
Author's personal copy

Mathematical and Computer Modelling 58 (2013) 1548–1562

Contents lists available at SciVerse ScienceDirect

Mathematical and Computer Modelling

journal homepage: www.elsevier.com/locate/mcm

Upgraded Petri net model and analysis of adaptive and static
arithmetic coding

Perica Štrbac a, Gradimir V. Milovanović b,∗

a Faculty of Computer Sciences, Megatrend University, Bulevar Umetnosti 29, 11070 Novi Beograd, Serbia
b Mathematical Institute of the Serbian Academy of Sciences and Arts, Knez Mihailova 36, p.p. 367, 11001 Beograd, Serbia

a r t i c l e i n f o

Article history:
Received 25 June 2011
Accepted 1 June 2013

Keywords:
Arithmetic coding
Upgraded Petri nets
Data compression
Source coding

a b s t r a c t

In this paper,we analyze several adaptive and static datamodels of arithmetic compression.
These models are represented by using Upgraded Petri net as our original class of the Petri
nets. After the iterative processes of modeling, simulation and analysis, the models are
transformed into an application. The models refer to one-pass and two-pass arithmetic
coding where a set of symbols refers to bytes or nibbles. The frequency of a symbol is
represented as an unsigned 32-bit integer. Original software for modeling and simulations
of Upgraded Petri net, PeM (Petri Net Manager) is developed and used for all models
described in this paper. All models are observed in the experiments by using a created
application over a standard set of files. Experimental results are presented and compared.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Upgraded Petri nets are a formal mathematical apparatus which enable modeling, simulation and process analysis [1] as
does a Petri net [2]. We developed Upgraded Petri nets as a new class of Petri nets. These are graphical and mathematical
modeling tools applicable tomany systems. Upgraded Petri nets are used for describing and studying information processing
systems that are characterized as being concurrent, asynchronous, synchronous, distributed, parallel, deterministic,
nondeterministic, and/or stochastic as is the Petri net. As a graphical tool, Upgraded Petri nets can be used as a visual-
communication aid similar to flow charts, block diagrams, and networks. Transition firing level, tokens and transition
functions are used in these nets to simulate the dynamic and concurrent activities of systems. They enable interactive
monitoring of process operations and its gradual improvement from the initial phase, all the way to the final version. We
use the Upgraded Petri nets (UPN) which we developed in order to enable use of Petri nets for hardware modeling, as well
as to provide modeling at register level [1,3]. All models in the paper are created by using UPN. The hierarchical structure
of a UPN gives many possibilities for abstraction. This feature of the UPN provides the model implementation consisting at
the same time of elaborate pieces essential for the analysis at a certain level, and also of some general pieces whose details
are irrelevant for the analysis at the given level of abstraction [1]. We are using Petri net based simulation via an originally
developed Petri nets Manager (PeM) software suite. The PeM supports the formal theory of the Petri net and also, the formal
theory of the Upgraded Petri net. It is used for modeling, simulation and analysis of all models shown in the paper. The PeM
concurrently fires enabled transitions with respect to the rules of the UPN execution which is shown in the next section.

Arithmetic coding maps an input string of data symbols to a code string in such a way that the original data can be
recovered from the code string, i.e. it is a form of lossless data compression. Arithmetic coding has been widely used in
data compression [4–7]. This type of coding can encode a sequence from the source at a rate very close to the entropy rate.

∗ Corresponding author. Tel.: +381 26 30 170.
E-mail addresses: pstrbac@megatrend.edu.rs (P. Štrbac), gvm@mi.sanu.ac.rs, gvm@sbb.rs (G.V. Milovanović).

0895-7177/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.mcm.2013.06.001

Author's personal copy

P. Štrbac, G.V. Milovanović / Mathematical and Computer Modelling 58 (2013) 1548–1562 1549

Arithmetic coding can be easily used in conjunction with sophisticated probability models. The disadvantage of arithmetic
coding is its relatively high computational complexity.

In this paper, we consider adaptive and static data models of arithmetic coding. In the work we make an Upgraded Petri
nets model, conduct a simulation, and after software implementation of the model we finally conduct analysis of several
data models of adaptive and static arithmetic coding over the standard set of files.

2. Upgraded Petri nets

In this section, we present Upgraded Petri nets [1,3] that we developed in order to enable use of Petri nets for easy mod-
eling of hardware, as well as to provide suitable modeling at register level. Software suite PeM supports: graphic modeling
of the Upgraded Petri net, execution of the Upgraded Petri net and reachability tree generation.

2.1. An upgraded Petri net formal theory

Let N0 be the set of non-negative integers, and P and T be disjoint finite nonempty sets of places pi, i = 1, . . . , n, and
transitions tj, j = 1, . . . ,m, respectively, i.e.,

P = {p1, p2, . . . , pn}, T = {t1, t2, . . . , tm}, n,m > 0.
A formal theory of Upgraded Petri nets is based on functions as introduced in [1]. An Upgraded Petri net is a 9-tuple

C = (P, T , F , B, µ, θ, TF , TFL, PAF),

where
F : T × P → N0 – Input Function,

B : T × P → N0 – Output Function,

µ : P → N0 – Marking Function,

θ : T × N0 → [0, 1] – Timing Function,

TF : T → A – Transition Function,

TFL : T → N0 – Transition Firing Level,
PAF : P → (x, y) – Place Attributes Function.

The input function assigns a non-negative number to an ordered pair (ti, pj) ∈ T × P . The assigned non-negative integer
defines how many times the place pj is an input with respect to the transition ti.

The set of places which are input with respect to the transition tj is presented by ∗tj = {pi ∈ P : F(tj, pi) > 0}. For a
presentation of the place pi ∈

∗tj which has the standard input with respect to the tj, we use the notation ∗tSj , and F S(tj, pi)
we use for such an input function. For places pi ∈

∗tj with inhibitor input with respect to the tj transition, the notation ∗t Ij
will be used and F I(tj, pi) for the input function.

The output function maps an ordered pair (ti, pj) ∈ T × P to the set of non-negative integers. The assigned non-negative
integer shows how many times the place pi is an output with respect to the ti transition. A set of places which are output
with respect to the tj transition is presented as follows

tj∗ = {pi ∈ P : B(tj, pi) > 0}.
The marking function assigns a non-negative integer to the pi place. The marking function can be defined as n-dimensional
vector (marking): µ = (µ1, µ2, . . . , µn), where n = |P|. Instead of µi it can be used the notation µ(pi).

The timing function θ assigns the probability λij ∈ [0, 1] to an ordered pair (ti, j) ∈ T × N0, i.e., λij = θ(ti, j).
The transition function gives an operation αj ∈ A to the tj transition. Here, A denotes the set of operations which can be

assigned to the transition.
The firing level function of the transition gives a non-negative integer to the transition tj. If this number does not equal

zero, it shows the number of pi ∈
∗tj places takes part in the transition firing, and if this number equals zero, then all the

places pi ∈
∗tj affect the tj transition firing.

The place attributes function assigns an ordered pair (x, y) to the place pi. The x component is a real number, called the
x attribute, and y is a non-negative integer called the y attribute (i.e., x ∈ R, y ∈ N0). Over the x attribute belonging to the
pi ∈

∗tj places, the αj operation assigned to the tj transition executes, where the order of operands in the operation αj is
defined by the y attributes which belong to the pi place in accordance with the TFL function taking part in the transition
firing.

An Operation Assigned to a Transition — the function TF assigns to a transition tj one operation. This operation can be an
arithmetical operation, logical operation or a file operation [1]. Inside the suite PeM, a file which is a target of file operation
function has an *.mem extension. This *.mem file is a text file and it is used for the simulation of computer system
memory. One line inside the *.mem file refers to the context of one memory location of a computer system that we are
modeling.

An arithmetical operation αj ∈ A, which is assigned to the transition tj ∈ T , uses attributes x which belong to the places
pi ∈

∗tj as operands of that operation. A result of an arithmetical operation αj ∈ A will be placed into the attributes xwhich

Author's personal copy

1550 P. Štrbac, G.V. Milovanović / Mathematical and Computer Modelling 58 (2013) 1548–1562

belong to the places pi ∈ t∗j . The order of an operand (i.e. order of attributes x which belong to the places pi ∈
∗tj) in an

arithmetical operation αj ∈ A is defined by attributes y which belong to the places pi ∈
∗tj.

A logical operation αj ∈ A which is assigned to the transition tj ∈ T , uses attributes x which belong to the places pi ∈
∗tj

as operands of that operation. If a result of the logical operation αj ∈ A is logical false the transition tj ∈ T is disabled and
will stay in that state until the result of this logical operation αj ∈ A becomes logical true. The order of an operand (i.e., order
of attributes x which belong to the places pi ∈

∗tj) in a logical operation αj ∈ A is defined by attributes y which belong to
the places pi ∈

∗tj.
A file operation αj ∈ A which is assigned to the transition tj ∈ T performs over the context of a file whose extension is

equal to *.mem . A File Operation αj ∈ A addresses the context of a *.mem by using attribute xwhich belongs to the places
pi ∈

∗tj. A result of this operation αj ∈ A changes the value of attributes xwhich belong to the places pi ∈ tj∗. The result also
can change attributes ywhich belong to the places pi ∈ tj∗, or can change the context of addressed line into the *.mem file.

According to a UPN Graph representationwe can say the following. The Upgraded Petri net can be represented via formal
mathematical apparatus or graphically. Namely, a UPN is represented by a bipartitemultigraph [1] in the sameway as a Petri
net.

2.2. An upgraded Petri net executing

An Upgraded Petri net executing represents a change of system state from the current state to the next state. This
migration from one state to the other one is triggered by firing of the transitions. By UPN executing: the marking vector
can be changed, the contents of *.mem file can be changed, and attributes which belong to the places pi ∈ tj∗ of enabled
transition tj can be changed.

A transition tj ∈ T can be enabled at the moment k ∈ N0 in an Upgraded Petri net [1]: C = (P, T , F , B, µ, θ, TF , TFL, PAF)
if the next three conditions are satisfied:

1° If the timing function λjk = θ(tj, k) > 0;
2° If TFL(tj) > 0 then (#pi(S)) + (#pi(I)) = TFL(tj), and if TFL(tj) = 0 then (#pi(S)) + (#pi(I)) = |

∗tj|, where #pi(S) is
a number of places pi ∈

∗tSj such that µ(pi) ≥ F S(tj, pi), and #pi(I) represents a number of places pi ∈
∗t Ij for which

µ(pi) = 0;
3° If a logical operation αj ∈ A is assigned to the transition tj, then the result of the operation αj must be equal to true.

A marking vector µ will be changed to a new marking vector µ′ by firing of transitions tj, where

µ′(pi) =


µ(pi) − F(tj, pi) + B(tj, pi), if pi ∈

∗tSj ,
µ(pi) + B(tj, pi), if pi ∈

∗t Ij .

By firing of the transition tj an arithmetic operation is executed or a file operation is executed with respect to the operation
that is assigned to tj by function TF(tj).

A logical operation which is assigned to the transition tj by function TF(tj) will be executed if the conditions 1° and 2°
related to tj are equal to true.

A conflict in an Upgraded Petri net influences UPN executing. A conflict in a UPN is the same as the conflict in a Petri net.
A UPN reachability tree graphically represents all possible marking vectors which can occur during a UPN execution for a

given initial marking. The reachability tree shows all states the model can reach from the initial state. The UPN reachability
tree is the same as the Petri Net reachability tree.

A UPN executing refers to a concurrent firing of the enabled transitions. A UPN execution generates a UPN flammability
tree. This tree is a tree where a node of the tree is a set of the transitions which are enabled at the same time. If there is the
same node as the current node in the flammability tree then generating of the flammability tree will be stopped. There are
four types of nodes in a flammability tree: root node, double node, dead node, and inner node.

3. Arithmetic coding

In this section we show some definitions of the basic terms used in the paper and explain how arithmetic coding based
on fixed arithmetic works by using integer numbers [8–11].We use an arithmetic coder in which the range allocated to each
symbol is a single contiguous interval and no permutations of ranges are applied [10,12]. There are several approaches to
the symbol sets and multiple tables in arithmetic coding [13,14] so we use one symbol set and one coding table.

3.1. Definitions of some basic terms

The alphabet AL is a finite, nonempty ordered set. We use mark AL because mark A denotes a set of operations which
can be assigned to the transition in Upgraded Petri nets. The elements {a1, . . . , an} of an alphabet are called symbols. These
elements are distinctly ordered. The cardinality of an alphabet AL will be referred to as |AL|.

We consider a sequence S = s1, s2, . . . of symbols si from the alphabet AL, where |S| < ∞.
Let S = (s1, . . . , sm) be a finite-length sequence with |S| = m over AL = {a1, . . . , an}.

Author's personal copy

P. Štrbac, G.V. Milovanović / Mathematical and Computer Modelling 58 (2013) 1548–1562 1551

Let |S(ai)| refer to the frequency of ai in S.
The probability of ai in S is

P(ai) =
|S(ai)|

m
.

The lower bound Low is the sum of frequencies of all lower symbols than the current symbol. The lower symbols are the
symbols which have an index less than the current symbol.

Low =

s−1
i=1

Fci.

The mark s denotes an index of the current symbol while the mark Fci is the frequency count of the symbol indexed by i.
The upper bound High is a sum of the lower bound and the frequency of the current symbol,

High =

s
i=1

Fci = Low + Fcs.

Total frequencies

Tf =

m
i=1

Fci

is a sum of all frequencies of the symbols in S.

3.2. Arithmetic coding algorithm

We introduce some basic terms used in arithmetic coding data compression and decompression that will be used in the
paper. In this paper we treat this data as binary input stream. A group of such input bits is referred to as a symbol. There are
two types of symbol that we consider in this work: byte (8 bits) and nibble (4 bits).

The arithmetic coding algorithm works sequentially over the input data stream. We use fixed precision arithmetic, in-
terval expansion and bit-stuffing [4,15–19]. The main idea is to output each leading bit as soon as it is known, and then to
double the length of the current interval so that it reflects only the unknown part of the final interval. Witten, Neal, and
Cleary [4] add a mechanism for preventing the current interval from shrinking too much when the endpoints are close to
the half of the start interval but straddle this half. In that case we do not yet know the next output bit, but we do know that
whatever it is, the following bit will have the opposite value; we merely keep track of that fact, and expand the current in-
terval symmetrically by about half of the start interval. This procedure may be repeated any number of times, so the current
interval size is always longer than the quarter of the start interval.

In this paper the start interval, i.e., [Low,High) is initialized to [0, 231
− 1). For each symbol from the input stream two

steps will be performed. The first one is subdividing of the current interval into subintervals, one for each symbol from the
alphabet. These subintervals are proportional to the frequency of the symbol. The second step is selecting the subinterval
regarding the current symbol from the input stream and setting this interval as the new current interval. Finally we will
save leading bits to distinguish the new current interval from further intervals which will be result of interval expansion.
The new subinterval is calculated as follows

raster =
High − Low + 1

Tf
, (3.1)

High = Low + raster ·


s

i=1

Fci


− 1, (3.2)

Low = Low + raster ·

s−1
i=1

Fci, (3.3)

where raster is a step size of the old subinterval [Low,High) divided by the total count of frequencies Tf .
When we encode more and more symbols, the Low and the High converge more and more and in one moment these two

values coincide and further encodingwill be impossible. To avoid this problem an interval expansion is used. This expansion
takes place after the selection of the subinterval. There are four cases of interval expansion process.

The first case is where the subinterval lies entirely within the first half of the start interval. In this case we save a zero bit
and any 1s left over from the previous symbol to the output stream, then we will double subinterval [Low,High) toward the
right. This is e1 scaling.

The second case is where the subinterval lies entirely within the second half of the start interval. In this case we save 1
and any 0s left over from previous symbol to the output stream, thenwewill double subinterval [Low,High) toward the left.
This is e2 scaling.

Author's personal copy

1552 P. Štrbac, G.V. Milovanović / Mathematical and Computer Modelling 58 (2013) 1548–1562

The third case is where the subinterval lies entirely within the first quarter and the third quarter of the start interval. In
this case we keep track of this fact for future output, then we will expand subinterval [Low,High) in both directions away
from the midpoint of the start interval. This is e3 scaling.

The fourth case includes all other situations and no expansionwill happen. The expansion process repeats until the fourth
case happens.

In this paper all symbols from S have the initial frequency set to 1. Also we use an ESC symbol to represent the end of
coding, so at the start of coding |S| = 256 + 1 if a type of symbol is byte or |S| = 16 + 1 if a type of symbol is nibble.

Whenwe decode an input stream, themain goal is to determine the symbol and update the bounds accordingly. The first
task is to determine the interval that contains the symbol, then to calculate the code value of the symbol. We use amark B to
denote a buffer which contains an encoded stream. The procedure of decoding is to calculate formula (3.1), then to calculate

value =
B − Low
raster

,

then an encoded symbol will be determined by comparing the value to the cumulative frequency count intervals. When the
proper interval is found the boundaries will be updated according to the formulas (3.2) and (3.3).

4. Upgraded Petri net arithmetic coding models

In this section we explain Upgrade Petri net arithmetic coding models which we developed and used in this paper. The
data model used in arithmetic coding can be adaptive or static. In this paper we use both adaptive and static data models.

In this section we will use some abbreviations in our UPN models as follows: B refers to a buffer where the input data
stream will be loaded, Hf refers to a half of the start interval, FQ refers to a first quarter of the start interval, SC refers to an
e3 scaling counter, L refers to Low,H refers to High, ESC refers to the symbol which ends arithmetic coding, and LB refers to
a bit which is loaded from the input stream.

4.1. Adaptive data model

Adaptive arithmetic coding is a one-pass procedure where the coder builds up the statistical model while coding the
input data.

Fig. 1 (left) shows a UPNmodel of arithmetic coding compression and decompression at high representation level. Initial
marking µ(p1) = µ(p2) = 1 determines a source file which will be compressed or decompressed and the compression or
decompression mode.

The model refers to two modes of compression and decompression: an adaptive and static one. Fig. 1 (left) shows that
an adaptive encode is selected, i.e., the transition t1 is enabled. This UPN model has four possible sequences of transition
firing. The first sequence of transition firing is {t1} − {t5} − {t7} and refers to an adaptive encode. The second sequence is
{t2}−{t6}−{t7} and refers to a static encode. Transition t7 refers to the final encode for both adaptive and static encodes. An
event final encodewill be explained later. The third sequence is {t3}− {t8}− {t9} and refers to an adaptive decode, while the
fourth sequence {t4} − {t8} − {t10} refers to a static decode. Transition t8 refers to a fill buffer before decode process started.

Fig. 1 (right) shows a UPN model of adaptive arithmetic coding compression at an input stream encode level of repre-
sentation. Initial marking µ(p1) = 1 and two enabled transitions t1 and t6 refer to two possible cases.

The first case is that there is a symbol in the input stream which we want to encode. A sequence of firing transitions
{t1} − {t2} − {t3} − {t4} occurs. This sequence refers to symbol loaded, then, update table of frequencies, then encode the
symbol, then increment a total of encoded symbols and finally check again if there is there another symbol in input steam.

The second case is that there are no more symbols in the input stream. The sequence of firing transitions {t6} − {t5}
encodes ESC symbol and checks Low value.

If this value is less than the first quarter of the start interval, a sequence {t7} − {t11} − {t9} − {t12} occurs. This sequence
saves bit 0, then saves bit 1 SC + 1 times, then saves bit 0 and finally by firing of the transition t12 the output stream is
populated by zeros up to the next byte.

On the other side, if the Low value is greater than or equal to the first quarter of the coding interval a sequence {t8}−{t10}
occurs. This sequence saves bit 1. At last, transition t12 is enabled. By firing of this transition the output stream is populated
by zeros up to the next byte.

All savings we mentioned in the sections refer to the output stream.
Fig. 2 (left) shows a UPN model of adaptive arithmetic coding compression at a symbol encode level of representation.

Initial marking µ(p1) = 1 determines that a sequence of transition firing {t1} − {t2} − {t3} occurs. This sequence calculates
the Low value (denoted as an L mark on the figure), then calculated the High value (denoted as an Hmark on the figure) and
checks conditions for e1 scaling, e2 scaling and for e3 scaling update.

The condition for e1 scaling is that High is less than half of the coding interval value. The condition for e2 scaling is that
Low is greater than or equal to a half of the coding interval. The condition for e3 scaling update is that Low is greater than or
equal to the first quarter of the coding interval and that High is less than the third quarter of the interval value.

Author's personal copy

P. Štrbac, G.V. Milovanović / Mathematical and Computer Modelling 58 (2013) 1548–1562 1553

Fig. 1. A UPN model of arithmetic coding compression and decompression (left); a UPN model of adaptive arithmetic coding compression of an input
stream of symbols (right).

A sequence {t4} − {t7} − {t9} − {t11} does e1 scaling: saves bit 0, then recalculates values:

Low = 2 · Low, High = 2 · High + 1, (4.4)

and then saves bit 1 e3 scaling counter (SC) times.
A sequence {t5} − {t8} − {t10} − {t12} does e2 scaling: saves bit 1, then concurrently recalculates values:

Low = 2 · (Low − Hf), High = 2 · (High − Hf) + 1, (4.5)

then saves bit 0 e3 scaling counter (SC) times.
After any one of the last two sequences, a set of transitions {t13, t18} is enabled. At this moment only one of these transi-

tions will be activated because of µ(p11) = 1 and according to the conditions 1°–3°.
Firing of transition t13 changes marking µ(p12) = 1 which represents the end of a symbol encoding. Firing of the

transition t18 starts a new iteration of checking conditions for e1, e2 or e3 scaling. Firing of the transition t4 shows that
the e1 scaling condition is true and e1 scaling starts again, while firing of transition t5 shows that the e2 scaling condition is
true and e2 scaling starts again. Firing of transition t6 means that the e3 scaling update condition is true and activates an e3
scaling update. This model shows that after the e1 scaling loop or e2 scaling loop follows checking of the e3 scaling update
condition.

The update e3 scaling sequence is {t6} − {t14, t15, t16}. This sequence can do three parallel things: increment e3 scaling
counter (SC), and calculate

Low = 2 · (Low − FQ) and High = 2 · (High − FQ) + 1. (4.6)

After this sequence of transition firing, two transitions {t17, t19} are enabled. At this moment only one of these transitions
will be activated because of µ(p14) = 3 and according to the conditions 1°–3°. By firing of the transition t19 the state of the
net goes to the new iteration of e3 scaling update.

The second case is that transition t17 will be activated and this means the end of the symbol encoding.
Fig. 2 (right) shows a UPNmodel of adaptive arithmetic coding decompression at an input stream level of representation.

Author's personal copy

1554 P. Štrbac, G.V. Milovanović / Mathematical and Computer Modelling 58 (2013) 1548–1562

Fig. 2. A UPN model of adaptive arithmetic coding compression which refers to a symbol encode (left); a UPN model of adaptive arithmetic coding
decompression of an input stream (right).

Initialmarkingµ(p1) = 1 determines that a sequence of transition firing {t1}−{t2}−{t3}−{t4} occurs. This sequence fills
the coding buffer from the input stream and calculates raster (we split the number space into a single step), after that the
current value will be calculated and finally the symbol will be determined. At this moment µ(p1) = 1 and two transitions
t5 and t8 are enabled. Only one of these transitions will be activated according to conditions 1°–3°. Now we have two cases.

The first case is a sequence of transitions firing {t5}− {t6}− {t7}− {t9} which saves the symbol, than adapts the decoder,
updates the frequencies, increments the total of saved symbols and finally goes to calculate the raster again. Now the
sequence {t2} − {t3} − {t4} occurs as mentioned earlier, i.e., a new iteration of encoding symbol starts again.

The second case is a firing of transition t8 which represents a decoding of the input stream. This means that the ESC
symbol is decoded from the input stream.

Fig. 3 (left) shows a UPN model of adaptive arithmetic coding decompression which refers to an update of the decoder.
Initial marking µ(p1) = 1 determines that a sequence of transition firing {t1} − {t2} occurs. This sequence calculates values
in the order of High then Low according to formulas (3.2), (3.3).

At this moment µ(p3) = 1 and this state of model checks conditions for: e1 scaling, e2 scaling and for e3 scaling. The
condition for e1 scaling is that High is less than half of the coding interval value. The condition for e2 scaling is that Low is
greater than or equal to a half of the coding interval. The condition for e3 scaling update is that Low is greater than or equal
to the first quarter of the coding interval and that High is less than the third quarter of the interval value.

The first case is a sequence of transition firing {t3} − {t6} − {t7}. This sequence refers to e1 scaling, and it calculates
concurrently values Low and High according to formulas (4.4), then updates buffer B:

B = 2 · B + LB,
then sets e3 scaling counter (SC) to zero, and finally goes into the new iteration cycle by setting µ(p3) = 1.

Author's personal copy

P. Štrbac, G.V. Milovanović / Mathematical and Computer Modelling 58 (2013) 1548–1562 1555

Fig. 3. AUPNmodel of adaptive arithmetic coding decompressionwhich refers to an update of the decoder (left); a UPNmodel of two-pass static arithmetic
coding compression (right).

The second case is a sequence of transition firing {t4} − {t8, t9, t10} − {t11} − {t7}. This sequence concurrently calculates
three values: Low and High according to formulas (4.5) and buffer

B = 2 · (B − Hf) + LB.

Before firing of the transition t11 marks µ(p7) = 3 and µ(p5) = 0 while the marking after firing of the transition t11 will
become µ(p7) = 0 and µ(p5) = 1. It saves a number of tokens in the net. At last, the sequence sets e3 scaling counter (SC)
to zero. After this, by setting µ(p3) = 1 the new iteration cycle of conditions checking starts.

The third case is a sequence of transition firing {t5} − {t12} − {t13, t14, t15} − {t16}. The sequence increments the counter
of e3 scaling (SC) then concurrently calculates values Low and High according to the formulas (4.6) and buffer

B = 2 · (B − FQ) + LB.

After this firing of the transition, t16 saves a number of tokens in this net as in the previous case and sets a new state of the
model which means the end of the update decoder.

4.2. Static data model

Static arithmetic coding uses two passes or fixed statistical models and performs only one-pass over the data. In the two-
pass case the first pass makes a statistical model. The second pass compresses the data. This reduces the total compression
coding efficiency because this statistical model has to be transmitted to the decoder.

Fig. 3 (right) shows a UPN model of two-pass static arithmetic compression at an input stream level of representation.
Initial marking µ(p1) = 1 determines that transition t1 is enabled and will be fired. This firing calculates frequencies of the
symbol over the input stream. The state of the UPNmodel isµ(p2) = 1 and there are two enabled transitions t2 and t6. Only
one of these transitions will be fired according to the conditions 1°–3°.

The first case is that the transition t2 will be fired. Thismeans thatUPNmodel rescales the frequencies. After this transition
t3 is enabled and will be fired and now is µ(p4) = 1.

The second case is that transition t6 will be fired, and this firing also sets µ(p4) = 1. The second case avoids frequency
rescaling.

After both of these cases a sequence of transition firing {t7} − {t4} − {t5} occurs. This sequence saves frequency table to
the output stream, then prepares second pass of encoding (update pointers to the input steam), then decode input stream
by using the frequency table.

Author's personal copy

1556 P. Štrbac, G.V. Milovanović / Mathematical and Computer Modelling 58 (2013) 1548–1562

Fig. 4. An UPN model of arithmetic coding decompression of a static encoded input stream.

Fig. 4 shows a UPN model of arithmetic coding decompression of a static encoded input stream. This very simple model
represents an initial marking µ(p1) = 1 which makes a sequence of transition firing {t1} − {t2}. This sequence loads the
frequency table from the beginning of the input stream by using data, and then decodes the rest of the data which represent
encoded symbols.

4.3. A UPN model execution

By executing the UPN model for given initial marking shown in Fig. 1 (left) the next sequence of transitions firing will
happen {t1} − {t5} − {t7} and an appropriate sequence of marking vectors is:

(1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (initial marking),
(1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) = (dead node).

A dead node presents a state when there are no enabled transitions in the net.
Other possible cases are determined by value of p2.x (meaning attribute x of the place p2) as follows:
p2.x = 2 determines the sequences {t2} − {t6} − {t7} and

(1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (initial marking),
(1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) = (dead node).

p2.x = 3 determines the sequences {t3} − {t8} − {t9} and

(1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (initial marking),
(1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) = (dead node).

p2.x = 4 determines the sequences {t4} − {t8} − {t10} and

(1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (initial marking),
(1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) = (dead node).

By executing the UPN model for a given initial marking shown in Fig. 1 (right) the next sequences of transitions firing will
happen:
Sequence 2.1: {t1} − {t2} − {t3} − {t4} and appropriate sequence of marking vectors as follows:

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (initial marking),

Author's personal copy

P. Štrbac, G.V. Milovanović / Mathematical and Computer Modelling 58 (2013) 1548–1562 1557

(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),
(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0),
(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0),
(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (double node, init. marking).

Sequence 2.2: {t6} − {t5} − {t7} − {t11} − {t9} − {t12} and appropriate sequence of marking vectors as follows:

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (initial marking),
(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1),
(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0) = (dead node).

Sequence 2.3: {t6} − {t5} − {t8} − {t10} − {t12} and appropriate sequence of marking vectors as follows:

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (initial marking),
(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0),
(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0) = (dead node).

By executing the UPN model for a given initial marking shown in Fig. 2 (left), the next sequences (mark this as 3.1) of
transitions firing will happen {t1} − {t2} − {t3} and the appropriate sequence of marking vectors is:

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (initial marking),
(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

There are several sequences that will be possible from this net state as follows (mark them as 3.2.1, 3.2.2 and 3.2.3,
respectively):
Sequence 3.2.1: {t4} − {t7} − {t9} − {t11} and appropriate sequence of marking vectors as follows:

(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (will be double node),
(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) = (double node).

Sequence 3.2.2: {t5} − {t8} − {t10} − {t12} and an appropriate sequence of marking vectors as follows:

(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (will be double node),
(0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) = (double node).

From this double node which appears also at the end of the sequence 3.2.1, there are two possible sequences.
The first one is {t18} with its appropriate sequence of marking vectors as follows:

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) = (double node),
(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (double node).

The second one is {t13} and an appropriate sequence of marking vectors as follows:

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) = (double node),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0) = (dead node).

Author's personal copy

1558 P. Štrbac, G.V. Milovanović / Mathematical and Computer Modelling 58 (2013) 1548–1562

Sequence 3.2.3 includes two cases. The first one is a sequence {t6} − {t16} − {t19} and an appropriate sequence of marking
vectors as follows:

(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (double node),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0) = (will be double node),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0) = (double node).

These marking vectors include the cyclic sequence {t16} − {t19}.
The second sequence is a sequence {t6} − {t16} − {t17} and an appropriate sequence of marking vectors as follows:

(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (double node),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0) = (double node),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) = (double node),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0) = (dead node).

By executing the UPN model for a given initial marking shown in Fig. 2 (right), the two sequences of transitions firing will
happen.

The first one {t1} − {t2} − {t3} − {t4} − {t8} and an appropriate sequence of marking vectors is:

(1, 0, 0, 0, 0, 0, 0, 0, 0) = (initial marking),
(0, 1, 0, 0, 0, 0, 0, 0, 0) = (will be double node),
(0, 0, 1, 0, 0, 0, 0, 0, 0),
(0, 0, 0, 1, 0, 0, 0, 0, 0),
(0, 0, 0, 0, 1, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 0, 1, 0) = (dead node).

The second one {t1} − {t2} − {t3} − {t4} − {t5} − {t6} − {t7} − {t9} and appropriate sequence of marking vectors is:

(1, 0, 0, 0, 0, 0, 0, 0, 0) = (initial marking),
(0, 1, 0, 0, 0, 0, 0, 0, 0) = (will be double node),
(0, 0, 1, 0, 0, 0, 0, 0, 0),
(0, 0, 0, 1, 0, 0, 0, 0, 0),
(0, 0, 0, 0, 1, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 1, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 1, 0, 0),
(0, 0, 0, 0, 0, 0, 0, 0, 1),
(0, 1, 0, 0, 0, 0, 0, 0, 0) = (double node).

By executing the UPN model for a given initial marking shown in Fig. 3 (left) the sequence of transitions firing {t1} − {t2}
will happen and an appropriate sequence of marking vectors is:

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) = (initial marking),
(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0),
(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0) = (will be double node).

There are three sequences possible from this state. The first one is {t3}− {t6}− {t7} and an appropriate sequence of marking
vectors is:

(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0) = (will be double node),
(0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0),
(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0) = (will be double node),
(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0) = (double node).

The second sequence is {t4} − {t8, t9, t10} − {t11} and an appropriate sequence of marking vectors is:

(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0) = (double node),
(0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0),
(0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0) = (double node).

Author's personal copy

P. Štrbac, G.V. Milovanović / Mathematical and Computer Modelling 58 (2013) 1548–1562 1559

The third sequence is {t5} − {t12} − {t13, t14, t15} − {t16} and an appropriate sequence of marking vectors is:

(0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0) = (double node),
(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0),
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) = (dead node).

By executing theUPNmodel for given initialmarking shown Fig. 3 (right) the two sequences of transitions firingwill happen.
The first sequence is {t1} − {t2} − {t3} − {t7} − {t4} − {t5} and an appropriate sequence of marking vectors is:

(1, 0, 0, 0, 0, 0, 0) = (initial marking),
(0, 1, 0, 0, 0, 0, 0),
(0, 0, 1, 0, 0, 0, 0),
(0, 0, 0, 1, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 1),
(0, 0, 0, 0, 1, 0, 0),
(0, 0, 0, 0, 0, 1, 0) = (dead node).

The second sequence is {t1} − {t6} − {t7} − {t4} − {t5} and an appropriate sequence of marking vectors is:

(1, 0, 0, 0, 0, 0, 0) = (initial marking),
(0, 1, 0, 0, 0, 0, 0),
(0, 0, 0, 1, 0, 0, 0),
(0, 0, 0, 0, 0, 0, 1),
(0, 0, 0, 0, 1, 0, 0),
(0, 0, 0, 0, 0, 1, 0) = (dead node).

By executing the UPN model for a given initial marking shown in Fig. 4 a trivial sequence of transitions firing will happen:
{t1} − {t2} and an appropriate sequence of marking vectors is: (1, 0, 0, 0, 0, 0, 0) = (initial marking); (0, 1, 0, 0, 0, 0, 0);
(0, 0, 1, 0, 0, 0, 0) = (dead node).

5. Experimental results

According to all UPNmodels shown in this paper, an application is created. The application compresses and decompresses
several sets of test files [20] by using arithmetic coding with respect to the input parameters. These input parameters are:
symbol type (byte or nibble), adaptive or static data model and frequency scaling (scaled or non-scaled). If we use the
frequency scaled option there are two cases: frequency table divided by 2, and proportional scaling frequency table from
min frequency equals 1 to max frequency equals 255. In all possible cases of our arithmetic coding, the initial (minimum)
frequency for all symbols is 1.

In this sectionwe use some abbreviations for various types of arithmetic codingwhich depend on these input parameters.
These abbreviations are as follows:

• Type_10 represents that an input symbol is a byte, we use adaptive arithmetic coding with non-scaled frequency table;
• Type_11 represents that an input symbol is a byte, we use adaptive arithmetic codingwith divby2-scaled frequency table;
• Type_12 represents that an input symbol is a byte, we use adaptive arithmetic coding with max255-scaled frequency

table;
• Type_20 represents that an input symbol is a byte, we use static arithmetic coding with non-scaled frequency table;
• Type_21 represents that an input symbol is a byte, we use static arithmetic coding with divby2-scaled frequency table;
• Type_22 represents that an input symbol is a byte, we use static arithmetic coding with max255-scaled frequency table;
• Type_30 represents that an input symbol is a nibble, we use adaptive arithmetic coding with non-scaled frequency table;
• Type_31 represents that an input symbol is a nibble, we use adaptive arithmetic coding with divby2-scaled frequency

table;
• Type_32 represents that an input symbol is a nibble, we use adaptive arithmetic coding with max255-scaled frequency

table;
• Type_40 represents that an input symbol is a nibble, we use static arithmetic coding with non-scaled frequency table;
• Type_41 represents that an input symbol is a nibble, we use static arithmetic coding with divby2-scaled frequency table;
• Type_42 represents that an input symbol is a nibble, we use static arithmetic codingwithmax255-scaled frequency table;

Author's personal copy

1560 P. Štrbac, G.V. Milovanović / Mathematical and Computer Modelling 58 (2013) 1548–1562

Table 5.1
File sizes (bytes) in arithmetic coding compression Type_10, Type_11, Type_12; Type_20, Type_21, Type_22 over texture files.

Name of tiff file & its size Type_10 Type_11 Type_12 Type_20 Type_21 Type_22

texmos1.p512 262,278 259,557 259,591 259,597 260,418 260,415 260,414
texmos2.p512 262,278 254,538 254,584 254,589 255,394 255,392 255,404
texmos2.s512 262,278 98,886 99,177 105,951 99,602 99,641 105,227
texmos3.p512 262,278 255,917 255,952 255,950 256,775 256,772 256,777
texmos3.s512 262,278 98,358 98,644 108,202 99,073 99,113 105,874
texmos3b.p512 262,278 255,924 255,960 255,958 256,782 256,779 256,784
1.3.01 1,048,710 975,783 975,809 975,924 976,626 976,582 976,810
1.3.02 1,048,710 965,618 965,666 965,958 966,459 966,416 966,699
1.3.03 1,048,710 956,633 956,712 957,079 957,466 957,425 957,751
1.3.04 1,048,710 953,032 953,057 953,285 953,882 953,836 953,935
1.3.05 1,048,710 999,535 999,545 999,533 1,000,392 1,000,346 1,000,354

Table 5.2
File sizes (bytes) in arithmetic coding compression Type_30, Type_31, Type_32; Type_40, Type_41, Type_42 over texture files.

Name of tiff file & its size Type_30 Type_31 Type_32 Type_40 Type_41 Type_42

texmos1.p512 262,278 262,259 262,254 262,272 262,318 262,307 262,319
texmos2.p512 262,278 262,144 262,139 262,158 262,203 262,192 262,205
texmos2.s512 262,278 173,773 173,787 175,391 173,827 173,815 175,059
texmos3.p512 262,278 262,153 262,150 262,169 262,213 262,202 262,214
texmos3.s512 262,278 98,358 98,644 108,202 172,782 172,771 174,038
texmos3b.p512 262,278 262,156 262,152 262,171 262,215 262,203 262,216
1.3.01 1,048,710 1,020,475 1,020,385 1,020,425 1,020,705 1,020,520 1,020,485
1.3.02 1,048,710 1,014,635 1,014,546 1,014,652 1,014,869 1,014,682 1,014,667
1.3.03 1,048,710 1,012,663 1,012,572 1,012,669 1,012,891 1,012,708 1,012,684
1.3.04 1,048,710 1,007,214 1,007,125 1,007,247 1,007,445 1,007,260 1,007,259
1.3.05 1,048,710 1,030,220 1,030,130 1,030,163 1,030,443 1,030,263 1,030,209

Table 5.3
File sizes (bytes) in arithmetic coding compression Type_10, Type_11, Type_12; Type_20, Type_21, Type_22 over aerial files.

Name of file & its size Type_10 Type_11 Type_12 Type_20 Type_21 Type_22

2.1.02.tiff 786,572 721,177 721,273 721,515 722,008 721,986 722,113
2.1.08.tiff 786,572 628,095 628,248 629,552 628,878 628,866 630,392
2.1.12.tiff 786,572 646,185 646,309 646,309 646,972 646,960 648,214
2.2.03.tiff 3,145,868 2,490,157 2,490,183 2,499,028 2,491,287 2,490,883 2,497,750
2.2.13.tiff 3,145,868 2,892,415 2,892,309 2,892,888 2,893,595 2,893,186 2,893,682
2.2.17.tiff 3,145,868 2,799,801 2,799,744 2,801,846 2,800,959 2,800,548 2,802,071
2.2.24.tiff 3,145,868 2,884,736 2,884,641 2,885,452 2,885,915 2,885,502 2,886,077
3.2.25.tiff 1,048,710 883,060 883,204 884,926 883,866 883,830 885,451

The main goal in this experiment is to verify UPN models transformed into the real application and to explore our 12
types of arithmetic coding compression over the used test files [20].

The first two tables (Tables 5.1 and 5.2) show experimental results which refer to the arithmetic coding compression of
some test texture files [20]. The compressed files shown in Table 5.1 (second part) include an appropriate frequency table
which is 1024 bytes long because of the byte input symbol. The compressed files shown in Table 5.2 (second part) include
an appropriate frequency table which is 64 bytes long because of the nibble input symbol.

The next two tables (Tables 5.3 and 5.4) show experimental results refer to arithmetic coding compression of some test
aerial files [20]. The compressed files shown in Table 5.3 (second part) include an appropriate frequency table which is 1024
bytes long (byte input symbol). The compressed files shown in Table 5.4 (second part) include an appropriate frequency
table which is 64 bytes long (nibble input symbol).

Finally, the last two tables (Tables 5.5 and 5.6) show experimental results which refer to the arithmetic coding
compression of some test misc files [20]. The compressed files shown in Table 5.5 (second part) include an appropriate
frequency table which is 1024 bytes long (byte input symbol). The compressed files shown in Table 5.6 (second part) include
an appropriate frequency table which is 64 bytes long (nibble input symbol).

According to the results of arithmetic compression shown in the tables, for our set of test files we can choose Type_10
(an input symbol is a byte, we use an adaptive model with a non-scaled frequency table) as a suitable method in our set of
12 types of arithmetic compression.

At last we decompressed all our compressed files to test our application and the UPN models which refer to arithmetic
decompression.

Author's personal copy

P. Štrbac, G.V. Milovanović / Mathematical and Computer Modelling 58 (2013) 1548–1562 1561

Table 5.4
File sizes (bytes) in arithmetic coding compression Type_30, Type_31, Type_32; Type_40, Type_41, Type_42 over aerial files.

Name of file & its size Type_30 Type_31 Type_32 Type_40 Type_41 Type_42

2.1.02.tiff 786,572 759,655 759,606 759,707 759,805 759,701 759,716
2.1.08.tiff 786,572 714,532 714,482 714,672 714,681 714,578 714,730
2.1.12.tiff 786,572 725,919 725,870 726,020 726,071 725,965 726,084
2.2.03.tiff 3,145,868 2,860,031 2,859,201 2,859,593 2,861,763 2,860,071 2,859,441
2.2.13.tiff 3,145,868 3,047,532 3,046,704 3,046,353 3,049,369 3,047,596 3,046,421
2.2.17.tiff 3,145,868 3,009,587 3,008,758 3,008,537 3,011,281 3,009,626 3,008,494
2.2.24.tiff 3,145,868 3,046,918 3,046,087 3,045,762 3,048,612 3,046,962 3,045,805
3.2.25.tiff 1,048,710 979,211 979,121 979,305 979,442 979,256 979,329

Table 5.5
File sizes (bytes) in arithmetic coding compression Type_10, Type_11, Type_12; Type_20, Type_21, Type_22 over misc files.

Name of file & its size Type_10 Type_11 Type_12 Type_20 Type_21 Type_22

4.2.03.tiff 786,572 763,514 763,561 763,584 764,368 764,342 764,323
5.1.09.tiff 65,670 55,305 55,383 55,335 56,165 56,166 56,175
5.1.14.tiff 65,670 60,504 60,563 60,524 61,377 61,378 61,379
5.3.02.tiff 1,048,710 895,816 895,895 896,269 896,646 896,603 897,291
7.1.07.tiff 262,278 196,833 197,042 197,536 197,615 197,632 198,282
boat.512.tiff 262,278 236,053 236,191 236,425 236,898 236,895 236,936

Table 5.6
File sizes (bytes) in arithmetic coding compression Type_30, Type_31, Type_32; Type_40, Type_41, Type_42 over misc files.

Name of file & its size Type_30 Type_31 Type_32 Type_40 Type_41 Type_42

4.2.03.tiff 786,572 777,736 777,686 777,740 777,886 777,783 777,770
5.1.09.tiff 65,670 60,748 60,750 60,772 60,799 60,799 60,813
5.1.14.tiff 65,670 63,514 63,515 63,525 63,565 63,564 63,572
5.3.02.tiff 1,048,710 980,077 97,998 980,122 980,309 980,122 980,218
7.1.07.tiff 262,278 239,514 239,511 239,593 239,573 239,562 239,615
boat.512.tiff 262,278 248,767 248,764 248,879 248,827 248,815 248,867

6. Conclusion

Upgraded Petri nets are suitable for modeling various types of arithmetic coding at any level. Original software for
modeling and simulations of an Upgraded Petri net, PeM (Petri net Manager), is developed and used for all models
described in this paper. Several UPN models are shown. These models represent arithmetic coding from a general level
of representation up to a register level of representation. By executing given UPN models of an arithmetic coding, the
models pass through many states which are the states of the arithmetic coding algorithm. After careful analysis of the
models we transform these models into the real application. By using this application and PeM we do several cycles of
modeling, simulation and analysis and finally check the suitability of given UPN models. After that we use our twelve types
of arithmetic coding over the set of test images. These types are determined by input parameters: symbol type, adaptive or
static data set and scale frequency table type. Finally, we represent results of all of these types of arithmetic coding over the
sets of some test images (textures, aerial, misc). All models are observed in the experiments by using a created application
over a standard set of files. Experimental results are presented and compared.

Acknowledgment

This research was in part supported by the Serbian Ministry of Education, Science and Technological Development.

References

[1] P.S. Štrbac, An approach to modeling communication protocol by using upgraded Petri nets, Ph.D. Dissertation, Military Academy, Belgrade, Serbia,
2002.

[2] T. Murata, Petri nets: properties, analysis and applications, Proc. IEEE 77 (4) (1989) 541–580.
[3] D. Gašević, V. Devedžić, Teaching Petri nets using P3, IEEE Educ. Tech. Soc. 7 (4) (2004) 153–166.
[4] I.H. Witten, R.M. Neal, J.G. Cleary, Arithmetic coding for data compression, Commun. ACM 30 (1987) 520–540.
[5] A. Moffat, R.M. Neal, I.H. Witten, Arithmetic coding revisited, ACM Trans. Inf. Syst. 16 (1998) 256–294.
[6] M. Grangetto, E. Magli, G. Olmo, Distributed arithmetic coding, IEEE Commun. Lett. 11 (11) (2007) 883–885.
[7] M. Grangetto, E. Magli, G. Olmo, Rate-compatible distributed arithmetic coding, IEEE Commun. Lett. 12 (8) (2008) 575–577.
[8] D.J.C. MacKay, Information Theory, Inference, and Learning Algorithms, Cambridge University Press, 2003.
[9] P.G. Howard, J.S. Witter, Arithmetic coding for data compression, Proc. IEEE 82 (6) (1994) 857–865.

[10] A. Said, Introduction to Arithmetic Coding — Theory and Practice, Imaging Systems Laboratory HP Laboratories, Palo Alto, 2004, HPL-2004-76.
[11] G.G. Langdon Jr., An introduction to arithmetic coding, IBM J. Res. Dev. 28 (2) (1984) 135–149.

Author's personal copy

1562 P. Štrbac, G.V. Milovanović / Mathematical and Computer Modelling 58 (2013) 1548–1562

[12] H. Kim, J. Wen, J.D. Villasenor, Secure arithmetic coding, IEEE Trans. Signal Process. 55 (5) (2007) 2263–2272.
[13] B. Zhu, E. Yang, A.H. Tewfik, Arithmetic codingwith dual symbol sets and its performance analysis, IEEE Trans. Image Process. 8 (12) (1999) 1667–1676.
[14] Rung-Ching Chen, Pei-Yan Pai, Yung-Kuan Chan, Chin-Chen Chang, Lossless image compression based on multiple-tables arithmetic coding, Math.

Probl. Eng. 2009 (2009) 13. http://dx.doi.org/10.1155/2009/128317. Article ID 128317.
[15] R. Pasco, Source coding algorithms for fast data compression, Stanford University, Ph.D. Thesis, 1976.
[16] J.J. Rissanen, Generalized kraft inequality and arithmetic coding, IBM J. Res. Dev. (1976) 198–203.
[17] F. Rubin, Arithmetic stream coding using fixed precision registers, IEEE Trans. Inf. Theory IT-25 (6) (1979) 672–675.
[18] J.J. Rissanen, G.G. Langdon, Arithmetic coding, IBM J. Res. Dev. (1979) 146–162.
[19] M. Guazzo, A general minimum-redundancy source-coding algorithm, IEEE Trans. Inf. Theory IT-26 (1) (1980) 15–25.
[20] The USC-SIPI image database, University of Southern California: http://sipi.usc.edu/database/.

