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Abstract

In this paper we prove the existence and unigueness of the Gaussian interval quadrature formula with respect to
the generalized Laguerre weight function. An algorithm for numerical construction has also investigated and some
suitable solutions are proposed. A few numerical examples are included.
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1. Introduction

By the Gaussian interval quadrature formula with respect to the positive weight fungtismassume
a quadrature formula of the following form:

Xi+hy

b n
My
/ fwdx%E —/ fwdx, (1.1)
a k=1 2hy X

k—hk

which integrates exactly all polynomials of degree less than 2

* The authors were supported in part by the Serbian Ministry of Science and Environmental Protection (Project #2002: Applied
Orthogonal Systems, Constructive Approximation and Numerical Methods).
* Corresponding author. Tel.: +38 118 520 996; fax: +38 118 588 399.
E-mail addresseggrade@elfak.ni.ac.y(G.V. Milovanovic), aca@elfak.ni.ac.y(A.S. CvetkovE).

0377-0427/% - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2004.12.021


http://www.elsevier.com/locate/cam
mailto:grade@elfak.ni.ac.yu
mailto:aca@elfak.ni.ac.yu

434 G.V. Milovanow, A.S. Cvetkovi/ Journal of Computational and Applied Mathematics 182 (2005) 433-446

There are different results for the questions of existence of such quadrature rules (for example, see
[1,4,7,9,11].

The question of the existence for bounded is proved in[2] in much wider context. Suppose that
w is a weight function ori—1, 1], i.e., a nonnegative Lebesgue integrable function, such as that for
I=(x,p) Cl[-1,1],a # B, we havef, w(x)dx # 0. In[2], Bojanov and Petrov proved the following
statementGiven the ordered set of odd integérs, . . ., v,}, with the propertyr + >} _; vi =N +1,the
Chebyshev system of functions, ..., uxy} on[—1, 1], the Markov system of functions, ..., v,,_1,
on[—1, 1], wherem = max{v1, ..., v,}, and a set of the lengthig >0, ..., h, >0,with > h; < 1,there
exists an interpolatory quadrature formula of the form

1 n w—1
Hi vy
dr ~ ' / v dr,
/_1f(x)w(x) x k; gjo o ), f ), (0)w(x) dx

where intervald, C [-1, 1], k=1, ..., n, are non-overlappingwith the length of;, equals2i;, which
integrates exactly every element of the linear span. .., uy}.

Also they proved that Gaussian interval quadrature formula for the Legendre weight= 1 on
[—1, 1] is unique (se€3]). The uniqueness of Gaussian interval quadrature formula for the Jacobi weight
and its numerical construction was giver{&j.

In this paper we present the existence and uniqueness results of the Gaussian interval quadrature
formula for the generalized Laguerre weight functio(x) = x*e™*, « > — 1, on(a, b) = (0, +00). The
paper is organized as follows. In the remainder of this section we give some notation and state the main
result. Preliminary and auxiliary results are given in Section 2 and the main result is proved in Section 3.
Finally, a numerical algorithm and numerical results are presented in Section 4.

Denote byH the following set of the admissible lengths

n
hi>0,2hk<H}

HY = {h e R
k=1

and the corresponding set of the admissible nodes by

Xy ={xXeR"|0<xy—m<x1+h1<---<x, —h,<x, +h, <+ 00}.
Also, we introduce the set of the formal nodes

Xu(h) = {x € R" [0 <x1 — hi<x1 + h1< - <Xy — by <oy + hy < + 00)
and the sex%-®M py

X,f’go’M(h)z{Xe R"|0<L <xy—h1, xge1 — hgr1 — x;p — hy > 60> 0,
k=1 ...,n—L1x, +h, <M}

Our main result can be stated in the following form.

Theorem 1.1. For everyh € H| the Gaussian interval quadrature rui@.l) with respect to the
generalized Laguerre weight(x) = x*e™*, a> — 1, on (a, b) = (0, +00), with nodesx € X, (h)
and positive weightg,, k =1, ..., n, exists uniquely. Moreovgethere exist the positive constantseb,
and M, depending on n and Huch thatx € X5 (h).
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2. Preliminary and auxiliary results

Let 2, n € No, be the set of all algebraic polynomials of degree at mamthd 2 be the set of all
algebraic polynomials.
First, we give some preliminary definitions and results. Degotex

dp=wdx =x*¢"dx on]0, +00),

wherex > — 1, andyy = 1+ o — x, such that we have the following Pearson’s equati@n)’ = yw holds
(see[5)).

Lemma 2.1. For any polynomialp € #,, there existy € #,,_1 andy € C, such that
/pwdx =qgow +yI'[l+ o, x]+ A,

where A is an integration constant ads the incomplete gamma function defined by
+00
I'a,x]= / ““le7dr, a>0, x>0.
X
Proof. Let p € 2,. For every polynomiap =r'¢ + ry, r € 2,1, we have

/ pwdx = /(r/d) +ry)x"e " dx = /(rd)w)/dx =row+ A

so that we can identify = r andy = 0.
Now, we consider the linear space

,f”:{r/(b—i—rx//h’ € Pp_1}.
Obviously its basis is
L=""Yx+x" T l40—x)=—x"+v+a0x"L v=1....n

Adding £ = 1 to this basis we get a complete basis#ai=2,,+20). Taking any polynomiap € 2,,
we have

n
p=D_ wh
k=0

and therefore,

n n
/pwdx:yofﬂowdx+zyk/Ekwdx=y0F[1+ac,x]+¢wZ ykxk_l—l—A

from where we can identify uniquetyas ;_, yx*~tandy = 9. O
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Now, we define the following sets:

=k — hi, xg +he), T =[xk —he,xx +hed, k=1,...,n,

I:Lnj I, 7=U7 0, +00)\1

aswellas01 =10, x1 + h1), Ogr1 = (xk + hg, Xkr1 — hir1), k=1, ..., n—1, 0411 = (x5 + hy, +00).
These definitions enables us to express results in a shorter form.
The next definition gives precisely what we mean by the Gauss—Laguerre interval quadrature rule.

Definition 2.2. The Gaussian interval quadrature rule with respect to the generalized Laguerre measure
du=x*e*dx, x> — 1, forh € H is an interpolatory quadrature rule of the form

[ peu= ZZk [ ran peras 2.1)

providedx € X, (h).

The following statement is very important, since it enables us to prove almost all of our results. Similar
results for finite intervals can be found [ 3,6].

Lemma 2.3. (i) Assumel< s <2,k =1,...,n,with Y7_, s = N + 1,h € HZ, x € X, (h), and let
fmie-m=1 jr, k=1,...,n, be arbitrary numbers. Then the interpolation problem

1

—f " Vdu=fur, m=1ji, k=1,....n (2.2)
2h )y,

has the unique solution iz . ~

(i) Assume that< jx <2,k =1,...,n,withY }_; jx = N + 1,h € HX, x € X, (h), then for every
¢ € C there exists the uniqug. € 2y, such thatp = cxV*+1 + 4., solves the following interpolation
problem

1

(m—1) _ _ : _
— | p du=0, m=1j;, k=1, ...,n
],

and there holdg, = cq;. In everyI, the polynomial p has exactly zeros and those are all its zeros

Proof. In order to prove this lemma, we show that the corresponding homogenous system of equations
(2.2), with f,, x = 0, has only a trivial solution. Note that this system can be expressed as a system of
linear equations for the coefficients jof

The proof for the part (i) is already given |8, Lemma 1] Here, we give this proof for the sake of
completeness. We can simply count zeros to see that in every subiietivate arej; zeros, so that in
total we have) ", jx = N + 1 zeros. This means that if the solution is not trivial it has a degree at least
N + 1, and it is not a solution ie?y .
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For the patrt (ii), we can rewrite the interpolation problem in the following form:

1 c
il m=1) q, — _ N+1\(n—1) . B
u=——=— 1 (x ) du, m=1ji, k=1,...,n. 2.3
2ni /7 2 )y, (2.3)

Now, we can apply the first part of this lemma with

C _ .
f}’l’l,kz__ (xN+l)(m l)d,ua m=15 ]ka kzla-"’m
th Iy

to the interpolation problem (2.3), and denote the unique solutian b@bviously, the linear system of
equations which defineg has a free vector from whiahcan be factorized, so that = cq4. For the last
statement we refer to the proof of part (i)

The next lemma shows that for everye H the Gauss—Laguerre interval quadrature rule must have
nodes inX,,(h).

Lemma 2.4. Supposé HH and there exists a Gauss—Laguerre interval quadrature rule with nodes
x € X, (h), thenx € X,,(h).

Proof. Leth e H andx e )?n(h), butx ¢ X, (h). Then at least one of the equalities

Xp + hg = Xp41 — k41, k=1,...,n—-1
holds. Suppose, it is the case for sokne {1, ...,n — 1}. According to the interpolation Lemma 2.3,
part (ii), there exists a monje € 22, _», with the properties
1
— | p" Vdu=0, v=1,....k—1k+2 ...
ZhV/rp R TE e KIS
and
! d ! / du=0, hp#0, orhgi1#0
P = =y, k ) k+1 )
2hi Ji, pok 2hi+1 Ji poK -

px)=p' () =0, hg=hy1=0.
Obviously suclp annihilates the Gauss—Laguerre interval quadrature sum and it is of a constant sign on
O. This means thaf pdu= [, pdu # 0, which is a contradiction. [J

An immediate consequence of the previous lemma is that all weightre positive in the Gauss—
Laguerre interval quadrature rule.

Lemma 2.5. For the Gauss—Laguerre interval quadrature r#1),we havey, >0,k=1,...,n.
Proof. Suppose there is some indéxe {1,...,n}, such thaty, <0. According to the interpolation
Lemma 2.3, there exists a monic polynonpak #2,_», such that

1

/p(m_l)d,uzo, m=12 v=1....k—1k+1,...,n
2hv I,
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For thisp the Gauss—Laguerre quadrature formula (3.1) is exact. On the other side this polym@nial
positive onA = O U I, so that we conclude, =2k [ p du/ f,k pdu=2h; [, pdu/ f,k pdu> 0, which
is a contradiction. OJ

The following theorem shows that there exists a uniform bound for nodes in (2.1) regartirgHd .
This is an important result, which enables us to think about Gauss—Laguerre interval quadrature rule as
it is given with respect to some measure on the bounded supporting set.

Theorem 2.6. Letn € N and H >0 be given. Then there exists a constant- 0 such that for every
h € H andx € X,,(h), for which(2.1)is the Gauss—Laguerre interval quadrature rulee have

Xp <M. (2.4)

Proof. Suppose, it is not the case for some= N and H >0. Then for everyM > 0 there exists a
quadrature rule of the form (2.1) for sorhec H,f’, such that there exists an indexe {1, ..., n} for
which x,, > M.

Suppose that for alM > 0 we have that alk, + 4,, v=1, ..., k, are bounded by som#&;, and
thatx, > M for v=£k + 1, ..., n. For sufficiently largeM there exists a fixed constam’ such that
My <M <M.

According to the interpolation Lemma 2.3, part (ii), there exists a monic polyngrofadegree 2 — 1,
satisfying the conditions

1
2h,

\/p(m_l)dl'l:o’ m:1725 V:l’,..,n_l
I,

and

1
dy=0.
2hn/1np #

This polynomialp annihilates the Gauss—Laguerre interval quadrature sum. Clfosese p. So thatP
is positive onO\ 0,41 and negative o, 1. Sincef, P du =0, we have

/Pd,u:/ Pd,u—/ (=P)du=0.
O\Op+1 On+1

Then for chosed!’, M, < M’ < M, we have

M/
/ Pdu> / (x — MM — x)? % Ldu=J>0.
O\Opt1 My
Note that, according to Lemma 2.1, there egjisindy such that
J1=(gopw)(M") — (gpw)(My) +y(I'(L+ o, M') — T'(1 + o, My)).
Similarly, there exisy; andy, such that

+o00
0< / (—P)du </ x*(x = MNP dp = —(gropw) (M) — 9T (L + o, M) = Jo.
On+1 M
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We see thatl» tends to zero abl increases, so that

/Pd,u:f Pd,u—/ (=P)du>Jy— Jo>0
O\Op+1 On+1

for sufficiently largeM. This is a contradiction, i.ex;4+1 must be bounded.
Repeating the same arguments we provexthas, . . ., x, must be bounded, which is a contradiction.
O

Remark 2.7. According to (2.4) x,, + h, is also bounded, i.ex;, + h,, <M + H.
Almost with the same arguments, we can prove the following result.

Lemma 2.8. Letn € N and H >0 be given. Then there exists a constédnt 0 such that for every
h e HZ andx € X, (h), for which(2.1)is the Gauss-Laguerre interval quadrature rule have

O<L <x1— h.

Proof. Suppose it is not the case for some N and H >0. Then for eveny. > 0, there exish € H
and respective nodes of the Gauss—Laguerre interval quadraturea g (h), such that there exists an
indexk € {1,...,n}suchthatO<x, — h,<x,+h,<L,v=1 ... k.

According to the interpolation Lemma 2.3, part (i), there exists a monic polynéhobdlegree 2 — 1,
such that

1 de 1
2h, T

This polynomialP annihilates the Gauss—Laguerre interval quadrature sum. In order to prove that
cannot annihilatg’ P dy, for everyL > 0, we consider

/Pd,u:/ Pd,u—/ (—P)du.
0\ 01 01

Note thatP has a positive sigh 0@\ 01 and negative oi®1. According to Theorem 2.6 and correspond-
ing remark, there exist&/ > 0 such thaty,, + h, <M’ = M + H. Then, using Lemma 2.1, with the
corresponding andy, we have

/P(m_l)d,u:O, m:l’z’ V:Z,...,n-
I,

+o0
/ Pdu> / (x — M)Y* rdu= —(gpw)(M") — y(F(L + o, M')) = J1 > 0.
0\01

/

Also, with the corresponding; andy,, we have
0< | (=Pydu< /0 L(x — MY rdu= (qpw)(L) + 1 (F(L+ o, L) — I'(1+ 2)) = Ja,
1
whereJ, evidently tends to zero @ — 0T. Thus, for a sufficiently small, we have
/Pd,u:/ Pdu— (=P)du>J1—J2>0
0\ 01 01

which is a contradiction. Therefore; — h1 must be uniformly bounded from zeroJ
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In the sequel we use the following notation.

Definition 2.9. We denote

n
o=[]e—x —h)& —x +hy,
v=1

Q

Q= , k=1 ...,n
(x — xg — i) (x — xg + hy)
and
(Qrpw) (xg + hy) — (Qudw) (xx — hy)
A (Qrpw) = 2hy . hx #0,
0y, [(Qupw) (xp)], hi =0

fork=1,...,n, whered, =0/0x.

Theorem 2.10. For everyh € HY | the nodex € X,,(h) of the quadrature rulg2.1) satisfy the system
of equations

A (Quopw) =0, k=1 ...,n. (2.5)

For h € H, every solutionx € X, (h) of system(2.5) defines the nodes for the Gauss—Laguerre
interval quadrature rulg2.1).

Proof. Applying the Gauss—Laguerre interval quadrature rule (2.1) to the polynamijahy)’/w of
degree 2 — 1, we have

/ (2, ¢w) _ Z Zh (Q‘,(Z)w) du = 11,4, (2,¢w),
k

i.e., ifx are nodes of the Gauss—Laguerre interval quadrature rule, they must satisfy (2.5), since according

to Lemma 2.5, we have, >0,v=1,...,n.
For anyp € #2,_2 we have
n
h —h
Z ( P/(xk + hi) N P/(xk ) > _o. (2.6)
Q(xp +he) Q' (xk — hy)

k=1

This can be proved by applying Cauchy Residue Theorem to the rational fupgtibaver the contour
Ag ={x||x — M/2] =R}, R > M/2, and lettingR — +o0.
Now, suppose that for € X, (h) we have
1 1

@dw) e + i) T @) — )

(2.7)
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Then obviously, according to (2.6), we have for gng #2,_2

. 1
0= ]; Fowr ool Pe sk + ) = (pdw) e = b))

3 1
= /d |
,; (Q dw) (xk + hi) Jy, (popw)’ dx

But also

/ POW) G4 — (pguw)

+00
=0,

w

0

so that for every € 25, 1 of the formr = p’¢ + py, p € 22,_2, we have

‘ 1
rdu=C rd
f g ,;1 @) G+ h) Ji, "

for a constantC. Now we can choos€ such that the previous formula is exact for alle 25, _1.
According to the proof of Lemma 2.1, it is enough to adjust this formula to be exactfép = 1, which
gives

c= o
n 2himo i
k= () O+ )
where
mOZ/d,u, mokzi du, k=1,...,n.
’ 2h It

The system of equations (2.7) defines the Gauss—Laguerre interval quadrature rule. However, it is equiv-
alent to (2.5), because of

Q (xp £ hy) =20 Q(xx £ hy), k=1,...,n.
Using these equations, by definition®@f, we can conclude that
(Q pw) (xk + hi) = 2h (Qdpw) (xx + hy) >0

forh € H? andx € X, (h), which givesC > 0. Thus, all weights in the constructed quadrature rule are
positive, as we know also from Lemma 2.5.
To be completely fair, we need to give an explanation for the éase 0 for somek. Since the
corresponding term of (2.6), in that case is given by
p/Qk _ pQ/
Tk(xk),

k
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we can transform it to the form

P'Q —pQ  p'Qudw + pQ(dpw) — pQ(Ppw) — pQ) pw
Q2 B Q2w
k k
_ (ppw)' Qe — p(Qpw)’
Q,%(bw

and we require that term withhvanish so that we have
(Qupw)' (xk) = 0,, [(Qupw) (xx)] = 0.
This is exactly what equation of system (2.5) become&jfoe 0. O

Remark 2.11. According to the proof Theorem 2.10, we have the following formulas:

mo 1
= 5 k = 1, e ey 28
21 o (Qpw) (xk + hi) " 28)
= (Qy9w)(xy + hy)

for the weights in the Gauss—Lagurre quadrature formula (2.1).

My

Lemma 2.12. Suppose: € N and H >0 are given. There exish > 0, L > 0 and M > 0, such that for
all h € HY and all nodesx € X, (h) of the Gauss-Laguerre interval quadrature rg1), we have

X € XkwoM

Proof. The existences @fandM is already proved, so we prove now the existeneg.@fssume contrary,
then for every; > 0, there existd® € H! and the respective set of nodés e X,,(h®), for which (2.1)
is Gauss—Laguerre quadrature formula, with the property that at least one of the following equalities:

£0 &0 __ €0 &0 —
X, + hy —I—eo_xk+1—hk+1, k=1 ...,n—1

holds. Since the sets® andx® are bounded, there are the convergent sequética$, k € N, with the
limits h® andx?, such that at least one of the equalities

0 0_.0 0 —
xk+hk—xk+1—hk+1, k—l,...,n—l

holds. Since the weighis, v=1, ..., n, are continuous functions dfandx, according to (2.8), fon®
and the respective set of node’s we have that the rule

no0
Hy
pdu="> —o/ pdu
/ k=1 2hy I

constructed from the nod&8 and length$°, is exact forp € 25,_1, because of continuity. Since for this
Gauss—Laguerre interval quadrature rule we have at least two intervals which have the boundary point in
common, we can apply the same arguments as in the proof of Lemma 2.4 to produce a contradiction.
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3. Proof of the main result

To prove the main result, we are going to need the following topological result, which can be found in
[8,10]. o -

AssumeD is a bounded open set i&*, with the closureD and the boundargD, and®: D — R”"
is a continuous mapping. By dep, D, c) we denote the topological degreediwith respect td and
c¢ ¢(0D).

Lemma 3.1. (i) If deg®, D, ¢) # 0, the equationd(x) = ¢ has a solution in D

(i) Let &(x, 1) be a continuous ma@ : D x [0,1] — R", such thatc¢ ®@D, [0, 1]), then
deg®(x, 1), D, ¢) is a constant independent af

(iii) Supposed € C1(D), c¢ #(@D) anddet(d'(x)) # 0 for anyx e D such thatd(x) = c. Then the
equation®(x) = ¢ has only finitely many solutiong in D and there holds

deg®, D.c) =Y sgndet(@'(x"))).

XY
Now we are ready to prove the main result given by Theorem 1.1.
Proof of Theorem 1.1. Let
Y =—M(Qpw) =0, k=1, ..., n. (3.2)

Suppose € XM (h) is solution of (3.1). Then we have

1
0, Yr=(Q h
i Vi = (Qdpw) (i + hi) ; Ok + g — xy — hy) (o — g — xy — hy)
1 1+a
+ +—-—-=]>0
ek + he —xy + hy) (k= hie — %y + b)) xg — hy

and inequality is obvious. Now, we have

1
Xk +hie — X — hm) Xk + hie — Xy + hi)

Oy, Yk = — (Qudpw) (xk + hi) (

1
+ ) <0
Xk — he — X — hy) (X — hie — X + i)
inequality is obvious.
Also it is clear that
1+«
0, P+ Y 0, Wk = (Qudw)(xi + h)—— >0,

m#k k k
which gives

0, Pk>— >0, Y=Y 18, Yl

m#£k m#k
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This means that Jacobian is diagonally dominant, with positive elements on the main diagonal and negative
elsewhere, so that

ngaxm llUk|m,k:l ..... n) =1
The rest of the proof goes exactly as it is giver{3 or [6]. Choose) = min{L, }. The proof has\
steps, wherd\ is defined byh = (N + 1)d/4, 0< <1, withh = max{hy, ..., h,}. At thejth step, the
uniqueness is proved for the set of lengtih8 = (j + 11)% h,j=0,...,N.

In the first step, the mappings

O x, 2) = (P1(x, h ), ..., v, (x, 2h©))
are considered oNﬁ’ﬁO’M(O) for each 0</<1. It is obvious®©@ (x, 0) = 0 has solution for. = 0 and
that solution is unique. That solution is, really, the classical Gauss—Laguerre quadrature rule. Since the
sign of the determinant of the Jacobian is positive, using Lemma 3.1, we know that

deg @ (x, 0), XL-#0-M (@), 0) = 1.
Forx e Xk*M ) and 0<2<1, we have

0<x1—}hhg, xk+),h2<xk+1—},h2+1, k=1,...,n—1

Then, for any solutiorx of the systemp© (x, 1) = 0, we have that sign of det(x, 21h(@)) is positive.
Hence, according to Lemma 3.1, part (ii), we have

dego©@(x, 1), XLwoMQ©) 0)=1

for all 2 € [0, 1], and in particular for. = 1. This means that the systedi®? (x, 1) = 0 has a unique

solution inX 5™ (0). Itis also the unique solution on the smaller$§t™®™ (h®), according to Lemma

2.12.
In the caseV # 0, we proceed with the same arguments to the mappings
oD (x, ) = (P1(x, ;i + (1= Hh @), . w,(x, ;b 4 (1 - HhO))
to prove that there is a unique solutiomXtj ™ (h(©@), which is also unique in the sat;*M (h®),

according to Lemma 2.12.
After that, the same arguments are iterated to the mappings

D (x, 1) = (P1(x, 2hY) 4 (1 = HhU=D) v, (x, 2hD) 4 (1 — HhU—Dy)
until j reachedN. O

Note that we have proved the existence and uniqueness.
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Table 1

Nodes and weights in (2.1) for= (2=11, ..., 271 andw(x) = e

k Xk Ik
1 1.377940166284629(1) 3.540104794852169(L)
2 7.294553294941193(1) 8.319023631683224(1)
3 1.808343714231451 1.330288577914199
4 3.401434520637697 1.863063909509826
5 5.552496967372349 2.450255561241085
6 8.330153576459341 3.122764156923402
7 1.184378666901005(1) 3.934152696675963
8 1.627925866340221(1) 4.992414872941587
9 2.199658664463931(1) 6.572202485670547

10 2.992069784541086(1) 9.784695840808932

4. Numerical results

For numerical construction of the weighig, once nodes are constructed there is nothing better
than relations (2.8), since all the terms included are positive. However, it is obvious there can be some
cancellation in the calculation &f, providedx; + h; andx;41 — hi+1, are close enough for sorkeWe
did not encounter any such problems, since in the examples we are presenting we keep relatively small
number of nodes.

For the construction of nodes in the Gauss—Laguerre interval quadrature rule, we propose an algorithm
on the system of equations (2.5). Since the system of equations (3.1) defikes1, ..., n, as implicit
functions ofh, according to the proof of the main theorem, we know that these functions are continuous.
We can start with the classical Gauss—Laguerre quadrature rule and inleriasemall amount from
0 and solve (2.5) using the Newton—Kantorovich method. If during iterations, some of the intgrvals
interlace or ifx; — h1 < 0, we should start again with a smaller incremertt.iVe iterate the procedure
until we reach the desirdd We point-out that according to the proof of main Theorem 1.1, we know that
the Jacobian of the system of equations (2.5) is diagonally dominant, so that it is always invertible.

We can summarize the previous facts in the following procedure:

1° Using QR-algorithmconstruct the classical Gauss—Laguerre quadrature tale= 0).

2° Increase the vector of lengttis for some small amounts and sol{25) for such ah. If during
computations some solution goes out-ef, 1] or if there is overlapping between the intervals v =
1, ..., n, the process should start again with a smaller incremerit.in

3° If a desiredh is reachedgo to the next stepf it is not go back to the step.

4° Use EQq.(2.8)for the construction of weightg,, k =1, ..., n.

Three examples are given. In two of them we take 10 nodes (Table& and2), and in the third
example we take only four nodes (TaB)eAll calculations are performed in double precision arithmetic
with machine precisior: 2.22 x 10~16. Numbers in parentheses indicate decimal exponents.
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Table 2

Nodes and weights in (2.1) for= (2=7, 2711, ... 2711y andw(x) = x~1/2e~*

k

Xk M
1 6.052967278273032Q) 2.412481462579694(1)
2 5.442474084979854(1) 7.283299804186028(1)
3 1.523295984637797 1.233869234227906
4 3.022858246758531 1.772188329401966
5 5.085249814290907 2.363573236867304
6 7.777779889478171 3.038970646692715
7 1.120847005470487(1) 3.851789365809746
8 1.556150267238522(1) 4.909484833536406
9 2.119423108827917(1) 6.485050289965512
10 2.902528907312939(1) 9.682293806768922
Table 3

Nodes and weights in (2.1) for= (2, %J, 4. %) andw(x) = x Y2

k Xk My

1 2.666576691057568(1) 7.265863111854613(1)
2 1.484028741362700 1.808913281049689
3 4.059621417868565 3.428967366512284
4 8.720111988907440 6.285437046077216
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