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Abstract

Orthogonal polynomials related to the weight function

w(α)(x) =
(1 − x2)α

π2 + 4 arctanh2 x
(α ≥ −1)

on (−1, 1), as well as the corresponding quadrature formulas of Gaussian type, are considered. For some particular values of the
parameter α, the coefficients in the three-term recurrence relation for these orthogonal polynomials are obtained in an explicit
form as fractions. Numerical examples are included. The case α = −1 can be connected with one Ramanujan integral recently
considered by Gautschi and Milovanović [Math. Comp. 93 (347), 1297–1308, 2024].
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1. Introduction

Let P be the space of all algebraic polynomials defined on R and Pn its subspace Pn ⊂ P containing all poly-
nomials of degree at most n (n ∈ N). For a given weight function w(x) on [a, b] (a < b), for which all moments
µk =

∫ b
a xkw(x) dx, k ∈ N0, exist and are finite, and µ0 > 0, there exists a unique sequence of monic polynomials

{πk(x)}∞k=0 orthogonal on [a, b], i.e.,

(πk, πn) =
∫ b

a
πk(x)πn(x)w(x) dx = ∥πn∥

2δk,n, (1.1)

where δk,n is Kronecker’s delta.
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1.1. Orthogonal polynomials and Gaussian quadratures

Orthogonal polynomials {πk(x)}∞k=0 satisfy the three-term recurrence relation

πk+1(x) = (x − αk)πk(x) − βkπk−1(x), k = 0, 1, 2, . . . , (1.2)

with π0(x) = 1 and π−1(x) = 0, where αk = αk(w) and βk = βk(w) are recursion coefficients. The coefficient β0 may be
arbitrary, but is conveniently defined by β0 = µ0 =

∫ b
a w(x) dx.

Also, for a such kind of the weight functions, there exists the n-point Gauss-Christoffel quadrature rule for each
n ∈ N, ∫ b

a
f (x)w(x) dx =

n∑
ν=1

A(n)
ν f (x(n)

ν ) + Rn( f ), (1.3)

which is exact for all polynomials of degree ≤ 2n− 1 ( f ∈ P2n−1). The quadrature nodes x(n)
ν , ν = 1, . . . , n, in (1.3) are

eigenvalues of the Jacobi matrix

Jn(w) =



α0
√
β1 O

√
β1 α1

√
β2

√
β2 α2

. . .

. . .
. . .

√
βn−1

O
√
βn−1 αn−1


, (1.4)

and the first components of the corresponding normalized eigenvectors vν = [vν,1 . . . vν,n]T (with vT
ν vν = 1) give the

weight coefficients (Christoffel numbers) A(n)
ν = β0v2

ν,1, ν = 1, . . . , n. Such a construction of the Gauss-Christoffel
quadrature rule (1.3) is done by the Golub-Welsch algorithm (cf. [6]).

Unfortunately, these recursion coefficients αk and βk in (1.2) are known explicitly only for some narrow classes of
weight functions. Among them the most popular are the so-called classical weight functions:

• the Jacobi weight (1 − x)α(1 + x)β, α, β > −1, on (−1, 1);

• the generalized Laguerre weight xαe−x, α > −1, on (0,+∞);

• the Hermite weight function e−x2
on (−∞,+∞).

In general, for arbitrary weight functions, precisely for the strongly non-classical weights, the recursion coeffi-
cients in (1.2) must be constructed numerically, but such processes are usually ill-conditioned. Some of the available
methods for such numerical construction are: method of (modified) moments, the discretized Stieltjes–Gautschi pro-
cedure, and the Lanczos algorithm (see [2, 4, 8, 11]). Fortunately, advances in recent decades in computer architecture,
and especially in variable precision arithmetic, have made it possible direct generation of the recurrence coefficients
αk and βk, using the original Chebyshev method of moments, but only with sufficiently high precision. Furthermore,
the progress in symbolic computation additionally has increased this possibility. The corresponding software for such
numerical and symbolic computation is now available: Gautschi’s package SOPQ in Matlab, and our Mathematica
package OrthogonalPolynomials (see [1] and [13]). This Mathematica package is downloadable from the Web
Site (Mathematical Institute of the Serbian Academy of Sciences and Arts, Belgrade, Serbia):

http://www.mi.sanu.ac.rs/~gvm/.

1.2. Associated polynomials

The same recursion coefficients αk and βk as in (1.2) appear also in the case of the so-called associated (or numer-
ator) polynomials, defined by the same weight function as follows

σk(x) =
∫ b

a

πk(x) − πk(t)
x − t

w(t) dt, k ≥ 0,
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but with starting values σ0(x) = 0 and σ−1(x) = −1 (see [8, pp. 111–114]). Here for the monic associated polynomial
σ̂k+1(x), we use the notation π(0)

k (x)

π(0)
k (x) =

1
β0

∫ b

a

πk+1(x) − πk+1(t)
x − t

w(t) dt, k ≥ 0, (1.5)

where deg(π(0)
k ) = k and β0 = µ0 =

∫ b
a w(x) dx, so that

π(0)
k+1(x) = (x − αk+1)π(0)

k (x) − βk+1π
(0)
k−1(x), k = 0, 1, . . . , (1.6)

with π(0)
0 (x) = 1 and π(0)

−1(x) = 0.

1.3. One Ramanujan integral
In a joint paper with Walter Gautschi [5] we recently considered the Ramanujan integral

IR(t) =
∫ +∞

0

1
x

e−tx

π2 + log2 x
dx, t > 0, (1.7)

as well as its derivatives. Thanks to the representation of this integral in the form

IR(t) = e t
∫ 1

0

Γ(a, t)
Γ(a)

da, t > 0,

where Γ(a, t) is the upper incomplete gamma function we have shown that (1.7) can be efficiently calculated using the
classical Gaussian quadrature on the interval [0, 1], as well as that IR(t) is a completely monotone function on (0,+∞),
that is, (−1)k I(k)

R (t) > 0 on (0,∞) for all k = 0, 1, 2, . . . . The inspiration for our research was the work of Van E. Wood
[14], who considered integrals

Ik
n(t) =

∫ (0+)

−∞

eztzn−1 logk z dz, Re t > 0,

occurring in the asymptotic expansions of the solutions of heat conduction problems in regions bounded internally by
a circular cylinder, in problems on the flow of fluids through porous media, in electron slowing-down problems, etc.
For nonnegative n and negative k, these integrals can be expressed, by means of change of variables and integrations
by parts, in terms of derivatives of Ramanujan’s integral (1.7).

Remark 1.1. For calculating IR(t), Wood [14] decomposed it into three integrals IR(t) = IR1 + IR2 + IR3 , where

IR1 =
1
2
−

1
π

tan−1((log 2t)/π),

IR2 = −

∫ 1/2

0

1 − e−v

π2 + log2(v/t)
dv
v
,

IR3 = −

∫ ∞

1/2

e−v

π2 + log2(v/t)
dv
v
,

and then used some approximate calculations for each of them.

This paper is devoted to integrals of the form

I( f ) =
∫ 1

0

1
x

f (x)
π2 + log2 x

dx, (1.8)

which can be transformed to (see Remark 3.3)

I(F) =
∫ 1

0

2
1 − x2

F(x)

π2 + log2 1 − x
1 + x

dx, (1.9)
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taking (1− x)/(1+ x) instead of x, where F(x) = f ((1− x)/(1+ x)). The log-term in (1.9) can be written as the arctanh
function, so that for even functions x 7→ F(x), Eq. (1.9) reduces to

I(F) =
∫ 1

−1

1
1 − x2

F(x)
π2 + 4 arctanh2x

dx. (1.10)

In this paper our primary task is to get orthogonal polynomials, as well as the corresponding quadratures of
Gaussian type, for a more general weight function than one in the previous integral. Namely, we consider an even
weight function with the parameter α ≥ −1,

w(α)(x) =
(1 − x2)α

π2 + 4 arctanh2x
on (−1, 1). (1.11)

This weight function w(α)(x) for different values of α is displayed in Figure 1.

-1.0 -0.5 0.0 0.5 1.0
x

0.05

0.10

0.15

0.20

0.25

w(α)(x)

Figure 1. The weight functions x 7→ w(α)(x) for α = 1 (blue), α = 1/2 (brown), α = 0 (green), α = −7/20 (orange), α = −1/2 (magenta) and
α = −1 (red)

The paper is organized as follows. In Section 2 we obtain the three-term recurrence relation for polynomials
orthogonal with respect to the weight function (1.11), and the corresponding Gaussian rules in Section 3.

2. A modification of the associated Legendre polynomials

Let πn be monic Legendre polynomials orthogonal on [−1, 1] with respect to the inner product (1.1), with the con-
stant weight function w(x) = 1. They satisfy the three-term recurrence relation (1.2), where the recurrence coefficients
are αk = 0, k ∈ N0, and

β0 = µ0 = 2, βk =
k2

4k2 − 1
, k ∈ N. (2.1)

2.1. Case s = 0
The monic associated (or numerator) Legendre polynomials are ones whose recursion coefficients are simply those

of the Legendre polynomials (2.1) shifted in their indices by 1 (see (1.5) and (1.6)), i.e.,

π(0)
k+1(x) = xπ(0)

k (x) −
(k + 1)2

(2k + 1)(2k + 3)
π(0)

k−1(x).
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These polynomials are orthogonal on [−1, 1] with respect to the weight function (cf. [8, pp. 111–114], [12])

w(0)(x) =
1

π2 + 4 arctanh2x
.

Thus,

β(0)
0 = µ

(0)
0 =

∫ 1

−1
w(0)(x) dx =

1
6
, β(0)

k =
(k + 1)2

(2k + 1)(2k + 3)
, k ≥ 1.

These coefficients for 1 ≤ k ≤ 10 are presented in Figure 2.

1 2 3 4 5 6 7 8 9 10
k0.22

0.23

0.24

0.25

0.26

0.27

βk
(α)

α = 0

Figure 2. Recurrence coefficients β(0)
k , k = 1, 2, . . . , 10

Remark 2.1. For an interesting story about the weight function w(0)(x) see [3]. Otherwise, for the moments

µ(0)
k =

∫ 1

−1

xk

π2 + 4 arctanh2(x)
dx (k ∈ N0),

we have µ(0)
k = 0 for odd k. For even k, after changing variables x = tanh t, the moments can be expressed in the form

µ(0)
k = 2

∫ +∞

0

tanhk t
π2 + 4t2 ·

dt

cosh2 t
, (2.2)

and this kind of integrals can be calculated using quadrature formulas of Gaussian type with respect to the weight
function t 7→ 1/ cosh2 t on (0,+∞) developed in [9] for a fast summation of slowly convergent series (cf. [10]). The
moment sequence

{
µ(0)

k
}

is{1
6
, 0,

2
45
, 0,

22
945
, 0,

214
14175

, 0,
5098

467775
, 0,

5359534
638512875

, 0,
12932534

1915538625
,

0,
2736303958

488462349375
, 0,

37092982886
7795859096025

, 0,
132349236090514

32157918771103125
, 0, . . .

}
.

Now, in this paper we first consider two cases, one for α = 1 and the other for α = −1. In both cases the β-
coefficients are fractions, for which we get explicit expressions in the case of α = −1. In the last part of this section
we give a numerical construction of β-coefficients for α > −1 and different from an integer.

259
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2.2. Case α = 1
For calculating recurrence coefficients β(1)

k (k ≥ 0), with respect to the weight function

w(1)(x) =
1 − x2

π2 + 4 arctanh2x
,

we can use one of modification algorithms (cf. [4, pp. 121–138, §2.4,]), the so-called modification by a simplified
symmetric quadratic factor x2 + y2 (Algorithm 2.7 in [4, p. 127]), taking y to be the imaginary unit y = i. Using the
same notation as in this book, as the initialization we take:

r′′0 = y, r′′1 = y + β(0)
1 /y, r′′2 = y + β(0)

2 /r
′′
1 ,

α(1)
0 = 0, β(1)

0 = β
(0)
0 (β(0)

1 + y2),

and then we continue to generate coefficients in the following way:

r′′k+2 = y + β(0)
k+2/r

′′
k+1,

α(1)
k = 0, β(1)

k = β
(0)
k r′′k+1/r

′′
k−1,

for k = 1, 2, . . . , n − 1. At the end we should change the negative sign of β(1)
0 := −β(1)

0 , because in our case, the factor
is 1 − x2 (not x2 + i2 = x2 − 1!). Because, of symmetric case (even weight functions), the α-coefficients are equal to
zero.

The following Mathematica code provides the first n = 100 recurrence coefficients:

beta[k_]:=If[k==0,1/6,(1+k)^2/((1+2k)(3+2k))]; n=100;

y=I; r0s=y; r1s=y+beta[1]/y; r2s=y+beta[2]/r1s;

beta1[0]=beta[0](beta[1]+y^2);

Do[p=y+beta[k+2]/r2s; beta1[k]=beta[k]r2s/r0s;

r0s=r1s; r1s=r2s; r2s=p,{k,1,n-1}];

beta1[0] = -beta1[0];

For k ≤ 10 the recurrence β-coefficients are

β(1)
0 =

11
90
, β(1)

1 =
40

231
, β(1)

2 =
411

1925
, β(1)

3 =
784

3425
, β(1)

4 =
20625
87269

, β(1)
5 =

834056
3468465

, β(1)
6 =

17116729
70441965

,

β(1)
7 =

428688480
1752329587

, β(1)
8 =

1720009917
6998346817

, β(1)
9 =

24529748360
99477213451

, β(1)
10 =

1023487494293
4140519760325

,

and they are presented in Figure 3.

1 2 3 4 5 6 7 8 9 10
k0.150

0.175

0.200

0.225

0.250

0.275

βk
(α)

α = 1

Figure 3. Recurrence coefficients β(1)
k , k = 1, 2, . . . , 10
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Remark 2.2. As we can see from Figure 3 this sequence
{
β(1)

k

}
k∈N

is (most likely) increasing, with the limit

lim
k→∞
β(1)

k = 1/4. It could be interesting to find the analytic expression for the coefficients β(1)
k , k ≥ 1. Our attempts to

do so have been unsuccessful.

2.3. Case α = −1
This weight function

w(−1)(x) =
1

1 − x2 ·
1

π2 + 4 arctanh2x
, x ∈ (−1, 1), (2.3)

appears in the integral (1.10).
We need the moments

µ(−1)
k =

∫ 1

−1
xkw(−1)(x) dx (2.4)

=


0, k is odd,

2
∫ 1

0

xk

1 − x2 ·
1

π2 + 4 arctanh2x
dx, k is even.

Similarly as in (2.2) we obtain

µ(−1)
k = 2

∫ +∞

0

tanhk t
π2 + 4t2 dt for even k.

In particular, for k = 0, we have

µ(−1)
0 = 2

∫ +∞

0

dt
π2 + 4t2 =

1
2
.

Since it is obvious
µ(−1)

k − µ(−1)
k+2 = µ

(0)
k ,

in this case, the moment sequence
{
µ(−1)

k
}

is{1
2
, 0,

1
3
, 0,

13
45
, 0,

251
945
, 0,

3551
14175

, 0,
22417
93555

, 0,
147636491
638512875

, 0,

61425277
273648375

, 0,
9718892317
44405668125

, 0,
41728893807163

194896477400625
, 0, . . .

}
.

Using our Mathematica package OrthogonalPolynomials (see [1] and [13]), with these moments (the sequence
momm1), we can obtain recurrence coefficients β(−1)

k (and also α(−1)
k = 0 for each k), by only one command:

{alm1,bem1} = aChebyshevAlgorithm[momm1,Algorithm->Symbolic];

Thus, the coefficients β(−1)
k for 0 ≤ k ≤ 25 are{1

2
,

2
3
,

1
5
,

8
35
,

5
21
,

8
33
,

35
143
,

16
65
,

21
85
,

80
323
,

33
133
,

40
161
,

143
575
,

56
225
,

65
261
,

224
899
,

85
341
,

96
385
,

323
1295

,
120
481
,

133
533
,

440
1763

,
161
645
,

176
705
,

575
2303

,
208
833

}
(see also Figure 4). Precisely, the following statement holds:

Proposition 2.3. The polynomials π(−1)
k (x), orthogonal with respect to the weight function (2.3) on (−1, 1) satisfy the

recurrence relation
π(−1)

k+1 (x) = xπ(−1)
k (x) − β(−1)

k π(−1)
k−1 (x), k = 0, 1, . . . , (2.5)

with π(−1)
0 (x) = 1 and π(−1)

−1 (x) = 0, where the β-coefficients are given by

β(−1)
0 =

1
2
, β(−1)

1 =
2
3
, β(−1)

k =
k2 − 1
4k2 − 1

, k = 2, 3, . . . . (2.6)
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1 2 3 4 5 6 7 8 9 10
k0.05

0.15

0.25

0.35

0.45

0.55

0.65

βk
(α)

α = -1

Figure 4. Recurrence coefficients β(−1)
k , k = 1, 2, . . . , 10

2.4. Numerical approach for an arbitrary α > −1
For numerical calculation of the recurrence coefficients β(α)

k for α > −1 we use the method of modified moments
(see [2], [8, pp. 160–162]). In order to construct the first N coefficients {β(α)

k }
N−1
k=0 , we need the first 2N modified

moments

µ(α)
k =

∫ 1

−1
pk(x)w(α)(x) dx, j = 0, 1, . . . , 2N − 1, (2.7)

where the sequence of polynomials {pk} is chosen as in [7],

pk(x) =

 (x2 − 1)k/2, if k is even,

x(x2 − 1)(k−1)/2, if k is odd,
(2.8)

so that the moment of odd order are equal to zero, i.e., µk = 0 for odd k.
It is obvious the polynomials pk(x) satisfy the three-term recurrence relation

pk+1(x) = (x − ak)pk(x) − bk pk−1(x), p0(x) = 1, p−1(x) = 0,

with ak = 0 and bk = 1 for odd k and bk = 0 for even k.
Thus, for even k we consider the integrals (2.7) on (0, 1) and introduce a new variable by x = tanh t, so that

µ(α)
k = 2

∫ 1

0
(x2 − 1)k/2w(α)(x) dx

= 2(−1)k/2
∫ 1

0

(1 − x2)k/2+α

π2 + 4 arctanh2x
dx, k = 0, 2, . . . , 2N − 2,

i.e.,

µ(α)
k = 2(−1)k/2

∫ +∞

0

1
π2 + 4t2 ·

dt

coshk+2α+2 t
, k = 0, 2, . . . , 2N − 2. (2.9)

For calculating the first N = 30 recurrence coefficients α(α)
k (= 0) and β(α)

k , we need the first 2N = 60 modified
moments µ(α)

k , k = 0, 1, . . . , 59 (the sequence ModMom). Using the Mathematica package OrthogonalPolynomials

and executing the following commands
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<<orthogonalPolynomials‘

Fk[k_,t_,alpha_]:=2(-1)^(k/2)/((Pi^2+4t^2)Cosh[t]^(k+2alpha+2));

ak=Table[0,{k,0,59}]; bk=Table[If[OddQ[k],1,0],{k,0,59}];

alpha=-1/2;

ModMom=Table[If[OddQ[k],0, NIntegrate[Fk[k,t,alpha],

{t,0,Infinity},WorkingPrecision->55]],{k,0,59}];

{alf,bet}=aChebyshevAlgorithmModified[ModMom,ak,bk, WorkingPrecision->35];

we obtain the recurrence coefficients (the sequences alf and bet). The sequences ak and bk describe the polynomials
(2.8).

The obtained coefficients β(α)
k for α = ±1/2 are given in Table 1 with 33 decimal digits.

k β(−1/2)
k β(1/2)

k

0 0.220635600152651593396456432117998 0.139393934778513395904068133798040
1 0.368216485997406421221417667713285 0.209828461140439353963403673070145
2 0.271761169652707040816871520639319 0.234829748126929328474574136722756
3 0.258754277050327977963237092006281 0.242288795626735744126709016733210
4 0.254625958525324078380024449482067 0.245415884137259973700512908231515
5 0.252825418106109020908059461153271 0.246995914174621288351123287453131
6 0.251889572895927930109395001989429 0.247895617405908436827210373375403
7 0.251345050448647184421522645138922 0.248452552589670815345978912768160
8 0.251002117369457262485560522405465 0.248819285464220218213230545036414
9 0.250773069179688060659612922031017 0.249072555873738002973633705834681

10 0.250612976189327397429364673612923 0.249254218732305870884873517134723
11 0.250496955305702550532410934559111 0.249388600820137797967477629633768
12 0.250410353869893912948274513960787 0.249490586076166670474732914991518
13 0.250344104650692462771693366126065 0.249569675053899175520770187761686
14 0.250292361926185020117908592348747 0.249632151677671968165204313785406
15 0.250251224716591125303421899816806 0.249682300239331309853634485232483
16 0.250218012117391582029834389209147 0.249723119101132285427692962008941
17 0.250190834323508349399659101627634 0.249756755047129793733202662122012
18 0.250168329345612301455275025241506 0.249784776269947633337021535872672
19 0.250149496263814323219801054780205 0.249808348851579335444107432116092
20 0.250133586670511840370744616345382 0.249828353737761803326034773729162
21 0.250120032251390135037243275892083 0.249845466013372636256425272325500
22 0.250108395412601667359596603769675 0.249860209710309807566224559592982
23 0.250098334957086950064709177498842 0.249872996386862886568213772928204
24 0.250089581799297780937175862734641 0.249884152730033774278047124813188
25 0.250081921505972956625421368821888 0.249893940599489896649435587938430
26 0.250075181560396326934570185490500 0.249902571781869963953321618134050
27 0.250069221947735721351778151344357 0.249910218987674205547974282365617
28 0.250063928109801353465761730636937 0.249917024142358415116318481823169
29 0.250059205613134026704822526493082 0.249923104704166239874147682928246

Table 1. Recurrence coefficients β(α)
k , 0 ≤ k ≤ 29, for α = ∓1/2

3. Gaussian quadratures related to the weight function w(α)(x)

In this section we consider quadrature formulas of Gaussian type∫ 1

−1

(1 − x2)α

π2 + 4 arctanh2x
f (x) dx =

n∑
ν=1

A(n)
ν f (x(n)

ν ) + Rn( f ), (3.1)
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where the remainder term Rn( · ) vanishes for all algebraic polynomials of degree at most 2n − 1.
As we mentioned in §1.1, the nodes x(n)

ν and the weight coefficients (Christoffel numbers) A(n)
ν are connected to

the symmetric tridiagonal Jacobi matrix Jn(w(α)), given by (1.4).
The obtained recurrence coefficients β(α)

k , 0 ≤ k ≤ N − 1, in the previous section, enable us to construct the
quadrature parameters x(n)

ν and A(n)
ν in (3.1) for each n ≤ N. For example, using the following simple commands

pq[n_]:=aGaussianNodesWeights[n,alf,bet,WorkingPrecision->35, Precision->30];

{n20, w20} = N[pq[20],30];

we can get quadrature parameters (n20 and w20) in (3.1) for n = 20 nodes, with 30 decimal digits. Table 2 shows
these parameters for α = −1. Numbers in parenthesis indicate the decimal exponents.

ν x(−1)
ν A(−1)

ν

1, 20 ∓0.999178968436867050558373617149 8.46564767317383397145781444122(−2)
2, 19 ∓0.976394515885833819536949321654 2.57799096570423383911940711872(−2)
3, 18 ∓0.928771911184512946281106156836 2.08898104551302067686741194825(−2)
4, 17 ∓0.857837685992294196815523062277 1.88444734647755411076015882747(−2)
5, 16 ∓0.765478770296464356225485330371 1.77227434631692315686739169213(−2)
6, 15 ∓0.654052515874030526792879676751 1.70335326888289388059260992763(−2)
7, 14 ∓0.526360656827159643522158127562 1.65893017267934731216185869748(−2)
8, 13 ∓0.385592221505761512649722344354 1.63031890646593114165879006862(−2)
9, 12 ∓0.235250682564827616763480604645 1.61309024793346092522696165784(−2)

10, 11 ∓0.079070878744265441541283732725 1.60496602685280098528759562064(−2)

Table 2. Nodes x(−1)
ν and weight coefficients A(−1)

ν for 20-point Gaussian rule (3.1), with 30 decimal digits

In the sequel we give some numerical computations.

Example 3.1. Consider the integrals

I j(α) =
∫ 1

−1

(1 − x2)α

π2 + 4 arctanh2x
f j(x) dx ( j = 1, 2, 3, 4), (3.2)

where the function x 7→ f j(x) are given by (see Figure 5)

f j(x) = cos πx, f2(x) = exp
(

x − 1
x + 1

)
, f3(x) =

∣∣∣∣∣x − 1
2

∣∣∣∣∣7/2 , f4(x) =
∣∣∣∣∣cos
πx
2

∣∣∣∣∣5/4 .

-1.0 -0.5 0.5 1.0
x

-1.0

-0.5

0.5

1.0

1.5

2.0

fj(x)

j = 3

j = 4

j = 1

j = 2

Figure 5. The functions x 7→ f j(x) for j = 1 (brown), j = 2 (green), j = 3 (red) and j = 4 (blue)
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We will apply the quadrature formula (3.1), with n = 5(5)50 nodes, to (3.2), in notation

Qn( f ;α) =
n∑
ν=1

A(n)
ν f (x(n)

ν ),

and calculate the corresponding relative errors

Err(n)
j (α) =

∣∣∣∣∣∣Qn( f j;α) − I j(α)
I j(α)

∣∣∣∣∣∣ (3.3)

in two cases, when α = −1 and α = 1/2.
In the case α = −1 the exact values of the integrals (3.2) are

I1(−1) = −0.2738813933920314593388490227468629911975235 . . . ,
I2(−1) = 0.225873660379598200144161806837 . . . ,
I3(−1) = 0.695185585471566248859540912251 . . . ,
I4(−1) = 0.141398114354298142664612153942 . . . ,

while for α = 1/2 these values are

I1(1/2) = 0.0389595945520207999063218785983317349786289 . . . ,
I2(1/2) = 0.0539023893638563664422286283 . . . ,
I3(1/2) = 0.0632119429443514939090728652 . . . ,
I4(1/2) = 0.1012377374899969338041610614 . . . .

Applying quadrature formulas (3.1) to (3.2), with α = −1 and α = 1/2, we get quadrature approximations
Qn( f j;α), with relative errors presented in Tables 3 and 4, respectively.

n Err(n)
1 (−1) Err(n)

2 (−1) Err(n)
3 (−1) Err(n)

4 (−1)
5 6.53(−5) 7.20(−4) 1.93(−5) 4.30(−3)

10 9.39(−15) 3.05(−8) 3.69(−6) 5.12(−4)
15 8.01(−27) 8.11(−8) 6.61(−7) 1.52(−4)
20 2.40(−40) 9.46(−9) 4.08(−8) 6.46(−5)
25 2.19(−10) 4.77(−8) 3.35(−5)
30 3.16(−11) 2.87(−8) 1.97(−5)
35 2.62(−13) 3.97(−9) 1.26(−5)
40 1.63(−13) 5.43(−9) 8.54(−6)
45 2.04(−14) 4.60(−9) 6.08(−6)
50 1.57(−15) 8.52(−10) 4.49(−6)

Table 3. Relative errors in quadrature sums Qn( f j;−1) (k = 1, 2, 3, 4) for n = 5(5)50 nodes

n Err(n)
1 (1/2) Err(n)

2 (1/2) Err(n)
3 (1/2) Err(n)

4 (1/2)
5 5.60(−5) 5.28(−4) 2.73(−4) 7.08(−5)

10 8.00(−15) 4.43(−6) 6.44(−6) 1.82(−6)
15 6.86(−27) 8.45(−8) 1.82(−6) 1.90(−7)
20 2.07(−40) 3.15(−10) 1.05(−6) 3.72(−8)
25 1.34(−10) 2.38(−7) 1.03(−8)
30 2.81(−13) 6.55(−8) 3.60(−9)

Table 4. Relative errors in quadrature sums Qn( f j;−1) (k = 1, 2, 3, 4) for n = 5(5)30 nodes
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As we can see from Tables 3 and 4 the speed of convergence of quadrature formulas depends on the properties of
functions f j. In the case of the holomorphic function f1, we have a very fast convergence; already with n=10 nodes
an accuracy of 15 decimal digits is achieved. In the case of the function f2, such an accuracy requires about n = 50
nodes. Convergence is significantly slower for functions f3 and f4 due to reduced smoothness.

The integrands in (3.2) are displayed in Figure 6 for α = −1 (left) and α = 1/2 (right).

-1.0 -0.5 0.5 1.0
x

-0.1

0.1

0.2

fj(x)w
(-1)(x)

j = 3

j = 4

j = 1

j = 2

-1.0 -0.5 0.5 1.0
x

-0.05

0.05

0.10

fj(x)w
(1/2)(x)

j = 3 j = 4

j = 1

j = 2

Figure 6. The integrands x 7→ f j(x)w(α)(x), j = 1, 2, 3, 4, for α = −1 (left) and α = 1/2 (right)

Remark 3.2. The error estimate in the quadrature formulas (3.1), as well as their convergence in different classes of
functions can be analysed using the usual techniques.

Remark 3.3. Taking

g(x; t) = exp
(
−t

1 − x
1 + x

)
+ exp

(
−t

1 + x
1 − x

)
,

we can see that the Ramanujan integral (1.7) reduces to (3.1). Indeed,

IR(t) =
∫ ∞

0

1
x

e−tx

π2 + log2 x
dx

=

(∫ 1

0
+

∫ ∞

1

)
1
x

e−tx

π2 + log2 x
dx

=

∫ 1

0

1
x

e−tx + e−t/x

π2 + log2 x
dx.

Then, taking (1 − x)/(1 + x) instead of x, the last integral reduces to

IR(t) = 2
∫ 1

0

1
1 − x2

e−t(1−x)/(1+x) + e−t(1+x)/(1−x)

π2 + log2 1 − x
1 + x

dx,

i.e.,

IR(t) =
∫ 1

−1

1
1 − x2 ·

g(x; t)

π2 + log2 1 − x
1 + x

dx =
∫ 1

−1
g(x; t)w(−1)(x) dx. (3.4)

Note that g(−x; t) = g(x, t), g(x; 0) = 2, g(0; t) = 2e−t, and

lim
x→1−

g(x; t) = 1.
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Milovanović / Montes Taurus J. Pure Appl. Math. 6 (3), 255–268, 2024

Applying the quadrature formula (3.1) to (3.4), we get approximations Qn(g( · ; t)) of IR(t), with relative errors

Errn(t) =
∣∣∣∣∣Qn(g( · ; t)) − IR(t)

IR(t)

∣∣∣∣∣ ,
where the “exact” value of IR(t) is obtained by a sufficiently high precision in Wolfram’s Mathematica 14.0. Graphics
of relative errors in log-scale for n = 10(10)50 are presented in Figure 7. As we can see, a lower accuracy is appeared
for large values of t, and especially for small values close to zero.

0 50 100 150 200
t10-45

10-40
10-35
10-30
10-25
10-20
10-15
10-10
10-5

Errn(t)
n = 10
n = 20

n = 30

n = 40

n = 50

Figure 7. Relative errors Errn(t) for t ≤ 200 and n = 10(10)50 nodes in log-scale

Finally, we repeat a diagram from [14], obtained by this kind of integration (Figure 8).

0.0 0.2 0.4 0.6 0.8 1.0
z0.0

0.2

0.4

0.6

0.8

1.0

ℐR(t)

Figure 8. Wood’s diagram of z 7→ IR(t), when t = 1/z2 − 1, 0 < z < 1
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Remark 3.4. It could be interesting to consider the corresponding orthogonal polynomials and quadrature formulas
with respect to the two-parametric weight function

w(α,β)(x) =
(1 − x)α(1 + x)β

π2 + 4 arctanh2x
(α, β ≥ −1)

on (−1, 1).
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