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ON SOME TURAN’S EXTREMAL PROBLEMS
FOR ALGEBRAIC POLYNOMIALS”

G. V. Milovanovié,* D. S. Mitrinovi¢ and Th. M. Rassias

In this survey paper, we consider extremal problems for polynomials initi-
ated by P. Turdn. We give a few classical results of Markov’s type, the further
generalizations and extensions, the generalizations in L2?-norm, and finally,
some generalizations of extremal problems of Bernstein’s and Turéin type.

1. Introduction

In this survey paper, we consider some extremal problems for alge-
braic polynomials initiated by the very famous Hungarian mathematician
Paul Turdn. The first result in the theory of extremal problems for poly-
nomials was connected with some investigations of the well-known Russian
chemist Mendeleev [38]. In mathematical terms, Mendeleev’s problem was:
If P(t) is an arbitrary quadratic polynomial defined on an interval [a,b],

with !Ié};a,)%]P(t) - t?ﬁiflb]P(t) = L, how large P'(f) can be on [a,}]?

This problem can also be stated for polynomials of degree n. The
problem was solved by A. A. Markov [35]. His brother V. A. Markov [36]
investigated the upper bound of |[P(*)(t)|, where k < n.

An analogue of Markov’s theorem for the unit disk in the complex plane
was investigated by S. Bernstein [8]. Markov’s and Bernstein’s inequalities
are fundamental in proving many of the inverse theorems in polynomial ap-
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proximation theory (see Dzyadyk [15], Lorentz [30], Meinardus [37], Ivanov
[26]).-

There are many results on Markov’s and Bernstein’s inequalities, and
their generalizations and extensions in various norms and restricted classes
of polynomials (cf. Boas [9], Durand [13], Mamedhanov [34], Milovanovié
[40], Milovanovié¢, Mitrinovié, and Rassias [44], Rahman and Schmeisser
[53], Rassias [55], Voronovskaja [73]). In this paper, we will give a short
account of such results, including the classical, and primarily the results
initiated by Turan.

2. Some Classical Results

Let P,, be the set of all algebraic polynomials P(# 0) of degree at most
n, Wa C Py, and let || - || be a given norm. The general extremal problem
of Markov’s type can be stated in the following form: Determine the best
constant A, such that

IPOI < AlPl (PeW), (2.1)
i.e. ” @
PO

Apx = sup 2.2

2 TPl )

For W, = P, A. A. Markov [35] solved this extremal problem in the
uniform norm on [—1,1],

A= lflle = max |F()]. (2.3)

=1<1<1

Namely, he found A, 1 = n?. The equality in (2.1) holds only at £1 and
only when P(t) = cTh(t), where T, is the Chebyshev polynomial of the
first kind of degree n, and ¢ is an arbitrary constant.

His brother V. A. Markov [36] solved the corresponding problem for
the kth derivative. Using a complicated variational method, V. A. Markov
obtained the best constant A, = T,Ek)(l)1 for each ¥ = 1,...,n. The
extremal polynomial is 7},.

Schaeffer and Duffin [57] obtained an elegant proof of V. A. Markov’s
inequality. Namely, for P € P, and such that [|P|| < 1, they proved that

nz(ng—12)(n2—22)...(n2_(k_1)2)
1-3:5-...-(2k=1)

1P®)e < TN (1) = (2.4)
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for k= 1,2,...,n. The equality can occur only at ¢ = +1 and here only if
P(t) = vTn(t), where |y| = 1.

Duffin and Schaeffer [12] also proved that for this inequality to hold,
it is only necessary to assume that |P(t)] < 1 at n + 1 selected points in
[—1,1]. Namely, they proved the following refinement:

Theorem 2.1. Let P € P, such that
|P(cosvm/n)| <1 (v=0,1,...,n).

Then inequality (2.4) is satisfied for k = 1,... ,n. The equality occurs only
if P(t) = 7Tx(t), where |7| = 1.

3. Further Generalizations and Extensions

In 1970, at a conference on Constructive Funclion Theory held in
Varna, Bulgaria, the late Professor Paul Turdn (1910-1976) asked the fol-
lowing question: Given a polynomial pn(z) = 3 ,_, ayz* with real coeffi-
cients whose graph on [—1, 1] lies in the unit disk, how large can its deriva-
tive be on the same interval? More generally, for an arbitrary non-negative
function @(z) on [—1,1], let P(p,n) denote the class of all polynomials p,
of degree at most n such that |pa(z)| < @(z) for =1 < = < 1. Then, how
large can |p(3){xg)] be at a given point g in [—1, 1] as p, varies in P(p,n)?
Such problems first appeared in approximation theory (cf. Dzyadyk [14],
and Pierre and Rahman [47]) concerning converse type theorems in approx-
imation by polynomials.

At first, for polynomials P € P, we define

i 3.1
—1<t<1 /1 — 2 (3.1)

or generally,

1Pl

|1Plly = sup (3.2)
—1<t<1 ( 1
where ¢ — (1) is a non-negative function on [—1,1]. Also, we denote

1Pl = l|Pllc = max [P(Z)] .

=1<i<1
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If ||P|l. <1, or ||P|| < 1, Turén’s problem is how large can ||P()]|
be?

In the first case (i.e. when ¢(t) = V1—1¢?) for k = 1 the answer was
given by Rahman [50]:

Theorem 3.1, Let P € P, and ||P||. <1, then

IPIl<2(n~1). (3:3)
It
[2/2) (n = m)! .
Un(t) = (1—12)"?sin((n+1) arccost) = Z (#l)mm(ﬁt}” i

m=0

is the nth Chebyshev polynomial of the second kind, then
P(t) = (1 = t3)Un—2(t)

satisfies the conditions of Theorem 3.1 and |P/(£1)| = 2(n — 1). Therefore
the result is best possible.

Theorem 3.2. Under the conditions of Theorem 3.1, we have
IP'@)) < (21 =) 4+ (n-1DHY? (-1<it<]). (3.4)

If P(t) = v(1 — t¥)Un_2(2), 7| = 1, then (3.4) is an equality at those
points of the interval (—1,1), where

(n—1)(1 —t*)? tan ((n — 1) arccost) =t .
Let P(t) = Y n_, ayt”. If we put ¢t = 0, then Inequality (3.4) implies
jar] = [P/(0)] <m—1.

This inequality is sharp for odd n. Also, Rahman [50] obtained the following
estimate for the coefficient as:

Theorem 3.3. If the polynomial P € P, satisfies ||P||. < 1, then

jaz] < 5((r= 1P+ 1). (3.5)
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For even n, the bound in (3.5) is attained when P(t) = y(1—t?)U, _o(t),

byl =1.
Rahman [51] proved the following theorem which gives a sharp estimate
for each of the coefficients.

Theorem 3.4. If the polynomial P € P, satisfies || P||. < 1, then according
as n — v is even or odd, |a,| is bounded above by the absolute value of
the coefficients of ¢ in (1 — ¢*)Un—a(t) or (1 — t*)U,—_3(t) (|v| = 1),
respectively.

If ¢(t) = |t| and k = 1, Rahman [50] proved:

Theorem 3.5. Let P € P, and |P(t)] < |t| for —1 < ¢ < 1, then
1P <(n=1)*+1.

The problem with ¢(t) = v/1 — 12 and k = 2 was solved by Pierre and
Rahman [47] following the spirit of the variational approach of V. A. Markov
[36]. However, part of Markov’s reasoning is difficult to apply. Using the
idea of S. N. Bernstein, B. Ya. Levin and others, Pierre and Rahman [47]
proved:

Theorem 3.6. If the polynomial P € P, satisfies || P||. < 1, then

; d?
1Pl < FTE) (1= t*)Un—2(t))
t=+1

= 2(n-1)(2n? —dn +3).

For arbitrary k € N, the problem was also solved by Pierre and Rahman
[48]:

Theorem 3.7. Let n > 2 and P € P, such that ||P||, £ 1. Then

k on? —dn+k+1
-1 n—1

IPR] < (1) = o TS0 (3)

for'all k € N, where
Qu(t) = (* = 1)Un_a(t) , (3.7)
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and U,, denotes the mth Chebyshev polynomial of the second kind. Equal-
ity in (3.6) is attained only for P(t) = y@x(t) with lv| = 1.
Also, Pierre and Rahman [48] considered a more general case when

o(t) = (1 - )2 (1 + )2, (3.8)

where A, i are non-negative integers, and P(t)=)_,—past’ isa polynomial
of degree at most n such that

1Pl <1, (3.9)
where || - ||, is defined by (3.2).

Theorem 3.8. Let ¢(t) be given by (3.8). If the polynomial P € Pn
satisfies (3.9), then for (A + p)/2 <k < n,

PO < max{||A®)]], 145,11},

where
A8 = () Tn - (a4 m)72(t) 5 (A, u are both even),
V1—1t2p(t) m—l—()\-l-,u);"z(t); (A, po are both Odd)

The case when 1 < k < (A+p)/2, for (A+4)/2 > 1, was left unresolved.
An asymptotic estimate when n — +oo, for A = p = 2, was recently
considered by Pierre, Rahman and Schmeisser [49]. At first, they proved
the following inequality:

2
P'(t)? + (n® — 4n) (IP_(?Q) <{n=927 [(~l<t<l)

for real-valued polynomials P € P, of a real variable, such that [|P||, < L,
where o(t) = 1 — 2. From this inequality, it follows that 1P| <n—2If
one does not assume that P(t) is real for real ¢, then for n > 4, they proved
that ||P’|| < n — 2. In that case, they also proved that

PO < ((n=2)? - (0 —4n)*)? (1<t < 1),

Their asymptotic result can be stated in the following form:

Theorem 3.9. Foreven n

2
sup ||P’!|:n—2v—7r—+0(n_2) as n— +0o0,
PeWa 8n
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where W, denotes a class of polynomials P € P, for which ||P||, < 1,
where p(t) = 1 — 2.
It is interesting to consider the case when the polynomial P € P,
satisfies the condition
0< P <plt) (—12t<), (3.10)

where t - (t) is a non-negative function on [—1,1].
Pierre, Rahman and Schmeisser [49] considered such case when ¢(t) =

Vv1—12,
Theorem 3.10. If P € P, and satisfies (3.10), where ap.(t) =+/1—1t?, then

sty £ (i)’

Lachance [27] studied pointwise and uniform bounds for the derivatives
of real polynomials P € P, such that ||P||, < 1, in the case when ¢(t) =
(1 —t?)~*2 and X is a fixed positive integer. We denote such a class of
polynomials by P, ().

Theorem 3.11. Let P € P,(}). Then
|PE(5)] < 2¥(n+ AF(L - 12)~PHR2 (1 <t< 1),

E
PE| < 9 Ak(n‘i‘A 2 A+2k
POl < 2+ 0 (313 ~ o ™
for k=0,1,...,n

Using this theorem and properties of the constrained Chebyshev poly-
nomial

t—Tha(t)= Qn,A(t)/En()\) )

where Q, a(t) is defined as a unique monic extremal polynomial of precise
degree n for which

(1= )M2Qua(t)l| = Ea(N)
where
E.() = min (- - gl

Lachance was able to give a few interesting applications.
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The polynomial T}, , is characterized by the existence of a unigue set
of n + 1 points £, = E,(,”)()\) satisfying

—ap(A) L& <& <<€ L aa(R),

oK) = (1- (ni/\)g)m , (3.11)

(&) = (-1)"*(1-£H~22 (v=0,1,...,n).

where

on which

Since the function ¢ is even, the nodes £, are symmetrically distributed
with respect to the origin, ie. §, = —&,_, for each v. The following prop-
erty of the constrained Chebyshev polynomials was proved by Lachance,
Saff and Varga [28]:

Theorem 3.12. If P € P,(A), then for t < &g and for ¢ > £,, we have
|P()] < |Taa(2)] -

For the polynomial P constrained by the zeros at each endpoint of
[~1,1] its absolute maximum is achieved only in a smaller subinterval
(Lachance, Saff and Varga [28]):

Theorem 3.13. Let P € P,(A). Then

1—)M2P@)|| = max |(1-t)M2P()|,
lI( )Pl |r!san(»\)|( yMEP(1)]

where a,(}) is defined by (3.11).
The following theorem of Lachance [27] is a corollary of Theorem 3.11
together with properties of the constrained Chebyshev polynomials:

Theorem 3.14. Let P € P,(A). Then
| P®| < 25 (n + A ¥ Toi aga (1)

foreach £ =0,1,...,n.
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In the same paper, Lachance considered incomplete polynomials intro-
duced by Lorentz [31]:

Theorem 3.15. For each pair of integers m > 0,5 > 1 let g(¢) be a
polynomial in Pp,. If [t°q(t)| < 1 for 0 <t < 1, then

g ()] < 25+ m)(t(1—1)"? (0<t<1)

and
e lg()] < Tam 25(1)
Goetgheluck [19] considered a class of polynomials P € P, such that
|P()|m(t) < |¢(1)] (1Lt <L),
where

m(t) = [t —ay[* = gp]* (m1< a1 < <a, <),

¢(7:) = (t e bl) FE (t - bq)u(t) (bla sy 169 € [_1: 1]) )

u is a function in C*[-1, 1] not identically equal to zero over [—1,1], and s
a positive integer.

Theorem 3.16. Let 1 < k < s and the above conditions on P be satisfied.
Then, there exists a constant A, such that the following inequality:

PO@Im(t) < A Y (Cn, ) ¢(1)| (-1t <)
v=0

holds, where
1yt
C(n,t):n( 1-t2+—) .
n
Also, under the same conditions, there exists a constant B such that

Bnktew if Ja,| #1
P < ’ W
IPEOl< { Bn?+2%w  if |a,| =1,

forte J, = {%(ay_l +a,), %(ay +ﬂu+1)] (v=1,...,p), where qy = —1
and apy1 = 1.
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" In the previous section, we mentioned refinement of Markov inequali-
ties. Now, we will consider some refinement of the above inequalities given
in Theorems 3.1, 3.6 and 3.7. Namely, we can ask whether or not it is
enough to require that |P(¢)| € +/1 — ¢* holds only at n + 1 selected points
in [~1,1] in order for (3.6) to hold. This type of problem has been investi-
gated by Rahman and Schmeisser [54].

Theorem 3.17. Given any infinite triangular matrix

- Téo) -
Tél) Tl(l)
Tén) T:En.) T’(ln)

with nodes
P e A <1 (nem),

there always exists a sequence of polynomials p, € P and a sequence of
points z, € [—1,1] such that

1/2
pa(ri) < (1= () =01, ,m)

and 5
|p:1(wn)‘2 ;(1—0(1))n10gn, n— 4+co.

Theorem 3.18. Let

50—_——1, §V:cos(2y_1-£), V:}_,.._,Tl,—l, ‘Sn:l-
If P € P, such that

[PEI =2 0= p=0lumn),
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then
”P(’c)H < lek)(l) (k =2,3,...) , (3.12)

where (), is defined by (3.7), and

1P|l < (n— 1)(% i 1) 3) = 2(1+oD)nlogn (n— +o) .

Further, in (3.12) equality holds only if P(t) = yQ.(¢), where |y| = 1.

We can see that the answer to the question is positive for £ > 2 and
negative for k = 1. If E is any closed subset of [—1,1] which does not
contain all of the points £, (¥ = 0,1,...,n), then there is a polynomial
p € Py such that

P < (1-1*)Y* on E

for which (3.12) is not satisfied.
If the polynomial P € P, of the above theorem has real coefficients,
then (3.12) can be extended to the inequality

IPEE +is)| < |QP(L+is)] (~1<t< 1, —00 < 5 < +00)
for k=2,3,....

4. Extremal Problems in L3-Norm

In the L?-metric, we give first the following result of Schmidt [58] and
Turan [64]:

Theorem 4.1. (i) Let (a,b) = (—o0, +c0) and ||f||2 = [T e~ F(¢)? dt.
Then the best constant in (2.2) is A,,; = +/2n. An extremal polynomial is
Hermite’s polynomial H,;

(ii) Let (a,b) = (0, +o0) and ||f||* = [;” e~ f(¢)* di. Then

-1
Apq = i 2 .
A (23111 4n+2>

The extremal polynomial is

= v
P(t)y=) sin Lale 5
— 2n+41

where L, is Laguerre polynomial.
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Theorem 4.1, in this form, was formulated by Turdn [64]. Schmidt [58]
proved only

21+ 1 72 R \7!
Ant = =5 (24(2n+1)2+(2n+1)4) ;

where —8/3 < R < 4/3.

The case of L?-metric with an arbitrary weight function w: (a,b) — Ry
(—o0 < a < b € +4o0) for which all moments are finite was considered
recently by Mirsky [46], Dérfler [10, 11] and Milovanovié [40].

Using the Turdn method, Milovanovié¢ [40] showed that the exact con-
stant in (2.1) can be found as the maximal eigenvalue of a matrix of Gram’s
type. Namely, he considered a more general case with a given non-negative
measure dA(t) on the real line R, with compact or infinite support, for
which all moments

ﬂU:ftvdA(t), V:0:1="'1
R

exist and are finite, and pg > 0. Then there exists a unique set of orthonor-
mal polynomials m,(:) = 7, (-; dA), v = 0,1,..., defined by

7, (t) = a,t* + lower degree terms, a, >0,

| A Om ) dN) = oy 020 (4.1)
i:}

For each polynomial P € P,, with complex coefficients, we define

e = [ |P<t)|2d/\(t))m

and consider the extremal problem

- |1 P®]
Ang = A r(dX) = sup
. pep, P

Theorem 4.2. The best constant A, ; defined in (4.2) is given by

An,k = (Amax(Bn,k))llzg
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where Apax(Ba k) is the maximal eigenvalue of the matrix B, =

[bg?]ksi,ism whose elements are given by
o) :/ni{k)(i)i'r;k)(t) dA(t), k<iji<n.
! i}

An extremal polynomial is

n

Pty =Y em(t)

v=k

where [ck, Ck41,--- ,¢a]T is an eigenvector of the matrix B, ; corresponding
to the eigenvalue Amax(Bn k).
An alternative result is the following theorem ({see Milovanovié [40]):

Theorem 4.3. The best constant A, ; defined in (4.2) is equal to the

spectral norm of one triangular matrix Q7 ;, @k = [qgf)]k‘(ij(n (Qa“;) =
0<i>j),ie.

Ani = G'(Q?:,k) = (’\max(Qn,ng’,k))Ug ) (4.3)

(%)

where the elements ¢;;” are given by the following inner product:

o =@, mx) (k<ij<n).

Alternatively, (4.3) can be expressed in the form
Az = Amin(Cn )" Y2, (4.4)

where Cp i = (Qn,sz’k)‘l.
To prove this theorem, it is enough to consider only a real polyno-

mial set P,. Let P € P, and ﬂ'}k)(t) = ¥l qgf)ir,-_k(t), where qg.c) =
(W_;(;k),?‘l','_k). Then

n

7 n
PO =363 oPmii(t) = (Z quz-[f))ﬁfi—k(i)
i 1 i=k

and
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where

n
yz:chqg-c), 1= Eoves 105 (4.9)
Jj=i

k
Let ¢ = ICkJ"- :CHIT) Y = [yk:-'- syﬂ-]T: and Qn,k = [q;(J)IkSz,]Sn
Since y = Qn k¢, it follows that

IP®I? | ny) _ (v,y)
I1PI2 = (c,e) ~ {(@ui@n ) y,¥)

Thus (4.3) and (4.4) hold.
Now, we will consider a few special measures.
1° dA(t) = e“tzdt, —co < t < 400. Here we have

m(t) = 1,(8) = (VA2 v) 2 EL (1)
where H, is a Hermite polynomial of degree v. Since
H'(t) = 2vH,_;(t) and H.L(t) = VwH, 1(t),

we have

AP(@) = VI /2 =T)-- V2l =k + DHu-i () = /20 () Hoea(®)

and ]
bng = 9Fk! (;) b, k<i j<n.

Thus, we find Amax(Bn ) = 28! (7 ) and A x = 25/2/nl/(n — k)!.

Also, this result can be found in the unpublished Ph.D. Thesis of
Shampine [59] (see also Shampine [61]). For k = 1, this result reduces
to the assertion (i) in Theorem 4.1.

2° dA(t) = te”'dt, 0 < t < 4oco. Here we have the generalized La-
guerre case with

fuli= t)-mr—mz (05

v—1 1'_

where I is the gamma function.
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Tirst, we consider the simplest case where k = 1. Since

1 a) _ _ J! (i +s)
Zq, Li (), ;= \/(J+S+1} \/ i1

from the equalities (4.5) it follows that

i+ s ;
Ci = Yip1— ;Yo 2= L 00

where we put yn41 = 0. The elements p ) of the matrix P, = Q;}ll are

§ . .
P, =ty =, Pl ey

Q-IQ_‘

PE_,I)-«U, otherwise,
so that
g VB (0]
VB a1 VB
CnJ:PElan'l:_ VB2 o =—-J,,
‘ " ﬁn-—l
O ﬁn—l Cn—1
where
w=-(1+s), ay==(2+— By=1+2 = 1
0= , Q= o1} B — v=Ll..,n-1.

We see that J,, is the Jacobi matrix for monic orthogonal polynomials {@, },
which satisfy the following three-term recurrence relation:

Qr41(t) = (t — ag)Qe(t) = BrQe1(t), k=10,1,2,...
g {t)=0, Qult)=1.
The eigenvalues of Cj ; are A, = —t,, where Q. (t,) =0, v=1,...,n

The standard Laguerre case (s = 0) can be exactly solved. In fact, for
t=2(z—1)and -1 € z <1, we have

0 0
Qu(t) = cos(2v + 1)§/C055’ z=rcost .
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The eigenvalues of the matrix C, ; are

(2v— D)

A, = —t, = in? =l
t, =4sin 2(2n+1)’

v=1,...,n.

Since Amin(C 1) = A1, we obtain A, ; = (QSin i(—?ng)) . This is Turdn’s
result (Theorem 4.1 (ii)).
Now, we consider the case when & = 2 and s = 0. First, we note that

dk ¥ 1ki(jui+kﬁl oo (t
g Li(t) = (=1) v ) i=i(t) -
i=k
The formulas (4.5), for & = 2, become

n

yi:Z(j—i—{»—l)Cj, = L

j=i

Since A?y; = ¢; (Yng1 = Ynyo = 0), we find a five-diagonal symmetric
matrix of order n — 1

I =2 1 0
e 5 —4 1

)

0O 1 -4 6

Thus, using the minimal eigenvalue of this matrix we obtain the best
constant An 2 = (Amin(Cnj2))" 2. These constants, for n = 4(1)10 are
presented in Table 4.1, with seven decimal digits (see G. V. Milovanovi¢
[40]). Numbers in parentheses indicate decimal exponents. For n = 2 and
n = 3, we have exact values: 45, = 1 and Azp = (3-]—2\/5)”2, respectively.
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n )\min{cn,Q) An2
4 5.1590055(—2) 4.4026788
5 2.0635581(—2) 6.9613208
6 | 9.8237813(-3) | 10.0892012
T 5.2614253(-3) 13.7863181
8 3.0685649(-3) 18.0522919
9 1.9090449(-3) 22.8871610
10 1.2494144(-3) 28.2908989

Remark 4.1. The last problem could be interpreted as an extremal prob-

lem of Wirtinger’s type

n
D v <AL
=2

n
2 Z(Azyi)QJ Yn+1 =Yns2=0.
i=2

Similar problems were considered in Fan, Taussky and Todd [17], G. V.
Milovanovi¢ and I. Z. Milovanovi¢ [42], and others.

Remark 4.2. In 1965, Shampine [60] proved that

1

where vg = 1.8751041...

cosv coshv = 0).

140
pd M2

1

Soen B (e Tod i

Y

1
2n

(v¢ is the smallest root of the equation 1 +

Dérfler [11] gave upper and lower bounds for the constant A, x, in
the case of the Laguerre measure dA(t) = exp(—t)d¢, and investigated its
behaviour as n — 4co. He proved that

1 Ak Py
n—fc+12(

An.’c

1

2 n-k
) AL <Y (v+1) (”;
r=0

1

1—v 2
-1

v=0
and
1 . . An k .
———— < liminf —= < limsu
kl 2k+1 — n—+o0 nk - TL—*+D£

nf = (k-1)W\2%k@k—1)
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A case with a special even weight function (including Gegenbauer
weight) was considered by Milovanovi¢ [40].

5. Extremal Problems on a Circle and Some Opposite Inequalities

Another type of extremal problems goes back to S. N. Bernstein [8].
His first result in this field is the inequality

1Pl < nllPll (P E€P), (5.1)

where ||f|| = lmla.)i |f(2)]. The equality in (5.1) is attained for P(z) = cz",
z|l=
¢ = const.
In a restricted polynomial class, an improvement of (5.1) was conjec~

tured by P. Erdés and later proved by Lax [29]:

Theorem 5.1. If P(€ P,,) does not vanish in |z| < 1, then
, n
17l< 2Pl 62)

A simple proof of this theorem was given by Aziz and Mohammad [5].
Using Theorem 5.1, Ankeny and Rivlin [1] showed that if P(€ Px)
does not vanish in |z| < 1, then

R +1
2

<
max |P(2)] <

lz]=

IlPll, E>1, (5.3)

with equality case if P(z) = az™ + 8, where |a| = |f|. The case of polyno-
mials of degree n having all their zeros in |z] > K > 1 was considered by
Aziz and Mohammad [6].

Using a restricted class of polynomials, Turdn [63] proved an opposite
inequality:

Theorem 5.2. If P is a polynomial of degree n having all its zeros in
|z| €1, then

171> Z1IP) - (5.4)

The result is best possible and equality in (5.4) holds for P(z) = az™ + 3,
where || = |3].
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It is interesting to see that in (5.2), as well as in (5.4), the equality
holds for those polynomials of degree n which have all their zeros on |z| = 1.

Turén [63] also proved an opposite inequality, for polynomials P € P,
having all their zeros in [—1, 1],

Jn

1P lleo > 35~ 11Pll ,' (5.5)

where || fllee = max |£(#)]. The constant /n/6 is not best possible.

Turan’s inequ_alities (5.4) and (5.5) have been generalized and extended
by many mathematicians in several different ways. We will give a few of
them.

Inequality (5.5) was sharpened by Eréd [16], who obtained

1P'llc 2 BnllPlleo » (5.6)

where By = 1, B3 = 3/2, and

n—2)/2
2 () n=2
Pe= Y,
(n—3)/2 (n—1)/2
n? LSy 1 e
T CEe (1— = ) (1+ r+1) , n=2k+1,
where k= 2,3,... .

Exactly, equality in (5.6) is attained for P(t) = (1—-t)",if n=1,2,3,
and for P(t) = (1 — t)*~ /A1 +)7/3 if n > 4.
Malik [32] proved the following result (see also Govil and Rahman [21]):

Theorem 5.3. If P is a polynomial of degree n, with ||[P(z)]| < lon |z| £ 1
and P has no zero in the disk |z| < K, K > 1, then for |z] <1,

n

P < .
[Pe) = 1+ K

(5:7)

The result is best possible and equality holds for

o= (125) -
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If P is a polynomial of degree n with ||P|| = 1 and P has all its zeros
in the disk |z| < k& < 1, then Q(z) = z"P(1/z) satisfies the hypothesis of
Theorem 5.3, with & = 1/k. Since
Q'(2) =nz""1P(1/2) — 2" 72P'(1/2) ,

Malik [32] concluded that

mex |P'(2)] 2 n — max|Q'()] 2 n -

n
1+ 1/k "’
ie. N
7
> — 5
max el By (5.8)

The equality in (5.8) is attained for P(z) = (z + k)™ /(1 + k)".

A simple and direct proof of this result was given by Govil [20]. Namely,
if P(z) = an [[h_,(z = 2,) is a polynomial of degree n having all its zeros
in |z] <k <1, then

1 if ' oi® n i n
7|2 v (7wm) = (w2) 2 o
18
P2 ol PE)
where @ is real. Choosing # such that |P(e?®)| = ||P|| = mgw(ewﬂ, we
get
max|P(7)[ 2 %mglP(Z)] :

The above argument does not hold for £ > 1 for then Re (e’ /(¢! —z,))
may not be greater than or equal to 1/(1 + k).
Govil [20] also proved the following result:

Theorem 5.4. If P(z) = Y ,_,a,z" is a polynomial of degree n with
1P| = lmla)i |P(¢*®)| = 1 and P has all its zeros in the disk |z| < K, K > 1,
then

n

!
> ‘
P2 757

(5.9)
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The result is best possible with equality for the polynomial

2" 4+ K7

PE) =177

(5.10)

For K > 1, the extremal polynomial turns out to be of the form (5.10),
whereas for K < 11t has the form (¢ + K)"/(1+ K)". Thus 1 is a critical
value of this parameter for the problem under consideration, and one should
not expect the same kind of reasoning to work both for K < 1 and for
K>1.

The following results were given by Govil, Rahman and Schmeisser
[22]:

Theorem 5.5. If P(z) = ) ,_,a,2" is a polynomial of degree n having
all its zeros in |z| > K > 1, then

nlao| + K2|as|

S oo mmeensy e
furthermore
Pl QPO+ R+ K= Da=2]
1+ K (1-ADA-K+E2+ KA+ EK(n—1Djp— A2
Where Ka; 2K? a,
A:;a and p:mag.

Theorem 5.6. If P(z) = Y ,_,a,z" is a polynomial of degree n having
all its zeros in |z| < k < 1, then

njan|+ lan 1|

= e e ynfan & 2o 1
furthermore
1P| > n(l — [w))(1 + £*w]) + k(n — 1)|Q — ? 12l
T+ 21— (L — £+ k2 + Fja]) 1 E(n = D2 = 7|
Vel 1 ey % dpeg
el e et



424 G, V. Milovanovié, D. §. Miirinovié and Th. M. Rassias

In this connection, E. B. Saff formulated the following problem: Let
P(z) = [](z— =) (5.11)
v=1

be a polynomial having all its zeros in Rez > 1. Is it true that

n
1
11 < —F—|P|| ?
I171< 3 75, 1P

Here equality must hold if in addition the zeros are all real.

Giroux, Rahman and Schmeisser [18] solved completely this problem
only for polynomials of degree n < 2. Namely, for n = 1 and n = 2, they
proved that the answer in the above problem is affirmative. Also, they
considered the inequality

/ . 1
P13 TP (512)
r=1 ¥

and its opposite inequality.

Theorem 5.7. If the polynomial P in (5.11) is real for real z, then (5.12)
holds, provided all the zeros lie in D = {z € C |Rez > 0, |z| > 1}.

Theorem 5.8. Under conditions |z,| < 1, ¥ = 1,...,n, the opposite
inequality of (5.12) is valid. There is equality if the zeros are all positive.
Aziz [2] obtained a generalization of Theorem 5.8.

Theorem 5.9. Under conditions |z,| < K, v=1,... ,n, we have
2 «— K
Pl > Pl . 5.13
1712 13w 2 e g 1P 65:13)

The result is best possible and equality in (5.13) holds for P(z) = z* + K".
Inequality (5.13) is also a refinement of (5.9).
Aziz [2] also mentioned that the inequality (5.12) holds, for |z,| > 1
(v =1,...,n), provided |P(z)| and |P'(z)| become maximum at the same
point on |z| = 1.
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Referring to Turdn inequality (5.4), Aziz [2, Thm. 5] proved:

Theorem 5.10. If P is a polynomial of degree n satisfying P(z)
2" P(1/z), then (5.4) holds. The result is sharp with equality for P(z)
2"+ 1.

Aziz and Dawood [4] proved the following results:

I

Theorem 5.11. If P is a polynomial of degree n having all its zeros in
|z] <1, then

Inin [P'(2)] = HgEn |P(2)|

and

in |P(z)| > R” min |P(z)| .
|z|r3}%n>1l (=)= 113?5‘ ()|

Both the estimates are sharp with equality for P(z) = me*®2™, m > 0.

Theorem 5.12. If P is a polynomial of degree n which does not vanish in
the disk |z| < 1, then

1P < § {maxIPe) - min PG} (5.14)

The result 1s best possible and equality in (5.14) holds for the polynomial
P(z) = az™ + B, where |B| > |a].

Theorem 5.13. If P is a polynomial of degree n which does not vanish in
the disk |z| < 1, then

R*+1 k=1
Pl < — i . .
s 1P1< (58 maxipa) - (B2 min PGl G19)

The result is best possible and equality in (5.15) holds for P(z) = az™ + 8,
where |8| > |a|.

This result is a generalization of the inequality (5.3) and it can be
obtained as an application of Theorem 5.12.

Theorem 5.14. If P is a polynomial of degree n which has all its zeros in
|z] <1, then

17112 5 {max P+ min P2} (5.16)
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The result is best possible and equality in (5.16) holds for P(z) = az™ + 8,
where |8] < la|.
A refinement of the Bernstein’s inequality (5.1) was given by Aziz [3].
There are generalizations of the above results in some mixed norms.
Using the uniform norm on the unit circle, ||f]| = mi}i |P(z)|, and the

[mn:(ﬂhuwﬂwwym,

Saff and Sheil-Small [56] proved the following result:

integral L9-norm,

Theorem 5.15. Let P be a polynomial of degree n having all its zeros on
the unit circle. Then for each ¢ > 0, we have

AN
12l < A2 ey (5.17)
where
Ay =2 /AT (Se+ ) TGe+1) (5.18)

The result is best possible and equality in (5.17) holds if and only if P(z) =
az™ + 3, where |a| = |8].
In order to obtain (5.17), Saff and Sheil-Small established the inequal-
ity
nl|Pllg < (4)Y91P' (5.18)
for polynomials having all their zeros on |z] = 1, and then in (5.19) used
Theorem 5.1.

An analogous result of the Turédn inequality (5.4) was proved by Malik
[33]:

Theorem 5.16. If P is a polynomial of degree n having all its zeros in
|z| <1, then for each ¢ > 0

n[Plly < (APl (5.20)

where A, is given by (5.18). The result is best possible and equality in
(5.20) holds for P(z) = az™ + 3, where |a| = |8].
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Making ¢ — +co0 in (5.20), it gets the Turdn inequality (5.2).

Analogous inequalities of (5.5), 1.e. (5.6), in L?-norm had been consid-
ered by Varma [67-72].

Let W, be the set of all algebraic polynomials of degree n whose zeros
are all real and lie inside [—1,1], and let ||f|]* = || f]|3 = f_ll f(#)?de.

Theorem 5.17. Let P € W, and n = 2m; then

1P 2 (54 5+ gy ) WPIP

where equality holds iff P(¢) = (1 —¢?)™. Moreover, if n = 2m — 1, then

HPWE(E+§+ S

= = 2 >
+ 4 ) IPI m23,

where equality holds iff P(t) = (1 —¢)™" (1 +¢)™ or P(t) = (1 —t)™
(142)m-2,

This theorem has been proved by Varma [72] and it gives an improve-
ment of one of his earlier result (see Varma [67-69]. A similar problem in
LP-norm (p > 1) on (—1,1) was considered by Zhou [74].

Varma [72] also proved:

Theorem 5.18. Let P € W}, subject to the condition P(1) = 1; then

1 1
P2>2 4 - >1 :
1Pl _2+8+8(2n-—1)' n2l, (5.21)
where equality holds for P(¢) = ((1+t)/2)".
Inequality (5.21) is an improvement over ||P'||> > n/4, given by
Szabados and Varma [62].
In 1979, Varma [70] proved the three following results:

Theorem 5.19. Let ||f||2 = [,(1 - t2)f(t)?dt and P € W,,. Then for
n > 2, we have

112 (B + 5 - g IPIF

The equality holds for P(t) = (1 —¢*)™, n = 2m.
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Theorem 5.20. Let P be an algebraic polynomial of degree at most n
whose roots are all real and lie in the complement of the interval [-1,1].

Th h
en we have n(n+ 1)(2n + 3)

4(2n +1)

The equality holds for P(t) = (1 + )" or P(t) = (1 —¢)". The norm is the
same as in the above theorem.

171> < 1Pl .

Theorem 5.21. Let P be an algebraic polynomial of degree n whose zeros
7, (v =1,...,n) all lie in the interval [0, c0). Let P(0) =0 or

n

Dot E

v=1

b

[N

then . N \
1P| = m”W :
The equality holds for P(t) = t*. Here ||f||* = [g e f(t)? dt.

The corresponding extremal problems of Markov’s type in L%norm had
been considered by Varma [71], Milovanovié [39], Milovanovi¢ and Dordevié
[41], G. V. Milovanovié and I. Z. Milovanovié [43], Milovanovi¢ and Petkovié
[45], etc. Similar problems in L"-norm, where r € N, have been recently
investigated by Guessab and Milovanovi¢ [24], and Guessab, Milovanovi¢
and Arino [25)].

Recently, Babenko and Pichugov [7] proved the following inequality:

[Tlleo = \/g<l s %)H_WHTHM , (5.22)

for trigonometric polynomials of degree n, with all real zeros. Here ||f||c =

‘ lity in (5.22) holds f
ug}%}éw[f(t)l The equality in (5.22) holds for

(1) :c(sint;”f)% (VyeR,C#£0).

Some generalizations of these results in integral metrics were obtained
by Tyrygin [65-66].
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