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Abstract

In this paper we prove the existence and uniqueness of the Gaussian interval quadrature formula with respect to
the generalized Laguerre weight function. An algorithm for numerical construction has also investigated and some
suitable solutions are proposed. A few numerical examples are included.
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1. Introduction

By the Gaussian interval quadrature formula with respect to the positive weight functionw, we assume
a quadrature formula of the following form:∫ b

a

fw dx ≈
n∑

k=1

�k

2hk

∫ xk+hk

xk−hk

fw dx, (1.1)

which integrates exactly all polynomials of degree less than 2n.
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There are different results for the questions of existence of such quadrature rules (for example, see
[1,4,7,9,11]).
The question of the existence for boundeda, b is proved in[2] in much wider context. Suppose that

w is a weight function on[−1,1], i.e., a nonnegative Lebesgue integrable function, such as that for
I = (�, �) ⊂ [−1,1], � 	= �, we have

∫
I
w(x)dx 	= 0. In [2], Bojanov and Petrov proved the following

statement:Given the ordered set of odd integers{�1, . . . , �n},with the propertyn+∑n
k=1 �k =N +1, the

Chebyshev system of functions{u0, . . . , uN } on [−1,1], the Markov system of functionsv0, . . . , vm−1,
on [−1,1],wherem=max{�1, . . . , �n}, and a set of the lengthsh1�0, . . . , hn�0,with

∑
hk <1, there

exists an interpolatory quadrature formula of the form∫ 1

−1
f (x)w(x)dx ≈

n∑
k=1

�k−1∑
�=0

�k,�

2hk

∫
Ik

f (x)v�(x)w(x)dx,

where intervalsIk ⊂ [−1,1], k = 1, . . . , n, are non-overlapping,with the length ofIk equals2hk,which
integrates exactly every element of the linear span{u0, . . . , uN }.
Also they proved that Gaussian interval quadrature formula for the Legendre weightw(x) = 1 on

[−1,1] is unique (see[3]). The uniqueness of Gaussian interval quadrature formula for the Jacobi weight
and its numerical construction was given in[6].
In this paper we present the existence and uniqueness results of the Gaussian interval quadrature

formula for the generalized Laguerre weight functionw(x)= x�e−x , �>− 1, on(a, b)= (0,+∞). The
paper is organized as follows. In the remainder of this section we give some notation and state the main
result. Preliminary and auxiliary results are given in Section 2 and the main result is proved in Section 3.
Finally, a numerical algorithm and numerical results are presented in Section 4.
Denote byHH

n the following set of the admissible lengths

HH
n =

{
h ∈ Rn

∣∣∣∣∣hi �0,
n∑

k=1
hk �H

}
and the corresponding set of the admissible nodes by

Xn(h) = {x ∈ Rn |0<x1 − h1�x1 + h1< · · ·<xn − hn�xn + hn < + ∞}.
Also, we introduce the set of the formal nodes

X̃n(h) = {x ∈ Rn |0<x1 − h1�x1 + h1� · · · �xn − hn�xn + hn < + ∞}
and the setXL,�0,M

n by

XL,�0,M
n (h) = {x ∈ Rn |0<L<x1 − h1, xk+1 − hk+1 − xk − hk > �0>0,

k = 1, . . . , n − 1, xn + hn <M}.
Our main result can be stated in the following form.

Theorem 1.1. For everyh ∈ HH
n , the Gaussian interval quadrature rule(1.1) with respect to the

generalized Laguerre weightw(x) = x�e−x , �> − 1, on (a, b) = (0,+∞), with nodesx ∈ X̃n(h)
and positive weights�k, k = 1, . . . , n, exists uniquely. Moreover, there exist the positive constants L, �0,
and M, depending on n and H, such thatx ∈ XL,�0,M

n (h).
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2. Preliminary and auxiliary results

Let Pn, n ∈ N0, be the set of all algebraic polynomials of degree at mostn andP be the set of all
algebraic polynomials.
First, we give some preliminary definitions and results. Denote� = x

d� = w dx = x�e−x dx on [0,+∞),

where�>−1, and�=1+ �− x, such that we have the following Pearson’s equation(�w)′ =�w holds
(see[5]).

Lemma 2.1. For any polynomialp ∈ Pn, there existsq ∈ Pn−1 and� ∈ C, such that∫
pw dx = q�w + �	[1+ �, x] + A,

where A is an integration constant and	 is the incomplete gamma function defined by

	[a, x] =
∫ +∞

x

ta−1e−t dt, a >0, x�0.

Proof. Let p ∈ Pn. For every polynomialp = r ′� + r�, r ∈ Pn−1, we have∫
pw dx =

∫
(r ′� + r�)x�e−x dx =

∫
(r�w)′ dx = r�w + A

so that we can identifyq = r and� = 0.
Now, we consider the linear space

Ln = {r ′� + r� | r ∈ Pn−1}.
Obviously its basis is

�� = (x�−1)′x + x�−1(1+ � − x) = −x� + (� + �)x�−1, � = 1, . . . , n.

Adding�0= 1 to this basis we get a complete basis forPn(=Ln+̇P0). Taking any polynomialp ∈ Pn,
we have

p =
n∑

k=0
�k�k

and therefore,∫
pw dx = �0

∫
�0w dx +

n∑
k=1

�k

∫
�kw dx = �0	[1+ �, x] + �w

n∑
k=1

�kx
k−1 + A

from where we can identify uniquelyq as
∑n

k=1 �kx
k−1 and� = �0. �
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Now, we define the following sets:

Ik = (xk − hk, xk + hk), I k = [xk − hk, xk + hk], k = 1, . . . , n,

I =
n⋃

k=1
Ik, I =

n⋃
k=1

I k, O = [0,+∞)\I

as well asO1= [0, x1+ h1),Ok+1= (xk + hk, xk+1− hk+1), k = 1, . . . , n− 1,On+1= (xn + hn,+∞).
These definitions enables us to express results in a shorter form.
The next definition gives precisely what we mean by the Gauss–Laguerre interval quadrature rule.

Definition 2.2. The Gaussian interval quadrature rule with respect to the generalized Laguerre measure
d� = x�e−x dx, �> − 1, forh ∈ HH

n is an interpolatory quadrature rule of the form∫
p d� =

n∑
k=1

�k

2hk

∫
Ik

p d�, p ∈ P2n−1 (2.1)

providedx ∈ X̃n(h).

The following statement is very important, since it enables us to prove almost all of our results. Similar
results for finite intervals can be found in[2,3,6].

Lemma 2.3. (i) Assume1�jk �2, k = 1, . . . , n, with
∑n

k=1 jk = N + 1, h ∈ HH
n , x ∈ X̃n(h), and let

fm,k,m = 1, jk, k = 1, . . . , n, be arbitrary numbers. Then the interpolation problem

1

2hk

∫
Ik

p(m−1) d� = fm,k, m = 1, jk, k = 1, . . . , n (2.2)

has the unique solution inPN .
(ii) Assume that1�jk �2, k = 1, . . . , n, with

∑n
k=1 jk = N + 1, h ∈ HH

n , x ∈ X̃n(h), then for every
c ∈ C there exists the uniqueqc ∈ PN , such thatp = cxN+1 + qc, solves the following interpolation
problem:

1

2hk

∫
Ik

p(m−1) d� = 0, m = 1, jk, k = 1, . . . , n

and there holdsqc = cq1. In everyI k, the polynomial p has exactlyjk zeros and those are all its zeros.

Proof. In order to prove this lemma, we show that the corresponding homogenous system of equations
(2.2), withfm,k ≡ 0, has only a trivial solution. Note that this system can be expressed as a system of
linear equations for the coefficients ofp.
The proof for the part (i) is already given in[3, Lemma 1]. Here, we give this proof for the sake of

completeness. We can simply count zeros to see that in every subintervalIk there arejk zeros, so that in
total we have

∑
k jk = N + 1 zeros. This means that if the solution is not trivial it has a degree at least

N + 1, and it is not a solution inPN .
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For the part (ii), we can rewrite the interpolation problem in the following form:

1

2hk

∫
Ik

q(m−1)
c d� = − c

2hk

∫
Ik

(xN+1)(m−1) d�, m = 1, jk, k = 1, . . . , n. (2.3)

Now, we can apply the first part of this lemma with

fm,k = − c

2hk

∫
Ik

(xN+1)(m−1) d�, m = 1, jk, k = 1, . . . , m

to the interpolation problem (2.3), and denote the unique solution byqc. Obviously, the linear system of
equations which definesqc has a free vector from whichc can be factorized, so thatqc = cq1. For the last
statement we refer to the proof of part (i).�

The next lemma shows that for everyh ∈ HH
n the Gauss–Laguerre interval quadrature rule must have

nodes inXn(h).

Lemma 2.4. Supposeh ∈ HH
n and there exists a Gauss–Laguerre interval quadrature rule with nodes

x ∈ X̃n(h), thenx ∈ Xn(h).

Proof. Let h ∈ HH
n andx ∈ X̃n(h), butx /∈Xn(h). Then at least one of the equalities

xk + hk = xk+1 − hk+1, k = 1, . . . , n − 1

holds. Suppose, it is the case for somek ∈ {1, . . . , n − 1}. According to the interpolation Lemma 2.3,
part (ii), there exists a monicp ∈ P2n−2, with the properties

1

2h�

∫
I�

p(m−1) d� = 0, � = 1, . . . , k − 1, k + 2, . . . , n

and

1

2hk

∫
Ik

p d� = 1

2hk+1

∫
Ik+1

p d� = 0, hk 	= 0, or hk+1 	= 0,

p(xk) = p′(xk) = 0, hk = hk+1 = 0.

Obviously suchp annihilates the Gauss–Laguerre interval quadrature sum and it is of a constant sign on
O. This means that

∫
p d� = ∫

O
p d� 	= 0, which is a contradiction.�

An immediate consequence of the previous lemma is that all weights�k, are positive in the Gauss–
Laguerre interval quadrature rule.

Lemma 2.5. For the Gauss–Laguerre interval quadrature rule(2.1),we have�k >0, k = 1, . . . , n.

Proof. Suppose there is some indexk ∈ {1, . . . , n}, such that�k �0. According to the interpolation
Lemma 2.3, there exists a monic polynomialp ∈ P2n−2, such that

1

2h�

∫
I�

p(m−1) d� = 0, m = 1,2, � = 1, . . . , k − 1, k + 1, . . . , n.
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For thisp the Gauss–Laguerre quadrature formula (3.1) is exact. On the other side this polynomialp is
positive onA=O∪Ik, so that we conclude�k =2hk

∫
p d�/

∫
Ik
p d�=2hk

∫
A
p d�/

∫
Ik
p d�>0, which

is a contradiction. �

The following theorem shows that there exists a uniform bound for nodes in (2.1) regarding toh ∈ HH
n .

This is an important result, which enables us to think about Gauss–Laguerre interval quadrature rule as
it is given with respect to some measure on the bounded supporting set.

Theorem 2.6. Let n ∈ N andH �0 be given. Then there exists a constantM >0 such that for every
h ∈ HH

n andx ∈ Xn(h), for which(2.1) is the Gauss–Laguerre interval quadrature rule, we have

xn <M. (2.4)

Proof. Suppose, it is not the case for somen ∈ N andH �0. Then for everyM >0 there exists a
quadrature rule of the form (2.1) for someh ∈ HH

n , such that there exists an indexm ∈ {1, . . . , n} for
whichxm�M.
Suppose that for allM >0 we have that allx� + h�, � = 1, . . . , k, are bounded by someMk, and

that x� >M for � = k + 1, . . . , n. For sufficiently largeM there exists a fixed constantM ′ such that
Mk <M ′ <M.
According to the interpolation Lemma 2.3, part (ii), there exists amonic polynomialpof degree 2n−1,

satisfying the conditions

1

2h�

∫
I�

p(m−1) d� = 0, m = 1,2, � = 1, . . . , n − 1

and

1

2hn

∫
In

p d� = 0.

This polynomialp annihilates the Gauss–Laguerre interval quadrature sum. ChooseP = −p. So thatP
is positive onO\On+1 and negative onOn+1. Since

∫
I
P d� = 0, we have∫

P d� =
∫
O\On+1

P d� −
∫
On+1

(−P)d� = 0.

Then for chosenM ′,Mk <M ′ <M, we have∫
O\On+1

P d�>

∫ M ′

Mk

(x − Mk)
2k(M ′ − x)2n−2k−1 d� = J1>0.

Note that, according to Lemma 2.1, there existq and� such that

J1 = (q�w)(M ′) − (q�w)(Mk) + �(	(1+ �,M ′) − 	(1+ �,Mk)).

Similarly, there existq1 and�1 such that

0<
∫
On+1

(−P)d�<

∫ +∞

M

x2k(x − M ′)2n−2k−1 d� = −(q1�w)(M) − �1	(1+ �,M) = J2.
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We see thatJ2 tends to zero asM increases, so that∫
P d� =

∫
O\On+1

P d� −
∫
On+1

(−P)d�>J1 − J2>0

for sufficiently largeM. This is a contradiction, i.e.,xk+1 must be bounded.
Repeating the same arguments we prove thatxk+2, . . . , xn must be bounded, which is a contradiction.

�

Remark 2.7. According to (2.4),xn + hn is also bounded, i.e.,xn + hn <M + H .

Almost with the same arguments, we can prove the following result.

Lemma 2.8. Let n ∈ N andH �0 be given. Then there exists a constantL>0 such that for every
h ∈ HH

n andx ∈ Xn(h), for which(2.1) is the Gauss–Laguerre interval quadrature rule, we have

0<L<x1 − h1.

Proof. Suppose it is not the case for somen ∈ N andH �0. Then for everyL>0, there existh ∈ HH
n

and respective nodes of the Gauss–Laguerre interval quadrature rulex ∈ Xn(h), such that there exists an
indexk ∈ {1, . . . , n} such that 0<x� − h��x� + h� <L, � = 1, . . . , k.
According to the interpolation Lemma 2.3, part (ii), there exists amonic polynomialPof degree 2n−1,

such that
1

2h1

∫
P d� = 1

2h�

∫
I�

P (m−1) d� = 0, m = 1,2, � = 2, . . . , n.

This polynomialP annihilates the Gauss–Laguerre interval quadrature sum. In order to prove thatP
cannot annihilate

∫
P d�, for everyL>0, we consider∫

P d� =
∫
O\O1

P d� −
∫
O1

(−P)d�.

Note thatP has a positive sign onO\O1 and negative onO1. According to Theorem 2.6 and correspond-
ing remark, there existsM >0 such thatxn + hn <M ′ = M + H . Then, using Lemma 2.1, with the
correspondingq and�, we have∫

O\O1
P d�>

∫ +∞

M ′
(x − M ′)2n−1 d� = −(q�w)(M ′) − �(	(1+ �,M ′)) = J1>0.

Also, with the correspondingq1 and�1, we have

0<
∫
O1

(−P)d�<

∫ L

0
(x − M ′)2n−1 d� = (q1�w)(L) + �1(	(1+ �, L) − 	(1+ �)) = J2,

whereJ2 evidently tends to zero asL → 0+. Thus, for a sufficiently smallL, we have∫
P d� =

∫
O\O1

P d� −
∫
O1

(−P)d�>J1 − J2>0

which is a contradiction. Therefore,x1 − h1 must be uniformly bounded from zero.�
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In the sequel we use the following notation.

Definition 2.9. We denote


 =
n∏

�=1
(x − x� − h�)(x − x� + h�),


k = 


(x − xk − hk)(x − xk + hk)
, k = 1, . . . , n

and

�k(
k�w) =
{ (
k�w)(xk + hk) − (
k�w)(xk − hk)

2hk

, hk 	= 0,

�xk [(
k�w)(xk)], hk = 0

for k = 1, . . . , n, where�xk = �/�xk.

Theorem 2.10.For everyh ∈ HH
n , the nodesx ∈ Xn(h) of the quadrature rule(2.1)satisfy the system

of equations

�k(
k�w) = 0, k = 1, . . . , n. (2.5)

For h ∈ HH
n , every solutionx ∈ Xn(h) of system(2.5) defines the nodes for the Gauss–Laguerre

interval quadrature rule(2.1).

Proof. Applying the Gauss–Laguerre interval quadrature rule (2.1) to the polynomial(
��w)′/w of
degree 2n − 1, we have

0=
∫

(
��w)′

w
d� =

n∑
k=1

�k

2hk

∫
Ik

(
��w)′

w
d� = ����(
��w),

i.e., if x are nodes of the Gauss–Laguerre interval quadrature rule, theymust satisfy (2.5), since according
to Lemma 2.5, we have�� >0, � = 1, . . . , n.
For anyp ∈ P2n−2 we have

n∑
k=1

(
p(xk + hk)


′(xk + hk)
+ p(xk − hk)


′(xk − hk)

)
= 0. (2.6)

This can be proved by applying Cauchy Residue Theorem to the rational functionp/
 over the contour
�R = {x | |x − M/2| = R}, R>M/2, and lettingR → +∞.
Now, suppose that forx ∈ Xn(h) we have

1

(
′�w)(xk + hk)
+ 1

(
′�w)(xk − hk)
= 0. (2.7)
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Then obviously, according to (2.6), we have for anyp ∈ P2n−2

0=
n∑

k=1

1

(
′�w)(xk + hk)
[(p�w)(xk + hk) − (p�w)(xk − hk)]

=
n∑

k=1

1

(
′�w)(xk + hk)

∫
Ik

(p�w)′ dx.

But also∫
(p�w)′

w
d� = (p�w)

∣∣∣∣+∞

0
= 0,

so that for everyr ∈ P2n−1 of the formr = p′� + p�, p ∈ P2n−2, we have∫
r d� = C

n∑
k=1

1

(
′�w)(xk + hk)

∫
Ik

r d�

for a constantC. Now we can chooseC such that the previous formula is exact for allr ∈ P2n−1.
According to the proof of Lemma 2.1, it is enough to adjust this formula to be exact forr = �0=1, which
gives

C = m0∑n
k=1

2hkm0,k

(
′�w)(xk + hk)

,

where

m0 =
∫
d�, m0,k = 1

2hk

∫
Ik

d�, k = 1, . . . , n.

The system of equations (2.7) defines the Gauss–Laguerre interval quadrature rule. However, it is equiv-
alent to (2.5), because of


′(xk ± hk) = ±2hk
k(xk ± hk), k = 1, . . . , n.

Using these equations, by definition of
k, we can conclude that

(
′�w)(xk + hk) = 2hk(
k�w)(xk + hk)>0

for h ∈ HH
n andx ∈ Xn(h), which givesC >0. Thus, all weights in the constructed quadrature rule are

positive, as we know also from Lemma 2.5.
To be completely fair, we need to give an explanation for the casehk = 0 for somek. Since the

corresponding term of (2.6), in that case is given by

p′
k − p
′
k


2k
(xk),
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we can transform it to the form

p′
k − p
′
k


2k
= p′
k�w + p
k(�w)′ − p
k(�w)′ − p
′

k�w


2k�w

= (p�w)′
k − p(
k�w)′


2k�w

and we require that term withp vanish so that we have

(
k�w)′(xk) = �xk [(
k�w)(xk)] = 0.

This is exactly what equation of system (2.5) becomes forhk = 0. �

Remark 2.11. According to the proof Theorem 2.10, we have the following formulas:

�k = m0∑n
�=1

m0,�

(
��w)(x� + h�)

1

(
k�w)(xk + hk)
, k = 1, . . . , n (2.8)

for the weights in the Gauss–Lagurre quadrature formula (2.1).

Lemma 2.12. Supposen ∈ N andH �0 are given. There exist�0>0,L>0 andM >0, such that for
all h ∈ HH

n and all nodesx ∈ Xn(h) of the Gauss–Laguerre interval quadrature rule(2.1),we have
x ∈ XL,�0,M

n .

Proof. Theexistences ofLandM is already proved, soweprove now the existence of�0.Assumecontrary,
then for every�0>0, there existsh�0 ∈ HH

n and the respective set of nodesx
�0 ∈ Xn(h�0), for which (2.1)

is Gauss–Laguerre quadrature formula, with the property that at least one of the following equalities:

x
�0
k + h

�0
k + �0 = x

�0
k+1 − h

�0
k+1, k = 1, . . . , n − 1

holds. Since the setsh�0 andx�0 are bounded, there are the convergent sequenceshk, xk, k ∈ N, with the
limits h0 andx0, such that at least one of the equalities

x0k + h0k = x0k+1 − h0k+1, k = 1, . . . , n − 1

holds. Since the weights��, � = 1, . . . , n, are continuous functions ofh andx, according to (2.8), forh0

and the respective set of nodesx0, we have that the rule∫
p d� =

n∑
k=1

�0k
2h0k

∫
I0k

p d�

constructed from the nodesx0 and lengthsh0, is exact forp ∈ P2n−1, because of continuity. Since for this
Gauss–Laguerre interval quadrature rule we have at least two intervals which have the boundary point in
common, we can apply the same arguments as in the proof of Lemma 2.4 to produce a contradiction.�
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3. Proof of the main result

To prove the main result, we are going to need the following topological result, which can be found in
[8,10].
AssumeD is a bounded open set inRn, with the closureD and the boundary�D, and
 : D → Rn

is a continuous mapping. By deg(
,D, c) we denote the topological degree of
 with respect toD and
c /∈ 
(�D).

Lemma 3.1. (i) If deg(
,D, c) 	= 0, the equation
(x) = c has a solution in D.
(ii) Let 
(x, �) be a continuous map
 : D × [0,1] → Rn, such thatc /∈ 
(�D, [0,1]), then

deg(
(x, �),D, c) is a constant independent of�.
(iii) Suppose
 ∈ C1(D), c /∈ 
(�D) anddet(
′(x)) 	= 0 for anyx ∈ D such that
(x) = c. Then, the

equation
(x) = c has only finitely many solutionsx� in D and there holds

deg(
,D, c) =
∑
x�

sgn(det(
′(x�))).

Now we are ready to prove the main result given by Theorem 1.1.

Proof of Theorem 1.1. Let

�k = −�k(
k�w) = 0, k = 1, . . . , n. (3.1)

Supposex ∈ XL,�0,M
n (h) is solution of (3.1). Then we have

�xk�k = (
k�w)(xk + hk)

∑
�	=k

1

(xk + hk − x� − h�)(xk − hk − x� − h�)

+ 1

(xk + hk − x� + h�)(xk − hk − x� + h�)
+ 1+ �

x2k − h2k

)
>0

and inequality is obvious. Now, we have

�xm�k = − (
k�w)(xk + hk)

(
1

(xk + hk − xm − hm)(xk + hk − xm + hm)

+ 1

(xk − hk − xm − hm)(xk − hk − xm + hm)

)
<0

inequality is obvious.
Also it is clear that

�xk�k +
∑
m 	=k

�xm�k = (
k�w)(xk + hk)
1+ �

x2k − h2k
>0,

which gives

�xk�k > −
∑
m 	=k

�xm�k =
∑
m 	=k

|�xm�k|.
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Thismeans that Jacobian is diagonally dominant,with positive elements on themaindiagonal andnegative
elsewhere, so that

sgn(|�xm�k|m,k=1,...,n) = 1.

The rest of the proof goes exactly as it is given in[3] or [6]. Choose� = min{L, �0}. The proof hasN
steps, whereN is defined byh = (N + �)�/4, 0< ��1, with h =max{h1, . . . , hn}. At the jth step, the
uniqueness is proved for the set of lengthsh(j) = (j + �) �

4h h, j = 0, . . . , N .
In the first step, the mappings


(0)(x, �) = (�1(x, �h(0)), . . . ,�n(x, �h(0)))

are considered onXL,�0,M
n (0) for each 0���1. It is obvious
(0)(x,0) = 0 has solution for� = 0 and

that solution is unique. That solution is, really, the classical Gauss–Laguerre quadrature rule. Since the
sign of the determinant of the Jacobian is positive, using Lemma 3.1, we know that

deg(
(0)(x,0),XL,�0,M
n (0),0) = 1.

Forx ∈ XL,�0,M
n (0) and 0���1, we have

0<x1 − �h01, xk + �h0k < xk+1 − �h0k+1, k = 1, . . . , n − 1.

Then, for any solutionx of the system
(0)(x, �) = 0, we have that sign of det(J (x, �h(0))) is positive.
Hence, according to Lemma 3.1, part (ii), we have

deg(
(0)(x, �), XL,�0,M
n (0),0) = 1

for all � ∈ [0,1], and in particular for� = 1. This means that the system
(0)(x,1) = 0 has a unique
solution inXL,�0,M

n (0). It is also the unique solution on the smaller setXL,�0,M
n (h(1)), according to Lemma

2.12.
In the caseN 	= 0, we proceed with the same arguments to the mappings


(1)(x, �) = (�1(x, �h(1) + (1− �)h(0)), . . . ,�n(x, �h(1) + (1− �)h(0)))

to prove that there is a unique solution inXL,�0,M
n (h(0)), which is also unique in the setXL,�0,M

n (h(1)),
according to Lemma 2.12.
After that, the same arguments are iterated to the mappings


(j)(x, �) = (�1(x, �h(j) + (1− �)h(j−1)), . . . ,�n(x, �h(j) + (1− �)h(j−1)))

until j reachesN. �

Note that we have proved the existence and uniqueness.
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Table 1
Nodes and weights in (2.1) forh = (2−11, . . . ,2−11) andw(x) = e−x

k xk �k

1 1.377940166284629(−1) 3.540104794852169(−1)
2 7.294553294941193(−1) 8.319023631683221(−1)
3 1.808343714231451 1.330288577914199
4 3.401434520637697 1.863063909509826
5 5.552496967372349 2.450255561241085
6 8.330153576459341 3.122764156923402
7 1.184378666901005(1) 3.934152696675963
8 1.627925866340221(1) 4.992414872941587
9 2.199658664463931(1) 6.572202485670547
10 2.992069784541086(1) 9.784695840808932

4. Numerical results

For numerical construction of the weights�k, once nodes are constructed there is nothing better
than relations (2.8), since all the terms included are positive. However, it is obvious there can be some
cancellation in the calculation of
, providedxk + hk andxk+1− hk+1, are close enough for somek. We
did not encounter any such problems, since in the examples we are presenting we keep relatively small
number of nodes.
For the construction of nodes in the Gauss–Laguerre interval quadrature rule, we propose an algorithm

on the system of equations (2.5). Since the system of equations (3.1) definesxk, k = 1, . . . , n, as implicit
functions ofh, according to the proof of the main theorem, we know that these functions are continuous.
We can start with the classical Gauss–Laguerre quadrature rule and increaseh for small amount from
0 and solve (2.5) using the Newton–Kantorovich method. If during iterations, some of the intervalsIk
interlace or ifx1− h1<0, we should start again with a smaller increment inh. We iterate the procedure
until we reach the desiredh.We point-out that according to the proof of main Theorem 1.1, we know that
the Jacobian of the system of equations (2.5) is diagonally dominant, so that it is always invertible.
We can summarize the previous facts in the following procedure:

1◦ Using QR-algorithm, construct the classical Gauss–Laguerre quadrature rule(h = 0).
2◦ Increase the vector of lengthsh for some small amounts and solve(2.5) for such ah. If during

computations some solution goes out of[−1,1] or if there is overlapping between the intervalsI �, �=
1, . . . , n, the process should start again with a smaller increment inh.

3◦ If a desiredh is reached, go to the next step; if it is not go back to the step2◦.
4◦ Use Eq.(2.8) for the construction of weights�k, k = 1, . . . , n.

Three examples are given. In two of them we taken = 10 nodes (Tables1 and2), and in the third
example we take only four nodes (Table3). All calculations are performed in double precision arithmetic
with machine precision≈ 2.22× 10−16. Numbers in parentheses indicate decimal exponents.
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Table 2
Nodes and weights in (2.1) forh = (2−7,2−11, . . . ,2−11) andw(x) = x−1/2e−x

k xk �k

1 6.052967278273032(−2) 2.412481462579694(−1)
2 5.442474084979854(−1) 7.283299804186028(−1)
3 1.523295984637797 1.233869234227906
4 3.022858246758531 1.772188329401966
5 5.085249814290907 2.363573236867304
6 7.777779889478171 3.038970646692715
7 1.120847005470487(1) 3.851789365809746
8 1.556150267238522(1) 4.909484833536406
9 2.119423108827917(1) 6.485050289965512
10 2.902528907312939(1) 9.682293806768922

Table 3
Nodes and weights in (2.1) forh = (14,

1
20,

1
20,

1
6) andw(x) = x−1/2e−x

k xk �k

1 2.666576691057568(−1) 7.265863111854613(−1)
2 1.484028741362700 1.808913281049689
3 4.059621417868565 3.428967366512284
4 8.720111988907440 6.285437046077216
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