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Abstract
Using tools from the newly developed theory of regular functions and
polynomials with quaternionic coefficients located on only one side of
the variable, we derive zero-free regions for the related subclass of
regular power series and obtain discs that are not centered at the ori-
gin, containing all the zeros of these polynomials. The results obtained
for this particular subclass of regular functions lead to generaliza-
tions of several results that are known from the relevant literature.
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1 Introduction
A classical study in geometric function theory is to locate the zeros of a poly-
nomial in the plane using various approaches and techniques. This kind of
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study is considered to be very significant and has deeply influenced the devel-
opment of mathematics and its application areas, such as physical systems.
This study, in addition to having multiple applications, has inspired much more
research, both theoretically and practically. The first result in this direction is
the well-known Cauchy method [2], giving the upper bound for the moduli of
the zeros of a polynomial, with complex coefficients, in the complex plane, but
this bound can be very crude. Therefore, in order to attain better and sharp
zero bounds, it is desirable to put some restrictions on the coefficients of the
polynomial. In this connection, we state the following elegant result concern-
ing the distribution of zeros of a polynomial when its coefficients are restricted
is known in the literature as Eneström-Kakeya theorem.

Theorem 1.1 ([15]) If T (z) =
∑n
ν=0 aνz

ν (z ∈ C) is a polynomial of degree n with
real coefficients and satisfying

an ≥ an−1 ≥ · · · ≥ a1 ≥ a0 > 0,

then all the zeros of T (z) lie in |z| ≤ 1.

We refer the reader to the comprehensive books of Marden [15] and Milo-
vanović et al. [19] for an exhaustive survey of extensions and refinements of
this well-known result. We get the following equivalent form of Theorem 1.1
by applying it to the polynomial znT (1/z).

Theorem 1.2 If T (z) =
∑n
ν=0 aνz

ν (z ∈ C) is a polynomial of degree n with real
coefficients and satisfying

a0 ≥ a1 ≥ · · · ≥ an−1 ≥ an > 0,

then T (z) does not vanish in |z| ≤ 1.

The extension of Theorem 1.2 to a class of related analytic functions was
established by Aziz and Mohammad [1] in the form of the following result.

Theorem 1.3 Let f(z) =
∑∞
ν=0 aνz

ν 6≡ 0 be analytic in |z| ≤ t, t > 0. If

aν > 0 and aν−1 − taν ≥ 0, ν = 1, 2, 3, . . . ,

then f(z) does not vanish in |z| < t.

Numerous applications and extensions of the above results form an essen-
tial part of the classical content of geometric function theory and are equally
important in modern papers dealing with the regional location of zeros of reg-
ular functions of quaternionic variables. Given the richness of the complex
setting, a natural question is: what kind of results in the quaternionic set-
ting can be obtained? It is then natural to study this class of functions with
emphasis on the distribution of their zeros.
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This paper is organized as follows. Section 2 contains some known concepts
and results useful in the next sections. In section 3, we derive zero-free regions
of a quaternionic power series with coefficients located on only one side of the
variable. Section 4 yields discs that are not centred at the origin and include
all of the zeros of a quaternionic polynomial with coefficients whose real and
imaginary components satisfy appropriate conditions. We end this paper with
a brief conclusion in Section 5.

2 A brief overview of quaternions and
quaternionic functions

The noncommutative skew field H of quaternions consists of elements of the
form q = α+ βi+ γj + δk, α, β, γ, δ ∈ R, with the following properties of the
imaginary units i, j, k,

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

Each element q = α + βi + γj + δk ∈ H is given by the real part Re(q) = α
and the imaginary part Im(q) = βi + γj + δk. The conjugate of q is defined
as q = α − βi − γj − δk, so that the norm of q is given by |q| =

√
qq =√

α2 + β2 + γ2 + δ2. The inverse of an arbitrary non zero element q ∈ H is
given by q−1 = |q|−2q.

Now, we define the ball B(0, r) = {q ∈ H; |q| < r} for r > 0, and then by
B we denote the open unit ball in H centred at the origin, i.e.,

B =
{
q = α+ βi+ γj + δk : α2 + β2 + γ2 + δ2 < 1

}
.

Since the multiplication in H is not commutative, one can consider unilateral
quaternionic polynomials of the form

T (q) =

n∑
ν=0

qνaν

and power series of the form

f(q) =

∞∑
ν=0

qνaν

of the quaternionic variable q on the left and with quaternionic coefficients aν
on the right.

Two quaternionic polynomials of this kind can be multiplied accord-
ing to the convolution product (Cauchy multiplication rule): given T1(q) =
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νaν and T2(q) =
∑m

µ=0 q
µbµ, we define

(T1 ∗ T2)(q) :=
∑

ν=0,1,...,n
µ=0,1,...,m

qν+µaνbµ.

Given two quaternionic power series f(q) =
∑∞

ν=0 q
νaν and g(q) =∑∞

ν=0 q
νbν with radii of convergence greater than R, we define the regular

product of f and g as the series

(f ∗ g)(q) =

∞∑
ν=0

qνcν ,

where cν =
∑ν

k=0 akbν−k for each ν. As observed in ([5], [8]) for each quater-
nionic power series f(q) =

∑∞
ν=0 q

νaν , there exists a ball B(0, R) = {q ∈
H; |q| < R} such that f converges absolutely and uniformly on each compact
subset of B(0, R) and that function f is regular. This theory of quaternions
is by now very well developed in many different directions, and we refer the
reader to [29] for the basic features of quaternionic functions (see also [11] and
[28]).

By using some useful tools from the theory on slice regular functions, Gen-
tili and Stoppato [9] (see also [7]) gave a necessary and sufficient condition for
a regular quaternionic power series to have a zero at a point in the form of the
following result.

Theorem 2.1 Let f(q) =
∑∞
ν=0 q

νaν be a given quaternionic power series with
radius of convergence R, and let p ∈ B(0, R). Then f(p) = 0 if and only if there
exists a quaternionic power series g(q) with radius of convergence R such that

f(q) = (q − p) ∗ g(q).

This extends to quaterniomic power series the theory presented in [13] for
polynomials. The following result which completely describes the zero sets of a
regular product of two polynomials in terms of the zero sets of the two factors
is from [13] (see also [7] and [9]).

Theorem 2.2 Let f and g be given quaternionic polynomials. Then (f ∗ g)(q0) = 0

if and only if f(q0) = 0 or f(q0) 6= 0 implies g
(
f(q0)

−1q0f(q0)
)
= 0.

Gentili and Struppa [8] established a maximum modulus theorem for reg-
ular functions, which includes convergent power series and polynomials in the
form of the following result.
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Theorem 2.3 (Maximum Modulus Theorem) Let B = B(0, r) be a ball in H with
centre 0 and radius r > 0, and let f : B → H be a regular function. If |f | has a
relative maximum at a point a ∈ B, then f is a constant on B.

It is worth noting that the proof of the Fundamental Theorem of Algebra
for regular polynomials with coefficients in H from an algebraic point of view
was given by Niven (for reference, see [25], [26]). This led to the complete
identification of the zeros of polynomials in terms of their factorization, for
reference see [27]. Thus it became an interesting perspective to think about the
regions containing all the zeros of a regular polynomial of quaternionic variable.
The earliest attempts to find the zeros of regular functions of a quaternionic
variable were made by Niven [25], and there has been a lot of activity in this
area of study recently. Most of these recent works deal with the generalisations
and extensions of the zero bounds of polynomials with restricted quaternionic
coefficients.

Slice regular functions of a quaternionic variable have been intensively stud-
ied in the past decade, and this study is extremely useful in replicating many
useful properties of holomorphic functions of complex variables. The Eneström-
Kakeya theorem and its various generalizations, as mentioned in Section 1, has
recently been extended to polynomials of a quaternionic variable by Carney et
al. [3] as follows:

Theorem 2.4 If T (q) =
∑n
ν=0 q

νaν is a polynomial of degree n, where q is a
quaternionic variable with real coefficients and satisfying

an ≥ an−1 ≥ · · · ≥ a1 ≥ a0 ≥ 0,

then all the zeros of T (q) lie in |q| ≤ 1.

In the same paper, Carney et al. [3] also established an extension of
Theorem 2.4 to quaternionic coefficients in the form of the following result.

Theorem 2.5 If T (q) =
∑n
ν=0 q

νaν is a quaternionic polynomial of degree n, where
aν = αν + βν i+ γνj + δνk for ν = 0, 1, 2, . . . , n, satisfying

αn ≥ αn−1 ≥ · · · ≥ α1 ≥ α0 ≥ 0, αn 6= 0,

then all the zeros of T (q) lie in

|q| ≤ 1 +
2

αn

n∑
ν=0

(
|βν |+ |γν |+ |δν |

)
.

Concurrently, Tripathi [30, Theorem 3.1] established a generalization of
Theorem 2.4 in the form of the following result.
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Theorem 2.6 Let T (q) =
∑n
ν=0 q

νaν be a polynomial of degree n, where q is a
quaternionic variable with quaternionic coefficients, where aν = αν+βν i+γνj+δνk
for ν = 0, 1, 2, . . . , n, satisfying

αn ≥ αn−1 ≥ · · · ≥ α`,
βn ≥ βn−1 ≥ · · · ≥ β`,
γn ≥ γn−1 ≥ · · · ≥ γ`,
δn ≥ δn−1 ≥ . . . ≥ δ`,

for 0 ≤ l ≤ n. Then all the zeros of T (q) lie in

|q| ≤ 1

|an|

[
|α0|+ |β0|+ |γ0|+ |δ0|+(αn−α`)+(βn−β`)+(γn−γ`)+(δn−δ`)+M`

]
,

where

M` =
∑̀
ν=1

[
|αν − αν−1|+ |βν − βν−1|+ |γν − γν−1|+ |δν − δν−1|

]
.

The need for estimation of the bounds for the zeros of regular functions
arises frequently in geometric function theory, and this study finds numer-
ous applications in quantum physics, functional calculus, and operator theory.
These estimates are also frequently employed in a wide range of applications in
numerical mathematics and engineering domains, as they provide a simple and
efficient way to express the relationship between the variables of the system.
Recently, several works appeared in the literature, including generalizations
and refinements of the above results; see, e.g., [6], [16–18], [20–22]. In addition,
we also mention here some recent results on the Eneström-Kakeya theorem
for quaternionic polynomials derived under certain complicated restrictions for
polynomial coefficients (see [10], [14], [23], [24]).

Existing results in the literature also show that there is a need to find
explicit bounds for polynomials and regular functions, e.g., those having
restrictions on the coefficients. For this reason, it is desirable to limit the coef-
ficients of the aforementioned regular functions to obtain their zero inclusion
regions and unify the derivation of various existing and new Eneström-Kakeya
type bounds. There is now a very ample literature on the location of zeros in
quaternionic polynomials, but not on the zeros in quaternionic power series.

3 Zero-free regions of quaternionic power series
In this section, we establish several new results that pertain to the zero-free
regions of quaternionic power series with coefficients located on only one side
of the variable. In proofs, we apply methods that are far different from the
known ones. The obtained results for this subclass of regular functions produce
generalisations of a number of results known in the literature on this subject.
We start with the following extension of Theorem 1.3 to slice regular functions,
regular in the ball B(0, R) with centre at the origin and radius R > 0.
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Theorem 3.1 Let f : B(0, R) → H be a regular power series in the quaternionic
variable q, i.e., f(q) =

∑∞
ν=0 q

νaν for all q ∈ B(0, R). If aν , ν = 0, 1, 2, . . . , are real
and positive satisfying

aν−1 − taν ≥ 0, ν = 1, 2, . . .

where 0 < t < R. Then f(q) does not vanish in |q| < t.

Proof Consider the power series
F (q) = (t− q) ∗ f(q)

= (t− q) ∗ (a0 + qa1 + q2a2 + · · · )

= ta0 −
[
q(a0 − ta1) + q2(a1 − ta2) + · · ·

]
= ta0 − qψ(q),

where

ψ(q) =

∞∑
ν=1

qν−1(aν−1 − taν).

For |q| = t, we have

|ψ(q)| ≤
∞∑
ν=1

|q|ν−1|aν−1 − taν |

=

∞∑
ν=1

tν−1(aν−1 − taν)

= a0.

Since ψ(q) is regular in |q| ≤ t, it follows by Theorem 2.3, that
|ψ(q)| ≤ a0 for |q| ≤ t. (1)

For |q| ≤ t, we have
|F (q)| = |ta0 − qψ(q)|

≥ |ta0| − |q| |ψ(q)|

≥ a0(t− |q|) by (1).
Thus in |q| ≤ t, |F (q)| > 0 if |q| < t, i.e., F (q) 6= 0 for |q| < t. Since by Theorem 2.1,
the only zeros of (t− q) ∗ f(q) are q = t and the zeros of f(q), therefore, f(q) 6= 0 for
|q| < t. This proves Theorem 3.1. �

Now, we present an extension of Theorem 3.1 to quaternionic coefficients.

Theorem 3.2 Let f : B(0, R) → H be a regular power series in the quaternionic
variable q, i.e., f(q) =

∑∞
ν=0 q

νaν for all q ∈ B(0, R). If aν = αν +βν i+ γνj+ δνk,
ν = 0, 1, 2, . . . , are quaternionic coefficients satisfying

0 < |a0| ≤ t|a1| ≤ · · · ≤ tλ|aλ| ≥ tλ+1|aλ+1| ≥ . . . ,
where λ is some finite non negative integer and 0 < t < R. Then f(q) does not vanish
in

|q| < t(
2tλ

∣∣∣∣aλa0
∣∣∣∣− 1

)
+

2

|a0|
∞∑
ν=0

∣∣aν − |aν |∣∣tν .
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Proof Again we consider the power series

(t− q) ∗ f(q) = (t− q) ∗ (a0 + qa1 + q2a2 + · · · )

= ta0 −
[
q(a0 − ta1) + q2(a1 − ta2) + · · ·

]
= ta0 − qψ(q) (say).

For |q| = t, we have

|ψ(q)| ≤
∞∑
ν=1

tν−1|aν−1 − taν |

≤
∞∑
ν=1

tν−1
∣∣t|aν | − |aν−1|∣∣+ ∞∑

ν=1

tν−1
∣∣t(aν − |aν |)− (aν−1 − |aν−1|)

∣∣
=

λ∑
ν=1

tν−1
(
t|aν | − |aν−1|

)
+

∞∑
v=λ+1

tν−1
(
|aν−1| − t|aν |

)
+

∞∑
ν=1

tν−1
∣∣t(aν − |aν |)− (aν−1 − |aν−1|)

∣∣
= 2tλ|aλ| − |a0|+

∞∑
ν=1

tν−1
∣∣t(aν − |aν |)− (aν−1 − |aν−1|)

∣∣
≤ 2tλ|aλ| − |a0|+ 2

∞∑
ν=0

tν
∣∣aν − |aν |∣∣. (2)

Now proceeding as in the proof of Theorem 3.1, it follows that for |q| ≤ t, by (2),
we have∣∣(t− q) ∗ f(q)∣∣ ≥ t|a0| − |q||ψ(q)|

≥ |a0|

[
t− |q|

(
2tλ

∣∣∣∣aλa0
∣∣∣∣− 1 +

2

|a0|

∞∑
ν=0

tν
∣∣aν − |aν |∣∣)] .

Thus in |q| ≤ t, |(t− q) ∗ f(q)| > 0 if

|q| < t

2tλ
∣∣∣∣aλa0

∣∣∣∣− 1 +
2

|a0|
∞∑
ν=0

tν
∣∣aν − |aν |∣∣ .

Since by Theorem 2.1, the only zeros of (t− q) ∗ f(q) are q = t and the zeros of f(q),
therefore, f(q) 6= 0 if

|q| < t

2tλ
∣∣∣∣aλa0

∣∣∣∣− 1 +
2

|a0|
∞∑
ν=0

tν
∣∣aν − |aν |∣∣ .

This completes the proof of Theorem 3.2. �

It we take βν = γν = δν = 0 for ν = 0, 1, 2, . . . , in Theorem 3.2, we get the
following generalization of Theorem 3.1.
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Corollary 3.3 Let f : B(0, R)→ H be a regular power series f(q) =
∑∞
ν=0 q

νaν in
the quaternionic variable q. If aν , ν = 0, 1, 2, . . . , are real and positive, satisfying

a0 ≤ ta1 ≤ · · · ≤ tλaλ ≥ tλ+1aλ+1 ≥ . . . ,

where λ is some finite non negative integer and 0 < t < R. Then f(q) does not vanish
in

|q| < t

2

(
aλ
a0

)
tλ − 1

.

Next, we obtain a zero free region for a regular quaternionic power series
with quaternionic coefficients in which the real component satisfying some
suitable inequalities.

Theorem 3.4 Let f : B(0, R) → H be a regular power series f(q) =
∑∞
ν=0 q

νaν
in the quaternionic variable q. If aν = αν + βν i + γνj + δνk, ν = 0, 1, 2, . . . , are
quaternionic coefficients with real components satisfying

0 < α0 ≤ tα1 ≤ · · · ≤ tλαλ ≥ tλ+1αλ+1 ≥ · · · ,

where λ is some finite non negative integer and 0 < t < R. Then f(q) does not vanish
in

|q| < t

2

(
αλ
α0

)
tλ − 1 +

(
2

α0

) ∞∑
ν=0

tν
(
|βν |+ |γν |+ |δν |

) .

Proof As in the proof of Theorem 3.2, we have

(t− q) ∗ f(q) = ta0 − qψ(q).

Now using the fact that

|aν−1 − taν | ≤ |αν−1 − tαν |+ |βν−1|+ t|βν |+ |γν−1|+ t|γν |+ |δν−1|+ t|δν |,

we get for |q| = t,

|ψ(q)| ≤
∞∑
ν=1

tν−1|aν−1 − taν |

≤
∞∑
ν=1

tν−1|αν−1 − tαν |

+
∞∑
ν=1

tν−1
[
|βν−1|+ t|βν |+ |γν−1|+ t|γν |+ |δν−1|+ t|δν |

]
≤ 2tλαλ − α0 + 2

∞∑
ν=0

tν (|βν |+ |γν |+ |δν |)

= α0

[
2tλ

αλ
α0
− 1 +

2

α0

∞∑
ν=0

tν (|βν |+ |γν |+ |δν |)

]



Springer Nature 2021 LATEX template

10 On zeros of the regular power series of a quaternionic variable

≤ |a0|

[
2tλ

αλ
α0
− 1 +

2

α0

∞∑
ν=0

tν (|βν |+ |γν |+ |δν |)

]
. (3)

Now proceeding as in the proof of Theorem 3.2, it follows that for |q| ≤ t, by (3), we
have

|(t− q) ∗ f(q)| ≥ t|a0| − |q||ψ(q)|

≥ |a0|

[
t− |q|

(
2tλ

αλ
α0
− 1 +

2

α0

∞∑
ν=0

tν (|βν |+ |γν |+ |δν |)

)]
.

Thus in |q| ≤ t, |(t− q) ∗ f(q)| > 0, if

|q| < t

2tλ
αλ
α0
− 1 +

2

α0

∞∑
ν=0

tν
(
|βν |+ |γν |+ |δν |

) .
Again, since by Theorem 2.1, the only zeros of (t− q) ∗ f(q) are q = t and the zeros
of f(q), therefore, f(q) 6= 0 if

|q| < t

2tλ
αλ
α0
− 1 +

2

α0

∞∑
ν=0

tν
(
|βν |+ |γν |+ |δν |

) .
This completes the proof of Theorem 3.4. �

Taking λ = 0 in Theorem 3.4, we get the following result.

Corollary 3.5 Let f : B(0, R) → H be a regular power series f(q) =
∑∞
ν=0 q

νaν
in the quaternionic variable q. If aν = αν + βν i + γνj + δνk, ν = 0, 1, 2, . . . , are
quaternionic coefficients with real components satisfying

0 < α0 ≥ tα1 ≥ t2α2 ≥ . . . ,

where 0 < t < R. Then f(q) does not vanish in

|q| < t

1 +
2

α0

∞∑
ν=0

tν
(
|βν |+ |γν |+ |δν |

) .

Finally, in this section, we establish a zero-free region for a regular quater-
nionic power series with restricted coefficients, namely coefficients whose real
and imaginary components satisfy suitable inequalities.

Theorem 3.6 Let f : B(0, R) → H be a regular power series in the quaternionic
variable q, i.e., f(q) =

∑∞
ν=0 q

νaν , for all q ∈ B(0, R). If aν = αν +βν i+γνj+δνk,
ν = 0, 1, 2, . . . , are quaternionic coefficients satisfying

0 < α0 ≤ tα1 ≤ · · · ≤ tλαλ ≥ tλ+1αλ+1 ≥ . . . ,

β0 ≤ tβ1 ≤ · · · ≤ trβr ≥ tr+1βr+1 ≥ . . . ,

γ0 ≤ tγ1 ≤ · · · ≤ tsγs ≥ ts+1γs+1 ≥ . . . ,
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δ0 ≤ tδ1 ≤ · · · ≤ tµδµ ≥ tµ+1δµ+1 ≥ . . . ,

where λ, r, s, µ are finite non-negative integers and 0 < t < R. Then f(q) does not
vanish in

|q| < t|a0|
2(αλtλ + βrtr + γsts + δµtµ)− (α0 + β0 + γ0 + δ0)

.

Proof As in the proof of Theorem 3.2, we have

(t− q) ∗ f(q) = ta0 − qψ(q).

Since

|aν−1− taν | ≤ |αν−1− tαν |+ |βν−1− tβν |+ |γν−1− tγν |+ |δν−1− tδν |, ν = 1, 2, . . . ,

we have for |q| = t,

|ψ(q)| ≤
∞∑
ν=1

tν−1
[
|αν−1 − tαν |+ |βν−1 − tβν |+ |γν−1 − tγν |+ |δν−1 − tδν |

]
= 2(αλt

λ + βrt
r + γst

s + δµt
µ)− (α0 + β0 + γ0 + δ0).

Since ψ(q) is regular in |q| ≤ t, it follows by the Maximum Modulus Theorem
that

|ψ(q)| ≤ 2(αλt
λ + βrt

r + γst
s + δµt

µ)− (α0 + β0 + γ0 + δ0) for |q| ≤ t. (4)

For |q| ≤ t, by (4), we have

|(t− q) ∗ f(q)| ≥ t|a0| − |q||ψ(q)|

≥ t|a0| − |q|
(
2(αλt

λ + βrt
r + γst

s + δµt
µ)− (α0 + β0 + γ0 + δ0)

)
> 0,

if
|q| ≤ t|a0|

2(αλtλ + βrtr + γsts + δµtµ)− (α0 + β0 + γ0 + δ0)
.

By Theorem 2.1, the only zeros of (t− q) ∗ f(q) are q = t and the zeros of f(q),
therefore, it follows that f(q) 6= 0 for

|q| < t|a0|
2(αλtλ + βrtr + γsts + δµtµ)− (α0 + β0 + γ0 + δ0)

.

This completes the proof of Theorem 3.6. �

By the Cauchy-Schwarz inequality, we have α0 +β0 +γ0 +δ0 ≤ 2|a0|. Using
this fact and taking λ = r = s = µ = 0 in Theorem 3.6, we get the following
result.

Corollary 3.7 Let f : B(0, R) → H be a regular power series in the quaternionic
variable q, i.e., f(q) =

∑∞
ν=0 q

νaν , for all q ∈ B(0, R). If aν = αν +βν i+γνj+δνk,
ν = 0, 1, 2, . . . , are quaternionic coefficients satisfying

0 < α0 ≥ tα1 ≥ t2α2 ≥ . . . ,
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β0 ≥ tβ1 ≥ t2β2 ≥ . . . ,

γ0 ≥ tγ1 ≥ t2γ2 ≥ . . . ,

δ0 ≥ tδ1 ≥ t2δ2 ≥ . . .

where 0 < t < R. Then f(q) does not vanish in |q| < t/2.

4 Location of all zeros of a quaternionic
polynomial in a non-central disc

In this section, we obtain regions consisting of discs that are not centred at
the origin and include all of the zeros of a quaternionic polynomial with coef-
ficients whose real and imaginary components satisfy suitable inequalities. We
establish a generalisation of Theorem 2.6. It will be shown that this result in
particular gives the quaternionic analogue of a result due to Joyal et al. [12]
and from which we can recover Theorem 2.4 as well.

Theorem 4.1 If T (q) =
∑n
ν=0 q

νaν is a quaternionic polynomial of degree n with
quaternionic coefficients, where aν = αν + βν i + γνj + δνk for ν = 0, 1, 2, . . . , n,
satisfying

λ1αn ≥ αn−1 ≥ · · · ≥ α`, λ2βn ≥ βn−1 ≥ · · · ≥ β`,

λ3γn ≥ γn−1 ≥ · · · ≥ γ`, λ4δn ≥ δn−1 ≥ · · · ≥ δ`,

where λs ≥ 1 for s = 1, 2, 3, 4, and 0 ≤ ` ≤ n− 1. Then all the zeros of T (q) lie in∣∣∣∣q + λ1αn + λ2βni+ λ3γnj + λ4δnk

an
− 1

∣∣∣∣ ≤ 1

|an|

[
(λ1αn + |α0| − α`)

+ (λ2βn + |β0| − β`) + (λ3γn + |γ0| − γ`) + (λ4δn + |δ0| − δ`) +M`

]
,

where

M` =
∑̀
ν=1

[
|αν − αν−1|+ |βν − βν−1|+ |γν − γν−1|+ |δν − δν−1|

]
.

Proof Consider the polynomial

T (q) ∗ (1− q) = a0 + q(a1 − a0) + q2(a2 − a1) + · · ·+ qn(an − an−1)− qn+1an

= a0 +

n−1∑
ν=1

qν(aν − aν−1) + qn
[
(λ1αn − αn−1) + (λ2βn − βn−1)i

+ (λ3γn − γn−1)j + (λ4δn − δn−1)k
]

− qn
[
(q − 1)an + λ1αn + λ2βni+ λ3γnj + λ4δnk

]
= φ(q)− qn

[
(q − 1)an + λ1αn + λ2βni+ λ3γnj + λ4δnk

]
,
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where

φ(q) = a0 +

n−1∑
ν=1

qν(aν − aν−1) + qn
[
(λ1αn − αn−1) + (λ2βn − βn−1)i

+ (λ3γn − γn−1)j + (λ4δn − δn−1)k
]
.

For |q| = 1, we have

|φ(q)| ≤ |a0|+
∑̀
ν=1

|q|ν |aν − aν−1|+
n−1∑
ν=`+1

|q|ν |aν − aν−1|+ |q|n
∣∣(λ1αn − αn−1)

+ (λ2βn − βn−1)i+ (λ3γn − γn−1)j + (λ4δn − δn−1)k
∣∣

= |α0 + β0i+ γ0j + δ0k|

+
∑̀
ν=1

∣∣(αν − αν−1) + (βν − βν−1)i+ (γν − γν−1)j + (δν − δν−1)k
∣∣

+

n−1∑
ν=`+1

∣∣(αν − αν−1) + (βν − βν−1)i+ (γν − γν−1)j + (δν − δν−1)k
∣∣

+
∣∣(λ1αn − αn−1) + (λ2βn − βn−1)i+ (λ3γn − γn−1)j + (λ4δn − δn−1)k

∣∣
≤ |α0|+ |β0|+ |γ0|+ |δ0|

+
∑̀
ν=1

[
|αν − αν−1|+ |βν − βν−1|+ |γν − γν−1|+ |δν − δν−1|

]

+

n−1∑
ν=`+1

[
|αν − αν−1|+ |βν − βν−1|+ |γν − γν−1|+ |δν − δν−1|

]
+ |λ1αn − αn−1|+ |λ2βn − βn−1|+ |λ3γn − γn−1|+ |λ4δn − δn−1|

= (λ1αn + |α0| − α`) + (λ2βn + |β0| − β`) + (λ3γn + |γ0| − γ`)

+ (λ4δn + |δ0| − δ`) +M`,

where

M` =
∑̀
ν=1

[
|αν − αν−1|+ |βν − βν−1|+ |γν − γν−1|+ |δν − δν−1|

]
.

Note that, we have

max
|q|=1

∣∣∣∣qn ∗ φ(1

q

)∣∣∣∣ = max
|q|=1

∣∣∣∣qnφ(1

q

)∣∣∣∣ = max
|q|=1

∣∣∣∣φ(1

q

)∣∣∣∣ = max
|q|=1

|φ(q)|,

it is clear that qn ∗ φ (1/q) has the same bound on |q| = 1 as φ, that is∣∣∣∣qn ∗ φ(1

q

)∣∣∣∣ ≤ (λ1αn + |α0| − α`) + (λ2βn + |β0| − β`) + (λ3γn + |γ0| − γ`)

+ (λ4δn + |δ0| − δ`) +M` for |q| = 1.
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Since qn ∗ φ (1/q) is a polynomial and so is regular in |q| ≤ 1, it follows by Theorem
2.3, that∣∣∣∣qn ∗ φ(1

q

)∣∣∣∣ = ∣∣∣∣qnφ(1

q

)∣∣∣∣ ≤ (λ1αn + |α0| − α`) + (λ2βn + |β0| − β`)

+ (λ3γn + |γ0| − γ`) + (λ4δn + |δ0| − δ`) +M`

for |q| ≤ 1. Hence∣∣∣∣φ(1

q

)∣∣∣∣ ≤ 1

|qn|

(
(λ1αn + |α0| − α`) + (λ2βn + |β0| − β`) + (λ3γn + |γ0| − γ`)

+ (λ4δn + |δ0| − δ`) +M`

)
for |q| ≤ 1.

Replacing q by 1/q, we see that

|φ(q)| ≤
(
(λ1αn + |α0| − α`) + (λ2βn + |β0| − β`) + (λ3γn + |γ0| − γ`)

+ (λ4δn + |δ0| − δ`) +M`

)
|q|n for |q| ≥ 1. (5)

For |q| ≥ 1, we have

|T (q) ∗ (1− q)| =
∣∣φ(q)− qn{(q − 1)an + λ1αn + λ2βni+ λ3γnj + λ4δnk}

∣∣
≥ |qn||an|

∣∣∣∣q + λ1αn + λ2βni+ λ3γnj + λ4δnk

an
− 1

∣∣∣∣− |φ(q)|
≥ |q|n

[
|an|

∣∣∣∣q + λ1αn + λ2βni+ λ3γnj + λ4δnk

an

∣∣∣∣
−
[
(λ1αn + |α0| − α`) + (λ2βn + |β0| − β`)

+ (λ3γn + |γ0| − γ`) + (λ4δn + |δ0| − δ`) +M`

]]
,

where we used (5).
Thus, if ∣∣∣∣q + λ1αn + λ2βni+ λ3γnj + λ4δnk

an
− 1

∣∣∣∣ > r, (6)

where

r =
1

|an|
[
(λ1αn + |α0| − α`) + (λ2βn + |β0| − β`)

+ (λ3γn + |γ0| − γ`) + (λ4δn + |δ0| − δ`) +M`

]
,

then |T (q) ∗ (1 − q)| > 0, that is T (q) ∗ (1 − q) 6= 0. Since by Theorem 2.2 the only
zeros of T (q) ∗ (1 − q) are q = 1 and the zeros of T (q), therefore, T (q) 6= 0 for all q
satisfying (6). In other words, all the zeros of T (q) lie in∣∣∣∣q + λ1αn + λ2βni+ λ3γnj + λ4δnk

an
− 1

∣∣∣∣ ≤ r.
This completes the proof of Theorem 4.1. �



Springer Nature 2021 LATEX template

On zeros of the regular power series of a quaternionic variable 15

Taking λs = R ≥ 1 for s = 1, 2, 3, 4, in Theorem 4.1 we get the following
generalization of Theorem 2.6.

Corollary 4.2 If T (q) =
∑n
ν=0 q

νaν is a quaternionic polynomial of degree n with
quaternionic coefficients, where aν = αν + βν i + γνj + δνk for ν = 0, 1, 2, . . . , n,
satisfying

Rαn ≥ αn−1 ≥ · · · ≥ α`, Rβn ≥ βn−1 ≥ · · · ≥ β`,

Rγn ≥ γn−1 ≥ · · · ≥ γ`, Rδn ≥ δn−1 ≥ · · · ≥ δ`,

for some R ≥ 1 and 0 ≤ ` ≤ n− 1. Then all the zeros of T (q) lie in

|q +R− 1| ≤ 1

|an|

[
(Rαn + |α0| − α`) + (Rβn + |β0| − β`)

+ (Rγn + |γ0| − γ`) + (Rδn + |δ0| − δ`) +M`

]
,

where

M` =
∑̀
ν=1

[
|αν − αν−1|+ |βν − βν−1|+ |γν − γν−1|+ |δν − δν−1|

]
.

Remark 4.1 The above corollary was recently established in [16]. Taking R = 1 in
Corollary 4.2, we recover Theorem 2.6.

Taking βν = γν = δν = 0 for ν = 0, 1, 2, . . . , n, in Corollary 4.2, we get the
following result for ` = 0.

Corollary 4.3 If T (q) =
∑n
ν=0 q

νaν , is a polynomial of degree n (where q is a
quaternionic variable), with real coefficients and satisfying

Ran ≥ an−1 ≥ · · · ≥ a1 ≥ a0,

for some R ≥ 1. Then all the zeros of T (q) lie in

|q +R− 1| ≤ Ran + |a0| − a0
|an|

.

Remark 4.2 For R = 1, the above Corollary 4.3 gives the quaternionic analogue of a
result due to Joyal et al. [12] (see [30] and [18]). If we take R = 1 and suppose a0 > 0
in Corollary 4.3, we recover Theorem 2.4.

5 Conclusion
The historical Cauchy’s and the Eneström-Kakeya theorems form an essential
part of the classical content of geometric function theory. They are equally
important in modern papers dealing with the regional location of zeros of
polynomials and regular functions with quaternionic coefficients located on
only one side of the variable. Here, we find upper bounds for the zeros of
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these polynomials and deduce zero-free regions for the associated subclass of
regular power series by employing tools from the recently developed theory of
regular functions and polynomials with quaternionic coefficients. A number
of results known in the literature on this topic are generalised by the results
found for this subclass of regular functions.
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