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Abstract

Orthogonal polynomials related to the weight function

(1-x)"

W) = ———————
%2 + 4 arctanh”x

(@a=-1)

on (-1, 1), as well as the corresponding quadrature formulas of Gaussian type, are considered. For some particular values of the
parameter «, the coefficients in the three-term recurrence relation for these orthogonal polynomials are obtained in an explicit
form as fractions. Numerical examples are included. The case @ = —1 can be connected with one Ramanujan integral recently
considered by Gautschi and Milovanovié [Math. Comp. 93 (347), 1297-1308, 2024].
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1. Introduction

Let P be the space of all algebraic polynomials defined on R and P, its subspace P, c P containing all poly-
nomials of degree at most n (n € N). For a given weight function w(x) on [a,b] (@ < b), for which all moments

Mk = fa b ¥*w(x)dx, k € Ny, exist and are finite, and gy > 0, there exists a unique sequence of monic polynomials
{m ()}, orthogonal on [a, b], i.e.,

b
(7, ) = f T ()T ()W) dx = ||l S s (1.1)

where 0y, is Kronecker’s delta.
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1.1. Orthogonal polynomials and Gaussian quadratures

00

Orthogonal polynomials {m(x)};2,

satisfy the three-term recurrence relation
M1 (X) = (¥ — @)m(x) = Berme-1(x), k=0,1,2,..., (1.2)

with mo(x) = 1 and 7_;(x) = 0, where @} = ax(w) and B, = Br(w) are recursion coeflicients. The coefficient Sy may be

arbitrary, but is conveniently defined by 8y = o = fa b w(x)dx.
Also, for a such kind of the weight functions, there exists the n-point Gauss-Christoffel quadrature rule for each
neN,

b n
f Fomwyde= D" AP F) + Ru(f), (1.3)

a v=1
which is exact for all polynomials of degree < 2n — 1 (f € P,,-1). The quadrature nodes x(V”), v=1,...,n,in (1.3) are

eigenvalues of the Jacobi matrix

o VBi (0]
B a1 B2

Jn(w) = VB, @ e , (1.4)
’ V,Bn—l
O ﬁn—l @p—1
and the first components of the corresponding normalized eigenvectors v, = [v, ... v,,]T (with vIv, = 1) give the
weight coefficients (Christoffel numbers) Af,") = ﬁovfl, vy = 1,...,n. Such a construction of the Gauss-Christoffel

quadrature rule (1.3) is done by the Golub-Welsch algbrithm (cf. [6D).
Unfortunately, these recursion coefficients a; and S in (1.2) are known explicitly only for some narrow classes of
weight functions. Among them the most popular are the so-called classical weight functions:

e the Jacobi weight (1 — x)*(1 + x)%, @, > —1, on (-1, 1);
o the generalized Laguerre weight x*e™, @ > —1, on (0, +c0);
o the Hermite weight function e on (—co, +00).

In general, for arbitrary weight functions, precisely for the strongly non-classical weights, the recursion coeffi-
cients in (1.2) must be constructed numerically, but such processes are usually ill-conditioned. Some of the available
methods for such numerical construction are: method of (modified) moments, the discretized Stieltjes—Gautschi pro-
cedure, and the Lanczos algorithm (see [2, 4, 8, 11]). Fortunately, advances in recent decades in computer architecture,
and especially in variable precision arithmetic, have made it possible direct generation of the recurrence coefficients
ay and By, using the original Chebyshev method of moments, but only with sufficiently high precision. Furthermore,
the progress in symbolic computation additionally has increased this possibility. The corresponding software for such
numerical and symbolic computation is now available: Gautschi’s package SOPQ in MarLAB, and our MATHEMATICA
package OrthogonalPolynomials (see [1] and [13]). This MarHemaTicA package is downloadable from the Web
Site (Mathematical Institute of the Serbian Academy of Sciences and Arts, Belgrade, Serbia):

http://www.mi.sanu.ac.rs/“gvm/.

1.2. Associated polynomials

The same recursion coefficients @ and Sy as in (1.2) appear also in the case of the so-called associated (or numer-
ator) polynomials, defined by the same weight function as follows

b —
o (x) = f WW@&, k>0,
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but with starting values og(x) = 0 and o_(x) = —1 (see [8, pp. 111-114]). Here for the monic associated polynomial
Tr+1(x), we use the notation Jr,io)(x)

)()_IB f 7Tk+l(x) 7Tk+1() w(t)ds, k>0, (1.5)

where deg(ﬂ'](co)) =kand By =po = fa b w(x) dx, so that

T () = (8 = @) () = Bram (1), k=01, (1.6)

with 70’ (x) = 1 and 7% (x) = 0

1.3. One Ramanujan integral
In a joint paper with Walter Gautschi [5] we recently considered the Ramanujan integral

+00 1 e—tx
Ix(®) =f ~—————dx, >0, (1.7)
0o Xm?+log”x

as well as its derivatives. Thanks to the representation of this integral in the form

1
I'(a,
IR(t):etfo%da’ t>0,

where ['(a, £) is the upper incomplete gamma function we have shown that (1.7) can be efficiently calculated using the
classical Gaussian quadrature on the interval [0, 1], as well as that Ig(¢) is a completely monotone function on (0, +c0),
that is, (1) Ig‘)(r) > 0on (0,00) forallk =0,1,2,.... The inspiration for our research was the work of Van E. Wood
[14], who considered integrals

(0+)
1“0 = f eZ" loghz dz, Rer>0,

occurring in the asymptotic expansions of the solutions of heat conduction problems in regions bounded internally by
a circular cylinder, in problems on the flow of fluids through porous media, in electron slowing-down problems, etc.
For nonnegative n and negative k, these integrals can be expressed, by means of change of variables and integrations
by parts, in terms of derivatives of Ramanujan’s integral (1.7).

Remark 1.1. For calculating Iz(t), Wood [14] decomposed it into three integrals Ig(t) = Ig, + Ig, + Ig,, Where

1 1
Iz, = = — — tan"((log 2¢)/m),
2

1

oo f‘” l-e’ dv
o o m+log?(v/t) v’

0 e’ dv
I, = - SRR AN
12 m* +log~(v/t) Vv

and then used some approximate calculations for each of them.

This paper is devoted to integrals of the form
1
1 (x)
I(f)=f - f — dux, (1.8)
0o Xm*+log x
which can be transformed to (see Remark 3.3)

o2 F(x)
1(F)_f0 T — dx, (1.9)

7% + log?

1+x
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taking (1 —x)/(1 + x) instead of x, where F(x) = f((1 —x)/(1 + x)). The log-term in (1.9) can be written as the arctanh
function, so that for even functions x — F(x), Eq. (1.9) reduces to

1
I(F) = f ! Fx) dx (1.10)

1 1= 22 22 + 4arctanh®x

In this paper our primary task is to get orthogonal polynomials, as well as the corresponding quadratures of
Gaussian type, for a more general weight function than one in the previous integral. Namely, we consider an even
weight function with the parameter a > —1,

(1-x%)°

w(x) = ———
2 + 4 arctanh”x

on (—1,1). (1.11)
This weight function w®(x) for different values of « is displayed in Figure 1.
w@ (x)

A
025}

0.20

0.15

-1.0 -0.5 0.0 0.5 1.0

Figure 1. The weight functions x — w®(x) for @ = 1 (blue), @ = 1/2 (brown), @ = 0 (green), @ = —7/20 (orange), @ = —1/2 (magenta) and
a = —1 (red)

The paper is organized as follows. In Section 2 we obtain the three-term recurrence relation for polynomials
orthogonal with respect to the weight function (1.11), and the corresponding Gaussian rules in Section 3.

2. A modification of the associated Legendre polynomials

Let 7, be monic Legendre polynomials orthogonal on [—1, 1] with respect to the inner product (1.1), with the con-
stant weight function w(x) = 1. They satisfy the three-term recurrence relation (1.2), where the recurrence coefficients
are o = 0, k € Ny, and

k2
= = 2, = —, k E N. 2'1
Bo = Ho Be= a7 2.1)
2.1. Cases=0

The monic associated (or numerator) Legendre polynomials are ones whose recursion coefficients are simply those
of the Legendre polynomials (2.1) shifted in their indices by 1 (see (1.5) and (1.6)), i.e.,

(k + 1)?
71';((_)'_)1()6) = XJT](CO)(X) - mﬂi@l(x).
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These polynomials are orthogonal on [—1, 1] with respect to the weight function (cf. [8, pp. 111-114], [12])
1

wO(x) = -
2 + 4 arctanh”x

Thus,

! 1 (k+1)?
O _ O _ Oxydx==, fO9=—""""" [>1.
o = Ho LW (Wdx =2, By Qk+1)(2k+3)" ~~

These coeflicients for 1 < k < 10 are presented in Figure 2.

B
A
0271

0.26 AN
[ 02 S PR R SR, cipion, e SR SRS SR S G_—
0241

023}

0.22

/
=

Figure 2. Recurrence coeflicients ﬁ;{o) Jk=1,2,..., 10

Remark 2.1. For an interesting story about the weight function w(®(x) see [3]. Otherwise, for the moments

o 1 &
| ———F d4x (keNy),
Hi Il 72 + 4 arctanh?(x) 0

we have pio) = 0 for odd k. For even k, after changing variables x = tanh ¢, the moments can be expressed in the form

+00 k
(0) tanh" ¢ dr
o | L9 22
Hi fo‘ m? +412 cosh®t 2

and this kind of integrals can be calculated using quadrature formulas of Gaussian type with respect to the weight
function t — 1/ cosh? 7 on (0, +0) developed in [9] for a fast summation of slowly convergent series (cf. [10]). The
moment sequence {,u,(co)} is

{l 2 22 214 5098 5359534 12932534
6’ 7 457 77 9457 77 141757 7 4677757 7 6385128757 7 1915538625°
2736303958 37092982886 132349236090514 }
" 488462349375° 77 7795859096025 7 321579187711031257 7 )
Now, in this paper we first consider two cases, one for @ = 1 and the other for « = —1. In both cases the -
coefficients are fractions, for which we get explicit expressions in the case of @ = —1. In the last part of this section

we give a numerical construction of B-coefficients for @ > —1 and different from an integer.
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2.2. Casea =1
For calculating recurrence coefficients ,3(1) (k = 0), with respect to the weight function

1-x2
W) = —————,
2 + 4 arctanh”x

we can use one of modification algorithms (cf. [4, pp. 121-138, §2.4,]), the so-called modification by a simplified
symmetric quadratic factor x> + y* (Algorithm 2.7 in [4, p. 127]), taking y to be the imaginary unit y = i. Using the
same notation as in this book, as the initialization we take:

rg=ye =y By, =y Y

(1 D _ 0 (0) 2
=0, 8y =8B+,
and then we continue to generate coefﬁc1ents in the following way:

v (0) ”
Tiv2 =Y+ Bra /T

(l) (1) _ (0) s ’”
0, By =B, /iy
(1)

fork=1,2,...,n— 1. At the end we should change the negative sign of ﬁgl) = —f3,, because in our case, the factor
is 1 — x2 (not x% +i% = x* — 11). Because, of symmetric case (even weight functions), the a-coefficients are equal to
Zero.

The following MatHEMATICA code provides the first n = 100 recurrence coefficients:

betalk_]:=If[k==0,1/6, (1+k) "2/ ((1+2k) (3+2k))]; n=100;
y=I; rOs=y; rls=y+betalll/y; r2s=y+beta[2]/rls;
betal[0]=betal[0] (betal[1]l+y~2);
Do [p=y+betal[k+2] /r2s; betallk]=betalk]r2s/r0s;
rOs=rls; rils=r2s; r2s=p,{k,1,n-1}];
betal[0] = -betall0];
For k < 10 the recurrence S-coeflicients are
(1) ﬁ(l) 40 (1) 411 ﬁ(l) 784 (1) 20625 ;) 834056 1y _ 17116729
231 1925 3425° ©87269° TS 34684657 6 70441965’
1y _ 428688430 ay _ 1720009917 ;) 24529748360 ) 1023487494293
71752329587 8 6998346817 70 994772134517 T10 T 4140519760325’
and they are presented in Figure 3.

B
A
0275! a=1

0.250'-"""""'-""-";:_:“"':; ''' e lb"'
0225}
0.200 }

0.175}

0.150

/
x~

1 2 3 4 5 6 7 8 9 10

Figure 3. Recurrence coefficients ﬂ;{l) Jk=1,2,..., 10
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Remark 2.2. As we can see from Figure 3 this sequence { f{l)}keN is (most likely) increasing, with the limit

klim ﬁ;{l) = 1/4. Tt could be interesting to find the analytic expression for the coefficients ﬂ,((l), k > 1. Our attempts to
—00

do so have been unsuccessful.

2.3. Casea = -1
This weight function

1 1
(=1) —
w X) = . , x€e(-1,1), 2.3
(x) 1-x2 #2 + 4arctanh®x ( ) @
appears in the integral (1.10).
‘We need the moments

1
,ui_l) = f Fw D (x) dx 2.4)

-1

0, k is odd,

1k
X 1
2f 5 5 dx, kiseven.
o 1 =x* 72+ 4arctanh®x

Similarly as in (2.2) we obtain

n? + 41

_ e dr 1
ﬂ81)=2f 2242 9
o T+4r 2

=D 1 _ (0
M "~ Mo = My

_ ** tanh* ¢
,Ul(c D= 2[ ST d4r foreven k.

In particular, for k = 0, we have

Since it is obvious

in this case, the moment sequence {uﬁ:l)} is

{l 0 1 13 251 3551 22417 147636491
277737 77457 77 9457 77 141757 77 935557 7 6385128757
61425277 9718892317 41728893807163 }
2736483757 7 444056681257 7 194896477400625° 7 )

Using our MaTHEMATICA package OrthogonalPolynomials (see [1] and [13]), with these moments (the sequence
momm1), we can obtain recurrence coeflicients ﬁ;‘l) (and also (x;(_l) = 0 for each k), by only one command:

{alml,beml} = aChebyshevAlgorithm[momml,Algorithm->Symbolic];
Thus, the coefficients /3,(;1) for 0 < k <25 are

(L2108 58 35 0621 80 3 40 143 56 o
273757357 217337 1437 657 85 323 1337 161° 5757 2257 261’
24 85 96 10 1% 40 161 17 575 205
899° 3417 385° 1295 481’ 533’ 1763 645 705° 2303° 833
(see also Figure 4). Precisely, the following statement holds:

Proposition 2.3. The polynomials 71';{_1)()6), orthogonal with respect to the weight function (2.3) on (-1, 1) satisfy the
recurrence relation
V) = x0T V), k=01, (2.5)
with ngfl)(x) = 1and 71(:11)()() = 0, where the B-coefficients are given by
2 gy _ k-l
37 TR 42—
261
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Figure 4. Recurrence coefﬁmentsﬁ( Dk=12,..., 10

2.4. Numerical approach for an arbitrary a > —1

For numerical calculation of the recurrence coefficients ,8,((”) for @ > —1 we use the method of modified moments
(see [2], [8, pp- 160-162]). In order to construct the first N coefficients {,8(”) -1 we need the first 2N modified

k=0
moments .
u = f oW @(x)dx, j=0,1,...,2N—1, .7
-1
where the sequence of polynomials {p;} is chosen as in [7],
(x> = D2, if k is even,
Pr(x) = (2.3)
x(x? = DE=DZ, if k is odd,
so that the moment of odd order are equal to zero, i.e., g = 0 for odd k.
It is obvious the polynomials p;(x) satisfy the three-term recurrence relation
Prr1(x) = (x = a)p(x) = bgp-1(x),  po(x) =1, p_1(x) =0
with a; = 0 and b, = 1 for odd k and b; = 0O for even k.
Thus, for even k we consider the integrals (2.7) on (0, 1) and introduce a new variable by x = tanh ¢, so that
@ = f (2 — 2@ (x) dx
1 (1 _ 2)k/2+0z
= 2(—1)’“2[ —————————dx, k=0,2,....2N-2,
o m2+ 4arctanh”x
i.e.,
e 1 dr
(a) k/2 _
=2(-1 . , k=0,2,...,2N-2. 2.9
[ 29

For calculating the first N = 30 recurrence coefficients a/z”) (= 0) and ,82”), we need the first 2N = 60 modified

moments u(a) k=0,1,...,59 (the sequence ModMom). Using the MartHEMATICA package OrthogonalPolynomials
and executing the followmg commands

262
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<<orthogonalPolynomials*
Fk[k_,t_,alpha_]:=2(-1)"(k/2)/((Pi~2+4t"~2)Cosh[t] "~ (k+2alpha+2));
ak=Table[0,{k,0,59}]; bk=Table[If[0ddQ[k],1,0],{k,0,59}]1;

alpha=-1/2;

ModMom=Table [If [0ddQ[k],0, NIntegrate[Fk[k,t,alpha],
{t,0,Infinity},WorkingPrecision->55]],{k,0,59}];
{alf,bet}=aChebyshevAlgorithmModified[ModMom,ak,bk, WorkingPrecision->35];

we obtain the recurrence coefficients (the sequences alf and bet). The sequences ak and bk describe the polynomials

(2.8).

The obtained coeflicients ,8;(") for @ = +1/2 are given in Table 1 with 33 decimal digits.

175
By

7
By

[c<BEN I NV N S =l ]

[N NS I NS I (S T S I O I (S T NS I O I O R e e e e e
OO0 AN WNOFR,OWVOIANWN AW~ O\

0.220635600152651593396456432117998
0.368216485997406421221417667713285
0.271761169652707040816871520639319
0.258754277050327977963237092006281
0.254625958525324078380024449482067
0.252825418106109020908059461153271
0.251889572895927930109395001989429
0.251345050448647184421522645138922
0.251002117369457262485560522405465
0.250773069179688060659612922031017
0.250612976189327397429364673612923
0.250496955305702550532410934559111
0.250410353869893912948274513960787
0.250344104650692462771693366126065
0.250292361926185020117908592348747
0.250251224716591125303421899816806
0.250218012117391582029834389209147
0.250190834323508349399659101627634
0.250168329345612301455275025241506
0.250149496263814323219801054780205
0.250133586670511840370744616345382
0.250120032251390135037243275892083
0.250108395412601667359596603769675
0.250098334957086950064709177498842
0.250089581799297780937175862734641
0.250081921505972956625421368821888
0.250075181560396326934570185490500
0.250069221947735721351778151344357
0.250063928109801353465761730636937
0.250059205613134026704822526493082

0.139393934778513395904068133798040
0.209828461140439353963403673070145
0.234829748126929328474574136722756
0.242288795626735744126709016733210
0.245415884137259973700512908231515
0.246995914174621288351123287453131
0.247895617405908436827210373375403
0.248452552589670815345978912768160
0.248819285464220218213230545036414
0.249072555873738002973633705834681
0.249254218732305870884873517134723
0.249388600820137797967477629633768
0.249490586076166670474732914991518
0.249569675053899175520770187761686
0.249632151677671968165204313785406
0.249682300239331309853634485232483
0.249723119101132285427692962008941
0.249756755047129793733202662122012
0.249784776269947633337021535872672
0.249808348851579335444107432116092
0.249828353737761803326034773729162
0.249845466013372636256425272325500
0.249860209710309807566224559592982
0.249872996386862886568213772928204
0.249884152730033774278047124813188
0.249893940599489896649435587938430
0.249902571781869963953321618134050
0.249910218987674205547974282365617
0.249917024142358415116318481823169
0.249923104704166239874147682928246

Table 1. Recurrence coefficients ﬁ;{a), 0<k<?29 fora==x1/2

3. Gaussian quadratures related to the weight function w(® (x)

In this section we consider quadrature formulas of Gaussian type

n

1 2\
(I = x7) — (M) £ ()
dx = E A R.(f),
I1 7% + 4 arctanh®x flx) dx L O + Ry ()

263
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where the remainder term R, ( - ) vanishes for all algebraic polynomials of degree at most 2n — 1.

As we mentioned in §1.1, the nodes xi") and the weight coefficients (Christoffel numbers) A(V") are connected to
the symmetric tridiagonal Jacobi matrix J,(w®), given by (1.4).

The obtained recurrence coefficients ,8,(;’) , 0 < kK < N -1, in the previous section, enable us to construct the

quadrature parameters x™ and A™ in (3.1) for each n < N. For example, using the following simple commands

paln_] :=aGaussianNodesWeights[n,alf,bet,WorkingPrecision->35, Precision->30];
{n20, w20} = N[pq[20],30];

we can get quadrature parameters (n20 and w20) in (3.1) for n = 20 nodes, with 30 decimal digits. Table 2 shows

these parameters for « = —1. Numbers in parenthesis indicate the decimal exponents.
v xE,_l) A(V_I)
1,20 F0.999178968436867050558373617149  8.46564767317383397145781444122(-2)
2,19  F0.976394515885833819536949321654  2.57799096570423383911940711872(-2)
3,18 ¥0.928771911184512946281106156836  2.08898104551302067686741194825(-2)
4,17 F0.857837685992294196815523062277  1.88444734647755411076015882747(-2)
5,16 F0.765478770296464356225485330371  1.77227434631692315686739169213(-2)
6,15  ¥0.654052515874030526792879676751  1.70335326888289388059260992763(—2)
7,14 ¥0.526360656827159643522158127562  1.65893017267934731216185869748(-2)
8,13 ¥0.385592221505761512649722344354  1.63031890646593114165879006862(—2)
9,12 70.235250682564827616763480604645 1.61309024793346092522696165784(-2)
10,11 ¥0.079070878744265441541283732725  1.60496602685280098528759562064(—2)

Table 2. Nodes xf,_]) and weight coeflicients A(v_l) for 20-point Gaussian rule (3.1), with 30 decimal digits

In the sequel we give some numerical computations.

Example 3.1. Consider the integrals

1) fl A= pdr (G=1.2.3.4) (32)
@) = -5 Ji\X X =1,4,5,9), .
/ _1 72 + darctanh®x 7 /
where the function x = fj(x) are given by (see Figure 5)
X — 1 1 7/2 5/4
fi(x) =cosmx, fo(x) =exp (m), fr(x) =[x - 30 fa(x) = |cos >

fi(x)
J

—10}

Figure 5. The functions x — fj(x) for j = 1 (brown), j = 2 (green), j = 3 (red) and j = 4 (blue)
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We will apply the quadrature formula (3.1), with n = 5(5)50 nodes, to (3.2), in notation

Qu(fr@) = 3 AP F(),

v=1

and calculate the corresponding relative errors

On(fjs @) — 1)

33
@ (3.3)

Errfi”>(a) =

in two cases, when @ = —1 and a = 1/2.
In the case @ = —1 the exact values of the integrals (3.2) are
I (—1) = -0.2738813933920314593388490227468629911975235 ...,
L(—1) = 0.225873660379598200144161806837 ... ,
L(—1) = 0.695185585471566248859540912251 ...,
Ii(—1) = 0.141398114354298142664612153942 ...,

while for @ = 1/2 these values are

1;(1/2) = 0.0389595945520207999063218785983317349786289 ... . ,
I,(1/2) = 0.0539023893638563664422286283 . .. ,
I3(1/2) = 0.0632119429443514939090728652.. . . ,
14(1/2) = 0.1012377374899969338041610614 . .. .

Applying quadrature formulas (3.1) to (3.2), with @« = -1 and @ = 1/2, we get quadrature approximations
0,(fj; ), with relative errors presented in Tables 3 and 4, respectively.

n Er'”(-1) Em)’(-1) Enl’(-1) Enl’(-1

5 653(=5)  7.20(-4)  1.93(-5)  4.30(-3)
10 939(-15) 3.05(-8)  3.69(-6)  5.12(-4)
15 8.01(-27) 8.11(-8) 6.61(-7)  1.52(-4)
20 240(-40) 9.46(-9)  4.08(-8)  6.46(-5)

25 2.19(-10) 4.77(-8)  3.35(-5)
30 3.16(-11) 2.87(-8)  1.97(-5)
35 2.62(-13) 3.97(-9)  1.26(=5)
40 1.63(-13) 5.43(-9)  8.54(-6)
45 2.04(-14) 4.60(-9)  6.08(=6)
50 1.57(=15) 8.52(—=10) 4.49(—6)

Table 3. Relative errors in quadrature sums Q,(f;; —1) (k = 1,2,3,4) for n = 5(5)50 nodes

n Ex'”(1/2) End’(1/2) Enl’(1/2) Er’(1/2)

5 560(-5) 5.28(-4) 273(-4)  7.08(=5)
10 8.00(—=15) 4.43(=6)  6.44(-6)  1.82(—6)
15 6.86(-27) 8.45(-8)  1.82(-6)  1.90(-7)
20 2.07(-40) 3.15(-10) 1.05(-=6)  3.72(-8)
25 1.34(-10) 238(-7)  1.03(-8)
30 2.81(-13)  6.55(-8)  3.60(-9)

Table 4. Relative errors in quadrature sums Q,(f;; —1) (k = 1,2, 3,4) for n = 5(5)30 nodes
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As we can see from Tables 3 and 4 the speed of convergence of quadrature formulas depends on the properties of
functions f;. In the case of the holomorphic function fi, we have a very fast convergence; already with n=10 nodes
an accuracy of 15 decimal digits is achieved. In the case of the function f>, such an accuracy requires about n = 50
nodes. Convergence is significantly slower for functions f3 and f4 due to reduced smoothness.

The integrands in (3.2) are displayed in Figure 6 for @ = —1 (left) and @ = 1/2 (right).

£ w D) £ w2 (x)

-0.05+

Figure 6. The integrands x — fj(x)w(“)(x), j=1,2,3,4, for @ = —1 (left) and @ = 1/2 (right)

Remark 3.2. The error estimate in the quadrature formulas (3.1), as well as their convergence in different classes of
functions can be analysed using the usual techniques.

Remark 3.3. Taking

0 tl—x . t1+x
x;t) =exp|—t——|+exp|— ,
£ p 1+x P 1

- X

we can see that the Ramanujan integral (1.7) reduces to (3.1). Indeed,
00 1 —tx

&mzf-niij—m

0o Xn+log”x

1 00 —tx

1
()
0 1 ) xm?+log” x

fl 1e—tx + e—t/x
= —————— dx
0o *m?+log”x
Then, taking (1 — x)/(1 + x) instead of x, the last integral reduces to

1 —t(1-x)/(14x) —t(1+x)/(1-x)
1 e +e
@mzzf dx,
0

1 - x? ) 2 1-x
tlog? —*
oiog 1+x

L : 1
Ir(t) = j:l - 8lx t)l e dx = Il g(x; t)w(’l)(x) dx. (3.4)

2+ log? ——

d o8 1+x

Note that g(—x; 1) = g(x, 1), g(x;0) =2, g(0;7) = 2e™, and
lil}l glx;0)=1.
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Applying the quadrature formul

where the “exact” value of I(¢) is 0

a (3.1) to (3.4), we get approximations Q,(g(- ;1)) of Ix(¢), with relative errors

0,(g(+30) — Ir(d)
Ir(?)

btained by a sufficiently high precision in Wolfram’s Maraematica 14.0. Graphics

Err, (1) =

i

of relative errors in log-scale for n = 10(10)50 are presented in Figure 7. As we can see, a lower accuracy is appeared
for small values close to zero.

for large values of ¢, and especially

10—25 L
107
10—35 L
10740

10745
0

50 100 150 200

Figure 7. Relative errors Err,(#) for ¢ < 200 and n = 10(10)50 nodes in log-scale

Finally, we repeat a diagram from [14], obtained by this kind of integration (Figure 8).

IR

A

0.0
0

1o}
0.8:
0.6:
0.4:

02]

A

0 02 04 06 08 10

Figure 8. Wood’s diagram of z — Ig(f), when ¢ = 1/2-1,0<z<1
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Remark 3.4. It could be interesting to consider the corresponding orthogonal polynomials and quadrature formulas
with respect to the two-parametric weight function

wpyp (=071 +x)
w P (x) = —_——
72 + 4 arctanh”x

(@,p=-1)

on(-1,1).
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