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VARIOUS EXTREMAL PROBLEMS OF MARKOV’S TYPE
FOR ALGEBRAIC POLYNOMIALS

Gradimir V. Milovanovi¢

Abstract. Extremal problems of Markov’s type for algebraic polynomials in various
norms and classes of polynomials are considered. Especially, the problems in L2-norm
on the set of all algebric polynom als of degree at most # or on .some. its subsets
are investigated. :

1. Introduction and preliminaries

We begin our investigation by considering the following extremal problem:
Let 72, be the set of all algebraic polynomials P (5£0) of degree at most n
on an interval (a, b)) with a given norm || .||.

Determine the best constant in the inequality

(I'l) iA””Plil (PE@H)’

1. €.,

(1.2) A= sup 1L
rPco, 1P

The first result at this area is well-known classical inequality of A. A. Mar-
kov [19].
Theorem 1.1. Let (a,b) = (=1, D) and || fl] = || flle = max | f(z)|. Then
121
(13) | Pllasi?|Ple  PER,),

with an equality case for P(t) =Tu(t), where Tn is Chebyshev polynomial of the
first kind of degree n.

An other type of these inequalities is Bernstein’s inequality

(1.4) | P |l =n (1 —t2)~12 (PEP,).
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Markov’s and Bernstein’s inequalities are fundamental to the proofs of many
inverse theorems in polynomial approximation theory [15], [21], [10].

Recently, these inequalities have been considered on disjoint intervals by
P. S. Borwein [2].

In this paper, we will consider only inequalities of Markov’s type.

A generalization of the inequality (1.2) for higher derivatives was given by
V. A. Markov [20].

Theorem 1.2. For each k=1,..., n, the inequality

k—1

(1.5) | PO ||es <(7,;"—1)“,,‘l_[( n?—i%|| P|| (PEP,)

holds. The extremal polynomial is Ty.

We note that the best constant in (1.5) is equal | T |1, =T (1).  So
the inequality (1.5) can be written in the form

1POlo<T2 ()P w  (PEDR,.
In 1964 G. Szegd [34] studied an extremal problem for the norm
fll = sup | f(t)e™? | on (0,+ ). he proved the following:
t=0

Theorem 1.3. Let (a,b) = (0,+c0) and || f|| = sup |f(t)e"|. There exists a
=0

positive constant C such that

for each P &Py (n=2,3,...).
If we put

/1

u=([ If@A=Derdr,  1=p<oo,
—1

= sup | f@) | (1=t p=+ w,

where pu > 1 (@ =0 if p= 4+ c0), we can consider the following general
extremal problem (see [[1])

[ P®]lq, +

16 s ] e
( ) n k(p W g ')) P/_/})n HPpr

So the best constant in (1.5) is An,x(+ 0, 0; + o0, 0). We note that
Bernstein’s inequality (1.4) can be represented in the form

| P ||, 12=0 || P||w, 0 (PSP,

The case k = n 1s especially interesting. Namely, then we have the follo-
wing problem: Among all polynomials of degree n, with leading coefficient unity,
find the polynomial which deviates least from zero in the norm |||, ,.
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Some more general results in the integral norms are given in [13], [27], [11].
When p = g and p = v, there are several results.

E. Hille, G. Szegd, and J. D. Tamarkin [9] extended Markov’s theorem in
L? norm (p = 1) on (—1,1) by proving the following result:

Theorem 1.4. Let (a,b) = (—1,1) and || f|| = ISl 0 (p 2 1). Then
(1.7) | P'|=Cr?|| P PED,),
where C is a positive constant which dependens only on p, but not on P or on n.

A. Markov’s theorem (with a less precise value of the constant C) is obtained
from (1.7) by allowing p — 4+ co0. Another important case, namely, p = 1, was
treated by N. K. Bari [1] and recently by S. V. Konyagin [12], who considered
the extremal problem (1.6) for p = ¢ =1 and p. = v = 0. He found an estimate
for Ay, r=A(1,0; 1,0).

Theorem 1.5. There exist two constants ¢; and ¢ (0<c;<<cp <<+ ©) such that

aT® (1) aT® (1)
¢ " <A ,=cp — P
(k+1) (i—k+1) 2+ (n—k+1)

for each n ©N and k= 1,..., n.

Especially important cases are p = ¢ = 2. In the following section we con-
sider such cases. In Section 3 we give some classical results for the extremal
problems on some restricted polynomial classes. In Section 4 we discuss the Var-
ma’s extremal problems in L2-metric. A complete solution of Varma’s one
and related problems we give in Section 5. Finally, in Section 6 we consider
some extremal problems in L2-metric with Jacobi weight on (—1, 1).

2. Extremal problems in LZ2-norm

In the L2-metric we give first the following result of E. Schmidt [30] and
P. Turdn [36]:
Theorem 2.1. (a) Let (a,b) = (— o0, + o) and || f|]*= f e~ f(¢£)>dt. Then
the best constant in (1.2) is Anx\/2—rz.. An extremal polynomial is Hermite’s
polynomial Hpy;

(b) Let (a, b)=(0,+ c0) and | f||*= f e ! f(t)*dt. Then
0

A,= (2 sin «ﬁ—)—l.
4n+2

The extremal polynomial is
V7T

P (1) leini 1 Ly,

n

where L, is Laguerre polynomial.
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The Theorem 2.1, in this form, was founulated by P. Turcm E. Schmidt
proved only

A4, ="
24 Q2n+12  (2n1)

211-?—1( 2 ' gy 4% )*1

™

where —8/3 << R << 4/3.

Recently, L. Mirsky [26] considered the case of L2-metric with an arbitrary
weight function w :(a, b) - R, (— oo = a < b = + o0) for which all moments
are finite,

Theorem 2.2. There exists a number An=An(a, b ;w) such that, for every polyno-
mial P with complex coefficients and of degree not exceeding n, the inequality (1.1)
holds. Furthermore, we have

n 1/2
2.1 A4, ( > ki ‘\2) :

k=1

where (zx) is a system of polynomials orthonormal with respect to the weight func-
tion w. :

The main interest of this result is, however, qualitative, f01 the bound speci-
fied by (2.1) can be very crude. For example when w(7) =e=** on (— ®, + o)
the estlmate (2.1) becomes

1/2

A4, <(z 2/c2) ~ 0(n3/2)i
k=1

The contrast between this estimate and A, = }/2n (see (a) in Theorem 2.1)
evident.

In [6] P. Dorfler considered the analogous inequality for derivatives of hig-
her order and compute the best possible constant:

Theorem 2.2. Let P be any polynomial with complex coefficients of degree at most n.
Then the best possible constant An, y, such that

[P = Ag, [P,

is the largest singular value of the matrix A , where

e(()i,") .. fl'il) \
A= - , &% = [ =l () m; (6) w(t) dr.
a
() (1)
eo'n}'lv-)ﬂ cl’l’,nll'—n'l

Moreover, the estimation

n 1/2
max || = A, é( 2. | 752“)”2)

|I —_
0= k=0 ¢ =

holds.
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The exact constant in (1.1) can be found as a maximal eigenvalue of a ma-
trix of Gram’s type. Now, we consider a more general case with a given nonne-
gative measure di(t) on the real line R, with compact or infinite support, for
which all moments

w= [rda@),  k=0,1,...,
R

exist and are finite, and p, > 0. There exists, then, a unique set of orthonormal
polynomials wp(.) = we(.;dn), k =0,1,..., defined by

n, (t)=a, t* +lower degree terms, a0,

(2.2) [ ), (AN =8, Kk, m>0,
R
(For any polynomial P (" 7#,, with complex coefficients, we take

1el=(f 1P@Prdm)”

R

and consider the extremal problem

(23) An, m An, " (d )‘) - suUp - — : (l =m — ”)-

Theorem 2.4. The best constant Ap,w defined in (2.3) is given by

24) An, m o ()\max (Bn, 111))1/27

where .y (B, ) is the maximal eigenvalue of the matrix .B,,,m:[bg-”) mS i, jS ns
which the elements are given by

(2.5) b o [ 7O @) da),  m=Zi,jzn.

R

An extremal polynomial is

n
* L. ,
P (t)_ Z Cre Tk (t)!
k=
where [Cm, Cpyots - - - » Cn) T is an eigenvector of the matrix By, m corresponding to
the eigenvalue M, (Bn, m)-

Proof. Let PP, Then we can write P(t)—= 2 ¢ m (1) and P™ (f)=
k=0

n

= > ¢ e (t), m=n, where the coefficients ¢ are uniquely determined. Hence,
k=m

by (2.2) and (2.5),

n

P = kz e 2 and [[PM (2= 3 7,55

= i,j=m
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Now we have

n

z C; Ej bgj{”)

(2.6) [P _i=nm _ Brm&©
12 o ce, ¢
2 el
L=
with equality case ¢, = ... =¢,_;, =0, where (.,.) is the standard inner

product in an (n — m + 1)-dimensional space.

The matrix Bp, m 1S evidently positive definite. Since the right side in (2.6)
is not greater than the maximal eigenvalue of this matrix we obtain

(27) l‘ P ,]2§‘7‘max (Bn, rn) HP,:Z
In order to show that 4, », given by (2.4), is best possible, we note that (2.7)

reduces to an equality if we put P (¢)=P*(t)= Zc;; 7, (1), where [ch, Chiriy. ..,

cy 17 Is an eigenvector of the matrix B, ,, corresponding to A, (B, ..)-

n, m

An alternative result like Theorem 2.3 is the following theorem:

Theorem 2.5. The best constant An, m defined in (2.3), is equal to the spectral norm

of one triangular matrix Q,I,: my Q.= G5 In=i, izn (qE;”’zo < i>]), le.
(2.8) Ay =6 (@, m) = O Qo e @, w))'2,
where the elements ¢' are given by the following inner products
g =@, w_) (m=i,j=n).
Alternatively, (2.8) can be expresed in the form
(2.9) A= (i (C, ) 172,

T o
\t‘hef'({ C"’ m= (Q”, m Qﬂ, l”) 1'

Proof. Tt is enough to consider only real polynomial set /2,. Let P72, and

n
@)= > ¢4 ., (1), where ¢4’ ~ (=}, =_ ). Then we havc

i—m j—m
i=m

n i n n
n S S S ’
PO (t> = Z ¢ Z q ij') Tim (Z) = Z ( Z Cj q('f?;) ) Tim (t)

Jj=m i=m f=m \j=m

and

n n 2 n
‘ P(nz)HZ z (z qu(';)) — z Yiz,

i=m \j=i i=m

where we put

(2.10) Yi- 2 ¢q's  iem, o,
J=i
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Let ¢=[cp .. > )", Y=[Y,, ..., Y], and Q, ,,=[4 Imsi j<n. Since
Y-0Q, ,c we have

| P('n)||2 <Y Yy Y, Y>
P[> AQwmOf )Y, Y

wherefrom we conclude that (2.8) and (2.9) hold.

Example 2.1. d A (t)~exp(—t?)dt, —oo<t< + 0. Here we have =, (1)=
= H, (t) = (/7 2% k!)~112 H, (1), where H, is Hermite polynomial of degree k. Since
Hi()=2kH,_, (1), ie., Hi(t)=~/2kH,_, (1), we have

H" () =\2k~\2(k—1)- - -/ 2(k—-m+1)H,_, (t)=~/2"m! (&) Heom @)
and
b(m) 2 ! (m) 81 o ms [ ] <n,
So, we find Ap,, (B, ) =2"m! () and A, ,=2"2>/nl/(n—m)!.

Also, this result can be found in unpublished Ph. D. Thesis of L. F. Sham-
pine [31] and [6].

Example 2.2. d 1 (t)=1t*e ' dt, 0<t<<oco. Here we have the generalized La-
xi

guerre case with w, (1) = Lk(r) KT (k+o -+ 1) Z (— 1)k s m where

1 2

I' is the gamma function.
First, we consider the case m = 1. Since

d4 5y M 7 () \/__f'_, ri+y
dr Lj (t) Z qij LI~ (t) qij = — I'(j4+at1) (i—1)! ?

from the equalities (2.10) it follows that

i+ -
ci:_’)fl-ll—J.-—K’ l—:l, P ,T’l,

1
where we put Y,,.,=0. The elements PP of the matrix Pn,I:Q;,fll are

' ) i .
pf,')».—\/l»:a—, i=1,...,n; p,(), -1, i=1,...,n—1;

p(l) -0, otherwise,

so that
[ VB 0
Ve 2 VE,
C, =PLiP, = — ' ' ' = ~J,
VB
| 0 Veno T




14 Gradimir V. Milovanovi¢

where
og=— (| + o), ak:—(?.—:— -_), Bk-=l—ﬁz—', k~=1,...,n—1.

We sce that J, is the Jacobi matrix for monic polynomials (Qz), which satisfy
the following three-term recurrence relation

Qs (t) =(1— U’k) Oy (f) - Bk O (t), k=0,1,...,
Q--l (t) =0, Qo (1)=1.

The eigenvalues of C, ; are A\y= —¢,, where Q,(¢,)=0, v=1, ..., n.

The standard Laguerre case (« = 0) can be exactly solved. Namely, then
for t=2(z—1) and —1=<z=1, we have

O.(t)=cos (2k+1) —2— / cos g- , z=c0s0,

The eigenvalues of the matrix Cp,y arc

oy (2v—=1) =
)\vw_—_tv=431n2~(—vi~, v=1,...,n.
2@2n1)

. . . v ~1 . . s
Since Ay (C,, 1) =1,, we obtain 4, , -—-(2 sin—— ) . This is Turdn’s result

22n+1)
(Theorem 2.1 (b)).

Now, we consider the case when m = 2 and « = 0. First, we note that

dem 'ZJ' (’) = (_' l)m Z )i’i—-m (1‘)

I=n

dm J (j—i~}—m-—l
, m -1

The formulas (2.10), for m = 2, become
Y= > (J—i+1be, i=2,...,n
j=i

Since A2Y,=c¢;(Y,,,=Y,,,=0), wefind a five-diagonal symmetric matrix of
the order n-1

— 1 -2 1 0
—2 5 —4 1
1 —4 6 —4 1

1 -4 6 —4 1
C, = oo S

1 -4 6 —4 1
1 —4 6 —4
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So, using the minimal cigenvalue of this matrix we obtain the best constant
Ap, »=min (C, ,))71/2. These constants, for n = 4 (1)10 are presented in Table 2.1
(with seven decimal digits). Numbers in parentheses indicate decimal exponents.

For n=2 and n=3 we have 4, ,=1 and A, ,=(3-+2+/2)"? respectively.

Table 2.1.

n Amin (Cu,z) ) An, 2

4 5.1590055 (—2) 4.,4026788

5 2.0635581 (—2) 6.9613208

6 9.8237813 (—3) 10.0892912

7 5.2614253 (—3) 13.7863181

8 3.0685649 (—3) 18.0522919

9 1.9090449 (—3) 22.8871610
10 1.2494144 (—3) 28.2908989

Remark 2.1. The last problem could be interpreted as an extremal problem
of Wirtinger’s type

Yi2 Z'/—*A)21,2 % (A* Y3, Y, =Y,,,=0.

i

i

Similar problems were given in [8] by K. Fan, O. Taussky, and J. Todd.

Remark 2.2. In 1965 L. F. Shampine [31] proved that

! 1 11
S Ahr=—~R,  O<R=———,
nt kg 2n 6 n?

where k,=1.8751041. .. (k, is the smallest root of the equation 14-cos k cosh k=0).

On the end of this section we consider a case with a special even weight
function. Namely, let dA(¢) = w(¢) dt on (—a,a), 0<<a<<co, where w(—t) =w().
Then we have

i1

PO
7'5.1'({)=—,-— > iy Tiezje (D), 7,70,
i=1

i

Now, we consider a class of weight functions for which g; ;=g¢;,,,;., (for example,
this property holds for Gegenbauer weight). In this case, for P&/, we have

Pr6)= 2 emi ()= 201 (S iy ria) mey (1)
= 1= J=
and
17P= 3 %7,
where

@1y Y,.=q,.,1__zoc,.+2jr,-;12j, i=1,...,n
4



16 Gradimir V. Milovanovi¢

If we put ¢; ,=p; and Y, ,=Y,,,=0, from (2.11) follows

Y, Y. .
ci=ri(~’»—4*~2), 1=1,...,n.
Pi Plya
Then
n 2 2 no.2 2 n—2 2
. I 2 r 2 ¥ 2 LI i 2 r;
PP=3cd=mYit Y+ S Y -2 5 =YV,
i=1 pl pz i=3 p‘ i=1 pipl-l"z

The corresponding matrix Cp , (see Theorem 2.5) is given by

o 003,
| 0 o 0 B 0 :
B, 0 o 0 B,
“ B8, 0 o, O B,
(2.12) C,.= R ;
‘ . . . . .
Gnos 0 oy, O By,
! 0 Bu-s B'GGa, 0
(_ S)l- 2 0 &y,
where
Fi At ";-}'_2 r?
o= Bi=—— (roy=ry=0).
D; DiPiy2

Now, we define two sequences of polynomials (R;) and (S;) by the follo-
wing three-term recurrence relations
n+ 1]
2 ]

(2.13) 1R, (6)=Bos_y Ry (1) 4 oysy Riey () 4 By s Ry (), =1, ...,
R_,(t)=0, R,(t)=R,=const
and
214) 18, (1) = By S; () + a0 Sy (D +Boi s S (8)y =1, ..., [-;’—] ,
S_(t)=0, S,(t)=S,=const.
Theorem 2.6. The eigenvalues of the matrix C, ,, given by (2.12), are the zeros of
polynomials
(a) S,_, and R,, when n=2k—1,
(b) Sy and R, when n=2k,
so that
(©) 4,_,,,=(min (¥, rl(k)))_”2
and
(d) Ay, = (min (579, )72,
w:helre s c;nd 1™ are the minimal zeros of the polynomials Sy and Ry respec-
tively.
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Proof. Firstly, we put v=v(t)=[R, (1), S, (), R, (?), S, (1), ...]F, where the
last coordinate of this (m— 1)-dimensional vector is R,_,(t) (if n=2k—1) or
Si_(#) (if n=2k). Using the matrix notation, the relations (2.13) and (2.14) can
be interpreted in the form

(2.15) tv=C, v+w,
where wy, in depending on n, is given by

w _[ B 1Sk ()e, 2+ B, R (D)e,_,, f n=2k—1,
" 1e,_ R()e,_,+B,S.(t)e, ,, if n=2k

and e, is an (n— 1)-dimensional vector which s-th coordinate is equal one, and
others are zero.

Putting firstly Ry=0 and 5,70, and then R,7#0 and S,=0, we conclude
that w, is a zero-vector if S;_,(z)=0 and R, (¢)=0, when n=2k— 1. In the
case n=2k, we have the same situation if S, (¢1)=0 and R, (¢)=0. Now, accor-
ding to (2.14) we can conclude that (a) and (b) in Theorem 2.6 are valid. Finally,
(¢) and (d) follow from (2.9).

Example 2.3. The conditions g¢; ;=¢;,,,;,.; are satisfied for Gegenbauer
measure dA(2) =(1l—2)~12ds, —1<¢<<1. Namely, we have

P41
d 2 [ 2] . . 112 AN
3 G O="5 Z] (+A=2j+1) hizzpen Cimzjer (1),

j=

where Cy is the normalized Gegenbauer polynomial of the order k, k=| C}||2=
1

@y r (7\4- 7) ,

=V= G+0ilT Q)
immediately from [25, Lemma on the p. 552].

and (p),=p(p+1):--(p+i—1). This formula follows

Thus, "
"i"“é‘l’/his pi:‘hl'f(i"h)‘_l)l/%:,
AT B +1) (A +2)
so, for n=1 and n=2, we have A1,1=]/2(7\+1) and 4, ;= %—).
In a special case, when A=1/2 (Legendre case), we obtain
1 1 2 ,
U=y Uy, O=—— . , I=3,...,m
3 15 2i+1) (2i-3)
1
LT - 5 -==1,...,n'—'2-
< Qi+1)/2i—1)(3i+3) Z
Similarly, in Chebyshev case (A=0) we have A
1 1 1 /1 1 :
Oy == %y s C/-i_‘*(", + )’ 1:3,‘-',}1;
2 16 4 \iz  (i—2)?
w2 1 . B
Bl"”l' , Bi--“’"4,-z‘> i=2,..., n—2.

2 Facta Universitatis
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Some numerical results are presented in Table 2.2.

Table 2.2.

‘ n Ap, (A=1/2) Ap, (2=0) ‘
1| 1.7320508 1.4142136
2 3.8729833 4.0000000
3| 6.5215962 7.3948177
4 9.7498094 11.6832385
5 13.5914030 16.8974115
6 18.0596447 23.0482821
7 23.1597543 30.1399752
8 28.8939700 38.1742735
9 35.2633549 471520448

10 42.2634628 57.0737521

3. Restricted polynomials

In this section and further we will consider extremal problems on some
restricted polynomial classes, i. €.,

P
3.1 A —sup LI
G-1 " pewn | Pl

where W, is some subset of /?,. We can restrict (see [17]): (a) zeros of P,; (b)

cocfficients of the polynomials. In this way, the inequality (1.1) can be improved.
So for the uniform norm on [— 1, 1] P. Erdos [7] proved the following result:

Theorem 3.1. If P P, has only real roots, none of which are in (—1,1), then

A =-1-en.

2
For the same norm, Q.I. Rahman and G. Schmeisser [28] proved:
Theorem 3.2. If P<7P, has at most n—1 distanct zeros in (—1, 1), then A,=
= (n CoS —Tf—)z. The extremal polynomial is.

dn
2 . T2
Tn(i(cosf—) z‘+(sml) ) .
4n 4dn

There have been several related results (e. g. [4], [32], [33], [3D).

In 1963 G. G. Lorentz [14] introduced polynomials with positive coefficients
in t,1—¢ on (0,1), i.e., the polynomials of the form

(3.2) P(t)=S bt (1—t)* b=0.
k=0

Also, these polynomials were studied extensively by J. T. Scheick [29].
The Lorentz theorem can be stated in the following form:
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Theorem 3.3. There exists a constant C>0 such that for each polynomial P of the
form (3.2),

(3.3) |P |0 =Cn||Plle (n=1,2,...),

for the uniform norm on [0,1].
The inequality (3. 3) is much better than basic Markov’s inequality (1.3).
Namely, the exponent 2 is replaced by 1.

In 1968 G. G. Lorentz [16] considered the problem of G. S7ego (see Theo-
rem 1.3) for the special polynomials with nonnegative coefficients in 7,

(3.4) P(t)=S a.t* =0,
k=0

and the norm of a function on (0,+ c0) is given by HfH—-sup |f(t)e 20,

Here w is a positive differentiable function which, together with £ te' (1), is
strictly increasing to + oo.

Theorem 3.4. Let « satisfy the inequalities

o(t)—w0)sdte (1), =0,
and
o ()40 (), 7t
for some positive constant A. Then for some constant C>0, the inequality

i p,, |
Il 2n |

is valid, for each polynomial P of the form (3.4).

M. A. Malik [18] studied an extremal problem in the LP-norm (p>1) on
(—1,1). Namely, he found the following improvement of Theorem 1.4 under only
a little restriction on the location of the zeros of P:

| I=CEP] pa) =1

Theorem 3.5. Let p>1 and P&P, have no zeros in the two cicular regions
|z+a|<l—a (0=a<). Then || P'| =Bn'tlr|| P||, where B is a constant which
depends only on p and a, but not on P or n.

Note that a can be taken as close to 1 as we like, except that 1 —a has to
be positive. Thus, we have the interesting conclusion that

[Pl _ O (ni+1ir
)
| P

howsoever small the two exceptional circles of the theorem may be.
Similarly, S. Zhou [43] showed in L?(—1, 1), 1<p< + co:

Theorem 3.6. If P& P, has at most k roots in (—1, 1) then
[ P'[=CFE)n] P,

where C(k) is a positive constant depending only on k.
The following result was given by V. I. Buslaev [5].

2%



20 Gradimir V. Milovanovié

Theorem 3.7. Let the polynomial P be represented in the form P(t)= Q(t) R(t), where

Q(z)zg(z—ri), |5 l=1@G=1,..., m)

and R is an arbitrary polynomial of degree r.
Then for every segment [a, b] lying strictly in the interior if the interval [—1,1]

1P Nlpp o =C@ D] Pl oy,
where

{J-=r+1+ Z 'Tl‘[—%
i=1

and C(a, b) depends only on a and b.

The extremal problems in L2-norm on the restricted polynomial classes are
especially interesting. In the next sections we will investigate such problems. Se-
veral results at this area were given by A. K. Varma [37], [38], [39], [40], [41].

4, Extremal problems of A. K. Varma

In several papers A. K. Varma studied the extremal problems of the form
(3.1) in L2-norm on (—1,1) and (0,+ o) for some restricted classes of polyno-
mials, So he got several inequalities of the form

1P P=Cll P[P (PEW,).

Beside that. he considered some oposite inequalities.

Let W, be the set of all algebraic polynomials whose degree is » and whose
zeros are all real and lie inside [—1,1].

1
Theorem 4.1. Let || f|*= ff(t)2 de. If PEW, and n=2m; then

-1

|2z (Tt
2 4 4@n-1)

2

where equality holds iff P(t)=(1—1t?)"™. Moreover, if n=2m—1, then

n 3 5
— 4+ —+
2 4 4n-2)

1P| J12IE nzs,

where equality holds iff P(t)=(1—t)""1(1+ )™ or P(t)=(1—t)m (1 +1)m1,

This theorem is proved by Varma in his paper [41] and it is an improvement
of an earlier his result [38]. Similar results in uniform norm and L?-norm (p=1)
on (—1,1) were given by P. Turdn [35] and S. Zhou [44] respectively.

In 1979 A. K. Varma [39] proved the three following results:
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1
Theorem 4.2. Let ||f|2= [ (1 —¢2)f(t)*dz. If PEW, then
—1

;e n 1 1
R e v L
(n+1)

with equality for P(t)=(l—12)" n=2m.

Theorem 4.3. Let P be an algebraic polynomial of degree =n having all real roots
and no root inside the interval [—1,1], then we have

nn+1) 2n+3) HPHz

|22
‘ 42n+1)
with equality for P(t)=(+1t)* or P(t)=(1—t)". The norm is the same as in the
above theorem.

Theorem 4.4. Let P be an algebraic polynomial of degree n having all zeros
. (k=1,..., n) inside [0, + ). Let P(0)=0 or

n
T—l = ._1.. .
k = s
k:l 2

then

, n
[P [Pz~ [{ P

~2@2n-1)

with equality for P(t) = t". Here || f]2 = f et f(t)2dt.
0

In 1981 Varma has investigated the problem of determinating the best eon-
stant in the inequality

(4.1) [P 2= Culo) || P12

for polynomials with nonnegative coefficients, with respect to the generalized
Laguerre weight function ¢ — t*¢~* (o> —1).

Theorem 4.5. Let P be an algebraic polynomial of exact degree n with nonne-
gative coefficients. Then for az(/5-1)/2

e8] 2 [oo]
(P2 t*e-tdt= " P2(£) 1% e~ dt,
6/( () ¢ Qu+a) Qn+o—1) of (D)ite

equality holding for P(t)=1" For 0 <o =< 1/2 we have

(4.2) f(P' ()2 1% et df <—
0

_——fP2 (1)1 e dt.
Q+o) (1+a) 5
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Moreover, (4.2) is also best possible in the sence that for P(t) = t"+xt the
expression on the left can be made arbitrarily close to the right by choosing k po-
sitive and sufficiently large.

The case o = 1 was considered in [39]. The cases a<(—1,0) and ac(1/2,
(1/5—1)/2) were not solved. D. Xie [42] tried to solve this problem in (12,
() 5—1)/2. Namely, he proved the following complicated and crude result:

Theorem 4.6. Let

n2

bn: ,n=],2,...,
Qnia)n—1+0)
and
1—2n—dn?+ V16n* + 3203 + 202 + 4 n+ 1
A = , n=1,2,....
2Cn+1)

Then, for each P&W,,
P |2 =bn(a) [| P’ for « = ay;
by () || P2, for op= a<<ag_1 and n =k,

| P2 =
(b1 () +by () — by ()] || P12, for ax=c<<ax_; and n >k,

where k =2,3,... .

In the next section we give a complete solution of the extremal problem (4.1.)

5. Extremal problems for polynomial with nonnegative
coefficients in Z2?(0, c ) norm

First, we consider the extremal problem (4.1).

Let Wy be the set of all algebraic polynomials of exact degree n, all coeffi-
cients of which are nonnegative, i. e.,

n

Wn={P | P(t) = apt®, ap=0 (k=0,1,..., n—1), an>0].

k=0
We denote by W, the subset of W, for which ¢, = 0 (i. e., P(0) = 0).

Let w(t)=t*e~* (a>—1) be a weight function on [0,+ c0), and let || f|]2=
= (f,f), where

[ee]

(fie)=[wOf@®e®dr  (f,g ©L20,+ 0)).

0
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In the paper [22] we gave a complete solution of Varma’s problem (4.1),
i. ¢. we determined

(5.1) Cu(@)= sup 1L
PEWy, “P'

for all a<(—1,+ 0).

Theorem 5.1. The best constant Cy(e.) defined in (5.1) is

1/Q2+a) (I + ) (<o < an),
(5.2) Co o) =

2 [Cn+a) Cntoa—1)  (n S a <+ ©),
where
(5.3) i =% (n + 1)1 (1T 2+ 27 + D2— 30 + 1),

Note that the supremum in (5.1) is attained for some P& wy. Indeed

P _ P | P ]|
up sup = Su .
PEWIII[PH PGW(;O HPTaOII PEWI(; ||P”
ap=

We can see that P(t) = t” is an extremal polynomial for «=a,. Furthermore,
if —1<Coo = ap, there exists a sequence of polynomials, for example, px(¢) =
=t"+kt, k=1,2,..., for which

hmHPk [ —C (OC)

ko | P ||
From Theorem 5.1 we can see:
(a) Cun(an—0) = Cy (an+0);
(0) Cp,i(@) = Crp(w);

(c) The sequence («x) is decreasing, i. €., a;>>0>0r> ... >0, Where

=(/5-1/2, ap=(73-5)/6, 3= (/10— 2)/2, ctc.,
and

oo = lim oy = (/17 —3)/2 = 0.561552812 . ..

n—rco

Remark. The statement of Theorem 5.1 holds if W, is the set of all
algebraic polynomials P(£0) of degree at most n (not only of exact degree n),

with nonnegative coefficients. In this case, if —1<a=<ay,, we can see that 1;(1‘) =
= At (A>>0) is an extremal polynomial.
Using the same method as in [22], we can solve the following general ex-
tremal problem for higher derivatives
| P(m) ”2

Cuny m (o) = sup 1 Z2m < n).
me@ = S e ")
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Theorem 5.2. The best constant Cy, ym(a) is given by

_(my?

( 1) b —_]‘<U‘ gan’ m:
g+ 1)am
Cn,?n(a) - 2 1 2 1 2
! (-'7_ ) '..(n_m+ ) ? OCZOCn,m,
(2 n+a)@m

where oy, m IS the unique positive root of the equation

Q2n+a)em ( n\?

Qm+a)em  \m

Here (p)x=p (p+1)...(p+k—1) and pP=p(p—1)...(p —k + 1).
In the special case, when n — + oo, we have

(m!)?

’ - ]- <°¢§°‘7m
e+ 1y m

lim Cn, m (a) =
H—» 00

— < o < 4+ o,
41"

where o, is the unique positive root of the equation

We note that af = ¢te = (l/ﬁ—3)/2. These roots off, for m=2,..., 6
are presented in Table 5.1 (with seven decimal digits).

Table 5.1

S e
|

,afn_ 0.5515992 l 0.5461112 ~ 0.5425236 ~ 0.5399438 | 0.5379725
|

The extremal problem for the polynomials with nonnegative coefficients can
be investigated with other weight functions on (0,4 <o), for example, w() =
=t*exp (—1°), «>—1, s>0. The corresponding best constant we will denote by
Cr (3 5).

In this case, using the same method we can prove that for P& W,°

. 1 2 +k+1
1P =B == 3 B I (* )
5 k=2

§ /
and

2n ,
1PR=(P, P)S— S Hi(o;s) bkr(“k”),
k=2
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(¢ 4]
where (f, g) = fw(t)f(t)g(t) d¢ and
0

7
Hi(e; 5) =%'——s———.

For s =2 we get a simple result:

Theorem 5.3. The best constant Cj(e;2) is given by

2 } .on—1
, — <oz — ,
a+1 n+1
2 n? n—1 _
- —, — 5o < 4+ 0O,
2nt+oa—1 n+1

If we take, €. g. « = 0, we have the following inequality

[os) [ve]
2 n?

j e~ P’ () d¢ gE—_T e P (0> dt

0 0
for each P&EW,.

In connection with these results see the paper [23].

6. Extremal problems for Lorentz classes of polynomials

Let L, be the set of algebraic polynomials of the form
(6.1) P)y=73 be (I—t)r(I+0)"*,  br=0(k=0,1,..., n).
k=0

These polynomials (transformed to [0, 1]) were introduced by G. G. Lorentz [14]
(see Section 3). A subset of Lorentz’s class L, for which PC¢-D (£ 1)=0
(i=1, ..., m) we denote by L,(,'”). Notice that Lf,O)DLf,I) -+, where Lf,o’ =Ly.
The corresponding representation of a polynomial P from L s

62) P =S be(l—0F(I+1y% bpz0 (k=m,..., n—m).

fe=m
1
If || flI2 = f(l — (1 +0)8f(£)2dt (o p > — 1), we can consider the fol-
~1
lowing extremal problem
[2dls
I e?

K

(6.3) C™ («, B) = sup
pe Lf,"’)\(o}
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where m=0,1, ..., [1;»— . The corresponding problem in the class L, for the uni-

form norm was considered by G. G. Lorentz (see Theorem 3.3).

Here, we mention only some special cases of general results obtained by
G. V. Milovanovi¢ and M. S. Petkovi¢ [24].

Theorem 6.1. If PCLy and o, 3=1, then the best constant cO (o, B) defined in
(6.3) is
W 2a--a+-B)RurradpB+1)

4Q2u+2N) Rn+r=1)

Ci (e B) =
. where h = min («, B).

Theorem 6.2. If PI™ m= 1, a= B> —1, then
(n+a)@r+2a+ D) (e @—1)r*+2m (n—m) (n—1+30—2 %))
2@ mta—)Q@mt) Qn—2mra—1) Qn—2m+a)

C (e, )
In the special case when « = 1 we obtain:

Corollary 6.3. If PELY, m= 1, we have

nn+1)(2n+3)
4C2m+1)2Rn—2m+1) .

(6.4) (L)) =

From Theorem 6.1 we see that (6.4) holds for m = 0 (see also Theorem 4.3).

In the proofs of these theorems we use the representations of Lorenz poly-
nomials (6.1) and (6.2) and an analogue of the Lemma 1 from [22]. Another interes-
ting results on this topic can be found in the mentioned paper [27].
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RAZLICITI EKSTREMALNI PROBLEMI MARKOVLJEVOG TIPA
ZA ALGEBARSKE POLINOME

Gradimir Y. Milovanovid

U radu se razmatraju ekstremalni problemi Markovljevog tipa za algebarske polinome
koris¢enjem razli¢itih normi i vi¥e polinomialnih klasa. Posebna paZnja je posveéena ekstremalnim
problemima u L*-normi na skupu svih algebarskih polinoma ne viSeg stepena od n ili na ne-
kim njegovim podskupovima.



