that
M(Hn)(x,x) < (Hyx,x) < Av(Hny)(x,x) , (3.6)

where A\ (Hy) and Ax(Hy) are minimal and maximal eigenvalues of the
matrix Hpy, respectively.

In order to determine these eigenvalues, we define a tridiagonal sym-
metric matrix A, of the order 7, with unit diagonal and —1/2 as subdiago-
nal elements, and a sequence {Qx(¢)} of polynomials using the recurrence
relation

eQr-1(2) = (-1/2)Qr(t) + Qr-1(t) + (—1/2)Qr—2(t), k=1,2,...,
(3.7)
with Qo(t) = Qo # 0 and Q_1(¢) = 0. If we take Qy = 1, we can find
Qx(t) = sin(k+1)8/sinf (0 < z < 2), where e* = 1 —z +iv2z — 2. The
eigenvalues of the matrix A, are the zeros of the polynomial @Q,(¢), i.e
ke

it S B = -
Ax(Ar) = 2sin G+ D’ N I

because (see G. V. Milovanovié¢ and I. Z. Milovanovi¢ [27, 28])

Av=A. v+ —;—-Q,—(z\)e,
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where v = v(A) = [Qo(A),...,Q,-1(A)]T and e is the last coordinate

vector. The corresponding eigenvectors are v(Ar(A4,)), k= 1,...,r. Note
that
28in? ——— = Ag(4,) < Aa(A,) < oo+ < Mo(Ap) = Zeos? —— .
2(r+1) 2(r+1)

Now, we define m sequences {Qii)(i)}, i =1,...,m, using the same
recurrence relation (3.7), where only the constants Q(Dz} may differ, and a

vector in X by
w=w() =[P, ..., M),....eMM), ..., QM)

Then we have

1
)\W:HNW+§Z9

where
zg = [0,...,0,QTTTI0),. .. ,QITIN. @), .., QIO .

The first N — m coordinates in z, are equal to zero.
From this, we can conclude that the matrix Hy has the following
eigenvalues
Ar(Ar) of multiple m—¢ (k=1,...,7)

and

Mi(A,—1) of multiple g (k=1,...,r—1),

For ¢ =0 (i.e. N = mr) the eigenvalues are only Az(4,), k=1,. of
multiple m.

Since A1(A:) < A(A,-q1) and A.(4,) > A_1(Ar_1), we have
M(Hy) = M(A;) and An(Hy) = A (A;). Then Inequalities (3.6) re-
duce to (3.4), where we have the equality for eigenvectors corresponding to
elgenvalues A1(4;) and A, (A ), le for x = w(A (A, )) and x = w(A.(4;)),
with Qc =C;(i=1,. ), where C; (i = 1,. — g) are arbitrary
constants and Crn_g41 = ... = Cp = 0. The last statement is equivalent to

(3.5). |

‘) J

Remark 3.1. Inequalities (3.4) are in connection with extremal properties
of non-negative trigonometric polynomials considered by G. Szegd [39], and
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E.Egervary and O. Szdsz [10]. In the mentioned papers, we can find another
proof of the best constant B, in (3.4).

Remark 3.2. The inequalities (3.4) can be represented in the form

N—m N
Gl 2
E TiTitm | < cOS g ;.
: 14
=1 r=]

For m = 1, this inequality reduces to an inequality proved in the monograph
of V M. Tihomirov [41, pp. 113-115] (see, also G. V. Milovanovi¢ and
I. Z. Milovanovic [28], and A. G. Babenko [3]).

Now, we will give the proof of Theorem 3.2.

Proof of Theorem 3.2. Let P € WP | ie.

Piz)=(z" - z1+ 222+ + 2p-my12" ) .
Then we have
N N-—m
IPIIE = (1+8%)Y 27 —28 ) 2iitm
i=1

=1
and

N
1P| =D o,
i=1

where N = n — m + 1. Using Lemma 3.3, we obtain the best constants
Anm(B) and B, m(f), where r = [(n — m)/m]+ 1 = [n/m].

The corresponding extremal polynomial in the “minimum problem”
{“maximum problem”) in (3.3) is

N
P(z)= (2" —B)) zid?,
3.:1
where z; is given by (3.5). a

Remark 3.3. For m = 1, Theorem 3.2 reduces to the results given by
J. D. Donaldson and Q. I. Rahman [8] and I. Z. Milovanovié [31].
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