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Abstract. In this paper, we establish a ring-shaped region containing all the zeros of a unilateral
polynomial with quaternionic coefficients located on only one side of the powers of the quater-
nionic variable. We shall also obtain zero-free regions for the related subclass of regular power
series.

1. Introduction and preliminaries

A classical study in geometric function theory is to locate the zeros of a polynomial
in the plane using various approaches and techniques. This kind of study is considered
to be very significant and has deeply influenced the development of mathematics and its
application areas, such as physical systems. This study, in addition to having multiple
applications, has inspired much more research, both theoretically and practically. A
classical result of practical interest, giving the upper bound for the moduli of the zeros
of a complex coefficient polynomial due to Cauchy [2], is as follows:

THEOREM A. Let P(z) = ∑n
ν=0 aν zν be a polynomial of degree n. Then all the

zeros of P(z) lie in

|z|≤ 1+ max
0≤ν≤n−1


aν

an

.

Many similar studies, which shed light on the zero bounds of a complex coeffi-
cient polynomial in the plane, have since appeared in the literature as a result of this
elegant result, for instance, see [19]. Using the classical Schwarz lemma, Mohammad
[23] obtained the following upper bound for the zeros of P(z) .

THEOREM B. Let P(z) = ∑n
ν=0 aν zν be a polynomial of degree n. Then all the

zeros of P(z) lie in |z|≤ M/|an| if |an|≤ M , where

M = max
|z|=1

an−1zn−1 + · · ·+a0
= max

|z|=1

a0zn−1 + · · ·+an−1
.
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In order to estimate better and sharper zero bounds, it is desirable to put some
restrictions on the coefficients of the polynomial. One of the most known results about
the distribution of zeros of a complex polynomial with important applications in geo-
metric function theory is the Eneström-Kakeya theorem [15].

THEOREM C (Eneström-Kakeya Theorem). If T (z) = ∑n
ν=0 aν zν (z ∈ C) is a

polynomial of degree n, with real coefficients and satisfying

an ≥ an−1 ≥ · · ·≥ a1 ≥ a0 > 0,

then all the zeros of T (z) lie in |z|≤ 1 .

We refer the reader to the comprehensive books of Marden [15] and Milovanović
et al. [20] for an exhaustive survey of extensions and refinements of this well-known
result. We get the following equivalent form of Theorem C by applying it to the poly-
nomial znT (1/z) .

THEOREM D. If T (z) = ∑n
ν=0 aν zν (z ∈C) is a polynomial of degree n, with real

coefficients and satisfying

a0 ≥ a1 ≥ · · ·≥ an−1 ≥ an > 0,

then T (z) does not vanish in |z|< 1.

The Eneström-Kakeya theorem is generally seen as an important addition to this
field of study and has been the subject of a substantial amount of scholarly discourse.
The extension of Theorem B to a class of related analytic functions was established by
Aziz and Mohammad [1] in the form of the following result:

THEOREM E. Let f (z) = ∑∞
ν=0 aν zν ∕≡ 0 be an analytic function in |z|≤ t , t > 0 .

If
aν > 0 and aν−1 − taν ≥ 0, ν = 1,2,3, . . . ,

then f (z) does not vanish in |z|< t .

By H we denote the noncommutative division ring of quaternions. It consists
of elements of the form q = x0 + x1i+ x2 j + x3k , with x0,x1,x2,x3 ∈ R , where the
imaginary units i, j,k satisfy i2 = j2 = k2 = −1, i j = − ji = k, jk = −k j = i,ki =
−ik = j . Every element q = x0 + x1i+ x2 j + x3k ∈ H is composed by the real part
Re(q) = x0 and the imaginary part Im(q) = x1i+ x2 j + x3k . The conjugate of q is
denoted by q and is defined as q = x0 − x1i− x2 j − x3k and the norm of q is |q| =
√

qq =


x2
0 + x2

1 + x2
2 + x2

3 . The inverse of each non zero element q of H is given by

q−1 = |q|−2q .
For r > 0, we define the ball B(0,r) = {q ∈ H : |q| < r} . By B we denote the

open unit ball in H centered at the origin, i.e.,

B= {q = x0 + x1i+ x2 j+ x3k : x2
0 + x2

1 + x2
2 + x2

3 < 1},
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and by S the unit sphere of purely imaginary quaternions, i.e.,

S= {q = x1i+ x2 j+ x3k : x2
1 + x2

2 + x2
3 = 1}.

Notice that if I ∈ S , then I2 =−1. Thus, for any fixed I ∈ S , we define

CI = {x+ Iy : x,y ∈ R},

which can be identified with a complex plane. The real axis belongs CI for every
I ∈ S and so a real quaternion q = x0 belongs to CI for any I ∈ S . For any non-real
quaternion q ∈ H \R , there exist, and are unique x,y ∈ R with y > 0 and I ∈ S such
that q = x+ Iy .

We refer the reader to [4], [6], [8]–[10], [14] and the reference therein, for def-
initions and properties of quaternions and many aspects of the theory of quaternionic
regular functions. The following definition of regularity for functions of a quaternionic
variable was introduced in [9] by Gentili and Struppa, who were inspired by a work of
Cullen [5] on analytic intrinsic functions of quaternions:

DEFINITION 1. Let U be an open set in H . A real differentiable function f :
U → H is said to be left slice regular or simply as slice regular if, for every I ∈ S , its
restriction fI of f to the complex plane CI satisfies

∂ I f (x+ Iy) :=
1
2


∂
∂x

+ I
∂
∂y


fI(x+ Iy) = 0.

Since for all n ≥ 1 and for all I ∈ S , we have

1
2


∂
∂x

+ I
∂
∂y


(x+ Iy)n = 0,

it follows by definition that the monomial P(q) = qn is regular. Because addition and
right multiplication by a constant preserves regularity, all polynomials of the form

T (q) =
n

∑
ν=0

qν aν , aν ∈H, ν = 0,1,2, . . . ,n, (1)

with coefficients on the right and indeterminate on the left are regular.
Given two quaternionic power series f (q) = ∑∞

ν=0 qν aν and g(q) = ∑∞
ν=0 qν bv

with radii of convergence greater than R , we define the regular product of f and g as
the series

( f ∗g)(q) =
∞

∑
ν=0

qν cv,

where cν = ∑ν
k=0 akbν−k for all ν . Further, as observed in [6] and [9] for each quater-

nionic power series f (q) = ∑∞
ν=0 qν aν , there exists a ball B(0,R) = {q ∈H : |q|< R}

such that f converges absolutely and uniformly on each compact subset of B(0,R) and
where the sum function of f is regular.
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Polynomials with quaternionic coefficients located on only one side of the variable
were also investigated in [12] and [13]. It is observed (e.g., see [6], [12]) that the zeros
of a polynomial of type (1) are either isolated or spherical. Gentili and Stoppato [10]
(see also [8]) provided a necessary and sufficient condition for a regular quaternionic
power series to have a zero at a point in the form of the following outcome by utilising
some helpful tools from the theory of regular functions:

THEOREM F. Let f (q) = ∑∞
ν=0 qν aν be a given quaternionic power series with

radius of convergence R, and let p ∈ B(0,R) . Then f (p) = 0 if and only if there exists
a quaternionic power series g(q) with radius of convergence R such that

f (q) = (q− p)∗g(q).

In the form of the following conclusion, Gentili and Struppa [9] developed a max-
imum modulus theorem for regular functions, which encompasses convergent power
series and polynomials:

THEOREM G (Maximum Modulus Theorem). Let B = B(0,r) be a ball in H with
centre 0 and radius r > 0 , and let f : B →H be a regular function. If | f | has a relative
maximum at a point a ∈ B, then f is a constant on B.

Recently, Gardner and Taylor [7] used Theorem G and extended Schwarz’s lemma
from the complex to the quaternionic setting as follows:

THEOREM H Let f (q) = ∑n
ν=0 qν aν and f : B(0,R) → H be regular, where the

coefficients aν , 0 ≤ ν ≤ n, and variable q are quaternions. Suppose f (0) = 0 , then

| f (q)|≤ M|q|
R

for |q|≤ R,

where M = max|q|=R | f (q)| .

In the quaternionic environment, the counterpart of the aforementioned Eneström-
Kakeya theorem and its different variants were examined in fairly recent articles (cf.
[3], [11], [16], [17], [18], [21], [22]). This paper aims to extend some classical results
by deriving bounds for the moduli of all zeros of a unilateral polynomial of type (1).
First, we will get a more general conclusion: a ring shaped region containing all ze-
ros of the polynomial. We also get the quaternionic counterpart of Theorem B as an
application. Additionally, a zero-free region is established for the relevant subclass of
regular power series.

2. Main results

In this section, we state our main results. Their proofs are provided in the next
section. We begin by obtaining a ring shaped region containing all zeros of a unilateral
polynomial of type (1).
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THEOREM 1. Let T (q) = ∑n
ν=0 qν aν be a polynomial of degree n (where q is a

quaternionic variable) with quaternionic coefficients aν , ν = 0,1,2, . . . ,n. If for some
t > 0 , we have

max
|q|=t

qnan +qn−1an−1 + · · ·+qa1

≤ M1, (2)

and
max
|q|=t

qna0 +qn−1a1 + · · ·+qan−1

≤ M2, (3)

then all the zeros of T (q) lie in the region

min


t|a0|
M1

, t

≤ |q|≤ max


M2

t|an|
,

1
t


.

We get the following outcomes as special instances from Theorem 1:

COROLLARY 1. Let T (q) = ∑n
ν=0 qν aν be a polynomial of degree n (where q

is a quaternionic variable) with quaternionic coefficients aν , ν = 0,1,2, . . . ,n. If for
some t > 0 , we have

max
|q|=t

qnan +qn−1an−1 + · · ·+qa1

≤ |a0|,

then T (q) does not vanish in |q|< t .

COROLLARY 2. Let T (q) = ∑n
ν=0 qν aν be a polynomial of degree n (where q

is a quaternionic variable) with quaternionic coefficients aν , ν = 0,1,2, . . . ,n. If for
some t > 0 , we have

max
|q|=t

qna0 +qn−1a1 + · · ·+qan−1

≤ |an|,

then T (q) has all its zeros in |q|≤ 1/t .

Next, we use Theorem 1 to prove the following result, which in particular provides
an extension of Theorem B to a polynomial with quaternionic coefficients.

THEOREM 2. Let T (q) =
n
∑

ν=0
qν aν be a polynomial of degree n (where q is a

quaternionic variable) with quaternionic coefficients aν , ν = 0,1,2, . . . ,n. If for some
t > 0 , we have

max
|q|=t

qn−1a0 +qn−2a1 + · · ·+an−1

≤ M, (4)

then all the zeros of T (q) lie in

|q|≤ max


M
|an|

,
1
t


.

In Theorem 2, if t = 1, we have the following:
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COROLLARY 3. Let T (q) = ∑n
ν=0 qν aν be a polynomial of degree n (where q is

a quaternionic variable) with quaternionic coefficients aν , ν = 0,1,2, . . . ,n, and

max
|q|=1

qn−1a0 +qn−2a1 + · · ·+an

= max
|q|=1

qn−1an−1 +qn−2an−2 + · · ·+a0

≤ M,

then all the zeros of T (q) lie in

|q|≤ max


M
|an|

,1

.

Corollary 3 provides the quaternionic analogue of Theorem B, specifically for
|an|≤ M .

We will now examine the zero-free regions for the relevant subclass of power series
that are regular in the ball B(0,R) , R > 0. In this direction, we prove the following
result, which, as a consequence, gives the quaternionic analogue of Theorem E.

THEOREM 3. Let f : B(0,R)→ H be a regular power series in the quaternionic
variable q, i.e., f (q) = ∑∞

ν=0 qν aν , for all q ∈ B(0,R) . If aν , ν = 0,1,2, . . . , are
quaternionic coefficients such that for some positive real number t with t < R, we have

max
|q|=t

(ρa0 − ta1)+
∞

∑
ν=2

qν−1(aν−1 − taν)

≤ M, (5)

where ρ ≥ 1 , then f (q) does not vanish in

|q|< t|a0|
(ρ −1)|a0|+M

.

REMARK 1. Let f (q) = ∑∞
ν=0 qν aν be a power series (where q is a quaternionic

variable) regular in B(0,R) with real and positive coefficients satisfying

ρa0 ≥ ta1 ≥ t2a2 ≥ · · · ,

for some ρ ≥ 1 and 0 < t < R . Then

max
|q|=t

(ρa0 − ta1)+
∞

∑
ν=2

qν−1(aν−1 − taν)

≤ (ρa0 − ta1)+
∞

∑
ν=2

tν−1(aν−1 − taν)

= ρ|a0|

= M (say).

It follows from Theorem 3 that f (q) does not vanish in

|q|< t
2ρ −1

.

For ρ = 1, we get from Theorem 3 the following result:
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COROLLARY 4. Let f : B(0,R)→H be a regular power series in the quaternionic
variable q, i.e., f (q) = ∑n

ν=0 qν aν , for all q ∈ B(0,R) . If aν , ν = 0,1,2, . . . , are
quaternionic coefficients such that for some positive real number t with t < R, we have

max
|q|=t


∞

∑
ν=1

qν−1(aν−1 − taν)

≤ M,

then f (q) does not vanish in

|q|< t|a0|
M

.

REMARK 2. Let f (q) = ∑n
ν=0 qν aν be a power series (where q is a quaternionic

variable) regular in B(0,R) with real coefficients satisfying

0 ∕= a0 ≤ ta1 ≤ · · ·≤ tλ aλ ≥ tλ+1aλ+1 ≥ · · · ,

for 0 < t < R and λ ≥ 0. Then

max
|q|=t


∞

∑
ν=1

qν−1(aν−1 − taν)



≤
∞

∑
ν=1

tν−1|aν−1 − taν |

≤
∞

∑
ν=1

tν−1t|aν |− |aν−1|
+

∞

∑
ν=1

tν−1t(aν − |aν |)− (aν−1 − |aν−1|)


=
λ

∑
ν=1

tν−1t|aν |− |aν−1|

+

∞

∑
ν=λ+1

tν−1|aν−1|− t|aν |


+
∞

∑
ν=1

tν−1t(aν − |aν |)− (aν−1 − |aν−1|)


= 2tλ |aλ |− |a0|+
∞

∑
ν=1

tν−1t(aν − |aν |)− (aν−1 − |aν−1|)


≤ 2tλ |aλ |− |a0|+2
∞

∑
ν=0

tν aν − |aν |


= |a0|


2tλ

aλ
a0

−1+
2
|a0|

∞

∑
ν=0

tν aν − |aν |



= M (say).

It follows from Corollary 4 that f (q) does not vanish in

|q|< t

2tλ

aλ
a0

−1+
2
|a0|

∞

∑
ν=0

tν |aν − |aν ||
.

REMARK 3. If in Remark 2, we suppose aν > 0, ν = 0,1,2, . . . , and take λ = 0,
we get the quaternionic analogue of Theorem E.
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3. Proofs of the main results

Proof of Theorem 1. We have

T (q) = a0 +qa1 +q2a2 + · · ·+qn−1an−1 +qnan,

so that
|T (q)|≥ |a0|− |P(q)|, (6)

where
P(q) = qa1 +q2a2 + · · ·+qn−1an−1 +qnan.

Clearly P(0) = 0 and by (2), |P(q)|≤ M1 for |q|= t.
Therefore, it follows by Theorem H, that

|P(q)|≤ M1|q|
t

for |q|≤ t,

which implies by (6), that

|T (q)|≥ |a0|−
M1|q|

t
for |q|≤ t.

Hence, if

|q|< min


t|a0|
M1

, t

,

then T (q) ∕= 0.
In other words, all the zeros of T (q) lie in

|q|≥ min


t|a0|
M1

, t

. (7)

Now let
ψ(q) = qn ∗T (1/q) = qna0 +qn−1a1 + · · · +qan−1 +an,

so that
|ψ(q)|≥ |an|− |H(q)|, (8)

where
H(q) = qan−1 +q2an−2 + · · · +qn−1a1 +qna0.

Clearly, H(0) = 0 and by (3), |H(q)|≤ M2 for |q|= t .
Therefore, it follows by Theorem H, that

|H(q)|≤ M2|q|
t

for |q|≤ t,

which implies by (8), that

|ψ(q)|≥ |an|−
M2|q|

t
for |q|≤ t.
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Hence, if

|q|< min


t|an|
M2

, t

,

then ψ(q) ∕= 0.
In other words, all the zeros of ψ(q) lie in

|q|≥ min


t|an|
M2

, t

.

As T (q) = qn ∗ψ(1/q) , it follows that all the zeros of T (q) lie in

|q|≤ max


M2

t|an|
,

1
t


. (9)

Combining (7) and (9), the desired result follows. □

Proof of Theorem 2. We have from (3) and (4), that

max
|q|=t

qna0 +qn−1a1 + · · · +qan−1

= t max
|q|=t

qn−1a0 +qn−2a1 + · · · +an−1



≤ tM = M2.

Therefore, it follows from Theorem 1 by replacing M2 by tM, that all the zeros of T (q)
lie in

|q|≤ max


M
|an|

,
1
t


.

This completes the proof of Theorem 2. □

Proof of Theorem 3. Consider the power series

F(q) = (t −q)∗ f (q) = ta0 +(ρ −1)qa0 −ψ(q),

where

ψ(q) = q(ρa0 − ta1)+q
∞

∑
ν=2

qν−1(aν−1 − taν).

Clearly, ψ(0) = 0 and by (5), |ψ(q)|≤ tM for |q|= t .
Since ψ(q) is regular in B(0,R) , it follows by Theorem H, that

|ψ(q)|≤ M|q| for |q|≤ t,

which implies

|F(q)|= |ta0 +(ρ −1)qa0 −ψ(q)|

≥ t|a0|− (ρ −1)|q||a0|−M|q| for |q|≤ t.
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Hence, if

|q|< min


t|a0|
(ρ −1)|a0|+M

, t

,

then F(q) ∕= 0.
In other words, all the zeros of F(q) lie in

|q|≥ min


t|a0|
(ρ −1)|a0|+M

, t

. (10)

Since

ρ|a0|=
(ρa0 − ta1)+

∞

∑
ν=2

tν−1(aν−1 − taν)



≤ max
|q|=t

(ρa0 − ta1)+
∞

∑
ν=2

qν−1(aν−1 − taν)



= M (by Theorem G),

it follows that for ρ ≥ 1,

|a0|≤ ρ|a0|≤ (ρ −1)|a0|+M,

and, hence

min


t|a0|
(ρ −1)|a0|+M

, t

=

t|a0|
(ρ −1)|a0|+M

.

Using this in (10), it follows that F(q) does not vanish in

|q|< t|a0|
(ρ −1)|a0|+M

. (11)

By Theorem F, the only zeros of F(q) are q = t and the zeros of f (q) , it follows
that f (q) does not vanish in the disk defined by (11). This completes the proof of
Theorem 3. □

4. Conclusion

The historical Cauchy’s and the Eneström-Kakeya theorems form an essential part
of the classical content of the geometric function theory. They are equally important
in modern papers dealing with the regional location of zeros in regular functions of
a quaternionic variable. Here, we establish a ring-shaped region with all the zeros of
a unilateral polynomial with quaternionic coefficients located on only one side of the
quaternionic variable. A zero-free region is also established for the relevant subclass of
regular power series.
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